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ABSTRACT

An Investigation to explore the possibility of whirl flutter and to firm the effect of pitch-flap

COL_Ii_g (63) on teetering motion of the DOE/NASA Mod-2 wind turbine is presented. The equations of
_1on are derived for an idealized five-degree-of-freedom mathematical model of a horizontal-axis

wind turb!n_ with a two-bladed teetering rotor. The model accounts for the out-of-plane bending
_ ::: motion of ea_bb!ade, the teetering motion of the rotor, and both the pitching and yawing motions of

:M ;:_: ::......... the rotor support. Results show that_eRod-2 design is free from whirl flutter. Selected results
...... are presented indicating the effect of variations in rotor support damping, rotor support stiffness,

...... _=_=_ T5 on pitching, yawing, teetering, and biade bending motions.

INTRODUCTION

Recent horizontal-axls wind turbine (HAWT)
designs such as the DOE/NASA MOd-2 wind turbine
(ref. 1) include flexible towers in order to

achieve significant weight and cost reductions.
Experience with prop-rotors has shown that rotors

w_.x_b3e supports have a poten_I
aeroe_astid instability known as whlrl flutter.
This fOrm-b_i_t_i_ity _nvolves the-i_eraction
of elastiC, damping, gyroscopic, and aerodynamic
forces. The whirl flutter problem is discussed

..........in references 2-7 among others. In whirl
instability, the rotor will precess in a whirl
mode with an ever-increasing amplitude when the
e-ritical wind speed has been reached. That is, a
point on the rotor hub will trace a divergent
spiral as illustrated in Figure 1. The direction
of the spiral rotation can be either the same as,

--: or coun£er to, the rotor rotation. These two
m_>des are referred to as forward and backward

whirl _odes, respectively. Continued operation
of a wind turbine in the whirl flutter

f_

Figure i. - Wind Turbine Rotor in a
Mode.

Forward Whirl

mode wiIl Quickly lead to failure of the
supportive structure. This whirl instability is

possible regardless of the prese5ce of rotor
teetering motions or 6lade out-of-plane bending
motions. When these motions are inCluded, they

couple with the motions of the supportive
structure. Then a whirl instability can occur in
the whirl modes of the supportive Structure
and/or the rotor,

Most of the current large HAWT systems have
rotors with two blades. The analysis of wind
turbines with two-bladed rotors differs

signifi6ant_ from £hat with axzsy_Yc
rotors: The properties of a two-bladed wind
turbine change significantly as the blades rotate
from a horizontal to a vertical position. As a
result, the equations of motion of a two-bladed
wind turbine system contain significant periodic
coefficients.

In order to reduce blade bending loads, teetered
rotors with pitch-flap coupling (63) have been
used in some HAWT systems. The pitch-flap
coupling mechanically changes the pitch of the
blades as the rotor _eeters and thus is

equivalent to an aerodynamic spring that
restrains teetering motion. The effect of _
on rotor motion stability was studied in refs. 6
and 8. A whirl flutter analysis for a prop-rotor
on a flexiOly mounted pylon was developeq in ref.
6. That analysis may also be suitable for
investigation of whirl flutter in HAWT systems.
However, since most HAWT systems use rotor blades
that are long and relatively flexible, the blade
flexibility ought to be included in the
formulation of a HAWT whirl flutter analysis.

Other analyses are available for the
investigation of whirl flutter in HAWT systems.
_e is the MOSTAS computer code (refs. 9 and
I0). However, it is very complex and uses a
large amount of computer time. Hence, it is not
well suited to parametric investigations.
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lherefore,a si,Dlemodel,encon_oassi_onlythe
pertinentdegreesof freedom,is desired to study
the possibility of whirl flutter in a flexibly
mounted HAWT.

The primary purpose of this paper is to present
the development of a simple model for explorirK_
the possibility of whirl flutter in the DOE/NASA
Mod-2 HAWT. Secondary purposes are to study the
effects of pitch-flap coupling, rotor sL_oport
stiffness, and rotor SL_Oport da_ing on the
response of the _d-2.

