General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

The Ohio State University
Research Foundation
Columbus, Ohio 43212

1. CURRENT TECHNICAL OBJECTIVES

1. Optimal Utilization of Laser and VLBI Observations for Reference Frames for Geodynamics (Grant NSG 5265)

2. Utilization of Range Difference Observations in Geodynamics (Contract NAS 5-25888)

3. Developmerit of Models for Ice Sheet and Crustail Deformations (Grant NS/ 5265)

2. ACTIVITIES

2.1 Effects of Adopting New Precession, Nutation and Equinox Corrections on the Terrestrial Reference Frame

A paper on this topic was presented at the XVII General Assembly of the International Astronomical Union, Patras, Greece, August 17-26, 1982, and appears in its entirety below. It will also appear in Bulletin Geodesique.

PREFACE

These projects are under the supervision of Professor Ivan I. Mueller, Department of Geodetic Science and Surveying, The Ohio State University. The Science Advisor of RF 711055 is Dr. David E. Smith, Code 91 , Geodynamics Branch, and the Technical Officer is Mr. Jean Welker, Code 903, Technology Applications Center. The Technical Offteer for RF 712407 is Mr. C. Stephanides, Code 942. The latter three are at NASA/GSFC, Greenbelt, Maryland 20771.
table of contents
Page

1. CURRENT TECHNICAL OBJECTIVES 1
2. ACTIVITIES
2.1 Effects of Adopting New Precession, Nutation and Equinox Corrections on the Terrestrial Reference Frame 1
2.2 Utilization of Range-Difference Observations in Geodynamics 19
2.21 Utilization of Simultaneous Lageos Range- Differences in Geodynamics 19
2.22 Doppler Experiments 46
2.221 Geometric Adjustment of Simultaneous Doppler- Derived Range Differences 46
2.222 Doppler Intercomparison Experiment 62
2.3 Earth Deformation Considerations for the Maintenance of a Conventional Terrestrial Reference System 74
2.4 Development of Models for Studying Ice Sheet and Crustal Deformations 86
3. PERSONNEL 89
4. TRAVEL 89
5. REPORTS PUBLISHED TO DATE 90

N83 13538

effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame ${ }^{1}$

Sheng-Yuan Thu* and Ivan I. Mueller Department of Geodetic Science and Surveying The Ohio State University, Columbus, Ohio 43210 USA

ABSTRACT. First, the paper is devoted to the effects of adopting new definitive precession and equinox corrections on the terrestrial reference frame: The effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time; on UT1 it is a linear term. Second, general principles are given the use of which can determine the effects of small rotations (such as precession, nutation or equinox corrections) of the frame of a Conventional Inertial Reference System (CIS) on the frame of the Conventional Terrestrial Reference System (CTS). Next, seven CTS options are presented, one of which is necessary to accommodate such rotations (corrections). The last of these options requiring no changes in the origin of terrestrial longitudes and in UT1 is advocated; this option would be maintained by eventually referencing the Greenwich Mean Sidereal? Time to a fixed point on the equator, instead of to the mean equinox of date, the current practice. Accomodating possible future changes in the astronomical nutation is discussed in the last section. The Appendix deals with the effects of differences which may exist between the various CTS's and CIS's (inherent in the various observational techniques) on earth rotation parameters (ERP) and how these differences can be determined. It is shown that the CTS differences can be determined from observations made at the same site, while the CIS differences by comparing the ERP's determined by the different techniques during the same time period.

introduction

New general precession and equinox corrections are being introduced in the 1984 star catalogues and ephemerids. These corrections in turn will affect the earth rotation parameters (ERP), i.e., polar motion coordinates and UT1, and thus may change the frame of the Conventional Terrestrial Reference System

[^0](CTS) [Mueller 1981]. Williams and Melbourne [1981] have already given a detailed discussion of these effects on UTI and on the origin of terrestrial longitudes. In fact, it was this work which gave us motivation to expand the discussion to include the effects on all ERP's and offer additional options on ho: the necessary changes in the CTS could be accommodated. The approach is strictly geometric, i.e., we try to answer the question how definitive corrections to precession, nutation and the equinox affect the ERP's, and thus the CTS. Williams and Melbourne [1981] emphasize the point of how UT1 and the origin of longitudes will be affected in the future by the uncertainties in the newly adopted corrections or how these corrections can be improved in the future from ensembles of Very Long Baseline Interferometer (VLBI) or Lunar Laser Ranging (LLR) orbservations, with the desire that no or minimum additional changes result in the CTS. They assume that VLBI sources are observed randomly over the sky, while LLR observations are equally distributed only along the ecliptic, and therefore the resulting equations defining the changes of the origin of terrestrial longitudes and UT1 are technique dependent, whereas ours are not. (Putting it differently, they imply that if the analysis of future VLBI or LLR ensemble observations indicate necessary changes in UT1 and in the origin of terrestrial longitudes, such changes are due to the still existing imperfections in the newly adopted corrections to precession, equinox, etc., and when determined they will be biased with respect to each other because of the different sensitivities of the two ensembles of observations.) This difference in the results should not confuse the reader who recognizes the different purposes for which these papers were written.

1. EFFECTS OF ADOPTING NEW PRECESSION AND EQUINOX CORRECTIONS ON THE FRAME of the conventional terrestrial reference system

1.1 Transformation Between Conventional Inertial (CIS) and Terrestrial Reference Frames (CTS)

The transformation at an epoch T between the CIS at some fundamental epoch (e.g., 1950.0) and the CTS is

$$
\begin{equation*}
[\underline{C T S}]=S N P(M)[\text { CIS }] \tag{1}
\end{equation*}
$$

(see [Mueller 1981]). Here

$$
S=R_{2}\left(-x_{p}\right) R_{1}\left(-y_{p}\right) R_{3}(\theta)
$$

is the earth rotation matrix, in which x_{p} and y_{p} are the polar motion components, and θ is the Greenwich Apparent Sidereal Time (corresponding to the epoch T) computed from

$$
\theta=(G M S T)_{0}+\omega_{e} U T 1+E q . E .
$$

where (GMST) 0 is the Greenwich Mean Sidereal Time at 0^{h} UT1, ω_{e} is the conversion factor from mean time to mean sidereal time, and Eq. E. is the equation of the equinox (nutation in right ascension). The other matrices N, P, M in equation (1) are the nutation, precession, and proper motion matrices respectively [Mueller 1969, p. 123]. Parentheses around the M matrix indicate that proper motion is applied only in the case of a stellar CIS.

Let prime (') denote the case with the precession, nutation and equinox changes introduced. The transformation equation (1) also holds for the corrected case:

$$
\begin{equation*}
[\underline{C T S}]^{\prime}=S^{\prime} N^{\prime} P^{\prime}\left(M^{\prime}\right)[\text { CIS }]^{\prime} \tag{1'}
\end{equation*}
$$

In this section only the precession and equinox changes are considered so that $N^{\prime}=N$. From the definitions (or stipulations), one can determine directly or indirectly the relations between P^{\prime} and P, M^{\prime} and M, and [CIS]' and [CIS] at some epoch, leaving S^{\prime} and [CTS]' to be solved for.

One cannot solve for both S' and [CTS]' simultaneously, hence some additional constraint is needed. There are several options for the constraint, and they will be discussed later in Section 2.2. For the time being we will conform with the IAU adopted constraint, namely: Let the new ERP's be the same as the old ones at some epoch T_{u} (in this paper T denotes the epoch, and t the time interval between T and some fundamental epoch, e.g., 1950.0); solve for [CTS]' at this time, then keep it time invariant and solve for the resulting time variations in the new ERP's.

1.2 The Effect in the Case of a Stellar CIS

The new (1976) corrections for lunisolar precession in longitude and planetary precession in right ascension are [Williams and Melbourne 1981]

$$
\begin{aligned}
& \Delta p_{1}=1.1 / c y \\
& \Delta \dot{x}=-0.029 / c y
\end{aligned}
$$

ORIGINAL PAGE IS OF POOR QUALITY

The correction to the equinox is $E_{0}+\dot{E} t$, where $E_{0}=0 \| 525$ is the offset at 1950.0, $\dot{E}=111275 / \mathrm{cy}$, and t is the time elapsed from 1950.0 [Fricke 1981].

The new precession matrix p^{\prime} can be written with sufficient approximation as

$$
\begin{equation*}
P^{\prime}=R_{2}(\Delta n t) R_{3}(-\Delta m t) P \tag{2}
\end{equation*}
$$

with

$$
\begin{aligned}
& \Delta n=\Delta p_{1} \sin \varepsilon \\
& \Delta m=\Delta p_{1} \cos \varepsilon-\Delta \dot{x}
\end{aligned}
$$

where ε is the obliquity of the ecliptic, and Δn, Δm are the general precession changes in declination and in right ascension. Due to the equinox correction, the equation for the Greenwich Mean Sidereal Time is to change(without terms of higher order) to [Aoki et a1. 1982]

$$
\begin{equation*}
(G M S T)_{0}^{\prime}=(G M S T)_{0}+E_{0}+\dot{E} t \tag{3}
\end{equation*}
$$

For the stellar (i.e., classical optical) CIS the change caused by the equinox correction at the fundamental epoch 1950.0 is

$$
\begin{equation*}
[\text { CIS }]^{\prime}: R_{3}\left(-E_{0}\right)[\text { CIS }] \tag{4}
\end{equation*}
$$

The new proper motion matrix is

$$
\begin{equation*}
M^{\prime}=R_{2}(-\Delta n t) R_{3}[(\Delta m-\dot{E}) t] M \tag{5}
\end{equation*}
$$

The proper motion components in right ascension and declination are

$$
\begin{aligned}
& \left(\mu_{\alpha}\right)^{\prime}=\left(\mu_{\alpha}\right)+\dot{E}-\Delta m-\Delta n \sin \alpha \tan \delta \\
& \left(\mu_{\delta}\right)^{\prime}=\left(\mu_{\delta}\right)-\Delta n \cos \alpha
\end{aligned}
$$

Substituting the above new values of $\mathrm{P}^{\prime}, \mathrm{M}^{\prime}$, [CIS]' and (GMST) ${ }_{0}(\mathrm{i} . \mathrm{e} .$, eqs. (2)

- (5)) into eq. (1'), one gets
$[\underline{C T S}]^{\prime}=R_{2}\left(-x_{p}^{\prime}\right) R_{1}\left(-y_{p}^{\prime}\right) R_{3}\left[(G M S T)_{0}+\omega_{e} U T 1^{\prime}+E q\right.$. E. $] R_{3}\left(E_{0}+\dot{E} t\right) N \cdot$

$$
\text { - } R_{2}(\Delta n t) R_{3}(-\Delta m t) P R_{2}(-\Delta n t) R_{3}[(\Delta m-\dot{E}) t] M R_{3}\left(-E_{0}\right)[C I S]
$$

Except for (GMST) , all rotation angels are sma 11; neglecting the secondorder terms, approximately,

$$
\begin{equation*}
[\text { [CTS }]^{\prime}=R_{2}\left(-x_{p}^{\prime}\right) R_{1}\left(-y_{p}^{\prime}\right) R_{3}\left[(G M S T)_{0}+\omega_{e} U T 1^{\prime}+E q . E .\right] \text { NPM [CIS] } \tag{6}
\end{equation*}
$$

(For the above given. $\Delta \mathrm{P}_{1}$ and $\dot{\mathrm{E}}$ values, neglecting the modulation of NP will cause an error of less than 0.0001 in $t=10 \mathrm{yr}$.) Combining the above equation with the mentioned constraints at epoch $T_{u}: x_{p}^{\prime}=x_{p}, y_{p}^{\prime}=y_{p}$, and UT1' = UT1, one obtains

$$
[C T S]^{\prime}=[\text { CTS }]
$$

The well-known conclusion is that in the case of the stellar CIS, the CTS and ERP's are unaffected because changes in the proper motion compensate for the equinox and precession changes. This statement is naturally valid not only at the epoch T_{u} but at any time before or after.

1.3 The Effect in the Case of a Non-Stellar CIS

For any non-stellar (e.g., VLBI or LLR) CIS, the proper motion matrix is no longer taken into consideration; the P^{\prime} and (GMST)! are the same as in the stellar case (eq. (2) - (3)). The relationship between [CIS]' and [CIS] depends on the particular CIS under consideration. Generally,

$$
[\text { CIS }]^{\prime}=E_{I} \text { [CIS] }
$$

If the considered CIS is aligned with the dynamic equator and equinox, then $E_{I}=I$, where I is a unit matrix.

If the non-stellar CIS is aligned with the stellar system equinox at some epoch T_{0}, then E_{I} will be a little complicated. At this time due to the equinox correction,

$$
\begin{equation*}
\left[\text { CIS }^{1}\right]_{T_{0}}^{\prime}=R_{3}\left(-E_{0}-\dot{E} t_{0}\right)\left[{ }^{\text {CIS }}\right]_{T_{0}} \tag{7}
\end{equation*}
$$

(More exactly, a second-order term could be considered.) The precession effect on the CIS's for the time interval t_{0} between the fundamental epoch 1950.0 and the alignment epoch T_{0} is

$$
\begin{aligned}
& {\left[{ }_{[\text {CIS }}^{T_{0}}=P\left(t_{0}\right)[\text { CIS }]\right.} \\
& {\left[\text { CIS }_{1} T_{0}=P^{\prime}\left(t_{0}\right)[\text { CIS }]\right.}
\end{aligned}
$$

With equations (2) and (7) one gets at the fundamental epoch

$$
\begin{equation*}
\left[C^{C I S}\right]^{\prime}=R_{2}\left(-\Delta n t_{0}\right) R_{3}\left[(\Delta m-\dot{E}) t_{0}\right] R_{3}\left(-E_{0}\right)[\text { CIS }]=E_{1}[\text { CIS }] \tag{8}
\end{equation*}
$$

i.e.,

ORIGINAL PAGE IS OF POOR QUALITY

$$
\begin{equation*}
E_{I}=R_{2}\left(-\Delta n t_{0}\right) R_{3}\left[\left(\Delta m-\dot{E}_{0}\right) t_{0}-E_{0}\right] \tag{9}
\end{equation*}
$$

The corresponding corrections in right ascension ($\Delta \alpha_{E_{\mathrm{I}}}$) and declination ($\Delta \delta_{\mathrm{E}_{\mathrm{I}}}$) are

$$
\begin{aligned}
& \Delta \alpha E_{I}=E_{0}+(\dot{E}-\Delta m) t_{0}-\Delta n t_{0} \sin \alpha \tan \delta \\
& \Delta \delta_{E_{I}}=-\Delta n t_{0} \cos \alpha .
\end{aligned}
$$

Now, substituting P^{\prime}, (GMST)! , and [CIS]' (i.e., eq. (2), (3) and (8)) into eq. (1'),

$$
\begin{align*}
{[\underline{C T S}]^{\prime}=} & R_{2}\left(-x_{p}^{\prime}\right) R_{1}\left(-y_{p}^{\prime}\right) R_{3}\left[(G M S T)_{0}+E_{0}+\dot{E} t+\omega_{e} U T I^{\prime}+E q . E\right] N \cdot \\
& \cdot R_{2}(\Delta n t) R_{3}(-\Delta m t) P E_{I}[\underline{C I S}] \tag{1"}
\end{align*}
$$

As stated before, the ERP's are continuous, that is, at the alignment epoch T_{u}, $x_{p}^{\prime}=x_{p}, y_{p}^{\prime}=y_{p}, U T I^{\prime}=U T 1$. Thus
$[\text { [TTS }]^{\prime}=R_{2}\left(-x_{p}\right) R_{1}\left(-y_{p}\right) R_{3}\left[(G M S T)_{0}+\omega_{e} U T 1+E_{q} . E\right] R_{3}\left(E_{0}+\dot{E} t_{u}\right) N \cdot$

$$
\text { - } R_{2}\left(\Delta n t_{u}\right) R_{3}\left(-\Delta m t_{u}\right) P E_{I}[C I S]=
$$

$$
\begin{equation*}
=S N P R_{2}\left(\Delta n t_{u}\right) R_{3}\left[E_{0}+(\dot{E}-\Delta m) t_{u}\right] E_{1}[\underline{C I S}] \tag{10}
\end{equation*}
$$

If the CIS is linked with the stellar system equinox at epoch T_{0}, i.e., E_{I} is expressed by eq. (9), then

$$
\begin{align*}
{[\underline{C T S}]^{1} } & =S N P R_{2}\left[\Delta n\left(t_{u}-t_{0}\right)\right] R_{3}\left[(\dot{E}-\Delta m)\left(t_{u}-t_{0}\right)\right][\text { CIS }] \\
& =S R_{2}\left[\Delta n\left(t_{u}-t_{0}\right)\right] R_{3}\left[(\dot{E}-\Delta m)\left(t_{u}-t_{0}\right)\right] N P[C I S] \tag{10'}
\end{align*}
$$

As pointed out previously, the modulation of NP is negligible, but the modulation of $R_{3}(\theta)$, included in S, must be taken into consideration.

$$
\begin{aligned}
R_{3}(\theta) R_{2}\left[\Delta n\left(t_{u}-t_{0}\right)\right] & =\left\{R_{3}(\theta) R_{2}\left[\Delta n\left(t_{u}-t_{0}\right)\right] R_{3}(-\theta)\right\} R_{3}(\theta) \\
& =R_{1}\left[\Delta n\left(t_{u}-t_{0}\right) \sin \theta\right] R_{2}\left[\Delta n\left(t_{u}-t_{0}\right) \cos \theta\right] R_{3}(\theta)
\end{aligned}
$$

Substituting this into equation (10^{\prime}),
[CTS] $]^{\prime}=R_{1}\left[\Delta n\left(t_{u}-t_{0}\right) \sin \theta\right] R_{2}\left[\Delta n\left(t_{u}-t_{0}\right) \cos \theta\right] R_{3}\left[(\dot{E}-\Delta m)\left(t_{u}-t_{0}\right)\right]$ SNP [CIS]
Thus for the case of CIS alignment with the stellar system

$$
\begin{equation*}
[E T S]^{\prime}=R_{1}\left[\Delta n\left(t_{u}-t_{0}\right) \sin \theta\right] R_{2}\left[\Delta n\left(t_{u}-t_{0}\right) \cos \theta\right] R_{3}\left[(\dot{E}-\Delta m)\left(t_{u}-t_{0}\right)\right][c T S] \tag{11}
\end{equation*}
$$

If the CIS is aligned with the dynanic equinox, that is, $E_{I}=I$, then

$$
[\underline{C T S}]^{\prime}=S N P R_{2}\left(\Delta n t_{u}\right) R_{3}\left[E_{0}+(\dot{E}-\Delta m) t_{u}\right][\underline{C I S}]
$$

Thus

$$
\begin{equation*}
[C T S]^{\prime}=R_{1}\left(\Delta n t_{u} \sin \theta\right) R_{2}\left(\Delta n t_{u} \cos \theta\right) R_{3}\left[E_{0}+(\dot{E}-\Delta m) t_{u}\right][C T S] \tag{12}
\end{equation*}
$$

If the alignment is made over some time period (say, five days or so) T_{u} is the mean epoch of alignment, and the values $\sin \theta$ and $\cos \theta$ are the mean values within this time span and can be averaged to zero. In this case

$$
\begin{equation*}
[\underline{C T S}]^{\prime}=R_{3}\left[(\dot{E}-\Delta m)\left(t_{u}-t_{0}\right)\right][\underline{C T S}] \tag{11'}
\end{equation*}
$$

for the CIS linked with the stellar system equinox, and

$$
\begin{equation*}
[\underline{[T S}]^{\prime}=\bar{R}_{3}\left[E_{0}+(\dot{E}-\Delta m) t_{u}\right][\underline{C T S}] \tag{12'}
\end{equation*}
$$

when aligned with the dynamic equinox. Thus the relation between the new and old CTS's is a small rotation around the third axis. Expressed in longitude (positive to the East),

$$
\begin{equation*}
\delta \lambda=\lambda^{\prime}-\lambda=(\Delta m-\dot{E})\left(t_{u}-t_{0}\right) \tag{11"}
\end{equation*}
$$

for the CIS linked with the stellar system equinox, and

$$
\begin{equation*}
\delta \lambda=\lambda^{\prime}-\lambda=(\Delta m-\dot{E}) t_{u}-E_{0} \tag{12"}
\end{equation*}
$$

when aligned with the dynamic equinox.

For a CIS linked with the stellar system, if $t_{u}=t_{0}$, then $\delta \lambda=0$; otherwise a shift in longitude is recessary. As for a CIS aligned with the dynamic equinox, the CTS longitude origin shift generally cannot be avoided.

1.4 The Effect of the Time-Invariant CTS on the ERP's

The new CTS' at the time of alignment T_{u} can then be determined as outlined in the previous section, i.e., in the stellar CIS case [CTS]' = [CTS], and in the non-stellar cases as given by eqs. (11), (11') or (12), (12').

