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Surface flow visualization using indicators in the cryogenic wind tunnel 

will remain as important an experimental procedure as the conventional "oil 

flow" methods, but with the extreme testing environment will require a fresh 

look at materials and procedures to accommodate the new test conditions. In a 

sense, these new conditions are welcome, as they provide an opportunity to 

identify new materials and reactions to provide better surface flow 

visualization opportunities. 

Figure 1 summarizes several potential liquid and gaseous indicators that 

can be identified from a cursory examination of material tables, but their 

particular suitability can only be determined after actual trials in the test 

environment. These particular materials illustrate the various requirements 

an indicator must fulfi 11. Foremost among the requirements is that the 

indicator must exist in the proper state at the test conditi on. Keeping in 

mind that the test cond itions can span the entire operating envelope of the 

NTF, it is probably too much to expect one material to be used over the entire 

range. Several different indicators must be selected. 

Equally important are the requirements that the indicator must respond 

properly to the flow phenomenon of interest and must be observable. Boundary 

layer transition is the most important phenomenon for which flow visualization 

indicators may be employed and probably the most d-ifficult application. 

Identification of surface flow direction and separation is a more easily 

achieved application, and is still sufficiently important to justify the 

development effort 
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atomic emissions excited by tuneable laser illumination. The hydrocarbons 

such as propane and pentane will readily dissolve various fluorescent dyes and 

thus can be easily observed with ultraviolet illumination. 

Gaseous indicators are probably more difficult to utilize, but because of 

their diversity, may present unusual and useful opportunities. Presumably 

they can be observed directly by resonant emissions, but other reactions can 

also be expected. For example, oxygen can quench the fluorescence of other 

materials so that one can imagine the model surface coated with a fluorescent 

paint which will produce a visible emission which is inhibited where the 

concentration of oxygen in the boundary layer is sufficiently high. Ozone has 

the property of strongly absorbing ultraviolet radiation and so can 

conceivably be used to cast a shadow on a fluorescent surface by blocking the 

ultraviolet excitation. At higher temperatures ammonia can be used in 

conjunction with pH indicators incorporated into a paint system to produce 

visible stains in regions of high concentration such as in Figure 2. In this 

example ammonia is dispensed from pressure orifices in the model surface. 

Other factors that must be considered in selecting an indicator include 

handling safety, toxicity, potential for contamination of the tunnel, and cost. 

Delivery of the indicator to the model surface is a major consideration, 

if not impediment, in any flow visualization system. It can be readily 

appreciated that a wind-on dispensing system is necessary for practical 

utilization of flow visualization indicators in the NTF. Not only would a 

one-shot pre-run application of indicator to the model surface be 

prohibitively expensive for routine use in the NTF, but most indicators would 

not even exist in the proper state at the application temperature and pressure. 
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Of the possible flow visualization indicator delivery systems, as 

summarized in Figure 3, the retractable spray bar approach is probably the 

least attractive. It has the advantage of being independent of the model, but 

it would require a complex facility installation. Its greatest disadvantage, 

however, may be the very inefficient delivery of indicator to the model 

surface which implies that large quantities of material are needed and hence 

the tunnel contamination may be very serious. 

An onboard-model dispenser comprised of an array of orifices in the 

surface could be considered a conventional system, but this approach suffers 

several serious difficulties. The supply pressure drop of the indicator 

through an orifice of practical size is relatively small compared to typical 

aerodynamic pressure gradients across the model surface. Therefore, in order 

to maintain uniform delivery over the entire wing span, for example, a 

multiple manifold system is usually required. This complicates the 

installation of the system in the model and requires a complex control 

system. Figure 4 shows the narrow nature of liquid indicator plumes dispensed 

from orifices. 

A delivery system comprised of a continuous strip of porous metal inset 

flush with the model surface offers many advantages. In particular, it is 

possible to achieve uniform dispensing over an entire wingspan with a single 

manifold at conveniently high supply pressures (on the order of 1000 psi) so 

there is little potential for interaction with model surface pressures. Figure 

5 shows the typical appearance of an indicator dispensed from a relatively 

nonuniform porous strip. The model surface can be very smooth and thus 

presents less of a disturbance to the flow than individual orifices. 
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A new method of fabricating a porous dispenser suitable for a 3-D, cryogenic 

model has been developed at the Boeing Aerodynamic Laboratory as reported here 

and is depicted in Figure 6. With this new method, a single spanwise slot is 

machined into the wing leading edge, but it need not be very straight nor of 

constant dimension. The sides of the slot should be widely spread and a 

narrow groove located in the bottom. The slot is then filled by a flame spray 

process which involves b lowing semi-molten powdered metal from a high 

temperature gun. Figure 7 shows the appearance of the flame spray application 

before finishing. 