A five-degree-of-freedom mathematical model is
developed in the _opendix for a flexibly-mounted
two-bladed teetering rotor. The degrees of
freedom include the first out-of-plane beneir_j
mode for each blade, the rotor teetering motion,

the rotor SL_oport pitching motion, and the rotor
sqoport yawing motion. The developed equations
that have periodic coefficients are numerically

integrated in the time domain using a star_ard
Runge-Kutta method.

ANALYSIS _THCD

Mathematical Model

The mathematical model of a HAWT with two,laded

teetering rotor is shown in Figure 2. The rotor

st@port is modeled by a rigid pylon of length h
that is restrained at one end by two sets of

rotational sprir_s and dampers. These sprigs
and dampers represent tower stiffnesses and

da_ings, ll_e restraints allow only pitching and
yawing motions, @x and _v, of the pylon. The
teetering motion, Y, of-the rotor hub with
respect to the rotating _aft of the pylon is
also restrained by a rotational spring and damper
set. The angular velocity, _, of the rotor is
assumed to be constant. The out-of-plane blade
ber_ir_3 deflections are represented by wI and

w2. These deflections are, in turn, expressed
in terms of the normal bending modes and the
generalized coordinates. Since the blades are
relatively stiff, only one mode is considered.
This type of representation of the blade motion
is referred to as a Rayleigh-type of analysis.
As a cons_uence of this approximation of the
blade motion, there are three degrees of freedom
for the rotor, one for each blade, ar_ one for

./K

W 2

Figure 2. - Mathematical Model of a Two-Bladed
Teetering HAWT.

teetering. Thus, with the pitching and yawing
motions of the pylon, the wind tu_ine model has

a total of five degrees of freedom. Only the
out-of-plane bending motion of the blades is
considered because it couples with the rotor

teetering motion. Consideration of other motions
such as tower translation, blade in-plane

bending, and blade torsion are not difficult, but
their inclusion would increase the complexity of
the analysis. Furthermore, it is believed that
these other motions do not have much effect on

v_irl flutter.

lhe aerodynamic forces are _talned from strip
theory based on a Quasi-steady approximation of
two-dimensional, incon_oressible, thin airfoil

theory, lhe blade geometric pitch ar,_le, _/nich
consists of the blade built-in twist (pretwist),

the pitch a_le due to pitch-flap couplir_3, the
collective pitch angle, and the cyclic pitch
angle are included in the formulation. Classical
blade element momentum theory is used to
calculate the steady induced velocity.

Coordinate Systems

_veral orthogonal coordinate systems are used in
the derivation of the equations of motion. Those

that are common to both the dynamic and
aerodynamic aspects of the HAWT are described in
this section.

1. Inertial system X_Z -- The Y'axis of this

system, _own in Figure 2, coincides with the
vertical axis of the HAWT tower and is positive

_ward. The Z-axis coincides with rotor axis and
is positive into the wind.

2. HL_)system XsY)Z 5 -- This system is
fixed to the hub center but does not rotate with

the rotor. It is parallel to the X_Z system _en
the pod rotations are zero.

3. Rotor system X4Y4Z 4 -- This axis
system is _talned by rotating the hub system
_out the Z3 axis by the rotor position angle
(=at) as shown in Figure 2.

4. Blade system XbYbZb -- This axis
system is obtained by rotating the rotor system
about the X4-axis by the rotor teetering
a_le y. The Yb axis is aligned along the
blade Quarter chord points and is also assumed to

be the blade elastic axis. The _ and zb
axes are also shown in Figure 3 along with the
various blade element angles, relative
velocities, and resultant aerodynamic forces.

t D

UT _ x b

z b

Figure 5. - Blade Element Velocity and Force
Vectors for a Wind Tu_13ine Rotor.
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Computer Code

The equations of motion developed in the Appendix
have time.wlse periodic coefficients. The
stability of a HAWT must be determined by
n_merlca!ly integrating these equations or by
using FloQuet-Liapunov theory. To this end, a
computer program called ASTER5 (Aeroelastic

Stability of a TEetering Rotor _th 5 degrees of
_reedom) was written to numerically Tntegrate

these equations. The ASTER5 program was first
s := verified bY several special cases obtained from

ref. 6. The program was then used to investigate
the possibility of whirl flutter in the DOE/NASA
Mod-2 HAWT and the effect of variations in some

of the MOd-2 parameters on its response.