ORIGINAL PAGE IS

OF POOR QUALITY

The next step is to keep the new CTS time invariant and to find the resulting ERP's at any time other than T_{u}. Substituting eq. (11') for the left side of eq. (1"), and eq. (9) in the right-hand side, after some derivation and neglecting second-order terms, one gets

$$
\begin{aligned}
{[\underline{C T S}]=} & R_{2}\left(-x_{p}^{\prime}\right) R_{1}\left(-y_{p}^{\prime}\right) R_{3}\left[(G M S T)_{0}+\omega_{e} U T 1^{\prime}+E q . E\right] \cdot \\
& \cdot R_{2}\left[\Delta n\left(t-t_{0}\right)\right] R_{5}\left[(\dot{E}-\Delta m)\left(t-t_{u}\right)\right] N P[\underline{C I S}]
\end{aligned}
$$

Comparing this equation with eq. (1),

$$
\begin{aligned}
& R_{2}\left(-x_{p}^{\prime}\right) R_{1}\left(-y_{p}^{\prime}\right) R_{3}\left[(G M S T)_{0}+\omega_{e} U T 1^{\prime}+E q . E\right] R_{2}\left[\Delta n\left(t-t_{0}\right)\right] \cdot \\
& \cdot R_{3}\left[(\dot{E}-\Delta m)\left(t-t_{u}\right)\right]=s
\end{aligned}
$$

or

$$
\begin{aligned}
R_{2}\left[-x_{p}^{\prime}\right. & \left.+\Delta n\left(t-t_{0}\right) \cos \theta\right] R_{1}\left[-y_{p}^{\prime}+\Delta n\left(t-t_{0}\right) \sin \theta\right] R_{3}\left\{(G M S T)_{0}+E q . E+\right. \\
& \left.+\left[\omega_{e} U T 1^{\prime}+(\dot{E}-\Delta m)\left(t-t_{u}\right)\right]\right\}= \\
& =R_{2}\left(-x_{p}\right) R_{1}\left(-y_{p}\right) R_{3}\left[(G M S T)_{0}+\omega_{e} U T 1+E q . E\right]
\end{aligned}
$$

From the above it is obvious that over a limited time span (otherwise secondorder terms must be added),

$$
\begin{align*}
& \Delta x_{p}=x_{p}^{\prime}-x_{p}=\Delta n\left(t-t_{0}\right) \cos \theta \\
& \Delta y_{p}=y_{p}^{\prime}-y_{p}=\Delta n\left(t-t_{0}\right) \sin \theta \tag{13}\\
& \Delta U T 1=U T 1^{\prime}-U T 1=\left(\Delta m-\dot{E}_{1}^{\prime}\left(t-t_{u}\right) / \omega_{e}\right.
\end{align*}
$$

The above are in the case of a non-stellar CIS linked with the stellar system. For the dynamic equinox alignment, substitute eq. (12') for the left side of eq. ($1^{\prime \prime}$) and let $E_{I}=I$. The results are

$$
\begin{align*}
& \Delta x_{p}=\Delta n t \cos \theta \\
& \Delta y_{p}=\Delta n t \sin \theta \tag{14}\\
& \Delta U T 1=(\Delta m-\dot{E})\left(t-t_{u}\right) / \omega_{e}
\end{align*}
$$

For both cases $\Delta U T 1$ is the same; so is the rate of SUT1:

$$
\begin{equation*}
\frac{d \Delta U T 1}{d t}=(\Delta \mathrm{m}-\dot{\mathrm{E}}) / \omega_{\mathrm{e}}=-0.157 \mathrm{~ms} / \mathrm{yr} \tag{15}
\end{equation*}
$$

ORIOINAL PACE IE OF POOR QUALITY

In conclision, in the case of a non-stellar CIS, changes in the preces. syonal constant and the equinox will result in changes in both the CTS and the ERP's. The CTS change is a longytude origin shift. The ERP changes are diurnal terms in the polar fiotion componeats with anplitudes linearly fncreasing with time and a constant rate change in UTL. One point worth stressing is that these are the differences of the same system (technique) between the new and old casas, not the differences batween different systems (techniques). Also the drumal tarm whiteh is evident in polar motion is not the diurnal true polar motion, but an artifact due to the time invartant GTS constraint applied.

2. GENERAL SOLUTION: SMALLL CIS ROTATIONS AND THEIR EFFEGT ON THE GTS

2.1 Changes In the Earth Rotation Paramaters

In the genaral cisa, eq. (13) or (14) aan be writtan in the following form

$$
\begin{align*}
& \Delta x_{p}=x_{3} \sin \theta+\alpha_{2} \cos \theta \\
& d y_{p} \alpha_{2} \cos \theta+\alpha_{2} \sin \theta \tag{16}\\
& A 0-\alpha_{3}
\end{align*}
$$

Whare the sulll angles of represent the changes in the sense

$$
N^{\prime} P^{\prime} M^{\prime}[\operatorname{CIS}]^{\prime}=R_{1}\left(\alpha_{3}\right) R_{2}\left(\alpha_{2}\right) R_{3}\left(\alpha_{3}\right) \text { NPM [CIS] }
$$

since

$$
\theta=(G M S T)_{0}+\omega_{Q} U T L+E q_{1} E
$$

there are several possibilitias for ehanging 0 . If the nutation is assumed to be unchanged, as elther may be absorbed into (GMET), l.e., it bacomes a change in the Greenwieh Mean sidereal Time; or, as before, it may go into UT1 (aUT1 $\mathrm{ma}_{\mathrm{a}} / \mathrm{w}_{\mathrm{e}}$): or it can be incorporated partally in (GMST) e and parm tially in UTA. When as is placed (fully or partiy) into UTL, then If UT1 is still to be continuous at the apoch $T_{u^{\prime}}$ the longitude λ has to absorb the one-time dismontinutty as shown before. Finally, if of is a nutation correc. tion, thian as nust be combined with Eq. E (see Section 3),

The corrections for precession, for the quinox, and for proper motion may be written in the following formis respectively

$$
\begin{aligned}
& \Delta P=R_{2}(\Delta n t) R_{3}\left(-A M I_{1}\right) \\
& E_{1}=R_{2}\left(E_{1_{2}}\right) R_{3}\left(E_{1_{2}}\right) \\
& \Delta M=R_{2}\left(A M_{2}\right) R_{3}\left(\Delta M_{3}\right)
\end{aligned}
$$

where, from compartsons, with earlier results, in the case of the stellar CIS, $\Delta M_{3}=-a n t, \Delta M_{3}=(a m-\dot{E}) t, E_{I_{2}}=0, E_{I_{3}}=-E_{0}$ for the non-steilar CIS aligned with the dynamic equinox, $E_{I_{2}}=E_{I_{3}}=\Delta M_{2}=\Delta M_{3}=O_{i}$ and in the case of the non-stellar CIS linked with the stellar system, $E_{I_{2}}=$ manto, $E_{1_{3}}=-E_{0}+$ $(\mathrm{am}-\mathrm{E}) \mathrm{t}_{0}, \Delta M_{2}=a M_{3}=0$.

In any of the above cases

$$
\begin{align*}
& \alpha_{1}=0 \\
& \alpha_{2}=A n t+E_{I_{2}}+\Delta M_{2} \tag{17}\\
& \alpha_{3}=-d M t+E_{I_{3}}+\Delta M_{3}
\end{align*}
$$

Thus, for example, in the case of the stellar cis

$$
\begin{align*}
& \alpha_{1}=\alpha_{2} \theta_{0} \\
& \alpha_{3}=-E_{0}-\dot{E} t \tag{171}\\
& A B=E_{0}+E_{t}
\end{align*}
$$

If we lat ag be the $A(G M S T)_{0}$, as we did before, then eq, (171) is equivalent to eq. (3),

In the case where the non-stellar CIS is linked at T_{0} with the stellar system,

$$
\begin{align*}
& \alpha_{2}=0 \\
& \alpha_{2}=\operatorname{An}\left(t-t_{0}\right) \\
& \alpha_{3}=-E_{0}+(A m n \dot{E}) t_{1}-\operatorname{ant} \tag{17"}\\
& s_{0}=E_{0}+(\dot{E}-\Delta m) t_{0}+a m t
\end{align*}
$$

If we lat $A(G M S T)_{0}=E_{0}+\dot{E} t$, and let the ERP's be continuous at T_{u}, then eq. (17") is equivalent to eqs. (11") and (13). The analogy can also be established for the case of the non-stellar CIS linked to the dynamic aquinox (eq. (14)).

2.2 Options to Change the CTS (Due to $\Delta \theta$)

As shown, in the case of equinox and precession constant corrections, $\Delta \theta=E_{0}+\dot{E} t \quad$ for the stellar system, and $\Delta \theta=-E_{I_{3}}+\Delta m t$
for the non-stellar systems
$\Delta \theta$ can also be written (assuming no change in nutation and the one-time, discontinuity in UTI absorbed in the longitudes, $\delta \lambda$, mentioned earlier;

$$
\Delta \theta=\Delta(G M S T)_{0}+\omega_{e} \Delta U T 1+\delta \lambda
$$

Thus, as stated above, one can abscrb $\Delta \theta$ either in $\Delta(G M S T)_{0}$, or $\Delta U T 1$, or $\delta \lambda$, or in some combinations of these. To get a definite (unique) solution, some constraint is needed. Mathematically, there are quite a number of possible choices for such a constraint, but practically only a few are meaningful. Below we deal with three sets of options. Which option is the best surely will be the subject of many discussions.

Set A Options. Here the basic requirements are: (i) no discontinuity in ERP's at the epoch T_{u}, (ii) the change in the Greenwich Mean Sidereal Time formula is the same for all CIS's, though different for each option.

Set A Options	Stellar CIS $\Delta \theta=E_{0}+\dot{E} t$	$\begin{aligned} & \text { Non-stellar CIS } \\ & \Delta \theta=-E_{I_{3}}+\Delta m t \end{aligned}$
$\Delta(G M S T)_{0}$ Option I. $\omega_{\mathrm{e}} \Delta U T 1$ $\delta \lambda$	$\begin{gathered} E_{0}+\dot{E} t \\ 0 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & E_{0}+\dot{E} t_{1} \\ & (\Delta m-\dot{E})\left(t-t_{u}\right) \\ & (\Delta m-\dot{E}) t_{u}-E_{I_{3}}-E_{0} \end{aligned}$
	$\begin{gathered} 0 \\ \dot{E}\left(t-t_{u}\right) \\ E_{0}+\dot{E} t_{u} \end{gathered}$	$\begin{gathered} 0 \\ \Delta m\left(t-t_{u}\right) \\ -E_{I_{3}}+\Delta m t_{u} \\ \hline \end{gathered}$
$\begin{array}{ll} & \Delta(G M S T)_{0} \\ \text { Option III } & \omega_{\mathrm{e}} \Delta U T 1 \\ & { }_{\delta \lambda} \end{array}$	$\Delta m t$ $\begin{aligned} & (\dot{E}-\Delta m)\left(t-t_{u}\right) \\ & E_{0}+(\dot{E}-\Delta m) t_{u} \end{aligned}$	$\begin{array}{r} \Delta m t \\ 0 \\ -E_{I_{3}} \\ \hline \end{array}$

Options I, IL, and III above are similar to Tables 1,2 , and 3 respectively in [Williams and Melbourne 1981]. (The main difference appears to be
that for the non-stellar cases the general precession in right ascension am is replaced by what they call "the average value over all observations of the effects of the precession corrections in right ascension" < $\dot{\alpha}_{p}>$. For VLBI $\left\langle\dot{\alpha}_{p}\right\rangle=\Delta p_{1} \operatorname{cose}-\Delta \dot{x}=\Delta m$, but for $\operatorname{LLR}\left\langle\dot{\alpha}_{p}\right\rangle=\Delta p_{1}-\Delta \dot{x} \neq \Delta m$.) We already elaborated on Option I in Section 1.1. Option 1 is the presently accepted approach for the new FK5 CIS. But, as pointed out by [Williams and Melbourne 1981], for future possible new improvement of the precession constant and equinox corrections, this option might not be the best. They favor Option III because the space tiechniques are becoming the dominant source of information about the transformation parameters between the CIS and CTS frames and because this option keeps UTI invariant to improved values of the precession constant and the equinox position for the space techniques. The common geodetic disadvantage of Set A options is the required shift in the longitude origin (except in Option I for the stellar CIS case), the worst thing being that these shifts are different in the cases of stellar and nonstellar CIS's.

Set B Options. Here the basic requirements are: (i) no change in the CTS, i.e., $\delta \lambda=0$, (ii) as before, the Greenwich Mean Sidereal Time formula change is the same in all CIS cases, but different for each option.

The major inconvenience of Set B options is the change in UT1, not only in the rate, but also in the necessary discontinuity. The value of the discontinuity would need to be added with opposite sign to the UTI at the epoch when the changes (new constants) are introduced.

ORIGINAL PAG:

OF POOR QUALITY

Set B Options	Stellar CIS $\Delta \theta=E_{0}+\dot{E} t$	Non-stellar CIS $\Delta \theta=-E_{I_{3}}+\Delta m t$
$\begin{array}{ll} & \delta \lambda \\ \text { Option IV } & \Delta(\text { GMST })_{0} \\ & \omega_{\mathrm{e}} \Delta U T 1 \end{array}$	$\begin{gathered} 0 \\ 0 \\ E_{0}+\dot{E} t \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ -E_{I_{3}}+\Delta m t \end{gathered}$
$\begin{array}{ll} & \delta \lambda \\ \text { Option } V & \Delta(\text { GNST })_{0} \\ & \omega_{\mathrm{e}} \triangle U T 1 \end{array}$	$E_{0}^{0}+\dot{E} t$	$\begin{aligned} & 0 \\ & E_{0}+\dot{E} t \\ & -E_{I_{3}}-E_{0}+(\Delta m-\dot{E}) t \end{aligned}$
$\begin{array}{ll} & \delta \lambda \\ \text { Option VI } & \Delta(\text { GMST })_{U} \\ & \omega_{e} \Delta U T 1 \end{array}$	$\begin{gathered} 0 \\ -E_{I_{3}}+\Delta m t \\ E_{0}+E_{I_{3}}+(\dot{E}-\Delta m) t \end{gathered}$	$-E_{I_{3}} \begin{aligned} & 0 \\ & 0 \end{aligned}$

Set C Option. Here the basic requirements are: (i) no change in CTS, (ii) no change in UT1, i.e., $\Delta \theta$ is entirely absorbed in Δ (GMST) $)_{0}$.

Set C Option	Stellar CIS $\Delta \theta=E_{0}+\dot{E} t$	Non-stellar CIS $\Delta \theta=-E_{I_{3}}+\Delta m t$
$\delta \lambda$ Option VII $\omega_{\mathrm{e}} \Delta U T I$ $\Delta(\text { GMST })_{0}$	0	0
	0	

Although this option is probably the preference of geodesists, it may seem to be unorthodox from the traditional astronomical point of view. How can the formulae for Greenwich Mean Sidereal Time for different CIS's be different? What will the astronomical meaning of (GMST) 0 be? However, one carl view the formula for Greenwich Mean Sidereal Time as composed of two parts: The first part, (GMST) o, has its original astronomical meaning, while the second part, $\Delta(G M S T)_{0}$ is only a correction particular for a given CIS. It would make sense that since the changes in precession and the equinox affect different CIS's in different ways, this correction should also be different. From this point of view, Option VII seems plausible and even preferable for geodetic use.

ORIGINAL PAGE IS
 OF POOR QUALITY

It should also be noted that after the new equinox and precession changes are introduced (once) into Δ (GMST) 0 , this option could become the equivalent of referencing the GMST to a fixed point on the equator, instead of to the mean equinox of date, the current practice. As pointed out by a number of authors, the advantage of such a change would be overwhelming and would make the future CTS stable against changes in the precession constant, etc. [Guinot 1979, Murray 1979, Williams and Melbourne 1981, Mueller 1981].
3. EFFECT OF ASTRONOMICAL NUTATION CHANGES ON EARTH ROTATION PARAMETERS

According to the principle in Section 2.1, it is also easy to deal with any future changes in nutation. The nutation matrix if is [Mueller 1969]

$$
\begin{aligned}
N & =R_{1}(-\varepsilon-\Delta \varepsilon) R_{3}(-\Delta \psi) R_{1}(\varepsilon) \\
& =R_{1}(-\Delta \varepsilon) R_{2}(\Delta \psi \sin \varepsilon) R_{3}(-\Delta \psi \cos \varepsilon)
\end{aligned}
$$

where $\Delta \psi$ and $\Delta \varepsilon$ are the nutation in longitude and obliquity respectively, and ε is the obliquity of the ecliptic. If $\delta \Delta \varepsilon$ and $\delta \Delta \psi$ are the respective corrections to $\Delta \varepsilon$ and $\Delta \psi$, then one can easily obtain the nutation correction matrix,

$$
\Delta N \doteq R_{1}(-\delta \Delta \varepsilon) R_{2}(\delta \Delta \psi \sin \varepsilon) R_{3}(-\delta \Delta \psi \cos \varepsilon)
$$

Thus in the notation of eq. (16),

$$
\begin{array}{ll}
-\delta \Delta \varepsilon & =\alpha_{1} \\
\delta \Delta \psi \sin \varepsilon & =\alpha_{2} \\
-\delta \Delta \psi \cos \varepsilon & =\alpha_{3}
\end{array}
$$

and, therefore,

$$
\begin{aligned}
& \Delta x_{p}=\delta \Delta \varepsilon \sin \theta+\delta \Delta \psi \sin \varepsilon \cos \theta \\
& \Delta y_{p}=-\delta \Delta \varepsilon \cos \theta+\delta \Delta \psi \sin \varepsilon \sin \theta \\
& \Delta \theta=-\alpha_{3}=\delta \Delta \psi \cos \varepsilon
\end{aligned}
$$

Thus, as expected, the effects on polar motion components are diurnal terms ($\delta \Delta \psi$ and $\delta \Delta \varepsilon$ are long periodic). Again, this is a diurnal artifact in polar motion due to the introduction of the new nutation and not diurnal true polar motion.

As far as the term $\Delta \theta=\delta \Delta \psi \cos \varepsilon$ is concerned, if it is incorporated into the Eq. E, neither the longitude origin nor the UT1 will be affected.

ORIGINAL PAGE IS

 OF' POOR QUALITYAPPENDIX

EFFECTS OF DIFFERENCES BETWEEN VARIOUS CTS'S AND CIS'S ON EARTH ROTATION PARAMETERS AND THE DETERMINATION OF SUCH DIFFERENCES

The two CIS's (and two CTS's) inherent in two different techniques (e.g., SLR and VLBI) are generally not exactly identical [Mueller 1981]. Suppose the relation between the two CIS's at any epoch is (common nutation (N) and precession (P) matrices are assumed to be used in both techniques)
$\left[\text { CIS }^{I I}=R_{1}\left(\alpha_{1}\right) R_{2}\left(\alpha_{2}\right) R_{3}\left(\alpha_{3}\right) \text { [CIS] }\right]^{I}$
Similarly, the relation between the two CTS's is

$$
\begin{equation*}
\left[\text { CTS }^{I I}=R_{1}\left(\beta_{1}\right) R_{2}\left(\beta_{2}\right) R_{3}\left(\beta_{3}\right)[\text { CTS }]^{I}\right. \tag{A.2}
\end{equation*}
$$

where α_{i} and β_{i} are small rotation angles about the axes " i ".

The transformation from CIS to CTS again is
$\left[\right.$ CTS $^{I}{ }^{I}=S^{I} N P[\underline{\text { CIS }}]^{I}$
and

$$
\begin{equation*}
[\underline{C T S}]^{I I}=S^{I I} N P[\text { CIS }]^{I I} \tag{A.3}
\end{equation*}
$$

Substituting eq. (A.1) for the last term of the right-hand side of eq. (A.4), and eq. (A.2) for the left-hand side,

$$
R_{1}\left(\beta_{1}\right) R_{2}\left(\beta_{2}\right) R_{3}\left(\beta_{3}\right)[C T S]^{I}=S^{I I} N P R_{1}\left(\alpha_{1}\right) R_{2}\left(\alpha_{2}\right) R_{3}\left(\alpha_{3}\right)[C I S]^{I}
$$

After some reduction, neglecting second-order terms,

$$
\begin{aligned}
{\left[\text { GTS] }^{I}=\right.} & R_{1}\left(-\beta_{1}+\alpha_{1} \cos \theta+\alpha_{2} \sin \theta\right) R_{2}\left(-\beta_{2}-\alpha_{1} \sin \theta+\alpha_{2} \cos \theta\right) \\
& \cdot R_{3}\left(-\beta_{3}+\alpha_{3}\right) S^{I I} N P[\text { CIS }]
\end{aligned}
$$

Comparing the above equation with (A.3)

$$
\begin{aligned}
S^{I}= & R_{1}\left(-\beta_{1}+\alpha_{1} \cos \theta+\alpha_{2} \sin \theta\right) R_{2}\left(-\beta_{2}-\alpha_{1} \sin \theta+\alpha_{2} \cos \theta\right) \\
& \cdot R_{3}\left(-\beta_{3}+\alpha_{3}\right) S
\end{aligned}
$$

Or

$$
\begin{aligned}
& -\Delta y_{p}=-\left(y_{p}^{I}-y_{p}^{I I}\right)=-\beta_{1}+\alpha_{1} \cos \theta+\alpha_{2} \sin \theta \\
& -\Delta x_{p}=-\left(x_{p}^{I}-x_{p}^{I I}\right)=-\beta_{2}-\alpha_{1} \sin \theta+\alpha_{2} \cos \theta
\end{aligned}
$$

ORIGINAL PAGE IS
 OF POOR QUALITY

$$
\begin{equation*}
\omega_{e} \Delta U T I=\omega_{e}\left(U T 1^{I}-U T I^{I I}\right)=-\beta_{3}+\alpha_{3} \tag{A.5}
\end{equation*}
$$

Thus the CTS differences (β angles) cause biases in all earth rotation parameters. Because of the modulation of the earth's diurnal rotation, the effect of CIS differences (α_{1}, α_{2}) on polar motion components are diurnal terms, while the effect of α_{3} on UTI is again a bias.

The direct way to determine all the β angles is the method of station collocation, i.e., to position two different types of techniques at the same location.

The "observation" equation is

$$
\Delta \underline{x}_{i}=\underline{x}_{i}^{I}-\underline{x}_{i}^{I I}=-\left|\begin{array}{l}
\delta_{1} \\
\delta_{2} \\
\delta_{3}
\end{array}\right|+\left|\begin{array}{ccc}
0 & \beta_{3} & -\beta_{2} \\
-\beta_{3} & 0 & \beta_{1} \\
\beta_{2} & -\beta_{1} & 0
\end{array}\right|\left|\begin{array}{l}
x_{i} \\
y_{i} \\
z_{i}
\end{array}\right|+c\left|\begin{array}{l}
x_{i} \\
y_{i} \\
z_{i}
\end{array}\right|+\underline{v}_{i}
$$

where \underline{x}_{j}^{I} and $\underline{x}_{i}^{I I}$ are the determined coordinates of the same collocated station i in the two CTS's, $\underline{\delta}_{i}$ is the translation vector, and c is the scale difference. One must have at least three collocated stations if all seven unknowns are to be solved for.

