General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Department of Geodetic Science and Surveying

BASIC RESEARCH FOR THE GEODYNAMICS PROGRAM

Ninth Semiannual Status Report Research Grant No. NSG 5265 OSURF Project No. 711055

Sixth Semiannual Status Report / Research Contract NAS5-25888 OSURF Project No. 712407

 f_{i}

(NASA-CR-169470)BASIC RESEARCH FOR THEN83-13537GEODYNAMICS PROGRAM Semiannual StatusTHRUReport, 1 Apr. - 30 Sep. 1932 (Ohio StateN83-13540Univ., Columbus.)97 p HC A05/MF A01UnclasCSCL 05B G3/4301062

Period Covered: April 1, 1982 - September 30, 1982

Prepared for

NASA/Goddard Space Flight Center Greenbelt, Maryland 20771

> The Ohio State University Research Foundation Columbus, Ohio 43212

> > October, 1982

1. CURRENT TECHNICAL OBJECTIVES

- 1. Optimal Utilization of Laser and VLBI Observations for Reference Frames for Geodynamics (Grant NSG 5265)
- 2. Utilization of Range Difference Observations in Geodynamics (Contract NAS 5-25888)
- 3. Development of Models for Ice Sheet and Crustal Deformations (Grant NSG 5265)

2. ACTIVITIES

2.1 Effects of Adopting New Precession, Nutation and Equinox Corrections on the Terrestrial Reference Frame

A paper on this topic was presented at the XVII General Assembly of the International Astronomical Union, Patras, Greece, August 17-26, 1982, and appears in its entirety below. It will also appear in <u>Bulletin</u> <u>Geodesique</u>.

PREFACE

These projects are under the supervision of Professor Ivan I. Mueller, Department of Geodetic Science and Surveying, The Ohio State University. The Science Advisor of RF 711055 is Dr. David E. Smith, Code 921, Geodynamics Branch, and the Technical Officer is Mr. Jean Welker, Code 903, Technology Applications Center. The Technical Officer for RF 712407 is Mr. C. Stephanides, Code 942. The latter three are at NASA/GSFC, Greenbelt, Maryland 20771.

TABLE OF CONTENTS

			Page
1.	CURR	ENT TECHNICAL OBJECTIVES	1
2.	ACTI	VITIES	
	2.1	Effects of Adopting New Precession, Nutation and Equinox Corrections on the Terrestrial Reference Frame	1
	2.2	Utilization of Range-Difference Observations in Geodynamics	19
		2.21 Utilization of Simultaneous Lageos Range- Differences in Geodynamics	19
		2.22 Doppler Experiments	46
		2.221 Geometric Adjustment of Simultaneous Doppler- Derived Range Differences	46
		2.222 Doppler Intercomparison Experiment	62
	2.3	Earth Deformation Considerations for the Maintenance of a Conventional Terrestrial Reference System	74
	2.4	Development of Models for Studying Ice Sheet and Crustal Deformations	86
3.	PERS	ONNEL	89
4.	TRAV	EL	89
5.	REPO	RTS PUBLISHED TO DATE	90

N83 13538

D,-43

٦.

EFFECTS OF ADOPTING NEW PRECESSION, NUTATION AND EQUINOX CORRECTIONS ON THE TERRESTRIAL REFERENCE FRAME ¹

Sheng-Yuan Zhu* and Ivan I. Mueller Department of Geodetic Science and Surveying The Ohio State University, Columbus, Ohio 43210 USA

ABSTRACT. First, the paper is devoted to the effects of adopting new definitive precession and equinox corrections on the terrestrial reference frame: The effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time; on UT1 it is a linear term. Second, general principles are given the use of which can determine the effects of small rotations (such as precession, nutation or equinox corrections) of the frame of a Conventional Inertial Reference System (CIS) on the frame of the Conventional Terrestrial Reference System (CTS). Next, seven CTS options are presented, one of which is necessary to accommodate such rotations (corrections). The last of these options requiring no changes in the origin of terrestrial longitudes and in UT1 is advocated; this option would be maintained by eventually referencing the Greenwich Mean Sidereal Time to a fixed point on the equator, instead of to the mean equinox of date, the current practice. Accomodating possible future changes in the astronomical nutation is discussed in the last section. The Appendix deals with the effects of differences which may exist between the various CTS's and CIS's (inherent in the various observational techniques) on earth rotation parameters (ERP) and how these differences can be determined. It is shown that the CTS differences can be determined from observations made at the same site, while the CIS differences by comparing the ERP's determined by the different techniques during the same time period.