The ASTER5 computer program waswritten in
FORTRAN IV. The input includes the radial
distributions of blade chord, twist angle, mass,
an_ first out-of-plane bending mode; equivalent

. ir_rtia, stiffness, and damping constants for the
pylon; and aerodynamic data. The lnput allows

c_ _ _ _rt-span pitchable blades with pltch-flap
:_ c_ling and cyciic pitch. The program uses a

standard subroutine called DVERK, which solves a
_ = = =_=sy_f_rst-order d_fFerential equations with

a Runge-Kutta method based on Yarners fifth- and
sixth=order pa!r of formulas.

RESULTS AND DISCUSSION

.... To verify the ability of the ASTER5 program to
correctly predict whlrl flutter, several cases of
a prop-rotor, which was analyzed in ref. 6, were
evaBJated. _The paramete#s fo_the prop-rotor are

_ -- ZZ_ii_r_se_ted in Table I. Results are presented for

two typical cases. In one case, the prop-rotor
response exhibits whirl flutter, while in the
other cas_ it is stable. The whirl flutter case

in which the pitching and yawlng freouencles are
2.3 Hz and 5.0 Hz respectively, is shown in
Figure 4. When the pitching frequency is ralsed
to 3.3 Hz by increasing the pitch spring

these figures that there is agreement between the
results of ref. 6 and the ASTER5 program. Thus,
the ASTER5 program is capable of predicting vahirl
flutter. The auantitative differences evident in

these figures may be due to differences in
airfoil data and/or initial conditions. It
should also be noted that ref. 6 does not account

for the blade out-of-plane bending motions as
does ASTER5. However, the blade frequency is
assumed to be high for the input to ASTER5, and

thus has a negligible effect on stability. The
steady state pitch deflection, Sx, evident in
Figure 5, is due to the gravitational moment of
the rotor, which is added to the pitching moment
only for these verification cases.

4

eJx 2m.

i
, @,4 0,@ I.Z |+g 2.0 2.4 2,8 3._ ].g 4+0

TIHg. t. sec.

Figure 5. - Response of Prop-Rotor in
Stable Mode.

The D_/NASA Mod-2 HAWT was modeled to

investigate the possibility of whirl flutter.
The parameters for Mod-2 are presented in Table
II. The response of the Mod-2 was calculated

with the ASTER5 program. A baseline reference
stiffness, the prop-rotor becomes stable, as case of the Mod-2 parameters without structural
s_own in Figure 5. For comparison, the envelopes
of the pitch motion amplitudes for the
corresponOing cases calculateO in ref. 6 are also

!ndicated lnFlgures 4 and 5. It is evident from

:7 Y S[]±TIIZ[[:] 7/-7_

).
IIp_T

T;_[, t, $e¢.

Figure 4. - Response of Prop-Rotor in
Whirl Flutter Mode.

damping was considered for an initiai evaluation
of its stability_ The results of this case,
given in Figure 6, show that the pitch, yaw,
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teeter, andbladecyclic bendingmotionsare
neutrallystable. However,whena smallamount
of structural_amplngfor thepitchandyaw
motionsis included,all motionsaredampedout
asshownin Figure7. Since damping exceeOing

this amount is expected in the actual system, it
is concluded that the baseline Mod-2 is free from

whirl flutter.
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Figure 7. - Response of Mod-2 Baseline Case with

Structural Oamping (_$x=_=.01).

To study the effect of pitch-flap coupling on the
response of the baseline Hod-2, several cases
were calculated for values of _3 from -40° to
+40 °. The results indicate that only the blade
cyclic bending motion as measured by Qc is

affected by variations in _3. Figure 8 shows
the change in maximum amplitude of qc with _3"
The results indicate that positive _ has an
adverse effect on blade cyclic bending motion.