The greatest difficulty with this approach to date has been model 

fabrication. The porous metal has usually been in the form of sintered stock 

cut into strips and inset into a carefully machined groove in the model to 

achieve a close-fitting mechanical attachment. This has been relatively easy 

for conventional, 2-D models, but will be much more difficult for cryogenic, 

3-D models. 

Depending on the details of the material used, preparation of the model 

surface, and the particular application process, a very secure attachment of 

the porous material to the model can be achieved. The flame spray material is 

finished to the final model contour as if it were solid metal with a very 

smooth surface finish.. Depending on the final finishing and porosity of the 

material, an electro-chemical etch of the surface may be required to open the 

pores a controlled amount for uniform dispensing of the indicator. 

Experience with this process on small specimens has been very encouraging, 

but several important questions remain to be answered, as summarized in Figure 

8. The major structural problem may be the effect of repeated temperature 

cycles on the porous material attachment. Thermal stressing of small samples 
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by alternate submersion in liquid nitrogen and hot water has so far shown no 

adverse effects. Another question which must await wind tunnel trials is the 

durability against erosion by wind-borne matter. 

A final question which deserves careful study is a definition of surface 

roughness requirements. Even though these porous metal surfaces feel smooth 

to the fingertip, it is clear that they tend to have relatively large pores 

below the surface which would doubtless be perceived by conventional roughness 

inspection methods as similar to roughness features that protrude above a mean 

surface. It is unlikely, however, that the aerodynamic flow will react to 

such surface features similarly. It is probably not possible to resolve this 

question without actual wind tunnel trials, but conventional , and somewhat 

arbitrary, model surface roughness specifications should not be applied too 

rigorously and prematurely. 

Clearly there are great potential benefits in developing surface flow 

visualization methods for cryogenic wind tunnel testing and there are many 

potential materials and reactions that deserve thorough study. Even though 

there appear to be a few practical techniques close at hand, the potential for 

even greater surface flow visualization productivity ought to justify a long 

term and complete development effort. 
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NITROGEN 
PROPANE 
FREON-12 
ACETONE 
PENTANE 

itors 
GAS EO U S 

OXYGEN 
OZONE 
CARBON MONOXIDE 
NITRIC OXIDE 120 
AMMONIA 240 

M.P.( K) B.P.( K) 
63 77 
83 229 

118 278 
1 79 329 
143 309 

* Pre-run application of indicator is impractical 
- access to model for one-shot flow vis 

- physical properties of most indicators 
involves great expense. 

are incompatible with standard temperature and pressure. 

* Cryogenic surface flow visualization using indicators 
requires wind-on dispensing system. 

Figure 1.- Cryogenic sur face  flow v i s u a l i z a t i o n  us ing  ind ica to r s .  

Figure 2.- Example of flow v i s u a l i z a t i o n  us ing  ammonia gas ind ica to r .  
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* Retractable Spray Bar 
+ Independent of model 
- Requires elaborate facility modification 
- Disturbs flow while dispensing 
- Large quantities of indicator--contaminates tunnel 

* Orifice Arrays in Model 
+ Present state-of-the-art baseline method 
+ Simple concept 
- Complicated multiple manifolds 
- Small pressure drop--interacts with model pressures 
- Orifice size disturbs boundary layer 

+ Uniform distribution from single manifold 
+ High supply pressure (0--1000 psi) 
+ Smooth surface 
- Difficult to install sintered strips in 3-0 model 
- Easily plugged by non-soluble pigments 

* Porous Surface 

Figure 3. -  Cryogenic surface flow visualization dispenser systems. 

Figure 4.- Example of l iquid indicator dispensed from or i f ices .  
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Figure 5.- Example o f  l i q u i d  i n d i c a t o r  dispensed from porous strip. 

* Machine one continuous spanwise slot in wing leading edge 
- slot need not be straight nor constant dimension 
- hand finishing can be used for transition regions 
- narrow part of slot serves as distribution manifold 

* Flame spray with powdered metal 

- various materials (Le. alum, nickel, s.s., etc.) 
- various particle sizes--adjust for proper porosity, 

- various processes(i.e. flame spray, plasma 

- various preparation steps (Le. degrease, blast clean, 

I' bonding strength, smoothness, etc. 
.i. 

arc, etc.) 

masking, etc.) 

&Y-\ 

* Finish to final contour 

Figure 6.- New porous dispensing system f o r  cryogenic 
su r face  flow v i s u a l i z a t i o n ,  developed by Boeing 
Aerodynamic Laboratory. 
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Figure 7. - Typical appearance o f  fTame spray appl i cation. 

* Bond strength after repeated 
tern pera t u re cycles 

* Durability against erosion by 
wind-borne matter 

* "Effective Roughness" of roughness 
geometry, especially subsurface pits 

Figure 8.-- Cryogenic surface flow visualization questions t o  be investigated. 
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