INTRODUCTION

New general precession and equinox corrections are being introduced in the 1984 star catalogues and ephemerides. These corrections in turn will affect the earth rotation parameters (ERP), i.e., polar motion coordinates and UT1, and thus may change the frame of the Conventional Terrestrial Reference System

*On leave from Shanghai Observatory, China.

¹Presented at XVIII General Assembly of the International Astronomical Union, Patras, Greece, August 17-26, 1982.

(CTS) [Mueller 1981]. Williams and Melbourne [1981] have already given a detailed discussion of these effects on UT1 and on the origin of terrestrial longitudes. In fact, it was this work which gave us motivation to expand the discussion to include the effects on all ERP's and offer additional options on how the necessary changes in the CTS could be accommodated. The approach is strictly geometric, i.e., we try to answer the question how definitive corrections to precession, nutation and the equinox affect the ERP's, and thus the CTS. Williams and Melbourne [1981] emphasize the point of how UT1 and the origin of longitudes will be affected in the future by the uncertainties in the newly adopted corrections or how these corrections can be improved in the future from ensembles of Very Long Baseline Interferometer (VLBI) or Lunar Laser Ranging (LLR) orbservations, with the desire that no or minimum additional changes result in the CTS. They assume that VLBI sources are observed randomly over the sky, while LLR observations are equally distributed only along the ecliptic, and therefore the resulting equations defining the changes of the origin of terrestrial longitudes and UT1 are technique dependent, whereas ours are not. (Putting it differently, they imply that if the analysis of future VLBI or LLR ensemble observations indicate necessary changes in UT1 and in the origin of terrestrial longitudes, such changes are due to the still existing imperfections in the newly adopted corrections to precession, equinox, etc., and when determined they will be biased with respect to each other because of the different sensitivities of the two ensembles of observations.) This difference in the results should not confuse the reader who recognizes the different purposes for which these papers were written.

- 1. EFFECTS OF ADOPTING NEW PRECESSION AND EQUINOX CORRECTIONS ON THE FRAME OF THE CONVENTIONAL TERRESTRIAL REFERENCE SYSTEM
- 1.1 Transformation Between Conventional Inertial (CIS) and Terrestrial Reference Frames (CTS)

The transformation at an epoch T between the CIS at some fundamental epoch (e.g., 1950.0) and the CTS is

(1)

 $[\underline{CTS}] = SNP(M) [\underline{CIS}]$

(see [Mueller 1981]). Here

 $S = R_2(-x_p) R_1(-y_p) R_3(\theta)$

is the earth rotation matrix, in which x_p and y_p are the polar motion components, and θ is the Greenwich Apparent Sidereal Time (corresponding to the epoch T) computed from

 $\theta = (GMST)_0 + \omega_p UT1 + Eq. E.$

where $(GMST)_0$ is the Greenwich Mean Sidereal Time at 0^h UT1, ω_e is the conversion factor from mean time to mean sidereal time, and Eq. E. is the equation of the equinox (nutation in right ascension). The other matrices N, P, M in equation (1) are the nutation, precession, and proper motion matrices respectively [Mueller 1969, p. 123]. Parentheses around the M matrix indicate that proper motion is applied only in the case of a stellar CIS.

Let prime (') denote the case with the precession, nutation and equinox changes introduced. The transformation equation (1) also holds for the corrected case:

$$[\underline{CTS}]' = S'N'P'(M') [\underline{CIS}]'$$
(1')

In this section only the precession and equinox changes are considered so that N' = N. From the definitions (or stipulations), one can determine directly or indirectly the relations between P' and P, M' and M, and [<u>CIS</u>]' and [<u>CIS</u>] at some epoch, leaving S' and [<u>CTS</u>]' to be solved for.

One cannot solve for both S' and [CTS]' simultaneously, hence some additional constraint is needed. There are several options for the constraint, and they will be discussed later in Section 2.2. For the time being we will conform with the IAU adopted constraint, namely: Let the new ERP's be the same as the old ones at some epoch T_u (in this paper T denotes the epoch, and t the time interval between T and some fundamental epoch, e.g., 1950.0); solve for [CTS]' at this time, then keep it time invariant and solve for the resulting time variations in the new ERP's.