2.

MAXIMUM

BLADE

CYCLIC
BENDING1.
Iq:l+._

deg,

O.
! I ; i t

-40. -20. O. 20. 40.

PITCH FLAP COUPLING, 63' deg.

Figure 8. - Effect of Pitch-Flap Coupling, _,
on Blade Cyclic Out-of-Plane
Bending Motion.

Other parametric studies were made to explore the
possibility of whirl flutter over wide ranges of

pylon spring stiffnesses, pylon damplngs, rotor
rotational speeds, and wind speeds. Some
selected results of these studies are presented

in Figures 9-12. The possibility of whirl
flutter can exist for Mod-2 if the yaw or pitch

stiffness of the pylon were substantially
reduced. For example, Figure 9 shows the
response of Mod-2 when the yaw stiffness is
decreased to G.G% of its baseline value while the

other parameters remain the same. These results

_indicate _nirl flutter by the unstable response

of the yaw and teeter motions. When the pylon
pitch stiffness is also reduced to 7.3% of its
baseline value such that the pitch and yaw

frequencies are equal (m_x=m_v=3.665 _),
then the response of the pitch motion is also
unstable as shown in Figure lO. The _irl motion

of the pylon for this case is best illustrated by
a cross-plot of the pitch and yaw motion in
Figure ll. The figure shows that the system is
In a forward whirl mode. From these results, it
can be concluded that the stability of a HAWT is

highly dependent on the rotor support stiffnesses.

As demonstrated earlier, the stability of a HAWT
is sensitive to the presence of structural
damping. To further illustrate this fact, a
nominal amount of damping (_¢x=_¢y=.04) was
added to the unstable case of FigOres lO and ll.
The results, shown in Figure 12, indicate that a
reasonable amount of structural damping has
stabilized all motions of a previously unstable

system.
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Figure 9. - Response of Mod-2 with Reduced Yaw
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Figure ii. - Hub Motion of MOd-2 with Reduced
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Flutter-Mode.
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3. Positive _3 has an adverse effect on
cyclic blade out-of-plane bending motions for the
MOd-2 design, whereas negative 63 has little
effect.

4. Reduction In rotor support stiffness or

structural damping increases the posslbility of
whirl flutter.
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CONCLUSIONS 9.

An investigation was conducted to exolore the

possibility of whirl flutter in a large HAWT. A
five degree-of-freedom mathematical model and its I0.
associatedco_nputer program were developed and

verified. The program was used to study the
po_]bility of whirl flutter in the DOE/NASA

MOdZ2WinO turbine and the effect of parametric
variations in pitch-flap coupling, rotor support
st_ffnesses, and structural dam_ing on its
response. Based on these limited studies, the c
follnw_ng conclusions were obtained.

r_, Cw,

i. The ASTER5 program is capable of C_x ' C_
pred]ctlng whirl flutter for two-bladed teetering
rotor systems.

2. The baselin_ design of the Mod-2 HAWT is O
f_ of whirl flutter.
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_OMENCLATURE

blade chord length

damping coefficients of rotor
teetering, blade out-of-
plane bending, pylon pitch and yaw
motions, respectively

profile drag per unit length of
blade element
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h

H

I-I1, I-t.2

Ib

Ipx, Ipy

Kb

KC, Kw

Kgx , Key

L

_b, _2

Qc, QS

qw l, qw 2

R

SOl

t

T

TI, T2

U

Up, UT

V

V

w I, w2

Xb, Yb, Zb

X, Y, Z

X3, Y3, Z3

pylon length

total rotor shear force, EQ. (A20)

rotor shear force per unit length
of blade i and 2, respectively

mass moment of inertia of the blade

defined in EQ. (A9)

mass moments of inertia of

the pylon about the X and Y axes

half of the teeter spring stiffness

effective blade spring stiffnesses
defined in EQ. (All)