For connecting the CIS's, there are a few methods such as the use of space astrometry to connect the stellar CIS and the radio source CIS, or using differential VLBI (which, for example, was used when the Viking Mars Orbiters and a quasar were near eclipsing) to connect the planetary and radio source CIS's (see [Kovalevsky and Mueller 1981]). These are direct approaches. One indirect method is via station collocation, i.e., using the earth as an intermediate body (see [Kovalevsky 1980]): First by station collocation one determines the CTS difference (β angles) as above, then through earth rotation parameter differences determined over the same time period one finds the CIS difference (α angles). Eq. (A.5) is the basi's for connecting the two CIS's. More details on this subject may be found in [Mueller et al. 1982].

When considering the above method one should note that the diurnal polar motion difference terms in eq. (A.5) will show up as long as there are differences between the two CIS's (i.e., α_{1} and α_{2} exist). This may even
be the case in situa, ons when one (or both) of the techniques solve for rotations of its CIS, resulting in no (individual) diurnal polar motion. This, of course, would mean that the adopted precessional constant is discarded.

ACKNOWLEDGMENTS. Thanks are due to W.G. Melbourne and J.G. Williams of the Jet Propulsion Laboratory and D.D. McCarthy of the U.S. Naval Observatory for useful discussions and comments. This work was supported in part by NASA Research Grant NSG 5265 (OSURF Project 711055).

REFERENCES

Aoki, S., B. Guinot, G.H. Kaplan, H. Kinoshita, D.D. McCarthy and P.K. Seidelmann (1982) The new Definition of Universal Time, Astron. Astrophys. 105, 359361.

Fricke, W. (1981) Definition and Practical Realization of the Reference Frame in the FK5--The Role of Planetary Dynamics and Stellar Kinematics in the Definition, Reference Coordinate Systems för Earth Dynamics, E.M. Gápósc̄ñkin and B. Kołaczek, eds., ReideT.
Guinot, B. (1979) Basic Problems in the Kinematics of the Rotation of the Earth, Time and the Eart'n's Rotation, D.D. McCarthy and J.D.H. Pilkington, eds., Reide1, 6-18.
Kovalevsky, J. (1980) Modern Approaches to Research in Dynamical Astronomy, Astronomische Gessellschaft Mitteilungen 48, Hamburg.
Kovalevsky, J. and I.I. Mueller (1981) Comments on Conventional Terrestrial and Quasi-Inertial Reference Systems, Reference Coordinate Systems for Earth Dynamics, E.M. Gaposchkin and B. Kołaczek, eds., Reidel.
Mueller, I.I. (1969) Spherical and Practical Astronomy As Applied to Geodesy Ungar Publ., New York.
Mueller, I.I. (1981) Reference Coordinate Systems for. Earth Dynamics: A Preview, Reference Coordinate Systems for Earth Dynamics, E.M. Gaposchkin and B. Kołaczek, eds., Reidel.
Mueller, I,I. S.-Y. Zhu and Y. Bock (1982) Reference Frame Requirements and the MERIT Campaign, Dep. of Geodetic Science and Surveying Rep. 329, Ohio State Univ., Columbus.
Murray, C.A. (1979) The Ephemeris Reference Frame for Astrometry, Time and the Earth's Rotation, D.D. McCarthy and J.D.H. Pilkington, eds., Reidel, 165-168.
Williams, J.G. and W.G. Melbourne (1981) Comments on the Effect of Adopting New Precession and Equinox Correction, Proc. of IAU Colloquium 63: High Precision Earth Rotation and Earth-Moon Dynamics: Lunar Distances and Related Observations, 0. Calame, ed., Reidel.

2.21 Otilization of Simultansous Lageos Eange-Differences in Geodynamics

Introduction

The following is a summary of the research performed during the past six months unaer the lageos project, dealing with the utilization of simultaneous laser range-differences (SRD) for the determination of earth orientation and baseline variations. Beported are some results from the Aug. 1980 Lageas data collected during the short MERIT campaign, and simulations for a possible station arrangement for the wain campaign (to begin in 1983) •
2. 211 Simulations for a proposed MERIT83 Laser network.

Based on an ogtimal global laser station distribution (likely to be realizatle by mid-1983) proposed at a recent meeting of the ; study group (cf. GeTES proposal in last semianaual report), a simulation study for baseline recovery was performed. Except for the fact that different stations (seventeen total) are involved, this simulation was similar to the one preqiously reported for the ME日IT80 netrork in the last report. The station locations and the data distribution are qiven in Table 1 [(a)"(b)]. Baseline estimates and their statistics were computed for both the range and the sRD adjustinents. In crier to assess the effect

ORIGINAL PAGE IS
 OF POOR QUALITY

of orbital biases on the baseline recovery, the orbit used in the adjustments (range and SRD) uas biased as follows :
Radial bias
Along track bias
Across track bias

$\vdots$$\quad$| 2.00 m |
| ---: |
| -1.20 m |

Two different adjustaents were performed.In the first case the conrdiuates of all stations were obtained in a simultaneous adjustment tased ou the data collected from all taseline pairs. On the basis or this solution the baselines between all possible station combinations wera obtained along with their formal accuracies and differences with respect to their "true" values. The results of this solution for the station coordinates are given in rable 2 for the range adjustment and in Table 3 for the SRD adjustment. mbe baseline results are shoun in table 4.
as it can he seen fron the last table, in all cases except for two, the baseline lengths have been overestimated although the errors in the SRD case are about an order of wagnitude smaller than the ones for the range adjustment. Since the radial bias results in an "expansion" of the network of satellite positions, this should come as no surprise. The stations have a global distribution and since the observations from all stations are adjusted simultaneously, their positions become interdependent and the aforementioned expansion affects all of then similarly.

The resuits of this first adjustment prompted us to test the recovery of baselines from individual adjustments. In this second case the data collected from each pair of stations are

ORIGINAL PAGE IS OF POOR QUALITY

adjustod independently and the estimated baselines are only the ones defined by coobserving station pairs. The results of this second type solution are shown in Table 5. What is obvious again is that the SRD results are again superior to the range results for baselines and station coordinates alike. The quality of the results with respect to the latter is characterized by the norm ||X|| of the six coordinate difforences between the true and estimated positions of the stations defining each baseline. The most interasting observation though in this solution is that on the basis of the same data, the range adjustment now underestimates the baselines and the recovery errors are all negative. For the SRD results, there seems to be no kias preference and those errors are ratber randomly distributed and in almost all cases at che centimeter level. The three baselines for which the range adjustment has given better results than the SRD, all have lengthsi in excess of 7000 km and very few observations. As it has been previously reported the SRD mode is much more geometry dependent than the range mode, and as the results of this table shoy it admits of its limitations very eagerly (note the formal accuracies on those beselines !). Unlike the SED mode, the formal accuracies for the range mode give no hiut whatsoever as to the real accuracy of the results. Even though the recovery errors are of the order of a few decimeters in all cases, the reported $\sigma^{\prime} s$ are hardly ever higher than 2 cm :

On the basis of these simulations one can conclude that the
Table 1 (a)

Station *	LATITUDE			participating station coondinate list 							
Frinse 7086	30	31	0.0	256	3	0.0	1580.000	-1324510.442	-53331129.933	92:81791.056	0. 100
Ne:TIEE 7914	49		6.6	12	53	0.0		4974613.805	931963.674	4181492.271	
havili 7120	20	≤ 2	0.0	203	44	0.0	0.0	-5464096.683	-2402363.153	23403503.273	0. 160
STALAS 7063	49	1	0.9	24:	10	0.0	O. 0	1130304.8113	-4141721-449	3991759.624	0.100
WSSTHO 7091	42	46	46.518	241	30	22.720	67.400	1492212.742	-4458121.791	4296,685. 489	0.109
Onsmla 7095	57	©	0.0	13		0.0	0.0	3892750.872	783278.257	5325966.607	c. 100
Hillista 7911	51	0	0.0	0		0)	0.0	4022035.768	0.0	4933550.635	0.100
Gluz 7999	48	0	0.0	15	0	¢ ${ }^{\text {c }}$	0.0	4130031.490	1106638.602	4716842.675	0.100
JAPAN 793s	35	0	0.0	142	0	0.0	0.0	-4121637.800	3220176.370	3637171.320	©, 100
RICHRO 70 ¢9	25	36.	47.130	279	37	4.200	100.000	961533.601	-5674186.968	2740519.741	-. 108
OUINCY 7051	39	58	0.0	239	4	0.0	0.0	-2516274. 896	-4190343.469	4075154.5819	0. 100
yanaga 7690	-29	-3	0.0	115	21	0.0	-. θ	-2389125.331	5042339.038	-3670756.720	0.100
Clllino 7901	53	0	-. 0	358	0	0.0		3144341:319	-13424.7.357	5070549.690	0. 100
ohnola 7943	-45	-	0.0	169	0	0.0	1000.000	-4245416.653	1545350.8R2	-4448069.975	0. 109
DIONYS 7940	37		0.0	22	0	0.0	0.0	4724697.251	1910493.462	3417397.791	-. 189
allequi 7907	-16	-28	0.0	288	30	0.0	0.0	10.41310 .115	-580\%324. 122	-1796312.986	0. 100
chnsse 7942	44	-	0.0	8	0	0.0	0.0	4550759.358	639567.505	4408096.973	0.160

ORIGINAL PAGE IS OF POOR QUALITY
(b) Distribution of Observations per Baseline

ORIGINAL PAQE IS OF POOR QUALITY

Table 2 Recovered Station Coordinates (Range Mode)

STATION NO. 1 79OY APRIORI ESTEMAYE AOJUS TMENYS	$\begin{gathered} 1941330 \mathrm{~K} \\ \mathrm{~m} 0 \mathrm{~K} 233913 \end{gathered}$	$\underset{-5402024.122161}{-2.373246}$	$\begin{array}{r} 2 \\ -1796312.985770 \\ 0.774573 \end{array}$
AOJUSTED POSTTION	1941329.881414	-5002026.395407	-1796312.21197
STATION NO. 17914 mpriarl estimata MONUS TMANTS	$\begin{gathered} x \\ 4022035-747430 \\ 1.300632 \end{gathered}$	$\begin{gathered} Y \\ 0.0 \\ -0.343076 \end{gathered}$	$\begin{gathered} 2 \\ 493350.635358 \\ 2.103031 \end{gathered}$
ADJUSTEO POSITION	4022037.158262	-0.343076	493552.739200
STATION NO. : TOLA amblomi estimate ADJUSTMENTS	$\begin{gathered} \mathrm{X} \\ 4074613 \cdot 304979 \\ 1.547344 \end{gathered}$	$\begin{gathered} r \\ 431963.670282 \\ 0.100607 \end{gathered}$	$4001499_{2}^{2} \times 271034$
Adusteo posirion	4074614.851923	931963.404535	+801494.330697
starton NO. 7935 APRIORI ESTIMATE a NUS MMENTS	$\begin{array}{r} x \\ -4121697.799997 \\ -1.710220 \end{array}$	$\begin{gathered} Y \\ 3220176.370484 \\ 1.730249 \end{gathered}$	3437871.349704
adoustae rosirion	-4121639.500815	3220178. 100693	3637973.14614
STAFION NO. 1 TYAO APRLORI ESTIMATE ADUUS FMENTS	$\begin{array}{r} 472067+350679 \\ \text { 2m } 73365 \end{array}$	$\begin{gathered} Y \\ 1910403.461738 \\ -0.000564 \end{gathered}$	$\begin{array}{r} 2817397.791492 \\ 4.859608 \end{array}$
adusta posirian	478430-989843	1910453.381171	3817399.75147
STATION NO. 1 Y942 APRIDRI ESTIMATE ADJUSTMENTS		$\begin{array}{r} Y \\ 639567.304711 \\ -0.203136 \end{array}$	$\begin{array}{r} 2 \\ 4408046.973499 \\ 2.042975 \end{array}$
ADJUSTED ROSITION	4550760.873054	639567.301575	4408098.976474
SPATION NO: 7043 APMTORI ESTHAATE adoustments	$\begin{array}{r} -42458160659287 \\ -0.801772 \end{array}$	$\begin{array}{r} 4 \\ 25390481948 \\ 2.07170 \end{array}$	$\begin{array}{r} r \\ =4480060.975056 \\ =1.331505 \end{array}$
Aduster mastrian	-4347847.455039	1349352.953700	-4488062.306640
STATION NO. 17999 apRlarl estihara ADJUSTMENTS	$\begin{gathered} x \\ +130031-69974 \\ 1.64699 \end{gathered}$	$\begin{gathered} Y \\ 1106038,602427 \\ \\ =0.043504 \end{gathered}$	$\begin{array}{r} 2 \\ 416392.074950 \\ 1.998220 \end{array}$
ADJUSTED POSITION	4130033.134572	1106430.598919	4714884.073197

Table 3 Recovered Station Coordinates (SRD Mode)

STATION NO. : YOSL apriori estimate adJuS TMENTS	$\begin{gathered} x \\ -2516274.396042 \\ -0.562246 \end{gathered}$	$\begin{gathered} Y \\ -4198843.469479 \\ 0.077679 \end{gathered}$	$\begin{array}{r} 2 \\ 4075154.598717 \\ 0.352835 \end{array}$
ADJUSTED POSITION	-2516275.458207	-4190843.391800	4075155.141552
STATION NO. : 7063 APRIDRI ESTIMATE ADJUSTMENTS	$\begin{array}{r} x \\ 1130304.817876 \\ 00.412984 \end{array}$	$\begin{array}{r} Y \\ -1431721.449137 \\ -0.339656 \end{array}$	$\begin{array}{r} 2 \\ 3983759.624486 \\ 0.568841 \end{array}$
AOJUSTED POSITION	1130304.404692	-4131721.708792	3993760.193357
STATION NO. : 7069 APRIORI ESTIMATE ADJUSTMENTS	$\begin{gathered} x \\ 961533.600910 \\ =0.493799 \end{gathered}$	$\begin{gathered} Y \\ -5674106.967561 \\ -0.372649 \end{gathered}$	$274051 \frac{2}{9.740502} 0$
ADJUSTED POSITION	961533.107111	$-5674187,340210$	2740520.24428
STATION NO. : 7086 APRIORI ESTIMAYE AOJUS TMENTS	$\begin{gathered} x \\ -1324510.442373 \\ -0.614059 \end{gathered}$	$\begin{gathered} Y \\ -5332139.932091 \\ -0.110826 \end{gathered}$	$\begin{array}{r} 2 \\ 3231791.055906 \\ 0.812840 \end{array}$
ADJUSTEO POSITION	-1324511.056431	-5332140.042917	3231791.568746
STATION NO. : 7090 APRIORI EST: Hare ADJUSTMENTS	$\begin{gathered} x \\ -2389125.331291 \\ 0.207500 \end{gathered}$	$\begin{gathered} \gamma \\ 5042439.037557 \\ 0.400930 \end{gathered}$	$\begin{array}{r} 2 \\ -3078750.728221 \\ 0.222903 \end{array}$
ADJUSTED POSTYION	-2389125.043703	5042839.518487	-3078750.505229
STAYION NO. : 7091 apriori estimate aDJUS TAENTS	$\begin{gathered} x \\ 1492212.741998 \\ -0.348903 \end{gathered}$	$\begin{array}{r} Y \\ -4438121.790935 \\ 0.347854 \end{array}$	$\begin{array}{r} 2 \\ 420605.480571 \\ 0.591585 \end{array}$
ADJUSTED POStrion	1492212.393095	-4458122.138709	4296006.080157
STATION NO. : 7095 APRIORI ESTIMATE ADJUSTHENTS	$\begin{gathered} x \\ 3392750.871654 \\ 0.250436 \end{gathered}$	$\begin{gathered} Y \\ 783278.258725 \\ -0.309695 \end{gathered}$	$\begin{gathered} 2 \\ 5325906.606633 \\ 0.704342 \end{gathered}$
AOJUSTEO POSITRON	3392751.122310	783277.947029	5325907.310975
STATION NO. : T120 APRIORI ESTIMATE AOJUSTMENTS	$\begin{gathered} x \\ -5464096.682969 \\ -0.589684 \end{gathered}$	$\begin{gathered} Y \\ -2402363.153199 \\ 0.446807 \end{gathered}$	$\begin{array}{r} \frac{2}{2} \\ 2240350.272855 \\ 0.474197 \end{array}$
ADJUSTEO POSITION	-5464097-272654	-2402362.666392	2240358.746053
STATION NO. : 7901 APRIORI ESTIMATE ADJUS TMENTS	$\begin{gathered} x \\ 3844341.310863 \\ 0.175767 \end{gathered}$	$\begin{gathered} Y \\ -134247.357044 \\ 00.397336 \end{gathered}$	$\begin{gathered} x \\ 5070549.609834 \\ 0.686721 \end{gathered}$
ADJUSTED POSETION	3844341.494631	-134247.754380	5070550.376555

ORIGINAL PAGE IS OF POOR QUALITY

STATION NO. : 7907 APRIORI ESTIMATE dojustments	$\begin{gathered} x \\ 1941330.144913 \\ -0.444374 \end{gathered}$	$\begin{gathered} Y \\ -5802024 \cdot 122261 \\ -0.522985 \end{gathered}$	$\begin{array}{r} 2 \\ -1796312.985770 \\ 0,256872 \end{array}$
ADJUSTED POSITION	1941329.670539	-5802024.645886	-1796312.728099
STATION NO. : 7911 APRIOR ESTIMATE ADJUS TMENTS	$\begin{array}{r} x \\ 4022035.767830 \\ 0.198181 \end{array}$	$\begin{gathered} Y \\ 0.0 \\ -0.407657 \end{gathered}$	$\begin{array}{r} 2 \\ 493350.635358 \\ 0.673034 \end{array}$
adJUsTED POSITIDN	4022035.965812	-0.407697	4933551.308392
STARIDN NO. : 7914 APRIORI ESTIMATE a ajustrents	$\begin{gathered} x \\ 4074613.304579 \\ 0.301524 \end{gathered}$	931963.678222 -0.373080	$\begin{gathered} 2 \\ 4801492.271034 \\ 0.66815 \end{gathered}$
ADJUSTED POSITIDN	4074613.606103	931963.305142	4801492.939149
STATION NO. : 7935 APRIORI ESTIMATE AOJUSTMENTS	$\begin{array}{r} x \\ -4121637.799587 \\ 0.044690 \end{array}$	$\begin{array}{r} Y \\ 3220176.370484 \\ 0.500982 \end{array}$	$\begin{gathered} 2 \\ 3637871.319704 \\ 0.490394 \end{gathered}$
mojusted posirion	-4121637.754897	3220176.951396	3637871.810098
STATION NO. : 7940 APRIORI ESTIMATE ADJUSTMENTS	$\begin{gathered} x \\ 4728637.250679 \\ 0.444574 \end{gathered}$	$\begin{array}{r} Y \\ 1910493.461735 \\ -0.387945 \end{array}$	$\begin{array}{r} 2 \\ 3817397.791492 \\ 0.619332 \end{array}$
ADJUSTED POSITION	+728637.695252	1910493.073790	3827390.410824
STATION NO. : 7942 apriord estimate adJustments	$\begin{gathered} x \\ 4550759.250444 \\ 0.296323 \end{gathered}$	$\begin{gathered} Y \\ 639507.504711 \\ -0.433302 \end{gathered}$	$\begin{array}{r} 2 \\ 4408096.973499 \\ 0.648499 \end{array}$
ADJUSTEQ POSIPION	4550759.554768	639567.071329	4408097.621998
STATION ND. : 7943 APRIORI ESTIMATE AOJUSTMENTS	$\begin{gathered} x \\ -4245816.653287 \\ -0.249047 \end{gathered}$	$\begin{gathered} Y \\ 1545350.331948 \\ 0.494039 \end{gathered}$	$\begin{gathered} 2 \\ -4488060.975056 \\ 0.067337 \end{gathered}$
AOJUSTED POSITION	-4243816.902774	1545351.375987	-4488060.907719
STATION NO. : 7999 APRIORI ESTIMATE ADJUSTHENTS	$\begin{gathered} x \\ 4130031.489874 \\ 0.324886 \end{gathered}$	$\begin{gathered} Y \\ 1106630.602427 \\ -0.372003 \end{gathered}$	$\begin{array}{r} 2^{2} .074950 \\ 471688.668722 \end{array}$
ADJUSTED POSITION	4130031.814759	1106038.230423	4716882.743680

ORIGINAL PAGE IS OF POOR QUALITY

 noonno monngungnonoomonoomguntwo.000\% óóóóóóóóóóóócóóóóóóóóóóóóóóóóóóó

 0

0
0
0
0
0
0
0
0
0
0
0

$\hat{H} \hat{H} \hat{y} \hat{H} \hat{H} \hat{H} \hat{H} \hat{H} \hat{H} \hat{H} \hat{H} \hat{H}$

[^1]ORIGINAL PAGE IS
OF POOR QUALITY
Baseline Recovery from Individual Adjustments

BASELINEFOR stations		APRIDRI LENGTH	RANGE ADJUSTMENT				SRD. ADJUSTMENT				
		*085	* $\times 1$	ERROR	$\hat{5}$		11×1				
79910	791		1123451.UU0	7204	3.572	-0.117	10.017				
7993 $\begin{aligned} & \text { 79, } \\ & 7\end{aligned}$	7949 7999	400353-044	-14960	30.789	-0.362	0.017	3601	1.712	- 0.005	0.018	
7 79 51.	7942	143455i. 5097	- 6954	3.5082	-0020	4.024	3730	1.19\%	G.010	4.016	
$7053=3$	7911	5700095 391	23442	2. 205	- 1.07%	0.027	1297	O. 454	- $0 \cdot 314$	U0 3 K5	
$7911=$	7940	23213460.588	5484	年.515	- 1.30 .307	\%.865	2023	0:591	0.0		
79014	7942 7414	1239040944	7062	3:031	-0. 167	0.020	3941	1.819	-0.435	U. 033	
$7911=$	7095	1073641.51	7450	3:594	-0. 0.151	80.019	3734	1:030	-0.0. 0^{0}	4.012	
7942 $30=>$	7940 7999		6496 7478		-0. 20	00.020	324	1:371	-0.0us	0.	
7999	7940	1340895.532	6020	3.018	-0.1	6.020	3739	1: 201	C.042	0	
7 7395	7914		4612	3.0.029	-0.1	0.0120	3800	1:3y/	0.005	4.019	
$7{ }_{7} 753$	7947	2925506.471	1024	20.099	-1.	4.022	${ }^{2} \mathrm{SH}^{48}$	1. 536	-0, 0	0.04	
7080 7	7907	0414011.035	${ }^{9} 1710$	3.79\%	-1.234	$5: 060$		1:62	-0.005	O.4	
7199	7086	S0331210440	4112	3.232	-0.0664	9.037		1: 20	S. 168	0.175	
7003 7	7051	3701930.397 104022.236	S 3944		-0:009	90:023	21972	1:150	0	U-069	
7120	7051	$\bigcirc 30$	2930	3024	-0.724	0.023	1475	1.12	-0.323	¢. 22	
7120 Caz	$7{ }^{7} 7003$	51074050031	1850	2.968	-0.992	0.040	925	0.007	8.249	0.220	
$7{ }^{7}$	7086	2153345:207		3.396	-0.45	${ }^{4} .025$	2333		-	0.039	
71920	7935	誰711090436	1342	- 2.830	-1:20015	¢0.ch2	617	10570	02	U0t4s	
		4203079 : 494	3226		-0.005	0.153	183	7.275	4.760	3.401	
7935 =>>	7051	7003305.996	412	2:582	-1:45\%	0.202	20	10:245	\%-UR9	9.t39c	

SRD mode will in all likelihood provide more meaningful results in the presence of unmodeled ortital biases than the range mode, and it will also give more reliable accuracy estimates for those results. Comparing the batch (global) solution to that of individual adjustments, the latter seems to be by far a better approach in the case of SRD observations, although the opposite is true for the range observations. Compare for instance the level of recovery errors between Tatles 4 and 5.
2. 212 Rreliminary Results from Lageos Data Analysis.