1.2 The Effect in the Case of a Stellar CIS

The new (1976) corrections for lunisolar precession in longitude and planetary precession in right ascension are [Williams and Melbourne 1981]

$$\Delta p_1 = 1!! 1/cy$$

 $\Delta \chi = -0!! 029/cy$

The correction to the equinox is $E_0 + Et$, where $E_0 = 0.525$ is the offset at 1950.0, E = 1.275/cy, and t is the time elapsed from 1950.0 [Fricke 1981].

The new precession matrix P' can be written with sufficient approximation

$$P' = R_2(\Delta nt) R_3(-\Delta mt)$$

with

as

$$\Delta n = \Delta p_1 \sin \varepsilon$$
$$\Delta m = \Delta p_1 \cos \varepsilon - \Delta \chi$$

where ε is the obliquity of the ecliptic, and Δn , Δm are the general precession changes in declination and in right ascension. Due to the equinox correction, the equation for the Greenwich Mean Sidereal Time is to change(without terms of higher order) to [Aoki et al. 1982]

$$(GMST)'_{o} = (GMST)_{o} + E_{o} + Et$$
(3)

(2)

For the stellar (i.e., classical optical) CIS the change caused by the equinox correction at the fundamental epoch 1950.0 is

$$[\underline{CIS}]' = R_3(-E_0) [\underline{CIS}]$$
(4)

The new proper motion matrix is

$$M' = R_2(-\Delta nt) R_3[(\Delta m - E)t] M$$
(5)

The proper motion components in right ascension and declination are

$$(\mu_{\alpha})' = (\mu_{\alpha}) + E - \Delta m - \Delta n \sin \alpha \tan \delta$$

 $(\mu_{\delta})' = (\mu_{\delta}) - \Delta n \cos \alpha$

Substituting the above new values of P', M', [CIS]' and (GMST) $_{0}^{i}$ (i.e., eqs. (2) - (5)) into eq. (1'), one gets

$$[\underline{CTS}]' = R_2(-x_p') R_1(-y_p') R_3[(GMST)_0 + \omega_e UT1' + Eq. E.] R_3(E_0 + Et) N + R_2(\Delta nt) R_3(-\Delta mt) P R_2(-\Delta nt) R_3[(\Delta m - E)t] M R_3(-E_0) [CIS]$$

Except for $(GMST)_0$, all rotation angels are small; neglecting the second-order terms, approximately,

$$[\underline{CTS}]' = R_2(-x_p') R_1(-y_p') R_3[(GMST)_0 + \omega_e UT1' + Eq. E.] NPM [\underline{CIS}]$$
(6)

(For the above given Δp_1 and E values, neglecting the modulation of NP will cause an error of less than 0.0001 in t = 10 yr.) Combining the above equation with the mentioned constraints at epoch T_u : $x'_p = x_p$, $y'_p = y_p$, and UT1' = UT1, one obtains

[CTS]' = [CTS]

The well-known conclusion is that in the case of the stellar CIS, the CTS and ERP's are unaffected because changes in the proper motion compensate for the equinox and precession changes. This statement is naturally valid not only at the epoch T_{i} , but at any time before or after.

1.3 The Effect in the Case of a Non-Stellar CIS

For any non-stellar (e.g., VLBI or LLR) CIS, the proper motion matrix is no longer taken into consideration; the P' and (GMST)¹₀ are the same as in the stellar case (eq. (2) - (3)). The relationship between [<u>CIS</u>]' and [<u>CIS</u>] depends on the particular CIS under consideration. Generally,

$[\underline{CIS}]' = E_{T} [\underline{CIS}]$

If the considered CIS is aligned with the dynamic equator and equinox, then $E_{\tau} = I$, where I is a unit matrix.