pylon spring stiffnesses

circulatory lift per unit length of
blade element

mass properties of the blade
defined in EQ. (A9)

cyclic and symmetric coordinates
for blade out-of-plane bending
motions defined in EQ. (A9)

generalized coordinates
for out-of-plane bending motions of
blades 1 and 2

radial distance along blade elastic
axis

radial length of blade

mass property of blade defined in
EQ. (A9)

time

total rotor thrust force, EQ. (A20)
also kinetic energy

rotor thrust force per unit length
of blade i and 2

resultant aerodynamic velocity,

also potential energy

components of U, Figure 3

induced velocity

wind velocity

out-of-plane bending deflections of
blade i and 2

blade coordinate system

inertial coordinate system

hub coordinate system

X4, Y4, Z4 rotor coordinate system

83

blade angle of attack

rotor teeter deflection angle

pitch-flap coupling angle EQ. (A22)

_b, _w, critical damping ratios,

_¢x' COy EQ. (AID)

8, Ot, e0 blade pitch, twist, collective
elC, 815 pitch, and cyclic pitch angles

p air density

aerodynamic inflow angle

Wb

_)W

_@x

_Oy

a

(')

pylon rotational deflections

normalized blade mode shape

rotor position angle

blade natural freQuenc_

blade out-of-plane bending
frequency

pylon frequency (=_)

pylon frequency (=_y)

rotor rotational speed

time derivative

{ } column matrix

[ ] square matrix

TABLE I. PARAMETERS FOR PROP-ROTOR OF REF. 6

Air velocity, V 77.1 m/s
Rotor

Radial length, R 3.505 m
Rotational speed, 320 RPM

Pitch-flap coupling, _3 200
Teeter spring stiffness, 2Kb 0
Teeter motion damping, 2 Cb 0
Blade

Mass properties

-_3_ 26.09 kg
16.96 kg-m 2
42.17 kg-m2

Ib 118.9 kg-m2
Stiffness, (Kc+Kw) .3821xi06 N-m/rad
Damping, _w 0
Airfoil NACA 0015

Chord, c .2794 m
Twist distribution, at(r)

0 < r/R _.45 .677-1.217r/R rad
45 < rAR _ 1.O .419(.75-r/R) tad

Collective pitch, 00 .74 rad
Pylon Properties

Inertias, Ipx = Ipy 21.60 kg-m 2
Stiffness,

K@x 29.71x105 N-m/rad
140.3xlO 3 N-m/tad

K@y
Damping,_¢x :_y .04
Length, h 1.143 m
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TABLEII. PARAbETERS FOR [XI/NASA N_3D-2 HAWT

wind velocity, V 12.2 m/s
Rotor

Radial length, R 45.81 m
Rotatinal speed, 17.5 RPM

Pitch-f!#p coupling, 53 0
0
0

26021. kg
.9125xi06 kg-m2
3.368xi06 kg-m2
78.82xi06 N-m/rad

0
NACA 23018

3.319-8.429(.3455-r/R) m
1.436+2.877(l-r/R) m

Ot(r)
.03459-.155(.27-r/R) tad
-.0698 + .143(1-r/R) rad

-- Teeter spring stiffness, 2_b
::F ::=:: Teeter motlon damping, 2¢b
:_- -- :: BlaOe
i

Mass properties

Stiffness, (Kc+K w)
Oamping, Cw
Airfoil
•_ord distribution, c(r)

.1542 _ r/R _. 3455

•3z_55 < r/R < i. 0
Twist distribution,

.1542 _ r/R <-.27

.27 < rAR < i:0=

Collective pitch, e0
1542 <-r/R <. 7006

_ Pylon
Inertia,

: __px
- tp

Stiffness,

V

- Le_,, h

APPENDIX

0
-.05236 rad

6.115xi06 N-m 2
.6210xi06 N-m 2

6.183xi09 N-m/rad
3.140xi09 N-m/rad

0
0

7.3152

Deriw_tion of Equation of Motion

The mathematical model of a horizontal axls wlnd

turbine is shown in Figure 2. The degrees of
freedom and the required coordinate systems are
described in the main body of this paper. The
equations of motion, herein, have been derived by
using the Lagrangian approach. This formulation
requires expressions for the position vectors of
arbitrary points on the pylon and the blades.
These expressions are obtained with the aid of a
series of rotations. The orqer of the rotations,
illustrated in Figure 2, is ix, @v, $, and y.
The position vector of a point on-the pylon axis is