Lageos ranging data collectod from ton stations over the period august 14-29.1980 (during the shor' MERIT campaign) were used in GEOSPP81 for baseline recovery. A total of 24240 ranges were selected with effort to balance the distritution among stations whose observability performance shows wild variations (cf. station 7090 with over 60000 ranges during august, and station 7092 with hardly over 3000 in the same period of time). The summary of the data distritution per pass per station is given in Table $6[(a)-(j)]$. The ill-conditioning of the normal equations due to the lack of origin of longitudes definition is overcome by applying a small weight in all three coordinates of all stations, corresponding to a $\sigma=+50 \mathrm{~m}$. This way the origin of longitudes does not depend on a single station but rather the ensemble of them. The separation of the X and Y coordinates is thus not as good as it would be if one longitude wre fixed absolutely, but that has no effect on the kaselines. This high correlation between X and Y is also reflocted in the estimated

ORIGINAL PAGE IS

 OF POOR QUALITYformal accuracies for these coordinates, Table 7. The orbital model and the constants used in the solution are shown in Table 8. Baseling results of the adjustment are given in Table 9 , and an analytical breakdown of the residuals after the adjustuent are given in rable 10 [(a)-(j)]. Notice that the fact that station 7907 (ARELAS) is the one with the fewest observations (only 489) shoxs very clearly in the estimation of baselines which emanate from that station (Table 9).

Care should be taken in comparing these results with other solutions for the fact that these baselines are reckoned between the optical centers of the corresponding laser instruments and not the stations' validation points.

This investigation is now being completed, and the final report is in preparation by E. Pavlis, to appear in the report series of the Department of Geodetic Science and Surveying, The Ohio State University.

Table 6
(a)

ORIGINAL PAGE IS
 OF POOR QUALITY

(b)

(c)

(d)

STATION IUENTIFICAI WAK NU.: N 92 NUABER OF PASSES TRACKED: S S SUMAEK OF UBSEKVATLUNS : CLSS

PASS	ZCGINNING DATE YYMOU THWMSS.S	ENUING VYAMDO	quites	DHATIUN SECUNUS	UBSERYATIUNS	oENSATY (UNE PUINT	LER A	${ }_{S}^{x} \text { Sis) }$
$\frac{1}{2}$ 3 4 5		$\begin{aligned} & 800023 \\ & 800824 \\ & 000624 \\ & 800825 \\ & 600426 \end{aligned}$	160149.0 1433000 1811500 16505 15125000	$\begin{array}{r} 170100 \\ 17930 \\ 235400 \\ 2271.0 \\ 174.0 \end{array}$	$\begin{array}{r} 322 \\ 286 \\ 1273 \\ 303 \\ 4 \end{array}$		$\begin{array}{r} .47 \\ 0.03 \\ 0.67 \\ 0.20 \\ 0.35 \end{array}$	

Table 6 (cont'd) OF POOR QUALITY

PAss	GEGINNIMS DATE VYMNU THMHSS:S	ENUINE YYAMOD	MTE HWMSSOS	DURATIUN SECUNUS	dustuva riuns	UENSIT IUNE PUIN	LEK A
1	400814131514.0	800484	1335420	424.0	20.		-68
3	H0aty 1953.3500	d006it	200329:0	200 18	329		82
6	-00045 45505.0	dutas	22126000	2024-0	38		- 0^{4}
5	00060 11003.0	a Oueis	$11+61+0$	27400	suo		
6	ynosi	cuusar coma	15004cte0	1313.0	1%		-3)
1		$\begin{aligned} & 800 y i z \\ & 8008 z 9 \end{aligned}$	2145400	1340.0	172		-11
9	youdi ham9.0	-wers	194320	191304	119		-ut
10	000204687.0	$-40=40$	$\begin{array}{r} 2335400 \\ 14312400 \end{array}$		50		
14		oovez	12545900	$\begin{aligned} & \text { Iovn ou } \\ & \text { th } 200 \end{aligned}$	46		0.46

(h)

Table 6 （cont＇d）
（i）UGSERYATAGM SUMAARY

Station	Tificat $u \mathrm{~mm}$ nu．	7907	numat or of	passes tracheo ：	20 ＿MUAEER	
PAss．	Vegimine MATES	ENOJMG	muaris ${ }^{\text {mis }}$	durariny	mesenvations	
$\frac{1}{2}$	809614	Hendt		${ }^{2}$	12	34837
5	deyts	yout		旡	it	，
\％		cuptis	23.43502	340：\％	${ }^{3}$	15：${ }^{3}$
\％		W0is	速	\％ay	\％	47.31
${ }^{*}$					35	${ }^{3} 3$
䢒		\％	7337：	y 60	35	904＊
${ }^{13}$	480023		Spick	4440：0	27	
${ }^{6}$	4000，${ }^{4}$	\％${ }^{4}$	5337：\％	－2009	4	3itay
1		\％	$4.853{ }^{3}$	1040．4	${ }^{2}$	3
18	8080 ${ }^{\text {a }}$	－10020	－3732：5	740：00	4	

（j）

PASS．	MEVNNMNRATES			UuSEKYatiuns	
				${ }^{5120}$	24：${ }^{2}$
4				${ }^{\text {did }}$	
？	\％m815	\％	1544\％${ }^{15}$	\％3	
1		－	－ 6250	sid	䢕：450
$1{ }^{\circ}$	\％	－	24540．4	154	
$1{ }^{1}$	$8_{0} 0$	－	11407	St	2：us
－ 13	\％oded	速	（1622：3	13\％	A
${ }^{15}$	8	\％0081 16430：1	2095：	170	込
17	2040 ${ }^{\text {a }}$	${ }^{4}$	1910．9	90	1703
19	H0ctiol			790	
20	－	边	－ 24.920 .5	1818	
23	900022 ${ }^{\text {a }}$	－${ }^{0}$	${ }^{20125}$	$1{ }^{18}$	边
年		${ }^{\text {Bramemem }}$	8019：9	${ }^{73}$	－4000
4		－ 6008251689374	191987	${ }^{463}$	11：76
${ }^{24}$	\％osil	既	1994\％${ }^{\text {cou }}$	191	賋：43
30	旡	既		87	35009

Table 7 A Priori Station Information and Final Solution Sumnary

AUJUSTMEMT STAIISTICS FUR ITHATIGM: 2

fimm aesmits fox siation - doos			Fimal Mesult for station e $\quad 7092$		
(${ }^{\text {m }}$	$\mathrm{ram}^{\text {a }}$	2 (a)	x (m)	r (n)	2 (n)
	$\rightarrow 431371.20038$	3995030.41904		13007092	1030203.000647
TUTML NDUUST TEAT : -3.25099	0.03470	0.23654		2.21467	-1.73>03
	-4831371.20130	3¢9+0\%d.93404	AUSISTED ESTIMATE = -oleford-161\%	9.114.67	37
STMOARD Leviatiom : s.7ciys	1.34052	0.04938	Stanion ineviation = s.oicso	7. 2 eses	0.6.076
Fluat Resuld fom Statiom : 7090			FIML RESULTS Foa Staliom $=$ P090		
$x^{\text {(n) }}$			x	Y an)	2 (n)
	5043330.86229	-3076527.01217		155.17601	\%777-31336
TOTAL CDJUSTMENT : 2. 2 SYU	1. 36315	0.93176	TIIAL NDJUSTMENT = -0.30120	2.02434	1.0030
A0,usteo estimate = -<smuce.ucisi	5063334.43115	-3074527.01224		-996195.20260	-1500677-31362
staniand leviatiua \% s.ydyer	2.63255	0.035	Sthentio mevicilon = l-deles	3.23228	conuaz
FIMAL MCSUCTS FIM STATHM : 7091					
$1{ }^{108}$	7 (n)	2 (n)	x (n)	(n)	
	672×2.07147 0.00677	4290w17-0n>39		478001.27463	5030688.97070
ICTAL ADJUSTMENT : -2.00才OOS	-0.90627		TUTAL AOJUSTIENT : -1.91070		
ADUSIED ESTLAATE : 1*SCund.<140	-4457202.00427	4296417.6754		-4477002.20000	$563 \mathrm{mos.vil672}$
Stamuril deviation = s.cdenl	1.70902	0.04130		2.4573	

Table 7 (cont'd)

Fimal rísults fibe siatiun : fils					FIMAL NESLRTS FON STATIUM $E=7907$				
			Y (m)	2 (m)			\times (m)	\boldsymbol{r} (m)	2 cmi
aprioal estimate	:	-2350009.c3703	-4655543.15656	3060999.85804	apkioze estimate	:	192703.<0080	$\rightarrow 204000.21407$	-1790919.713w
CURREMT aususthemt	:	0.u2tcy	-0.01091	- .aiouz	CUREENT ALSUSTMEmT	:	0.047 uy	0.00906	-6.kusut
Tugal adjusiment	:	-1.42094	0.92454	0.01010	TOTAL ADJUSIMENT	-	-2.87201	-1.30502	1e-stabso
ADJUSTED ESTIMAIE	:	-<130059. 1304	-465554.16740	3600999.42810	adousteo estimate	:	1942733.2<゙\|y9	-5404000. 20502	-1190919.71304
Staviako ueviation	:	20.51947	2. 74733	0.61716	Sthonad ieviatium	:	-.64123	2.30354	0.09142
FIMAL KESULTS FUK STAIILUM $3: 7120$					FIMAL KESULS FUN STATIUN : 7993				
		x (17)	\boldsymbol{r} (14)	< (m)			\times (m)	1 (m)	2 (m)
APMIUKI ESTIMATE	:	-2400404004925	-2404602.03511	2241229.46133	apmioni estimate	:	-44754.9.40003	2677140.20739	-3090597.074004
CURKENT ALINSTITENI	:	u-utics	- $0.0<352$	0.60007	CURREMT ALUSUSTKENT	:	-0.01444	-6.02070	-W.00009
TUTAL ADJUSSAENI	:	-3.49294	2.22478	U. 0 E640	TOTAL ADJUSIMEMI	:	1. $\langle 0.4047$	2.41503	
AOJuSteo estimate	:	-540004.01/964	-2404402.00022	2242299-40140	adjustto estimate	:	-444754.4.7235	2677140.22703	-5094997.07413
Stantard ueviation	$=$	2-0300x	c. 248051	6-42900	staniand deviation	:	3.17400	5.27300	C.03306

Table 8 Constants and Force Model for GEOSPP

$\underset{\underline{z}}{\underline{y}} \bar{z}$

U．462376R2580 $100000000 G 0 C 0 G u+61$

1.244104
$-1.27704 v-49$
$0.800500-40$
$-2.005413-10$
$2.633430-13$
$-0.84 \angle 000-10$
$0.063030-12$
$1.020 \angle 2 u-40$

$\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 3 & 3 \\ 0 & 5 \\ 0 & 0 \\ 1 & 0 \\ 0 & 3 \\ 0 & 1\end{array}$
$-0.31<940-40$
$1.143731-15$
 －acas1＞010－4a
24
14
5
0
5
3
3
1
1

$-2.250301-3$
$\rightarrow-\operatorname{ary}$

$3 M$
13
3
0
2
0
2
2

2
0
1
1
0
0
3
0
1
1
1
0
0
$\begin{array}{rrr}7 & 1 & 1.954<90-07 \\ 7 & 4 & -5.993041-10 \\ 7 & 7 & 1.792460-13 \\ 6 & 5 & -5.810170-11 \\ 8 & 0 & -1.503680-12 \\ 9 & 1 & 1.025460-07\end{array}$
$+m+4+0$
$0 \rightarrow 2320$

0
0
1
2
2
in
in
n
n
0
in

3
2
2
2
7
4
7

$-9.00054 U-10$
$-0.05464 \tilde{1}-13$
？
$-4.971040-204110-12$
3.201720
1.1415
$\begin{array}{ll}4 & 0 \\ 1 & 1 \\ 2 & 1 \\ 0 & 2 \\ 0 & 8 \\ 0 & y \\ 0 & 0\end{array}$

Pisla

INAEX	VALUE	INDEX	YALUE
N	H		$N \quad H$

ValUE

20NALS
Ex＝x＝8

$-3.409330-49$
$3.084040-47$
$3.084020-47$
$7.930240-06$
$7.9446730-04$
$-7.455806-09$

0
0
1
0
0
0
0
0
1
9
1
0
3
\vdots
0
7
+1
-1
$\$ 0$
10
1
3
3
7
3
3
0
0
0
0
0
0
$\begin{array}{ll}2 & 4 \\ 1 & 1 \\ 2 & 3 \\ 0 & 5 \\ 2 & 0 \\ 0 & 4 \\ 0 & 5\end{array}$

$-3 .<40174-10$
$300109+0-13$
方方
$-1.4546410-19$
$-2.097060-07$
$-2.097000-07$
$1.417100-67$
$-7.980,214000$

0
1
0
7
7
0

T． 440880 －UB
$9.7 a 53415-11$
$3.701741-13$
3
1
1
0
1
0
0
2
1
1

3
3
1
9
3
\vdots
y
0
1

Nのカ』か○
n y
$\underset{\sim}{N}$

NMーnの・
v
00009
$+5 \rightarrow 3 N$
$-2 \rightarrow-4 N$
$\begin{array}{ccc}12 & -5.500390-16 \\ 12 & 12 & 7.217400-19\end{array}$
Table 8 (cont'd)
ORIGINAL PAGE IS
OF POOR QUALTY

Table 9

SASELINE ESIIMAPES NU KELAIED STATISTICS：

MSELINEN	Stalluna	－${ }^{(1)}$	Taliume	APKIOKL EST． K045951．701	AUJUSTEU VAL． 14045450．447		J16ma 0.015	Relative aluo ग． 3 4 $\mathrm{N}=\mathrm{UY}$
2	7u0）	\cdots	1041	0020．32．143	002032.204	0.040	U．430	3．34u－uy
3	7003	－${ }^{\text {a }}$	7092	10001290．313	10003245.033	－0．002	0.025	o．usu－uy
\checkmark	70.3	$\omega *$	7046	Y 490473.055	$9440 \div 71.520$	－1．528	0.022	2．190－uy
5	7005	－a）	7116	1304134．743	3364.57 －44d	－1．212	0.041	2.140004
6	7001	－\rightarrow	71.5	1504493．174	3504641.797	－1．341	0.037	$2.520-00$
7	7ub 3	\cdots	1120	$784+020.742$	7244019.261	－4．442	0.024	$9.230-04$
8	7063	$m \mathrm{~m}$	7407	54＜8036．451	3428019，003	－17．y48	0.045	1．410－000
\checkmark	1005		1943	L2lus339．054	121045312.004	－ 0.490	U．016	3．400－09
10	7000	\cdots	7091	1203110U．002	120381610214	0.150	0.024	$4.520-04$
11	7090	$= \pm$	7092	0674009.770	0074004．743	－1．027	0．024	$4.020-04$
14	7090	$\pm \infty$	70Yo	7841520．43\％	7247540.743	0.311	0.423	$7.680-4.4$
13	$70 \cup 0$	$\cdots \infty$	7110	11708018.014	11760010．337	0.323	O．ude	$3.070-09$
$1{ }^{1+}$	7090	$m \infty$	7110	11410024．ase	1141042V．01\％	0．154	0.016	$3.200-04$
15	7090	ma	7120	9056454.574	4656434.910	0.331	0．0．21	$5.120-09$
10	7040	$m \Rightarrow$	7907	11750450.119	14754454．020	2.500	0.034	$6.4 \leqslant 0-0$.
17	7090	$m \infty$	7945	1196328．733	36903240046	－0．04	u．uas	1．550－00
18	7091	a	7092	10141371．223	10141372．002	0.374	0.031	$7.210-09$
19	7091	mom	7090	10144043．124	10194042．530	-3.547	0.425	$5.440-04$
20	7041	$\pm \infty$	7114＊	342472 maus	3429728.019	－0．702	0.034	
21	7091	am	7115		39005＊7．570	$=0.414$	0.034	2．0\％じ边
22	7045	－m	7220	7540273.824	7540273.123	－4．701	0.029	$4.100-49$
23	7041	m m	7407	－257037．782	0257020.271	－h＇psid	U．080	$5.35 u-0$.
24	7041	\cdots	7×43	L244340．212	12244540．272	0.054	0.022	$40 \pm 60-4 y$
25	7002	\cdots	7uvo	53445360．040	$3514554+371$	－2．310	0.0221	
20	7092	m m	714	7479017．390	7479018－401	U．405	0.027	H．5uU－0y
27	7002	am）	7115	7344640.410	7504001.155	0.745	youza	4.7615
20	7042	$\pm \infty$	7120	－015338．430	4015538．479	U． 3 0	0.024	1.080 U
24	7002	$\pm \pm$	1901	11171215.715	11171110.424	－5．291	0.041	$8.740-48$
30	7092	$\pm \infty$	7443	$519<043.026$	5292040.7582	－2．044	0.024	$1.120-30$
11	70\％e	mm	1214	7414090.951	7414696.912	-0.040	U．U23	7．400－09
34	70%	m m	7115	7402092．901	7402092．731	－0．470	0.045	$5.030=0.4$
33	7 ute	a）	7124	－112220．342	＋112220．401	－0．0．01	S．0．3	1．440－68
34	7090	$\pm \infty$	7907	9373094．052	9373043.447	－0．354	0.044	1.110000
15	7046	\cdots	7943	$455+571.702$	－ 554572.165	0.404	0.024	1．240－04
3	7114	（m）	7115	25d284．950	254240．167	0.210	U．030	$3.330-07$
37	7114	$\pm \infty$	7140	4022959．527	4022959.505	－0．0．42	U．U3i	$1.410-00$
34	7114	－m	7907	1243602．17a	724358d．024	－14．130	U．U76	2.64050
29	7114	－ 0	7943	10567702.281	1054 170 ${ }^{\text {a }}$ 70\％	$u=4 \alpha 0$	0.018	$4.05 u-09$
40	7115	\cdots	71－0	－U40904．174	4090404．140	-0.048	0.013	$1.790 \sim 00$
4	7145	mas）	7407	7usa726－657	7038742.240	－14．411	0.076	$2.510-06$
42	7115	am）	7443	10545940．172	10595490．423	0.253	0.018	$4.4 \% 0-4 y$
4	$71<0$	as）	7407	v097407．041	90Y7394ay	－8．212	0.05 c	1.50600
＋4	7140	\cdots	$74+3$	$7800949.4 y 9$	78y0489．3UU	0.40	$0.0<2$	$0.750-04$
－5	1907	$\cdots \mathrm{m}$	7440	lu7474930030	10747690．735	1.010	0.041	－． 4 au－0y

Table 10 Residual Summaries by Station
(a) consolidated statistics for station : 7063

Pass $10 \log a$	BSERY				LENGTH 	MiNRESU	MAX RESD MEAN CLOS 	
1	4	-0.928	5.385	6.123	1292.00	-8.493	5.007	-0.93
2	471	0.1070	0.1237	0.212	1641.00	-2.866	0.398	0.11
3	202	0.1237	0.64\%	0.632	1494.00	-6.840	5.480	0.12
4	6	-2.0976	3.459	3.012	1689.00	-5.903	1.408	-2.10
5	859	0.1242	0.225	0.187	2350.00	-2.436	0.473	0.12
6	1	0.0458	0.046	0.0	0.0	0.046	0.046	0.05
7	1550	0.0139	0.322	0.321	2810.00	-4.383	8.487	0.01
8	4	-4.4022	5.625	4.043	1503.00	-4.652	-1.045	-4.40
9	14	-0.4982	2.673	2.514	2550.00	-4.545	5.946	-0.50
10	1167	-0.1706	0.664	0.412	2484.00	-6.694	7.124	-0.17

(b)

CONSOLIDATED STATISTICS FOR STATION : 7090

PASS	SERV	MEAN	MS	ATIUN	LENGTH	IN RESD	RESD	$\begin{gathered} \text { NCLUS } \\ \text { nen } \end{gathered}$
1	97	0.0882	0.130	0.0795	2156.00	-0.221	0.344	0.09
2	167	-0.0325	0.104	0.099	2182.00	-0.337	0.177	-0.03
3	182	-0.0892	0.131	0.046	2514.00	-0.513	0.131	-0.09
4	207	0.0322	0.109	0.105	2471.00	-0.282	0.264	0.03
5	196	0.0335	0.140	0.137	2632.00	-0.433	0.448	0.03
6	141	-0.0832	0.142	0.116	1810.00	-0.306	0.192	-0.08
7	263	-0.0704	0.119	0.091	2853.00	-0.427	0.177	-0.08
8	119	0.0891	0.138	0.106	2037.03	-0.153	0.384	0.09
9	67	-0.0531	0.093	0.074	1040.00	-0.235	0.145	-0.05
10	171	-0.0780	0.122	0.094	2787.00	-0.471	0.181	-0.08
11	136	-0.0981	0.13 d	0.097	2036.00	-0.45 1	0.101	-0.10
12	203	-0.0640	0.112	0.092	2441.00	-0.526	0.145	-0.06
1.3	50	0.0123	0.080	0.079	574,00	-0.157	0.216	0.01
14	29	0.0674	0.143	0.128	1287.00	-0.219	0.286	0.07
15	136	-0.0940	0.124	0.081	2339.00	-0.347	0.092	-0.09
16	104	0.1106	0.435	0.422	2645.00	-3.815	0.378	0.11
17	55	0.1305	0.233	0.174	1318.01	-0.282	0.690	0.1 .3
18	162	-0.1606	0.204	0.126	2<77.00	-0.472	0.071	-0.16
19	173	0.0735	0.136	0.114	2491.00	-0.272	0.326	0.07
20	136	-0.2598	0.212	0.140	2409.00	-0.567	0.111	-0.16
21	155	0.0943	0.185	0.157	2421.00	-0.323	0.378	0.09
22	41	0.0313	0.069	0.062	1090.00	-0.113	0.143	0.03
23	88	0.1992	0.218	0.088	1438.00	-0.102	0.348	0.20
24	233	-0.0433	0.112	0.104	2842.00	-0.597	0.195	-0.04
25	115	0.1264	0.156	0.092	1947.00	-0.168	0.345	0.13
26	6	0.1585	0.172	0.073	93.00	0.071	0.280	0.16
27	189	0.0177	0.129	0.126	2638.00	-0.289	0.294	0.02
28	154	0.0887	0.123	0.085	2107.00	-0.164	0.328	0.09
29	154	-0.0249	0.223	0.223	2088.00	-0.567	0.398	-0.02
30	214	0.0598	0.128	0.114	2700.00	-0.379	0.292	0.06

ORIGINAL PAGE IS OF POOR QUALITY

Table 10 (cont'd)

(c)	CONSOLIDATEO STATISTICS FOR STATION: 7091							
PASS OBSERV RESID MEAN								
1.	131	0.0824	0.271	0.259	1145.00	-0.750	0.683	0.08
2	352	-0.0646	0.182	0.171	1718.00	-1.040	0.346	-0.06
3	240	0.0505	0.169	0.162	1879.00	-0.545	0.450	0.05
4	439	-0.0202	0.314	0.313	1965.01	-1.142	4.742	-0.02

(d)

CONSQLIDATED STATISTICS FOR STATION : 7092

5	SERV	o mean 	IMS	arian	G	NRES	=	
1	322	0.2185	0.268	0.156	1761.01	-0.258	0.527	0.22
2	286	-0.1712	0.268	0.206	1153.00	-0.845	0.666	-0.17
3	1273	-0.0004	0.239	0.239	2380.00	-1.234	0.986	-0.00
4	363	-0.0324	0.304	0.303	2271.00	-1.293	0.734	-0.03
5	9	0.0926	0.331	0.337	174.00	-0.367	0.786	0.09

(e)

CUNSOLIOATED STATISTICS FOR STATION: 7096

(f)

(g) consolioateo statistics for station ithls

(h)

CONSOLIDATED StATIStics fur starton : 7120

ASS	SERV	MEAN	RHS	Y10	LENGTH	NRE	fits	CLO
1	225	-0.1213	0.142	0.073	1964.00	-0.380	0.120	-0.12
2	44	-0.0037	0.157	0.159	824.00	-0.172	0.180	-0.00
3	160	0.0996	0.140	0.098	1297.00	-0. 225	0.313	0.10
4	42	-0.0589	0.108	0.089	618.00	-0.218	0.098	-0.07
5	187	0.0268	0.133	0.131	2614.00	-0.337	0.857	0.03
6	346	-0.0766	0.114	0.085	2759.00	-0.348	0.247	-0.0n
7	401	0.0931	0.138	0.102	2573.00	-0.259	0.298	0.09
8	50	-0.2583	0.294	0.141	865.00	-0.511	0.034	-0.26
9	121	-0.1879	0.216	0.107	1655.00	-0.380	0.104	-0.19
10	328	0.1102	0.163	0.120	2417.00	-0.221	0.409	0.11

(i)

CONSOLIUATEO STATISTICS FOR STATION: 7907

PASS		- MEAN	RMS	Iarion	LENGTH 	N RESD =an= $=$ =	IX RESD	NeCLOS
1	12	0.1231	0.366	0.360	292.40	-0.408	U. 439	0.12
2	41	-0.0135	0.604	0.611	1132.95	-1.520	0.761	-0.01
3	51	0.0917	0.509	0.505	802.51	-1.241	0.803	0.09
4	19	-0.0486	0.335	0.341	1027.76	-0.767	0.561	-0.05
5	5	-0.0084	0.596	0.666	360.15	-1.164	0.446	-0.01
6	52	0.1667	0.521	0.478	892.90	-0.951	2.032	0.17
7	24	0.0601	0.401	0.405	660.27	-0.925	0.724	0.06
8	19	-0.2028	0.393	0.346	607.64	-0.868	0.360	-0.20
9	35	0.0493	0.288	0.287	1162.58	-0.648	0.640	0.05
10	53	-0.0616	0.408	0.608	914.95	-1.008	0.881	-0.06
11	34	-0.0226	0.398	0.403	967.53	-1.199	0.697	-0.02
12	5	0.2501	0.257	0.065	360.10	0.169	0.303	0.25
13	24	-0.5918	1.005	0.830	1110.02	-2.043	0.962	-0.59
14	17	0.0004	0.843	0.838	689.98	-1.536	1.569	0.00
15	8	0.2717	0.528	0.484	420.00	-0.434	1.126	0.27
16	9	-0.1124	0.568	0.590	465.05	-1.312	0.452	-0.11
17	22	-0.1859	0.744	0.737	847.96	-1.970	1.863	-0.19
18	28	0.2387	0.405	0.333	1012.50	-0.646	0.796	0.24
19	2	-0.3987	0.425	0.207	90.00	-0.545	-0.252	-0.40
20	29	0.0272	0.411	0.417	779.97	-0.855	0.678	0.03

ORIGINAL PAGE IS OF POOR QUALITY

Table 10 (cont'd)

2.22 Doppler Experiments

- NB 13540

2.221 Geometric Adjustment of Simultaneous Doppler-Derived Range Differences

The results of work on this topic are described in a paper presented at the Third International Symposium on the Use of Artificial Satellites for Geodesy and Geodynamics, Ermioni, Greece, September 20-25, 1982. It appears on the following pages and will be published in the proceedings of the symposium obtainable from the National Technical University, Athens.

GEOMETRIC ADJUSTMENT OF SIMULTANEOUS DOPPLER-DERIVED RANGE DIFFERENCES

Chengze Zhang* and Ivan I. Mueller Department of Geodetic Science and Surveying The Ohio State University, Columbus, Ohio 43210 USA

ABSTRACT. A mathematical model for the use of simultaneous Dopplerderived correlated ranges in the geometric mode is presented. The model is tested with data taken during the EDOC=2 campaign with different integration intervals. The results of this adjustment are compared with the EDOC-2 adopted solution and those from an uncorrelated model [Schneeberger et al. 1982] used earlier to provide more economical calculations.

The analysis of the comparison shows that the correlated mode is superior to the uncorrelated one when the optimum integration interval of 23 seconds is used.

1. INTRODUCTION

The geometric purpose of satellite geodesy is to tie remote stations together in the same geometric system. Its ultimate aim is to determine the coordinates of unknown ground stations [Mueller 1984].

Satellite geodesy with Doppler techniques is based on the principle that a frequency transmitted from a satellite-borne transmitter moving relative to a ground receiver is observed shifted by the Doppler effect. The observations are Doppler counts which are measures of the range change between the satellite and the receiver during the integration interval [Wells 1974].

In the geometric mode for Doppler observations, the satellite is regarded as a benchmark in space and its coordinates at the observation instants are unknowns which are solved in an adjustment with the unknown coordinates of ground stations. Such solutions are based on geometric rather than dynamic principles; therefore the calculations are relatively simple and do not require extensive computer programs.

[^2]In a previous study [Schneeberger et al. 1982], the Doppler-derived ranges were regarded as uncorrelated pseudo-observations as a further simplification (to save computer time). In fact, since the Doppler-derived ranges are calculated from Doppler counts, it is obvious that there exist correlations between them in a given pass. The purpose of this study is to investigate the use of Doppler-derived correlated ranges in the geometric mode.

This method is then tested against a data set from which a dynamic solution is available. The results are compared with both the dynamic solutions and the uncorrelated geometric one.
2. SUMMARY OF THE PREVIOUS STUDY BASED ON UNCORRELATED OBSERVATIONS
[SCHNEEBERGER ET AL. 1982]

2.1 Definitions

The coordinate system in which the computations are perfomed is an earth-fixed Cartesian system. It is defined by the assigned six coordinates distributed among at least three ground stations. A satellite point is the position of a satellite at a certain epoch. An event is the set of all observations to a satellite point. A pass is a set of satellite points between two. epochs which are observed without interruption from at least six ground stations. A Doppler-derived range is a pseudo-observation derived by adding the range differences computed from Doppler counts to an estimated initial range.

2.2 Doppler-Derived Ranges

The basic equation which related the ratio between the received frequency f and the transmitted frequency f_{0} to the range rate between transmitter and receiver (\dot{r}) is accredited to Doppler (1803-1853):

$$
\frac{f}{f_{0}}=\left(\frac{c}{c+\dot{r}}\right) *\left(1-\frac{\dot{r}}{c}\right)
$$

where c is the velocity of propagation for electromagnetic waves in a vacuum. This equation has to be integrated to find a relation between the shifted frequency and the range difference during a time interval t. A detailed derivation can be found in [Brown and Trotter 1969] resulting in

$$
\begin{equation*}
r_{j}-r_{j-1}=\lambda_{0}\left(N_{j}-\Delta f_{00} t_{j}\right)+S \tag{1}
\end{equation*}
$$

where

```
\(r_{j}=\) range between receiver and transmitter at epoch \(T_{j}\)
\(r_{j-1}=\) range at epoch \(T_{j-1}\)
\(N_{j} \quad=\quad \begin{aligned} \text { the integrated Doppler shift over time interval } t_{j} & =T_{j}-T_{j-1}\end{aligned}\)
```

$\Delta f_{00}=$ the difference between the transmitted frequency and the reference frequency generated in the receiver
$\lambda_{0}=\frac{f_{Q}}{c}=$ wavelength corresponding to the frequency of transmission f_{0}
S = correction term representing all systematic errors such as bias in the difference between the adopted transmitted and reference frequencies, and/or the drift rates of transmitter and receiver frequencies.

Substituting the range difference computed from the Doppler count

$$
\Delta r_{j}=\lambda_{0}\left(N_{j}+\Delta f_{00} t_{j}\right)
$$

into equation (1), the range at epoch T_{j} is

$$
r_{j}=r_{j-1}+\Delta r_{j}+s_{j}
$$

If the range r_{0} at an initial epoch T_{0} is known, the range for an epoch T_{k} can then be calculated from (taking into account that most instruments reset ${ }^{k}$ the Doppler count for each interval)

$$
\begin{equation*}
r_{k}=r_{0}+\sum_{j=1}^{k} \Delta r_{j}+s_{k} \tag{2}
\end{equation*}
$$

This equation is correct only in a vaerum. Since the signal is passing through the fonosphere and the troposphere, the range has to be corrected for refrac-tive effects. The ionospheric refraction is automatically compensated (to first order) by measuring the Doppler shift of the two different frequencies (400 and 150 MHz) [Krakiwsky and Wells 1971]. Each range has to be corrected therefore only for the tropospheric refraction ΔT_{r}. The tropospheric refraction model used in this study is the one outlined ${ }^{\text {r }}$ in [Brown and Trotter, 1973], using the Smith-Weintraub model for the index of refraction [Jordan et al. 1966].

Since the initial range in equation (2) is not known, we must use an approximate initial range ro and add a correction term ao to be estimated from the adjustment,

$$
r_{0}=r_{0}^{d}+a_{0}
$$

a_{0} is considered part of the systematic error term S_{k} in equation (2). The modelling of the other systematic effects in S_{k} is $\mathrm{S}_{\text {. }}$ given in great detail in [Brown and Trotter 1969; Kouba and Boal 1976]. In this study only two major terms are used: a + bt. The main cause of the constant term a is the possible bias in the adopted frequency f_{0}, and the initial range error a_{0} above. The time dependent term bt is caused mainly by the difference in the adopted values for the transmitter and receiver frequencies (frequency offset) Δf_{00}.

Other terms in the systematic error model mentioned by Brown and Trotter [1969] but not considered in this study are range dependency, a function of the second power of time, and a function of the elevation angle (for residual refraction errors). An explanation of why only the above two terms are used here may be found in [Schneeberger 1982].

Substituting all tems for S and the correction for tropospheric refraction equabion (2) can be written as

$$
r_{i k}=r_{0}+\sum_{j=1}^{k} \Delta r_{j}+\Delta T_{r}+a_{i}+b_{i} t_{k}
$$

Where the subscript i refers to ground station 1. Defining the Doppler-derived range as

$$
r_{0}=r_{0}+\sum_{j=1}^{k} \Delta r_{j}+\Delta T_{r}
$$

and recalling that

$$
r_{i k}=\sqrt{\left(X_{k}-X_{i}\right)^{2}+\left(Y_{k}=Y_{i}\right)^{2}+\left(Z_{k}=Z_{i}\right)^{2}}
$$

and changing the signs of a and b, we arrive at the mathematical model

$$
\begin{equation*}
r D_{i k}=\sqrt{\left(X_{k}-X_{i}\right)^{2}+\left(Y_{k}-Y_{i}\right)^{2}+\left(Z_{k}-Z_{i}\right)^{2}}+a_{i \ell}+b_{i \ell} t_{k} \tag{3}
\end{equation*}
$$

Where $r_{D_{i k}}$ is the Doppler-derived pseudo-range (derived from the measured Doppler ik counts and currected for tropospheric refraction), and the unknown parameters to be solved for in a least squares adjustment are
$X_{i}, Y_{j}, Z_{i} \quad$ the unknown station (i) coorainates
X_{k}, Y_{k}, Z_{k} the unknown satellite (k) soordinates
$a_{i \ell}$, $b_{i \&} \quad$ the unknown coefficients used to model systematic errors for each station (i) and pass (ℓ)
t_{k} is the time elapsed from the epoch of the initial range r_{0}.

2.3 Least Squares Adjustment

The mathematical model developed above has the form of an observation equation:

$$
\begin{equation*}
L_{a}=F\left(X_{a}\right) \tag{4}
\end{equation*}
$$

ORIGINAL PAGE IS OF POOR QUNLTY

ORIGINAL PAGE IS OF POCR QUALITY

Where L_{a} is the adjusted Doppler-derived range, and X_{a} is the vector of the unknown parameters which can be divided into three a subvectors:

$$
\begin{array}{ll}
X G_{a}=X G_{0}+X G & \text { containing the coordinates of the ground stations } \\
X C_{a}=X C_{0}+X C & \text { containing the error coefficients } a, b \\
X S_{a}=X S_{0}+X S & \text { containing the satellite coordinates }
\end{array}
$$

Equation (3) can be written in linearized form

$$
\begin{equation*}
r_{D_{i k \ell}}+v_{i k \ell}=F_{i k \ell}^{0}+\left.\frac{\partial F}{\partial X G}\right|_{X_{0}} \cdot X G_{i}+\left.\frac{\partial F}{\partial X C}\right|_{X_{0}} \cdot X C_{i \ell}+\left.\frac{\partial F}{\partial X S}\right|_{X_{0}} \cdot X S_{k}+\ldots \tag{5}
\end{equation*}
$$

or, after neglecting higher-order terms

$$
v_{i k \ell}=A_{i k \ell} \cdot X G_{i}+C_{i k \ell} \cdot X C_{i \ell}+S_{i k \ell} \cdot X S_{k}-W_{i k \ell}
$$

where

$$
\begin{aligned}
& A_{i k \ell}=\left.\frac{\partial F}{\partial X G}\right|_{X G_{i}^{0} X C_{i \ell}^{0} X S_{k}^{0}}=\left(-\frac{X_{k}^{0}-X_{i}^{0}}{r_{0}^{0},}-\frac{Y_{k \ell}^{0}-Y_{i}^{0}}{r_{0}^{0},}-\frac{Z_{k}^{0}-Z_{i}^{0}}{r_{0}}{ }_{i k \ell}\right) \\
& C_{i k \ell}=\left.\frac{\partial F}{\partial X C}\right|_{X G_{i}^{0} X C_{i \ell}^{0} X S_{k}^{0}}=\left(1, t_{k}\right) \\
& S_{i k \ell}=\left.\frac{\partial F}{\partial X S}\right|_{X G_{i}^{0} X C_{i \ell}^{0} X S_{k}^{0}}=-A_{i k \ell} \\
& W_{i k \ell}=r_{D i k \ell}-\left(r_{0 i k \ell}+a_{0}{ }_{i \ell}+b_{0}{ }_{i \ell} t_{k}\right) \\
& r_{0 i k}=\sqrt{\left(X_{k}^{0}-X_{i}^{0}\right)^{2}+\left(Y_{k}^{0}-Y_{i}^{0}\right)^{2}+\left(Z_{k}^{0}-Z_{j}^{0}\right)^{2}}
\end{aligned}
$$

In this study all pseudo-range observations are assumed to have equal weight. For reason of convenience in programming, the a priori variance of unit weight is chosen to be equal to the variance of a range observation

$$
\sigma_{0}^{2}=\sigma_{D R}^{2}
$$

Therefore all observations have the weight one. Further details of this least squares adjustment as used in the Geometric Doppler (GEODOR) computer program may be found in [Schneeberger 1982].

ORIGINAL PAGE IS OF POOR QUALTTY

3. ADJUSTMENT WITH CORRELATIONS CONSIDERED

3.1 Mathematical Model

The correlation existing in the Doppler-derived ranges are considered in this study by assuming that the range differences (computed from the Doppler counts) are independent observations.

Under this consideration, substituting eq. (2') into (3) and moving
all the terms to the left side, we obtain

$$
\begin{equation*}
\sqrt{\left(X_{k}-X_{i}\right)^{2}+\left(Y_{k}-Y_{i}\right)^{2}+\left(Z_{k}-Z_{i}\right)^{2}}+a_{i \ell}+b_{i \ell} t_{k}-r_{0} \cdot \sum_{j=1}^{k} \Delta r_{j}-\Delta T_{r}=0 \tag{6}
\end{equation*}
$$

Thus the model becomes the form of a condition equation with parameters:

$$
\begin{equation*}
F\left(L_{a}, X_{a}\right)=0 \tag{7}
\end{equation*}
$$

Eq. (6) can be written in a linearized form, using the same notation as before,

$$
\begin{equation*}
A_{i k \ell} x_{i}+c_{i k} x c_{i k \ell}+S_{i k \ell} x s_{k}+\sum_{j=1}^{K} B_{i k \ell} v_{j}-W_{i k \ell}=0 \tag{8}
\end{equation*}
$$

where $B_{i k \ell}$ stands for the derivatives of F with respect to Δr_{j}, i.e.,

$$
B_{i k \ell}=\frac{\partial F}{\partial \Delta r_{j}}=\left\{\begin{align*}
-1 & \text { if } j \leq k \tag{9}\\
0 & \text { if } j>k
\end{align*}\right.
$$

All the observations are assumed to have equal weight. For convenience in programming, the a priori variance of unit weight is chosen to be equal to the variance of a range difference observation

$$
\sigma_{0}^{2}=\sigma_{\Delta r}^{2}
$$

Therefore, all the observations have unit weight. For the detail of the derivations of the mathematical model and the method of solving this problem, see [Zhang 1982].

3.2 Construction of Normal Equations

The solution of the normal equation system for the least squares model of condition equations with parameters has the following form [Uotila 1976]:

$$
\begin{equation*}
X=-\left(A^{\top} M^{-1} A\right)^{-1} A^{\top} M^{-1} W \tag{10}
\end{equation*}
$$

where

$$
M^{-1}=\left(B P^{-1} B^{\top}\right)^{-1}
$$

ORIGINAL PAGE IS OF POOR QUALITY

Therefore, before constructing the normal equation system, M^{-1} has to be found first. Fortunately, the matrix B has a regular configuration, and so does the matrix M-1 [Ashkenazi et al. 1980]. For the sake of simplicity, we investigate a matrix B for one station and one pass. From eqs. (8) and (9) it is evident that the matrix B has the form

$$
B=\left|\begin{array}{rrrrrr}
-1 & 0 & 0 & 0 & \ldots & 0 \tag{12}\\
-1 & -1 & 0 & 0 & \ldots & 0 \\
-1 & -1 & -1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-1 & -1 & -1 & -1 & \ldots & -1
\end{array}\right|
$$

If one assumes uniform weight and no correlations between the range differences, and chooses the variance of unit weight equal to the variance of range difference observation, the matrix P will become an identity matrix. Then the matrix M can be written as

$$
M=B P^{-1} B^{\top}=\left|\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \tag{13}\\
1 & 2 & 2 & 2 & \ldots & 2 \\
1 & 2 & 3 & 3 & \ldots & 3 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 2 & 3 & 4 & \ldots & n
\end{array}\right|
$$

where n is the number of observations in this pass. M^{-1} is found by inverting M:

$$
M^{-1}=\left|\begin{array}{rrrrrrrr}
2 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \tag{14}\\
-1 & 2 & -1 & 0 & \ldots & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & \ldots & 0 & -1 & 1
\end{array}\right|
$$

Since M^{-1} is a regular diagonal matrix, it will not invite much difficulty when constructing normal equations. For the case of more than one station and more than one pass, matrices B and M^{-1} can easily be found by using the same method [Zhang 1982].

After the matrix M^{-1} is found, all the coefficients of the normal equation system can be calculated. Since this normal equation system is still of the sparsity pattern, a method called second-order partitioned regression can be used to eliminate the unknowns to save storage and computing time [Brown and Trotter 1969].