% = [T¢x][T, 0 (AI)

kSp--

and _nat of the hub-pylon axis junction point is

kh)

where

i o °1_)x] = _o_ % -_±_

sin @x cos ¢x_

IT,y]=

(]sin Cy 0 cos CyJ

(A3)

The position vector of a point on blade 1 can be
written in the X3Y3Z3 axis system as

(A4)

where

Co ,..
0

IT y] = COS y -sin

sin X cos y.)

Combining Equations (A2) and (A4), the position

vector of a point on the axis of blade 1 expressed
in the XYZ axls system is

{o}]; - [_] [_%] + [_][_ r

l(r,t

(AS)

where wl(r,t) is represented by a single
elastic blade mode and is

(A6)

wl(r,t ) = @(r)qwl(t ) (A7)

The position vector of a point on the axis of
blade 2 is obtained from EQuations (A6) by
replacing Wl, y, and @ by w2, -Y, and $+¶
respectively.
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The total kinetic energy of the pylon and the

rotor is formed from the position vectors given by

EQuations (AI) and (A6) and is given by

i{ -2T - 7 [I*x+ [b(I- cos 2,_,x

"2

+ [I@y + Ib(l - cos 2_¢y

+ [-4SblYq c - 21by2 + 21b]f12

+ 4!bxYIb cos _ + 4@xqcSbl cos

(AS)

where

+ &+y7 IbSln _ + 4+ySblq c sin @"

+ 4SblYqc}

l_x - Ipx + 2Mb h2

- + _bh 2I_y Ipy

_b "_o mb dr

Ib = _0 R mbr2 dr

Sbl " @ r dr

Mb2 - _0 R mb#2 dr

(Ag)

qs " (qw I + qw2)/2

qc " (qwl - qw2)/2

The Quantities Ip x and Ipv are the pylon

inertias about the X and ? axes, respectively.

The potential energy of the pylon and the rotor

can be written as

I FK___ 2 Key@y2 2Kby2u - _[__x_x+ +
(AI0)

• 2 + 2_
+ 2(Kw + Kc)Lqs qc_

_ere

xR bYb _''2(r)drK- Ely

R @,2(r)drKc " Tc

R mb_2 rT c " dr

(All)

The dissipation potential for the pylon and the

rotor can be written as

I .2 .2

uD " _-[C_bxdPx + Cdpy_2y + 2CbY

+ +
where

C_x = 2_¢xI¢x_¢X

C_y = 2CCyICyW¢y

C b - 2_bIb_ Y

c- 2%_2%

"(AI2)

(AI3)

By substituting EQuations (A8), (AIO), and (AI2)

into Lagrangian equations of the form

d BT _ BT + BU +_. Qi (AI4)
dt 3ql Bq--_ @ql

the following equations of motion for the wind

turbine model are obtained

[z]I_'}+ [c]l_}+ [K]lq} " {Q} (A15)

where

qc

lq}"

Y k MCy J

D]-
z_bz 0 0 02Hb2 2Sbl 2,Sbl col

2Sbl 2I b 2I b cos @

2$bl cos _ 2I b cos _ I¢x+ Ib(1 + cos 2@)

2Sbl eLn _ 2I b oCn @ I b sin 2@

Ii w 0 0 0

2Cw 0 .-4Ib[_ ,m @

[c] - o 2% -'b_ ._

0 O C¢_ - 21b{_ ml. 2_

0 0 -21b_(l - cos 2WJ)

o 12Sbl sin

21 b sin _J |

I b sin 2_/ ]

,_ + _(L - co, 2_)_

(A16)