4. NUMERICAL TEST

4.1 Solutions and Their Comparisons

 and correlated modes. Fig. 1 shows the network used which is chosen from EDOC-2. There were many solutions for each mode, but only the best

Fig. 1 EDOC-2 network [Boucher et al. 1981]
one of each mode can be presented here. Table 1 is a sunmary of these two solutions. Solution F4-5 is in the uncorrelated mode; solution C-5 in the correlated mode. The integration intervals of both solutions are $5 \times 4.6=23$ seconds.

The information of solutions using different integration intervals from the correlated mode is collectera in Table 2. In the designation
 the range change is over $2 \times 4.6=9.2 \mathrm{~s}$. Fig, 2 gives a visual comparison of these solutions. It is obvious that the solution with $i=5$ is the best.

4.2 Test of the Systematic Error Model

In this study as in the earlier one only the two major terms are used for modeling the systematic effects: $a+b t$. The residuals of the observations of randomly selected passes from the total of 193 passes were plotted for each station. Fig, 3 is one example. Investigating the distributions of the residuals of the observations at each station, no significant remaining systematic effect is found, which indicates that the two major terms used for modeling the systematic effects are reasonable.

4.3 Test of the Residuals

From Table 1 we can find that the correlated mode is superior to the uncorrelated one. In spite of that, there are still significant difiserences between solutions C-5 and EDOC-2. In order to find the reason, the residuals of all observations were investigated. Table 3 lists the statistics of the residuals of the observations over the ten worst passes.

Checking this table, one can see that the maximum residual is as large as 160 m , and the ratio of the number of the observations whose absolute residuals are larger than three times the standard deviation, to the total number of the observations for each one of the worst passes is high. The worst one is as high as 11.2\%. This indicates that there may be blunders in the data set.

4.4 Problem of Weights

As stated earlier, all observations are assumed to have equal weight and the a priori variance of unit weight is chosen to be equal to the variance of a range difference observation

$$
\sigma_{0}^{2}=\sigma_{\Delta r}^{2}=1.0
$$

In Tatle 2 one can see that the a posteriori standard deviations of unit weight for all the solutions are much larger than the chosen a priori one. For instance the a posteriori standard deviation of unit weight of the best solution, $\mathrm{C}-5$, is as large as 3.4 .

Table 1 Summary of Solutions F4-5 and C-5

Solution No.:	F4-5			C-5		
Total No. of Passes. Processed Total No. of Events	$\begin{array}{r} 193 \\ 3,430 \end{array}$			$\begin{array}{r} 193 \\ 3,430 \end{array}$		
No. of Unknowns						
Station Coordinates	-30			303,312		
Error Coefficients	10,290					
Satellite Coordinates				10,290		
Total No. of Unknowns	13,632			13,632		
Total No. of Observations	$\begin{aligned} & 27,531 \\ & 13,899 \end{aligned}$			$\begin{aligned} & 27,531 \\ & 13,899 \end{aligned}$		
Degrees of Freedom						
A Priori Weight Information;	1 m					
Range (or Range Difference)				1 m		
Error Coefficient oa	50 m $38 \mathrm{~m} / 2 \mathrm{~min}$			50 m		
Error Coefficient ob						
Fixed Station Coordinates $\sigma_{\chi}, \sigma y, \sigma_{z}$				1 mm		
Other station Coordinates $\sigma_{X}, \sigma_{y}, \sigma_{Z}$	100 m			100 m10 m		
3 Satellite Events/Pass $\mathrm{\sigma}_{\mathrm{X}}$, $\mathrm{\sigma}_{\mathrm{y}}$, O_{2}	10 m					
A Posteriori Standard Deviation of Unit Weight	3.5 m			3.4 m		
Coordinate Differences with Respect to EDOC-2 Solution (all units in m)	$\Delta \phi$	$\Delta \lambda$	$\Delta \mathrm{H}$	$\Delta \phi$	$\Delta \lambda$	ΔH
Station No. 220*	0.0	0.0	0.0	0.0	0.0	0.0
(* indicates fixed station) 221	3.5	16.2	-4.4	3.0	7.0	-4.6
(222	3.4	-4.3	-1.2	1.9	-3.0	-1.4
223	1.5	9.8	-7.1	1.7	5.2	-4.2
224	5.6	27.1	-12.6	5.3	13.2	13.1
225	-4.8	-10.9	6.7	-0.2	18.4	3.0
226*	0.0	0.0	0.0	0.0	0.0	0.0
230	1.0	-4.5	13.6	4.6	3.2	9.9
231*	0.0	0.0	0.0	0.0	0.0	0.0
232	4.5	-3.1	15.7	2.1	-4.6	20.5
233	0.8	8.7	-2.0	1.6	2.0	-0.9
234	0.1	-1.7	5.3	-1.0	1.1	7.5
235	1.0	44.2	70.0	8.2	-0.4	1.9
Average absolute difference (m)	2.6 ± 2.8	13.0 ± 5.2	14.0 ± 4.6	2.2 ± 4.7	5.8 ± 8.9	6.7 +7.9
Average absolute difference in position (m)		0.8 ± 21			. 8 ± 6.6	
Average absolute station-to-station chord distance difference (m)		0.2 ± 10			. 5 ± 4.5	

ORIGINAL PRGE IS
 OF POOR QUALITY

Table 2 Comparison of the Different Integration Intervals Used in Adjustment

Name of Solution:	C-2	C-5	C-10	C-15
Integration interval (seconds)	9.2	23	46	69
Computing time (minutes)*	25.20	8.83	5.96	2.79
A posteriori standard deviation of unit weight	2.4	3.4	4.5	5.9
Average total absolute difference in position (m) (10 stations)	$\begin{aligned} & 10.9 \\ & \pm 7.3 \end{aligned}$	$\begin{aligned} & 10.9 \\ & \pm 6.6 \end{aligned}$	$\begin{aligned} & 22.0 \\ & \pm 19.3 \end{aligned}$	$\begin{aligned} & 33.8 \\ & \pm 37.1 \end{aligned}$
Average absolute station-to-station chord distance difference (m)	$\begin{array}{r} 6.4 \\ \pm 5.6 \end{array}$	$\begin{array}{r} 5.5 \\ \pm 4.4 \end{array}$	$\begin{array}{r} 8.9 \\ \pm 8.2 \end{array}$	$\begin{aligned} & 17.1 \\ & \pm 19.2 \end{aligned}$

*using an Amdahl 470

Fig. 2 Computing time used and average of absolute differences of baselines plotted against the length of integration interval

Fig. 3 Distribution of residuals at station 223 in passes 4, 50, 101 and 181.

Table 3 Statistics of the Residuals of the Observations of the Ten Worst Passes

No.	$\begin{gathered} \text { Pass } \\ \text { No. } \end{gathered}$	Number of Observations							$\|v\|_{\text {max }}(m)$
		Total	$\|v\|>30$		$\|v\|>2 \sigma$		$\|v\|>10.0 \mathrm{~m}$		
			Number	\%	Number	\%	Number	\%	
1	49	207	20	9.7	27	13.0	17	8.2	160.8
2	46	187	18	9.6	38	20.3	13	7.0	126.1
3	187	143	16	11.2	27	18.9	12	8.4	41.4
4	21	262	19	7.3	32	11.8	10	3.8	53.0
5	43	181	9	5.0	17	9.4	8	4.4	39.5
6	180	142	9	6.3	15	10.6	8	5.6	25.6
7	51	221	10	4.5	15	6.8	7	3.2	17.2
8	26	186	10	5.4	12	6.5	5	2.7	26.0
9	25	105	6	5.7	7	6.7	5	4.8	31.6
10	16	195	7	3.6	10	5.1	4	2.1	37.4

Table 4 presents the comparison of the weights of each station calculated from the residuals over all passes. The weights of the stations differ from each other for solutions C-5; the largest one is ninefold as large as the smallest one. When the ten worst passes are taken out, the weights are close to each other, and the a posteriori standard deviation of unit weight is decreased from 3.4 to 2.0 . It is seen that the existence of blunders is probably the most important detrimental factor in the solution.

Unfortunately, neither taking out the ten worst passes nor repeating the computation with the different weights for each station improved the result. It is likely that although taking out the ten worst passes removed the major blunders, it also resulted in losing many useful observations.

> ORIGINAL PAGE IS
> OF POOR QUALTTY

Table 4 Comparisons of the Weights of Each Station

Station No.	All Passes Used			W/o 10 Worst Passes		
	No. of Obs.	θ	p	No. of Obs.	$\hat{0}$	p
220	1579	2.08	2.7	1473	1.73	1.3
221	1668	1.72	4.0	1606	1.56	1.6
222	2912	3.30	1.1	2711	1.33	2.2
223	1862	1.30	6.9	1777	1.27	2.4
224	2821	1.77	3.7	2631	1.49	1.7
225	1893	2.19	2.4	1757	1.33	2.2
226	845	2.56	1.8	763	1.26	2.4
230	2505	2.26	2.3	2435	1.21	2.7
231	2789	3.85	0.8	2609	1.87	1.1
232	2391	2.42	2.0	2205	1.30	2.3
233	2760	1.67	4.2	2575	1.30	2.3
234	2641	2.36	2.1	2444	0.99	4.0
235	865	1.25	7.5	809	1.01	3.8
Degree of Freedom		13,899			12,910	
$\hat{\sigma}_{0}$		3.4			2.0	

5. CONCLUSIONS

On the basis of the comparisons, the follaiwng conclusions can be drawn:
(1) The geometric mode of solving the problem of simultaneous Dopplerderived ranges without considering the correlation is a weak one.
(2) The correlated geometric mode leads to better results. Comparing with the uncorrelated solution, the correlated mode reduced the average total absolute differences (with respect to EDOC-2) in position from 20.8 $\pm 21.7 \mathrm{~m}$ to $10.9 \pm 6.6 \mathrm{~m}$; and the average absolute station-to-station chord distance differences from $10.2 \pm 10.5 \mathrm{~m}$ to $5.5 \pm 4.5 \mathrm{~m}$.
(3) The choice of the optimuni integration interval is very important for the use of simultaneous Dnopler-derived ranges in the geometric mode. The examples of this study denonstrate that the optimum integration interval is 23 s , which agrees with that suggested by [Ashkenazi et al. 1980].

ACKNOWLEDGMENTS. The EDOC-2 data set was obtained through the efforts of Peter Wilson, Inst. f. Angewandte Geodysie, Frankfurt, FRG, and Claude Boucher, Inst. Geographique National, France. Mr. R. Schneeberger developed the uncorrelated geometric mode and wrote the program GEODOR. The Instruction and Research Computer Center of The Ohio State University provided computer support.

REFERENCES

Ashkenazi, V., D.N. McLintock and R.M. Sykes (1980) "Doppler Integration Intervals and Correlation," Phil. Trans. Roy. Soc., A 294, 337-384.
Boucher, C., P. Paquet and P. Wilson (1981) "Final Report on the Observations Carried Out in the Second European Doppler Observation Campaign (EDOC-2) for Position Determinations at 37 Satellite Tracking Stations," D.G.K., B 225, Frankfurt.
Brown, D.C. and J.E. Trotter (1969) SAGA, A computer Program for Short Arc Geodetic Adjustment of Satellite Observations, DBA Systems Inc., Melbourne, Florida.

Jordan/Eggert/Kneissl (1966) Handbuch der Vermessungskunde, Band IV. J.B. Metzlersche Verlagsbuchhandlung, Stuttgart, FRG.
Koubā, J. and J.D. Bōal (1976) "Program GEObOP," Dept. of Engineering, Mines and Resources Canada, Ottawa.
Krakiwsky, E.J. and 2.E. Wells (1971) "Mathematical Models for Positioning by Satellite," Lecture Notes 'No. 17, Dept. of Surveying Engineering, Univ. of New Brunswick, Frederiction, Canada.
Mueller, I.I. (1964) Introduction to Satellite Geodesy, Ungar Publ., New York.
Schneeberger, R. (1982) Use of Simultaneous Doppler-Derived Ranges from the EDOC-2 Campaign in the Geometric Mode, MS thesis, Dept. of Geodetic Science and Surveying, Ohio State Univ., Columbus.

Schneeberger, R., D. Pavlis and I.I. Mueller (1982) "Use of Simultaneous Doppler-Derived Ranges in the Geometric Mode," Proc. of 3rd International Symp. on Satellite Doppler Positioning, Physical Science Laboratory, New Mexico State University, Las Cruces.

Uotila, U. (1976) "Adjustment Computation with Matrices," Lecture Notes, Department of Geodetic Science, Ohio State Univ., Columbus.
Wells, D.E. (1974) "Doppler Satellite Control," Tech. Rep. 29, Univ. of New Brunswick, Fredericton, N.B., Canada.
Zhang, C. (1982) Use of Simultaneous Doppler-Derived Correlated Ranges in the Geometric Mode, MS thesis, Dept. of Geodetic Science and Surveying, Ohio State Univ., Columbus.

ORIGINAL PAGE IS OF POOR QUALTTY

2.222 Dongler Intercompariscn Exgeriment

In the previous semi-annual report, preliminary results of the 1979 cSU comparison test of Copgler ceceivers are given. Since that tima final report on the coaparison has been completed [Archinal, 1982] as a Master's thesis land soon as a report of the Department of Geodetic science and Surveying).

In this report, some of the results preseated in the frevious report are revised, and some additional final results are presented as dell. For a more detailed discussicn of the followiny, refer to [Acchinal, 1982]. and [Archindi and Mueller, 1982].

EIVAL RESULTS_CE_DATA_EEDUCTION

As mentioned above, some of the results fresented here are sligbtly different than those given in the last repert. This is erimarily due to:
a) The determination and use of receiver tine delays in the GEODOP processing.
b) The modificaticn of GEODGE to allow the iugut of a "common station noisel estimate, and use of this option, along with the use of a variance estiratica fiocess in GEODCE as well.

Therefore revised versions of the tracking statistics and chord difference results are given here, alcog with $n \in w$ iaformation concerning the estimation of the receivers' ckservational (range rate) ercor and oscillator starility.

ORIGINAL PAGE IS OF POOR QUALITY

Tracking_Statistics

The statistics on the number of passes tracired, used in predop, and two types of geodof runs are presentea in tacle 1. Although several uumbers have changed sutstantially from those given in the last report, wost of the cesults given there are still valid. In aduition to these results, it should be noted that if these statistics are broken down by auteana setup (as in [Acchinal, 1982. Ep. b1-70j), it $k \in-$ comes clear that:
a) The CMA-751 and the JMB-1As generally tracked about the same number of passes, and slightly wore tian the MX1502 (when operating cocrectly and tracking continuously).
b) Ihere is no tias aue to antenad location, at least when PaEDOE rejections are consideced. The relative percentages cf rejections stayed failiy constant for dil setups for the JMB-1A $\# 2$ and $\operatorname{Hxisi} 2$. No conclusions gan be drawn Ecr the cha $=751$ due te its faulty antenna cable ion all but one site), or for the JMi-1a *1, since it only occupied one site.

The GEODCE statistics for a wultimstatica broacast ephemeris soluticn and a sangle station trecise ephereris solution) show a fairly consistant chservations ass value Eor all mintruments, exceft for the MX1502, waich tas a higher value in both soluticus. This higher value is due to the fact that the $M \times 1502$ was recording coly (the tetter) passes whish seached over 15 degrees altatule on the iirst setup, whah strongly affects the grand totals showa here. The observations/gdes for the CMA-751 ace not restesentarive here either, since it was operating proferly cnly during the first and last setup.

Chord_Difference_Results

Table 2 shows absolute differences obtained in the chord distance between all pairs of instruments ficr each antenna setup for qulti-station and frecise ephensris soluticns. Many of chese values are different from those given in the previous report, with generally smaller standard deviaticns and chord differences than previcusly reforted. This is probably due to the changes in weighting and the retter de termined delays respectively, and points out the value cf the
ORIGINAL PAGE IS
OF POOR QUALITY

INSTRUMENT	No. Passes TRACKED	NO. PASSES TrACKED PER DAY	NO. PASSES AFTER PREDOP		HO. PASSES (DOPPLER COUNT/PASS) after geodop solution				
CNA-751 ${ }^{1}$					fill	I-STA.	B.E.	POINT PS. - P.E.	
	827	19.2	680	828^{4}	594	(17.6)	$72{ }^{4}$		
JMR-1A \#1 ${ }^{2}$	231	20.6	197	858				290	(17.5)
JMR-1A \#2	919		. 197		185	(16.5)	808	77	(17.6)
MX-1502 ${ }^{3}$			770	84\%	642	(16.5)	70%	317	(16.5)
		18.7	483	60%	429	(17.9)	53\%	190	

[^3]
ORIGINAL PAGE IS OF POOR QUALITY

TABLE 2 ABSOLUTE DIFFERENCES IN CM OVER CHORI DISTANCES RANGING FROM

ANTENNA SETUP \#	MULTI-STATION SOLUTIONS bROADCAST EPHEMERIS - 5 SATELLITES						MULTI-STATION SOLUTIONS PRECISE EPHEMERIS - 2 SATELLITES					
	$\begin{aligned} & \text { CMA-751 то } \\ & \text { JMR-1A } \end{aligned}$		$\begin{aligned} & \text { CMA-751 то } \\ & \text { MX-1502 } \end{aligned}$		$\begin{aligned} & \text { JMR-1A \#2 } \\ & \text { TO MX-1502 } \end{aligned}$		$\begin{aligned} & \text { CMA-751 то } \\ & \text { JMR-1A \#2 } \end{aligned}$		$\begin{aligned} & \text { CMA-751 T0 } \\ & \text { MX-1502 } \end{aligned}$		$\begin{aligned} & \text { JMR-1A \#2 } \\ & \text { To MX-1502 } \end{aligned}$	
	DIFF	σ										
1	-17	6	-13	7	-20	13	1	10	-15	10	18	22
2	-60	11	3	5	-34	26	-30	16	63	27	-47	54
3	-25	25	- 5	22	-55	29	-7	36	58	36	49	56
4	11	10	6	12	1	20	18	21	-12	20	21	36
5	6	10	-33	12	-9	21	- 7	16	-83	17	73	35
$\begin{aligned} & \text { WE IGHTED } \\ & \text { MEAN } \end{aligned}$	21	4	14	5	20	8	17	7	33	7	33	15
	CMA JMR	751 то 1A \#1	$\begin{aligned} & \text { JMR- } \\ & \text { JMR- } \end{aligned}$			A \#1 то A	CMA JMR-	$\begin{aligned} & 51 \text { то } \\ & \text { A \#1 } \end{aligned}$	JMR-JMR-	$\begin{aligned} & \text { A \#1 } \\ & \text { A \#2 } \end{aligned}$	$\begin{aligned} & \text { JMR-1 } \\ & \text { MX-15 } \end{aligned}$	$\begin{aligned} & \text { A \#1 то } \\ & 02 \end{aligned}$
1	3	12	13	7	11	10	28	20	13	10	16	15

ORIGINAL PAGE IS OF POOR QUALITY

more rigorus weigbting and ketter determination of delay for these solutions.

Even with the differeloss, the erevious result still holds, that most of the ditierences (all execeet two) lie within their three sigma value. A $n \in f$ result is that the single baseline deterinined betueen instruments of the same type (betwean the two JMg-1As on setup (1) did nct show significantly better results than fairings betaeen any other instrument combination. In conclusion, it apfears that there is no evidence that any of these instruments are riased agaiust one ancther for chord determinations (cver short distances).

Another additional result shown by this tasle is that the precise ephemeris two satellite soluticns for chord distances do not appear to have necessarily bigher accuracy cr frecision than the corresponding rioadcast ephemeris five satellite solutions, and in fact the precision cf the riuadcast ephemeris solution is better in all cases. This simply indicates that the greater number of observations in the broadcast ephemeris soluticn improves theresults more than the corresponding iucrease in \equiv fhemeris accuracy of the frecise ephemeris solution. This wouldimply that if cnly chord distances were needed from Dcfpler crservations, then generally broadcast ephemeris solutions wald be preferacle to precise efhemeris solutions, since the forqer usually have more data available.

Eange_Rate_geasurenent_Errors

Using procedures described in detail in [Archinal. 1982, pp. 70-79], estimates of the common station noise and each instrument's range rate standard deviation were made for each setup and precise ephemeris satellite. The results are shown in table 3 and discussed $h \in r e$.

First of all, the combon station noise mas estimated $k y$ processing only simultaneous otservatins and precise ephemeris oricts. The common station (cr "interstation" cr "satellite" noise) estimates were maje using the conmon station estimated variance-covariance matrix output \dot{f} g GedCe to cbtain the values shown in column three of takle 3. Ihe results vary with satellite and time diring the entire test, with an amount between 3.4 and $7.5 \mathrm{ca} / 30$ seconds. Ihe overall average value (weighted wean of all observation fairs) is $4.9 \mathrm{~cm} / 30$ seconds. Since the rangewas rot tcc great,

ORIGINAL PAGE IS

 OF POOR QUALITY| SETUP | SATELLItE No. | | $\begin{gathered} \text { COMMON STATION } \\ \text { NOISE } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Q. } 1-751 \\ \text { (3) } \\ \hline \end{gathered}$ | JMR-1A \#1
 (3) | JMR-1A *2
 (3) | $\begin{gathered} \text { MX-1502 } \\ (3) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 14 | 263 | 4.8 | 8.8 | 12.0 | 9.2 | 12.3 |
| | 19 | 277 | 3.4 | 7.9 | 11.8 | 9.5 | 11.4 |
| 2 | 14 | 75 | 3.4 | -- | | -- | -- |
| | 19 | 123 | 6.5 | -- | | -- | -- |
| 3 | 14 | 26 | -- | -- | | -- | -- |
| | 19 | 52 | 4.0 | -- | | -- | -- |
| 4 | 14 | 161 | 7.5 | 12.8 | | 12.4 | 14.5 |
| | 19 | 157 | 3.5 | -- | | -- | -- |
| 5 | 14 - | 160 | 5.5 | 6.4 | | 6.5 | 13.5 |
| | 19 | 276 | 5.6 | 11.3 | | 11.4 | 12.8 |
| ALL | 14 | | 5.4 | 9.6 | 12.0 | 9.9 | 13.0 |
| | 19 | | 4.4 | 9.7 | 11.8 | 10.6 | 12.1 |
| | вотн | | 4.9 | 9.7 | 11.9 | 10.4 | 12.5 |

[^4]
ORIGINAL PAGE IS
 OF POOR QUALITY

and rather than change the value for each setup/satellite (perhaps based on too few observations), the GECDOP default
 cessing.

Secondiy, the estimated receiver ranye rate standard deviations were computed for each setup and satelifte using the weighted mean of the diagonal elewents ef the estimated variance-covariance watrix of the residuals. Ihe results for all three instrument tyees are shown in the last four columas of talle 3. These values were ottained from geodof single station precise ephemeris sclutions, in which the observations were approximately (the rejections due to statistical testing cause some exceptions) simultanecus. Although some of the individudl solutions did not bave enough data to bs considered significant, using at least bu observations in each case (but only 350 for the $J \mathbb{E}-1 A$ (1), the Estimated range rate standard deviations were found to be y.7. 11.9, 10.4, and $12.5 \mathrm{~cm} / 3 \mathrm{u}$ seconds for the can-751, Jith 1 , JMR-t2, and the MX1502 respectively, over the entare feracd of the test \quad The variatious shoun during the test may be partially instrument related. Lut they dre erckally due mostly to the satellite noise just discussed. The relative precision of the three 1 astrumeats continucusly orserving also stays approximately the same for all time periods and satellites, which also indicates that the variaticns are non-receiver related. It is also significant that the variation batween instruments is usually less than $3 \mathrm{~cm} / 30 \mathrm{sec}-$ onds, showng that these instemments are generally very similar, and that the variation in the common station noise is generally greater than this. The conclusicn car therefore be drawn that the variation of the measuremsnt precision betveen these instruments is not significant. The even acore important conclusion which can be drawn is that the raage rate accuracy obtainadie defends in many cases more on the time and the satellite chan it does on the receiver itself.

Lastly, to ottain the best possifle estimates cf tbe final variance-covariance matrices in GECDCE, the GECDCE option was used to allow an iateral estimate of the range rate standard deviation and adjacent observation correlation for each pass to $b \in$ made, with the previously estimat d range rate standard deviation value given in the last paragraph) used as an infut appoximate value. Although increasing the computational time by over 50 (all of the fasses are processed twice), this method takes into account the variation of the satellite noise and fossicle variations in the receiver noise during the fericd under consideration. It is felt that this procedure, in conjunction with the

ORIGINAL PAGE IS OF POOR QUALITY

first two ajove would rasult in the ucst rigorus processing of the data, to provide the best solutions.

Freguency_Drift_Results

The freguency drift of an instrument's oscillator is an important quantity which can be determined to fairly high accuracy during data reduction. In general, the wore stable an oscillator (over the period of a satellite pass) the better the timing and copeler count measurements can be made. If a dxift is occucring, and remains fairly constant in time, it can bo taken into account 10 the adjustment of the data (as in GeODOE), although it must still be assumed to be linear over a pass, and should not le very larye in magatude. If the drift is erratic, eithes changing during a pass or over just a few passes, the data will be very nozsy due to thest unmodeled changes in the ascıllator. It is therefore important to check the frequency drift varaations of these instrumentso rdealiy one would like to ebeck the short term drift which corresponds to the length of a satellite pass (over 100 seconds to abcut 15 minutes), but this is generally not possitle undess an atcaic standard is available for comparison. Instead, tho long turm difit of these instruments can fe checked for variations (which way provide an indication of the short term staidility), or at Least checked against the manufacturer's specificaticns.

In the case of the data collected here, the trejuency drift for each instrumant for each setup and precise effemeris satellite has been determined. The values have leen obtained from the differencs Letween the first and last (reasonable) frequency offsets coneuted fol fach instiument during a setup. Ihe Ereguency offsets wele deterained frow two satellite (one satellite at a time) prechse efherexis, single station solutions, and tha anterna setup keriods Which ranged from about fivg to fifteen days ia length. Note that to obtain the per day values given here, the assumption has teen made that the freguency drift is corstant during each setup. Examination of the GBCCOF freguency plots supports this assumption.

The results for frequency urift are shown in ratle 4, and have been graphed in figure 1. They can $t \in$ sumarized as follows:
a) Ihe cMa-751 had a fairly uniform value for trequency drift, usiug either satellite, and easily wet its sfe-

ORIGINAL PAGE IS

OF POOR QUALITY
table 4 LONG-TERM OSCILLATOR FREQUENCY DRIFT ${ }^{1}$

SETUP NO.	SATELLITE NO.	CMA-751	JMR-1A \#1	JMR-1A \#2	MX-1502
1	14	0.45	1.65	3.15	$0.41{ }^{2}$
	19	0.23	1.78	3.22	$0.11{ }^{2}$
2	14	0.14		$2.50{ }^{2}$	3
	19	-0.32		$2.66{ }^{2}$	-- ${ }^{3}$
3	14	0.50		$2.57{ }^{2}$	-2.88
	19	0.33		$2.87{ }^{2}$	$-2.72{ }^{2}$
4	14	0.39		$2.27{ }^{2}$	0.47
	19	0.10		$2.68{ }^{2}$	1.11
5	14	0.27		2.06	$0.78{ }^{2}$
	19	0.50		2.47	$0.74{ }^{2}$

SPECIFICATION:

/DAY	± 1.00	± 0.50	± 0.50	$?$
$/ 100 \mathrm{~s}$	± 0.01	± 0.05	± 0.05	± 0.08

110^{-10} parts per day, determined from frequency offset of first and last pass of single station, precise ephemeris solution.
2 solution shows frequency jump after first or second pass.
3 TOO few passes in solution, with two frequency jumps (OSCIlLATOR disturbed due to maintenance)

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 4 Oscillator frequency drift versus time.
cified 10-10 farts/day plecision. The frequency drift was usually from one half to cne tenth of that value, and even approached its 100 second specitication.
b) The JME-1A ${ }^{2} 2$ also had a fairly unitorm value for frequency drift, using either satellire However, toth it and the JMa-1A $\# 1$ failed to $m \in \in t$ their $0.5 \times 10-10$ parts/day specified precision. (Note that this specification is actually foc the JME-1. It is assumed that the JME-1A would have the same or a retici sfecification.)
c) The MX1502 did not have a consistent value for its Erequency drift, which shows cecillaticns during the second through Eourth setups. Since the values for the first, fourth and last setups are at least similar, one would suspect that the frequency drift changes are mostly due to the various times that the instrument was opened faad its oscillatcr turned cff) for cepairs. No specification for the mx1502 drift per day is available for confarison purfoses.

2ISAL_CGMEENTS

The results presented bere should $t \in \operatorname{con} s i d e r \in d$ as the final ones of this comparison, although if time fermits, some additional material yill fossifly be aded to the report \quad ersion of [Archinal, 1982] and the final version of [archinal and queller, 1982]. Werk is alse continuing on the documentation and further testing of the IEA version of the GECDCP program System.
as to the further use of the data octained, the recoumendation is made here that the data from both this coafarison and the cttawa comparison $b \in$ finally frocessed tegether in multi-station solutions, to provide a ccofariscn cf bcy well the various possitle instrument pairs can measure the leng Columbus-ottawa baselines involved. Furtner, it is alsc suggested that a similar reducticn $b \in$ made (if the data can be obtained) using the "cuetec" data descritej in [gcreau, 1981]. which was also oktained during the oferational fhase of this comparison.

Other iuvestigations are alsc possible, including extending the results givea above ry making further couparisons of the chords, comparing the vertical and horizontal fcsiticas

Oficinal. Page th
 OF POOR QUALITY

of the stations through their cooriinates, and comparing the computed coordinates aith the availatie control cocrdanates. These items were not done in this study mainly fecause they are considerad to be of lessar iaportance than the cther casults presented, and due to a general lack of time for these lengthy investigarions. Other work concerning prograr oftions or comparisons of programs could alsc de done with this data.

REFERENCES

Archinal, Brent A. (1982) A Comparison of Geodetic Doppler Satellite Receivers, MS thesis, Ohio State University, Dept. of Geodetic Science and Surveying (report of the Dept. of Geodetic Science and Surveying in preparation).

Archinal, Brent A. and Ivan I. Nueller (1982) "Results of a Comparison of Geodetic Dopplez Satellite Receivers," Third International Symp. on the Use of Artificial Satellites for Geodesy and Geodynamics, Ermioni, Greece, Sept. 20-25 (National Technical University of Athens).

Moreau, Richard (1981) "Integrated Densification by Doppler," ACSM Fall Technical Meeting, American Congress on Surveying and Mapping, Falls Church, VA 22046, pp. 272-281.

2.3 Earth Deformation Considerations for the Maintenance of a Conventional Terrestrial Reference System

The role of deformation analysis in the maintenance of a new Conventional Terrestria! Reference Frame has been outiined in previous semiannual reports and in [Bock and Zhu, 1982]. Basically, a set of fundamental coordinates x_{0} of a global network of stations adopted at an initial epoch define the reference frame. The initial size and shape of this network is defined by the corresponding baseline lengths, D_{0}. By comparing ine estimated baseline lengths at a later epoch to D_{0}, the deformations of the network can be estimated. This information is then used to improve the glokal estimates of variations in polar motion and earth rotation, with respect to the conventional axes defined by X_{0}.

Mathematical Model and Preliminary Estimation Model
The mathematical model for the deformation analysis is simply the chord length of baseline $i-j$

$$
D_{i j}=\left[\left(x_{j}-x_{i}\right)^{2}+\left(y_{j}-y_{i}\right)^{2}+\left(z_{j}-z_{i}\right)^{2}\right]^{\frac{1}{2}}
$$

This model is linearized about X_{0} to yield

$$
L=A X+V
$$

where the observation vector L for the $k^{\text {th }}$ baseline is

$$
L_{k}=\left(D_{i j}-D_{i j o}\right)_{k}
$$

and the parameter vector X represents the deformations, i.e., the change in coordinates between the initial epoch and a later one. V denotes the noise vector.

Since the design matrix A is rank deficient by 6 , we are restricted to a Generalized Gauss-Markoff (GGM) model. (L, AX, $\sigma_{0}{ }^{2} P^{-1}$) where

$$
\begin{aligned}
& E(L)=A X \\
& D(L)=\sigma_{0}{ }^{2} p-1
\end{aligned}
$$

ORIGINAL PAGE IS OF POOR QUALTTY

If there is no a priori information for the deformations, the minimum bias P-least squares estimate for X is given by

$$
\hat{X}=N^{+} U=A_{P I}^{+} L ; \quad N=A^{\top} P A ; \quad U=A^{\top} P L
$$

using the notation of [Rao and Mitra, 1971], where P is the weight matrix of the observations. This estimate can be shown to be equivalent to that obtained from augmenting the normal matrix N by a set of constraints C such that [Blaha, 1971]

$$
\begin{aligned}
& A C^{\top}=0 \\
& C X=0
\end{aligned}
$$

and

$$
\hat{x}=\left(N+C^{\top} C\right)^{-1}-C^{\top}\left(C C^{\top} C C^{\top}\right)^{-1} C
$$

This means that we constrain the origin and orientation defined by the coordinates at some later epoch t to be equivalent to that defined by X_{0}.

Extended Models for A Priori Deformation Information
In the case of the availability of a priori information on the deformations of the network, e.g., as provided by absolute plate motion models, four possible estimators have been outlined and analyzed in [Bock, in preparation]. We briefly outline here the corresponding estimates and their respective properties.

Consider an expanded $G G M$ model ($L, A X, Q_{V}, Q_{\bar{X}}$) wheire

$$
\begin{aligned}
E(L) & =A X \\
D(L) & =Q_{V}=E\left\{V V^{T}\right\}=\sigma_{0}^{2} P^{-1} \\
E\left(\bar{X} \bar{X}^{\top}\right) & =Q_{\bar{X}} \\
& =\varepsilon_{\bar{X}}+\mu_{\bar{X}} \mu_{\bar{X}}^{\top} \quad\left(\mu_{\bar{X}}=E\{\bar{X}\}=X\right)
\end{aligned}
$$

where \bar{X} is an independent estimate of the parameter vector. The resulting minimum M-norm P-least squares minimum variance estimate for X

$$
\begin{aligned}
\hat{X}_{1} & =Q_{X} N\left(N Q_{X} N\right)^{+} U \\
& =M^{-2} N\left(N M^{-1} N\right)^{+} U
\end{aligned}
$$

ORIGINAL PAGE
 OF POOR QUALITY

where $M=Q_{X}^{-2}$ (positive definite). \hat{X}_{1} has the property of minimum bias. Therefore, this estimate is termed the BLIMBE (Best Linear Minimum Bias Estimate). In this case, it can be shown that this estimate is equivalent to that obtained from augmenting the normal equations by $C M$ such that

$$
\begin{aligned}
& A C^{\top}=0 \\
& C M \hat{X}_{1}=0
\end{aligned}
$$

and

$$
\hat{X}_{1}=\left[\left(N+M C^{\top} C M\right)^{-1}-C^{\top}\left(C M C^{\top} C M C^{\top}\right)^{-1} C\right]^{-1} U
$$

Therefore, we can say that the reference frame is maintained in a minimum M-norm P-least squares sense by a specified number of CTS stations.

For positive semidefinite Q_{X}, which would be the case for any plate model

$$
\dot{X}_{1} \equiv(N+M)^{-1} N\left[N(N+M)^{-1} N\right]^{+} U
$$

with $M=Q_{X}{ }^{+}$. In this case, the estimate is minimum M-seminorm P-least squares but is no longer minimum bias.

For the BLIMBE we assume that the parameter vector X is deterministic and define a weighted norm in the parameter space on the basis of a priori information on X. Another possible biased estimator can be obtained by considering X as a random variable. Our estimation model is ($L, A \bar{X}, Q_{V}, Q_{X}$) where

$$
\begin{aligned}
& E\{X\}=\bar{X} \\
& D[X]=E\left\{(X - \overline { X }) \left(X-\bar{X} ; T_{\}}=\Sigma_{X}\right.\right.
\end{aligned}
$$

which gives

$$
Q_{X}=E\left\{X X^{\top}\right\}=\Sigma_{X}+\bar{X} \bar{X}^{\top}
$$

The vector X includes the deformations computed from, say, a plate motion model and Σ_{X} is its covariance matrix. The distribution of L is given by

$$
\begin{aligned}
& E\{L\}=A \bar{X} \\
& D[L]=A \Sigma_{X} A^{\top}+\sigma o^{2} P^{-1}
\end{aligned}
$$

from which

$$
Q_{L}=E\left\{L L^{\top}\right\}=A Q_{X} A^{\top}+\sigma_{0}{ }^{2} P^{-1}
$$

In addition,

$$
Q_{X L}=E\left\{X L^{\top}\right\}=Q_{X} A^{\top}
$$

and we assume

$$
Q_{X V}=0
$$

By the Gauss-Markoff theorem [Liebelt, 1967]

$$
\begin{aligned}
\hat{X}_{2} & =Q_{X L} Q_{L}^{-1} L \\
& =Q_{X} A^{\top}\left(A Q_{X} A^{\top}+\sigma O_{0}^{2} P^{-1}\right)^{-1} L
\end{aligned}
$$

Which, for positive definite Q_{X},

$$
\hat{X}_{2}=(N+M)^{-1} U: \quad M=Q_{X}^{-1}
$$

This estimate has been referred to as the Best (or Bayes) Linear Estimate or BLE for short [Rio, 1973, 1976]. While the BLIMBE has the minimum bias property, the $B L E$ has minimum mean square error, i.e., ft minimizes the sum of covariance and biased squares

$$
\operatorname{MSE}(\hat{X})=\Sigma_{\hat{X}}+[X-E(\hat{X})][X-E(\hat{X})]^{\top}
$$

in the class of biased estimators. Note that the BLE requires some knowledge of the deformations in order to compute Q_{X}. Furthermore, while the BLIMBE reference system is maintained through the constraints $C M \hat{X}_{1}=0$, the deformations estimated by the BLE are with respect to an underlying reference frame of the deformation model from which Q_{X} is computed.

The previous two estimates are drawn from the class of biased estimotors. If Q_{X} can be constructed, that is, if there exists a priori deformotion information, then the origin and orientation singularities are essentially eliminated. We then are led to investigate whether an unbiased estimate exists and we find the Bayesian estimate. Consider the estimation model ($L, A X, Q_{V}, \bar{X}, \Sigma \bar{X}$) where X is deterministic, \bar{X} randomand the set of observation equations

$$
\left[\begin{array}{l}
L \\
L_{X}
\end{array}\right]=\left[\begin{array}{l}
A \\
I
\end{array}\right] x+\left[\begin{array}{l}
V \\
V_{X}
\end{array}\right] ; \quad L_{X}=\bar{X}
$$

such that

ORIGINAL PAGE IS OF POOR QUALITY

$$
\begin{aligned}
& E\{\bar{X}\}=X \\
& D[\bar{X}]=E\left\{(\bar{X}-X)(X-X)^{\top}\right\}=\Sigma_{\bar{X}} \\
& E\{L\}=A X \\
& D[L]=A \Sigma_{\bar{X}} A^{\top}+\sigma_{0}^{2} P^{-1}=\Sigma_{L} .
\end{aligned}
$$

The least squares solution for this model yields

$$
\begin{aligned}
\hat{X}_{3}= & \Sigma_{\bar{X}} A^{\top}\left(A \Sigma_{\bar{X}} A^{\top}+\Sigma_{L}\right)^{-1} L \\
& +\left[I-\Sigma_{\bar{X}} A^{\top}\left(A \Sigma_{\bar{X}} A^{\top}+\Sigma_{L}\right)^{-1} A\right] \bar{X}
\end{aligned}
$$

for $\Sigma_{\bar{x}}$ positive semidefinite. For positive definite $\Sigma_{\bar{x}}$, this reduces to

$$
\begin{aligned}
\hat{X}_{3} & =(N+M)^{-1} U+\left[I-(N+M)^{-1} N\right] \bar{X} ; \quad M=\varepsilon^{-1} \bar{X}^{-1} \\
& =\bar{X}+(N+M)^{-1} A^{\top} P(L-A \bar{X}) \\
& =(N+M)^{-1}(U+M \bar{X})
\end{aligned}
$$

It is easily seen that given this estimation model, particularly $E\{\bar{X}\}=X, E\left\{\hat{X}_{3}\right\}=X$, so that X is unbiased. This estimate has the minimum mean square error property which implies minimum variance since the bias is equal to zero. Note that in the BLE, the a priory information is incorprorated into the moment matrix Q_{X}, while for \hat{X}_{3}, \bar{X} is applied directly, and a residual deformation is estimated. Thus, we can consider the BLE (\hat{X}_{2}) as a "weak." Bayesian estimate and \hat{X}_{3} a "strong" Bayesian estimate.

Assume again that some a prior deformations are available. In this case, the model may indicate that $C_{x}=L_{X}$ where $L_{x} \neq 0$ which leads to an alternative approach to the constraints $C M \hat{X}_{1}=0$ of BLIMBE. Consider the following set of observation equations

$$
\left[\begin{array}{l}
L \\
L_{x}
\end{array}\right]=\left[\begin{array}{l}
A \\
c
\end{array}\right] x+\left[\begin{array}{l}
V \\
V_{x}
\end{array}\right], \quad L_{x}=c \bar{x}
$$

We assume the estimation model ($L, A X \mid C X=C \bar{X}, \Sigma_{\bar{X}}, Q_{V}$) where

$$
\begin{aligned}
& E[C \bar{X}]=C X \\
& D[C \bar{X}]=C{ }^{\Sigma} \bar{X} C^{\top} \\
& E[L\}=A X \\
& D[L]=A{ }^{\Sigma} \bar{X} A^{\top}+\sigma_{0}^{2} P^{-2}
\end{aligned}
$$

For this model, the least squares estimate is

$$
\hat{X}_{4}=\left[N+C^{\top} P_{X} C\right]^{-1} U+C^{\top} P_{X} C \bar{X}
$$

where

$$
P_{X}=\left(C \varepsilon_{X} c^{\top}\right)^{\prime \prime!}
$$

Fran [Chipman, 1964]

$$
\begin{aligned}
& A_{P_{I}}^{+}=\left[N+C^{\top} P_{X} C\right]^{-1} A^{\top} P \\
& C_{P_{X} I}^{+}=\left[N+C^{\top} P_{X} C\right]^{-1} C^{\top} P_{X}
\end{aligned}
$$

so that

$$
\begin{aligned}
\hat{X}_{4} & =A_{P I}^{+} L+C_{P_{X} I}^{+} \bar{X} \\
& =N^{+} U+C_{P_{X} I}^{+} \bar{X}
\end{aligned}
$$

Therefore, \vec{X}_{4} can be viewed as a correction term to the minimum I-norm P-least squares estimate \hat{X}_{1}, or a combination of the BLIMBE and Bayesian approaches.

The propertius of the four estimators are summarized in Table 1.