°14Sbl_ cos 0

4IbR col @ |

2IbG(L + cos 2_) |

c_ + n_ ,_ _,j

[_]-
2(_w+Kc ) 0 0 0 i 1i 2(_se + _c) 2Sbl_ 2 0 "

2Gb1_2 2K b + 2Ib_ 2 0

2Sb1_2c°° @ 2Ib _2c°_ _ _x

2Sbl_2Sin _ 2IbD2e_n _ 0 _y
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me_xt stepis to obtain expressions for

Qwl, Qw2, _ , Max, and _ Deexp_ssions are derived _ the virtual work of

the aerodynamic forces, _i_ can be written as

= ffA " _)dr (AI7)

n= 1

_e_e _ is the aerodynamic force _ctor per

un._ le_. _e co_onents of _ are

illustrated in Figure 3 f_m _ich one can write

K

{FAlblade I "

By using a similar expression for blade 2,

(AI8)

= _ st_,stituting it with Equations (A6) and (AI8) into

Equation (A17), and neglecting several higner

oroer terms believed to be unimportant, one obtains

- QWl " TI_ dr
[

fo ,-_ Qw 2 = T2@ dr

- (T I - T2)r dr
(AI9)

: MSx _ -Hh sin _ + Thy cos _ + My cos|

--. _>- _=o,_+Thy si._+_ _

=

wh_re

H _, (H I - H2)dr

(A20)

T _ (T I + T2)dr

The expressions for circulatory lift and profile

dra_ per unit length can be written as

1

pU2CCL(_) (A21)
L

1 pU2cCDCa)D-_

where, from Figure 3 and Equation (A6), the

following expressions are obtained

U - +U T

Up - V cos Sx cos _y cos 7 + r$x cos

+ _$y _i. _ + _ + _i_ + v

UT " V cos Sx sin Sy cos _ - V sin Sx sin

+ hSx sin _ - hSy cos t_ + r_q cos y (A22)

@ - tan(_T)

8 = 80 + @t(r) - y tan _3

+ 81c cos $ + @Is sin

In the derivation of above expressions for Up

and UT, several higher order terms, believed to

be unimportant, are neglected. Also, circulatory

lift, produced by the angular velocity of the

local blade section about the Yb-axis due to

blade out-of-Diane bending and rotor teetering, is

neglected in the expression of EQuation (A21).

T_e values of C L and C0 are nonlinear

functions of x and are calculateC from airfoil

data.

8y resolving L and D in Figure 3, the expressions

for T 1 and H 1 are

T 1 = -L cos $ - D sin $

(A23)

HI " -L sin $ + D cos $

The expressions for T2 and H2 are the same but

the values of L, D, and are obtained by

replacing _, _, and Qw I by -Y, _+¶, and

Qw2, respectively in the expressions of

Equation (A22).

lhe induced velocity v in Equation (A22) is based

on classical momentum theory and is

-V + _/V 2 + 2T/p_R 2 (A24)

2

!
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QUESTIONS AND ANSWERS

D.C. Janetzke

From:

Q:

A:

From:

Q:

A:

A. Wright

What type of failures would result from severe whirl flutter?

Fatigue failure or ultimate limit load failure.

Bill Wentz

How do you increase structural damping in design?

I don't know.

From: J.A. Kentfield

Q-

A:

What magnitude of structural damping can be expected in the pylon of MOD-2 or

similar machines?

The damping applied to the pylon in the model represents the equivalent damping of

the entire rotor support system which includes the pod and the tower. The Mod-2

welded tower damping is about 2% of critical damping.

From: Mr. Doman

Q: What influence has the absence of tower bending modes on results?

A: The tower bending modes are represented by the pylon support stiffness.

From: P. Anderson

Q:

A-

What time step size was used in the integration process? Have any sensitivity tests

been carried out to optimize step size?

1. An initial time step equal to 36 steps per rotor revolution was arbitrarily

chosen. The integration process could change the step size within the initial

size as needed for convergence.

2. Several other step sizes were used, but no attempt was made to optimize the

size.
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