Addition and Temporary Deletion of CTS Stations

The reference frame is defined by a particular number of CTS stations. It is quite possible that from tine to time one or more of the stations will rot be able to participate in a particular deformation analysis observing session which should involve all stations. Furthermore, it must be anticipated that new stations will be added to the frame periodically. Both of these occurrences must be dealt with in order to maintain continuity and avoid ambiguity in the reference frame definition. For the addition of CTS stations we use the filtering and estimation capabilities of least squares collocation. The model becomes

$$
L=A X+B S+V
$$

Where X is deterministic and represents the coordinates of the new stations to be estimated. The vector S, the signal, is random and includes the
ORIGINAL PAGE IS OF POOR QUALTTY
Table 1 Properties of Deformation Estimators

Property Estimate	BLIMBE	BLE	Bayesian	BLICUE
Uniqueness	Yes	Yes	Yes	Yes
P-least squares	$\hat{\mathrm{V}}^{\mathrm{T}} \mathrm{P} \hat{\mathrm{V}}=$ min	$\hat{V}^{T} \mathrm{P} \hat{V}+\hat{\mathrm{X}}^{\mathrm{T}} \mathrm{Q}_{\mathrm{X}}^{-1} \hat{X}=$ min	$\begin{aligned} & \hat{\mathrm{V}}^{\mathrm{T}} \mathrm{P} \hat{\mathrm{~V}}+\hat{\mathrm{v}}_{\mathrm{X}} \mathrm{~T}_{\overline{\mathrm{X}}}{ }^{-1} \hat{\mathrm{~V}}_{\mathrm{X}} \\ & =\min \end{aligned}$	$\hat{\mathrm{V}}^{\mathrm{T}} \mathrm{P} \hat{\mathrm{V}}=\min$
Minimum M-norm	In the class of P-least squares	Yes	No	No
B1asedness	Minimum bias*	Biased	Unbiasea assuming $E(\bar{X})=X$	Unbiased conditional on $E(\bar{X} \bar{X})=C X$
Minimum Variance	In the class of minimum bias estimators	In the class of biased estimators	Yes	Conditional
Minforaj Mean Square Error	No	In the class of biased estimators	Yes	No
Estsmeskisa siodel	$\left(\mathrm{L}, \mathrm{AX}, \mathrm{Q}_{\mathrm{V}}, \mathrm{Q}_{\bar{X}}\right)$	$\left(L, A \bar{X}, Q_{V}, Q_{X}\right)$	$\left(\mathrm{L}, \mathrm{AX}, \mathrm{Q}_{\mathrm{V}}, \overline{\mathrm{X}}, \Sigma_{\bar{X}}\right)$	$\left(L, A X \mid C X=C \bar{X}, \Sigma_{\bar{X}}, Q_{V}\right)$

filtered deformations. The L and V vectors are as before. From [Moritz, 1980),

$$
\begin{aligned}
& \hat{x}=\left[A^{\top}\left(B Q_{S} B^{\top}+Q_{V}\right)^{-1} A\right]^{+} A\left(B Q_{S} B^{\top}+Q_{V}\right)^{-1} L \\
& \hat{s}=Q_{S} B^{\top}\left(B Q_{S} B^{\top}+Q_{V}\right)^{-1}(L-A \hat{X})
\end{aligned}
$$

where Q_{S} is the same as the previous Q_{X}.
If a station cannot observe, we can use the prediction capabilities of least squares collocation to presict tine deformation via

$$
\hat{S}=Q_{S} B^{\top}\left(B Q_{t} B^{\top}+Q_{V}\right)^{-1} L
$$

where

$$
s=\left[\begin{array}{l}
t \\
u
\end{array}\right],
$$

t includes the deformation of the observing station, and u the predicted deformations of the missing stations.

Conclusions
In order to test the properties of the four estimators and their suitability in estimating deformations, a series of simulations were run as described in [Bock, in preparation']. A 20-station, 8 -plate network was chosen for the simulations as depicted in Fig. 1 and Table 2. The AM1-2 absolute plate motion model of [Minster and Jordan, 1978] was "adopted" (see Table 3).

The following conclusions were arrived at based on the simuiations. Assuming that the absolute motion models available today are good to within their stated noise levels (this is reasonable considering that [Bender, 1981] indicates that their predicted deformations differ at the centimeter level), it is found that it is advisable to adopt a deformation model than not at a11. This was seen from comparing the deformation estimates obtained with a deformation model and those obsained when $M=I$ (no model) is assumed. If a model is adopted, then the BLE appears to be the best candidate for deformation analysis. This conclusion follows from several considerations.
ORIGINAL PAGE IS
OF POOR QUALITY

Table 2 20-Station, 8-Plate Simulation Network and AM1-2 Velocities

ORIGINAL PAGE IS OF POOR QUALITY

Table 3 AM1-2 Absolute Motion Plate Model (Adapted from [Minster and Jordan, 1981], Table 7)

Plate	Absolute Rotation Vector				
	Deg (N)	Deg	(E)		
1. African	18.76 , 33.93	338.24	42.20	0.139	0.055
2. Eurasian	-58.70 1216.35	336.81 319.33	146.67 39.62	0.247	0.080
4. Pacific	- 61.66 5.11		7.71	0.967	0.085
	-82.28 19.27	75.67	85.88	0.285	0.084
6. Inaian-Australian	19.23 47.99	35.64 266.19	6.57 8.14	0.716 0.585	0.076 0.097
8- Arabian	27.29 12.40	356.06	18.22	0.388	0.067
9. antarctic**	$21.85 \quad 91.81$	75.55	63.20	0.054	0.091
10: carribean**	-42.80 21.89 39.20	66.75 244.29	40.98 2.81	0.129 1.422	0.1119

First, the BLE provides the best estimates (in the sense of minimizing the root mean square error between true and estimated deformations) at the same level as the Bayesian estimate, in the case when the deformation model is correct (and then the deformation is just being filtered from the baseline noise). Second, and most important, it is markedly less sensitive to errors in the adopted deformation model. This is particularly apparent in the case that in reality there is no deformation but we assume some deformation model. These results are due to the minimum mean square error and minimum norm properties of the BLE and its "weak" Bayesian interpretation.

Finally, we should stress that the reference system is dependent on the choice of estimation models including the choice of M (as well as P, but to a lesser extent). This leads to the need for investigations concerning how sensitive the reference system is to changes in M and P. For example, what measures should be taken as M and P improve with time.

The algorithms presented here are general enough to incorporate geophysical as well as geodetic evidence of deformations. In [Bock, in preparation] only models for deformations of interplate type have been considered, to be monitored by periodic re-observations of the baseline lengths. Other aspects to be considered include intraplate and local motions (the site stability problem). Local effects can possibly be modeled on the basis of on-site observations such as by tidal gravimeters and local geodetic nets. It is necessary to investigate how to incorporate these and other types of observations (and their corresponding reference frames) into CTS operations.

This investigation is now being completed, and the final report is in preparation by Y. Bock, to appear in the report series of the Department of Geodetic Science and Surveying, The Ohio State University.

References

Bender, P.L. (1981) "Establishment of Terrestrial Reference Frames by New Observation Techniques (review), "Reference Coordinate Systems for Earth Dynamics, E.M. Gaposchkin and B. Kołaczek, eds., Reidel, 23-36.

Blaha, G. (1971) "Inner Adjustment Constraints with Emphasis on Range Observations," Dept. of Geodetic Science Rep. 148, Ohio State Univ., Columbus.

Bock, Y. (in preparation) "Estimation of Earth Deformations for the Maintenance of a New Conventional Terrestrial Reference System," PhD dissertation, Dep. of Geodetic Science and Surveying Rep., Ohio State Univ., Columbus.

Bock, Y. and S.Y. Zhu (1982) "On the Establishment and Maintenance of a Modern Conventional Terrestrial Reference System," pres. at General Meeting of IAG, Tokyo, Japan, to be publ. as NOAA Technical Memorandum.

Chipman, J.S. (1964) "On Least Squares with Insufficient Observations," J. Amer. Statist. Assoc., 59, 1078-1111.

Liebelt, P.O. (1967) An Introduction to Optimal Estimation, Addison= Wesley, Reading, Massachusetts.

Minster, J.B. and T.H. Jordan (1978) "Present Day Plate Motions," d. Geophys. Res., 83(B11), 5331-5354.

Moritz, H. (1980) Advanced Physical Geodesy, H. Wichmann, Karlsruhe, and Abacus Press, Turnbridge Wells, Kent, U.K.

Rao, C.R. (1973) Linear Statistical Inference and Its Applications, Wiley, New York.

Rao, C.R. and S.K. Mitra (1971) Generalized Inverse of Matrices and Its Applications, Wiley, New York.

Rao, C.R. (1976) "Estimation of Parameters in Linear Models," Annals of Statistics, 4, 6, 1023-1037.

2.4 Development of Models for Studying Ice Sheet and Crustal Deformations

The observed locations of survey markers change with time. When random and systematic errors are accounted for, what remains is actual movement. The movements of a network of stations can be described as the translation and rotation of the stations as a group and the deformation occurring within the network. Thus when a network of stations is resurveyed, it should be possible to obtain the geophysical parameters of velocity, rotation rate and strain rate [Dermanis, 1981; Livieratos, 1980; Reilly, 1979]. If the same network is resurveyed more than once, either the derivatives of these quantities or averaged values may be calculated.

As most stations are on the surface of the earth, it is natural to assume that all movements and deformations are two-dimensional. This may De adequate in many cases. However, vertical movement and deformation may occur because of irregularities in the surface, faulting, or from being buried under new material. Also, for networks covering relatively large areas, the surface of the earth cannot be well approximated by a plane. In this case, it may be better to determine the movements in an arbitrary (earth-centered) coordinate system and then transform these results to a latitude, longitude and elevation coordinate sy'stem.

A model is being developed to determine these geophysical parameters from the coordinates of a network that has been resurveyed at least once. Several methods have been proposed for obtaining sufficiently accurate coordinates [Brunner et al., 1981, Niemeier, 1979]. One technique that has been proposed for studying tectonic deformation is to use positions determined by Doppler satellite receivers [Malyevac and Anderle, 1979]. The precision of the receivers used individually (point positioning) is meters to tens of meters. But by using translocation between two or more receivers, the relative positions can be determined to within decimeters [Brown, 1976]. However, the movements and deformations of the crust are slow even in tectonically active areas [Savage, 1978; Minster and Jordan, 1978]; thus the time span between resurveying must be of the order of decades. Because the time period between reobservations is so long, it may be difficult to guarantee that the coordinate systems are identical.

For example, the coordinate system defining the broadcast ephemeris of the Navy Navigational Satellite System slowly varies with time. This problem cuild be overcome by using relative rather than absolute coordinates. Thus the velocities and rotation rates would be relative to some "fixed" stations. However, the deformation within the network can still be obtained by calculating the strains from the changes in the chord lengths between the stations. The only assumption needed for this is that the scale of the coordinate system has not changed. Because the strains obtained this way are theoretically identical to the strains obtained from coordinate differences, any differences can be attributed to rotations and/or translations of the coordinate system.

For the purposes of testing the model, the data set being used is from survey stations placed on the Greenland ice sheet. Seven Magnavox 1502 satellite receivers were used during the summers of 1980 and 1981 to - obtain the movement of 22 stations on the ice sheet of Greenland. Using the data reduction program GEODOP [Kouba and Boal, 1976], the coordinates of the stations have been obtained relative to the positions of two stationary stations (which were located on the west coast of Greenland). The formal accuracy of the coordinates is under 20 cm . These stations are moving at velocities of up to 45 m per year, and the magnitude of the maximum strain rates are over 100 ppm .

References

Archinal, B. and I.I. Mueller (1981) "A Comparison of Geodetic Doppler Satellite Receivers," Proc. 3rd International Geodetic Symp. on Satellite Doppler Positioning, Physical Sciences Lab., New Mexico State Univ., Las Cruces, N.M. 88003.

Brown, Duance C. (1976) "Doppler Positioning by the Short Arc Method," Proc. International Symp. on Satellite Doppler Positioning, Physical Sciences Lab., New Mexico State Univ., Las Cruces, N.M. 88003, pp. 97-140.

Brunner, F.K., R. Coleman and B. Hirsch (1981) "A Comparisom of Computatica Methods for Crustal Strains from Geodetic Measurements," Tectonophysics, 71, 281-298.

Dermanis, A. (1981) "Geodetic Estimability of Crustal Deformation Parameters," Quaterniones Geodaesiae, 2, 2, 159-169.

Kouba, J. and J.D. Boal (1976) Program GEODOP, Dept. of Energy, Mines and Resources, Ottawa, Ontario, Canada.

Livieratos, E. (1980) "Crustal Strains Using Geodetic Methods," Quaterniones Geodaesiae, 1, 3, 191-211.

Malyevac, C.A, and R.J. Anderle (1979) "Determination of Plate Tectonic Motion from Doppler Observations of Navy Navigation Satellites," Proc. 2nd International Geodetic Symp. on Satellite Doppler Positioning, Univ. of Texas, Austin.

Minster, J.B. and J.H. Jordan (1978) "Present Day Plate Motions," J. Geophysical Res., 83(B11), 5331-5354.

Niemeier, W. (1979) "Statistical Tests for Detecting Movements in Repeated Measured Geodetic Networks," XVII General Assembly of the IUGG, Canberra, Australia.

Reilly, W.I. (1979) "Complete Determination of Local Crustal Deformation from Geodetic Observations," XVII General Assembly of the IUGG, Canberra, Australia.

Savage, J.C. (1978) "Strain Patterns and Strain Accumulations Along Plate Margins," Applications of Geodesy to Geodynamics, I.I. Mueller, ed., Dept. of Geodetic Science Rep. 280, Ohio State Univ., Columbus.

3. PERSONNEL

Ivan I. Mueller, Project Supervisor, part time Brent Archinal, Graduate Research Associate, part time Yehuda Bock, Graduate Research Associate, part time George Dedes, Graduate Research Associate; part time Alice J. Drew, Graduate Research Associate, part time Erricos C. Pavlis, Maduate Research Associate, part time Irene B. Tesfai, Secretary, part time from 6/1/82
Zhu Sheng-Yuan, Visiting Scholar, part time through 8/31/82
4. TRAVEL

Ivan I. Mueller
Patras, Greece August 17-20, 1982
Attended XVIII General Assembly of the International Astronomical Union. Presented the paper which appears on pp, 2-18 and a report on progress in planning for the new Conventional Terrestrial Reference System to Commissions 4, 19 and 31. Chaired meetings of the IAG/IAU Working Group COTES.
Budapest, Hungary
August 20-26, 1982
Attended 3rd Symposium on the Study of Movements in Engineering Surveys. Presented a paper on the Greenland Ice Movement Study (see p. 87).

5. REPORTS PUBLISHED TO DATE

OSU Department of Geodetic Science Reports published under Grant No. NSG 5265:

262 The Observability of the Celestial Pole and Its Nutations by Alfred Leick
June, 1978
263 Earth Orientation from Lunar Laser Range-Differenejing by Alfred Leick June, 1978

284 Estimability and Simple Dynamical Analyses of Range (Range-Rate and Range-Difference) Observations to Artificial Satellites by Boudewijn H.W. van Gelder December, 1978

289 Investigations on the Hierarchy of Reference Frames in Geodesy and Geodynamics by Erik W. Grafarend, Ivan I. Mueller, Haim B. Papo, Burghard Richter August, 1979

290 Error Analysis for a Spaceborne L.aser Ranying System by Erricos C. Pavlis September, 1979

298 A VLBI Variance-Covariance Analysis Interactive Computer Program by Yehuda Bock May, 1980

299 Geodetic Positioning Using a Global Positioning System of Satellites by Patrick J. Fell June, 1980

302 Reference Coordinate Systems for Earth Dynamics: A Preview by Ivan I. Mueller August, 1980

320 Prediction of Earth Rotation and Polar Motion by Sheng-Yuan Zhu September, 1981

329 Reference Frame Requirements and the MERIT Campaign by Ivan I. Mueller, Sheng-Yuan Zhu and Yehuda Bock June, 1982

Estimation of Earth Deformations for the Maintenance of a New Conventional Terrestrial Reference System by Yehuda Bock
November, 1982 (in preparation)

On the Geodetic Applications of Simultaneous Range-Differencing to LAGEOS by Erricos C. Pavlis December, 1982 (in preparation)

The following papers were presented at various professional meetings and/or published:
"Concept for Reference Frames in Geodesy and Geodynamics"
AGU Spring Meeting, Miami Beach, Florida, April 17-21, 1978
IAU Symposium No. 82, Cadiz, Spain, May 8-12, 1978
7 th Symposium on Mathematical Geodesy, Assisi, Italy, June 8-10, 1978
"Concepts for Reference Frames in Geodesy and Geodynamics: The Reference Directions," Bulletin Geodesique, 53 (1979), No. 3, pp. 195-213.
"What Have We Learned from Satellite Geodesy?
2nd International Symposium on Use of Artificial Satellites for Geodesy
and Geodynamics, Lagonissi, Greece, May 30-June 3, 1978
"Parameter Estimation from VLBI and Laser Ranging"
IAG Special Study Group 4.45 Meeting on Structure of the Gravity Field Lagonissi, Greece, June 5-6, 1978
"Estimable Parameters from Spaceborne Laser Ranging"
SGRS Workshop, Austin, Texas, July 18-23, 1978
"Defining the Celestial Pole," manuscripta geodaetica, 4 (1979), No. 2 pp. 149-183.
"Three-Dimensional Geodetic Techniques"
Technology Exchange Week, Inter-American Geodetic Survey
Fort Clayton, Canal Zone, May 14-19, 1979
published in Spanish as "Tecnicas Geodesicas Tridimensionales," Memoria de la
Semana de Intercambio Tecnologico, Panama, Rep. Je Panama, pp. 400-426.
"On the VLBI-Satellite Laser Ranging 'Iron Triangle' Intercomparison Experiment," Meeting on Radio Interferometry Techniques for Geodesy, Massachusetts Institute of Technology, Cambridge, June 19-21, 1979
"Space Geodesy for Geodynamics, A Research Plan for the Next Decade"
Sonderforschungsbereich - Sate11itengeodasie - SFB 78
Colloquium in Viechtach, FRG, October 23-24, 1979
"Concept of Reference Frames for Geodesy and Geophysics"
seminar given at University of Stuttgart, West Germany, June 19, 1980
"Space Geodesy and Geodynamics,"
seminar given at Uriversity of Stuttgart, West Germany, June 25, 1980
"Geodetic Applications of the Global Positioning System of Satellites and Radio Interferometry," seminar given at University of Stuttgart, West Gemany', July 3, 1980
"Reference Coordinate Systems for Ëarth Dynamics: A Preview," Proc. of IAU Colloquium 56 on Reference Coordinate Systems for Earth Dynamics," September 8-12, 1980, Warsaw, Poland, E.M. Gaposchkin and B. Kolaczek, eds., D. ReideI. PresentedatAGU, San Francisco, December, 1980.
"Comments on Conventional Terrestrial and Ruasi-fnertial Raferance Systems," with J. Kovalevsky, Proc, of IAU Colloquium 56 on Reference Coordinate Systams for Earth Dynamies, September 8-12, 1980, Warsaw, Poland, E.M. Gaposchkin and B. Kołaczek, eds., D. Rejdel,
"Precise positioning with GPS"
seminar given at Deutsche Geodidische Forschungsinstitut, Munich, West Germany, Saptember 18, 1280
"Tecmicas Geodesteas Tridimensionales"
(translated from English by IAGS), ASIA Joumal (Asociacion Salvadorena de Ingenteros y Arquitectos) San salvador, No. 61, Oct. 80, pp, 40-51; cont'd in No. 62, Dec, 30, ple, 31-39.
"Space Grodetic Techniques and Geodynamies"
Proc, 1st International Symposium on Crustal Novellents in Africa Addis Ababa, Ethiopia, May 5-16, 1981
"Comparyson of Polar Motion Data from the 1980 Projact MERIT Short Campaign" Proc, of IAU Colloquitun 63 on "High Precision Earth Rotation and Earth-Moon Dynamics: Lunar Distanees and Related Observations," May 22-27, 1981, Grasse

"Geodesy and the Global Positionting System"
Proc. of IAG Symposium on Geodetic Networks and Computations, Aug. 31Sept. 5, 1981, Numich (1, I, Mueller and B. Archinal)
"The Afrycan Doppler Project," Commission for Geodesy in African and Commism sion on the International Coordination of Space Techniques for Geodesy and Geodynamigs, presented at and Symp, on Geodesy in Africa, Natrobi, Kenya, November $9-20,1281$. Also at 3rd International Geodetic symp. on Satelite Hoppler Positionting, Las Cruces, New Mexico, Feb. 8-12, 1982.
"The Future of Space Techntques in Geodesy and Geodynamies," and Symp. on Geodesy in Africa, Natrobi, Noveilber 9-20, 1982
"Use of Sinult taneous Dopplermorived Ranges in the Geometric Mode," Proc. of Spd International Geodetic sying, on Satellite Doppler Positioning, las Gruces, Neiv Mexico, Feb. 8-12, 1982 (R. Schneeberger, D. Pavlis and I. f . Mueller.
"A Compartson of Gaodetic Doppler Satellite Receivers," Proc. of 3rd International Geodetic Symp, on Satellite Dopplar Positioning, Las Cruces, New Nexico, Feb. 8-12, 1982 (B. Archinal and 1.1, Mueller)
"Effects of Adopting New Precession, Nutation and Equinox Corractions on the Torrestrial Reference Frame," XVII General Assembly of the International Astronmiteal Union, Patras, Greece, August 17-26, 1282. Also Bulletin Geodestrue, in press (S.Y. zhu and 1.L. Nueller)
"Glacial Movement Measurements in Greenland by Satellite Doppler Geodetic Receivers," Third Symp, on the Study of Movements in Engineering Surveys, August 25-27, 1982, Budapest, Hungary (Alice Drew, Ivan I. Mueller and Ian Whillans)
"On the Establishment and Maintenance of a Modern Conventional Terrestrial Reference System," Proc. IAG General Meeting, Tokyo, May, 1982, Symp. 5 (Y. Bock and S.Y. Zhu)
"A Comparison of Geodetic Doppler Satellite Receiver, II," Third International Symp. On the Use of Artificial Satellites for Geodesy and Geodynamics, Porto Hydra, Greece, Sept. 20-25, 1982 (B. Archinal and I.I. Mueller)
"Geometric Adjustment of Simultaneous Doppler-Derived Range Differences," Third International Symp. on the Use of Artificial Satellites for Geodesy and Geodynamics, Porto Hydra, Greece, Seot. 20-25, 1982 (C. Zhang and I.I. Mueller)

[^0]: *On leave from Shanghai Observatory, China.
 ${ }^{\text {I Presented at XVIII General Assembly of the International Astronomical Union, }}$ Patras, Greece, August 17-26, 1982.

[^1]:

[^2]: *On leave from the Institute of Geodesy and Geophysics, Chinese Academy of Sciences. Wuhan. People's Republic of China.

[^3]: ts ane with respect to number of passes tracked.

[^4]: (1) number of "30" second counts obtained simultaneously by all instruments and used in estimate. No estimate done if less than 10 obs. per interval.
 (2) weighted mean of range rate interstation noise for each 30 -second interval. (cm). (3) weighted mean of residuals (noise) for each 30 -second interval (cm).