If the non-stellar CIS is aligned with the stellar system equinox at some epoch T_0 , then E_I will be a little complicated. At this time due to the equinox correction,

$$[\underline{CIS}]_{T_0}^{+} = R_3(-E_0 - Et_0) [\underline{CIS}]_{T_0}$$
(7)

(More exactly, a second-order term could be considered.) The precession effect on the CIS's for the time interval t_0 between the fundamental epoch 1950.0 and the alignment epoch T_0 is

$$\begin{bmatrix} \underline{CIS} \end{bmatrix}_{T_0} = P(t_0) \begin{bmatrix} \underline{CIS} \end{bmatrix}$$
$$\begin{bmatrix} \underline{CIS} \end{bmatrix}_{T_0}' = P'(t_0) \begin{bmatrix} \underline{CIS} \end{bmatrix}'$$

With equations (2) and (7) one gets at the fundamental epoch

 $[\underline{CIS}]' = R_2(-\Delta n t_0) R_3[(\Delta m - E)t_0] R_3(-E_0) [\underline{CIS}] = E_T [\underline{CIS}]$

(8)

i.e.,

$$E_{I} = R_{2}(-\Delta n t_{0}) R_{3}[(\Delta m - E)t_{0} - E_{0}]$$
(9)

and the processing

The corresponding corrections in right ascension ($\Delta \alpha_{E_T}$) and declination ($\Delta \delta_{E_T}$) are

 $\Delta \alpha_{E_{I}} = E_{0} + (\dot{E} - \Delta m)t_{0} - \Delta nt_{0} \sin \alpha \tan \delta$ $\Delta \delta_{E_{I}} = -\Delta nt_{0} \cos \alpha .$

Now, substituting P', (GMST) $_0^1$, and [<u>CIS</u>]' (i.e., eq. (2), (3) and (8)) into eq. (1'),

$$[\underline{CTS}]' = R_2(-x_p') R_1(-y_p') R_3[(GMST)_0 + E_0 + Et + \omega_e UT1' + Eq. E] N \cdot R_2(\Delta nt) R_3(-\Delta mt) P E_I [\underline{CIS}]$$
(1")

As stated before, the ERP's are continuous, that is, at the alignment epoch T_u , $x'_p = x_p$, $y'_p = y_p$, UT1' = UT1. Thus [CTS]' = $R_p(-x_p) = R_p(-x_p) = R_p(GMST)_p + w_p$. UT1 + Eq. El $R_p(F_0 + F_1) = N$.

$$\underbrace{CTS}_{I} = R_{2}(-x_{p}) R_{1}(-y_{p}) R_{3}[(GMST)_{0} + \omega_{e} UT1 + Eq. E] R_{3}(E_{0} + Et_{u}) N \cdot R_{2}(\Delta nt_{u}) R_{3}(-\Delta mt_{u}) P E_{I} [\underline{CIS}] =$$

$$= SNP R_{2}(\Delta nt_{u}) R_{3}[E_{0} + (E - \Delta m) t_{u}] E_{I} [\underline{CIS}] \qquad (10)$$

If the CIS is linked with the stellar system equinox at epoch T_0 , i.e., E_I is expressed by eq. (9), then

$$[\underline{CTS}]' = SNP R_2[\Delta n(t_u - t_o)] R_3[(E - \Delta m)(t_u - t_o)][\underline{CIS}]$$

$$= S R_2[\Delta n(t_u - t_o)] R_3[(E - \Delta m)(t_u - t_o)] NP [\underline{CIS}]$$
(10')

As pointed out previously, the modulation of NP is negligible, but the modulation of $R_3(\theta)$, included in S, must be taken into consideration.

$$R_{3}(\theta) R_{2}[\Delta n(t_{u}-t_{o})] = \{R_{3}(\theta) R_{2}[\Delta n(t_{u}-t_{o})] R_{3}(-\theta)\} R_{3}(\theta)$$
$$= R_{1}[\Delta n(t_{u}-t_{o}) \sin\theta] R_{2}[\Delta n(t_{u}-t_{o}) \cos\theta] R_{3}(\theta)$$

Substituting this into equation (10'), $[\underline{CTS}]' \triangleq R_1[\Delta n(t_u - t_o) \sin \theta] R_2[\Delta n(t_u - t_o) \cos \theta] R_3[(E - \Delta m)(t_u - t_o)] SNP [\underline{CIS}]$ Thus for the case of <u>CIS alignment with the stellar system</u>

$$[CTS]' = R_1[\Delta n(t_u - t_o) \sin \theta] R_2[\Delta n(t_u - t_o) \cos \theta] R_3[(\dot{E} - \Delta m)(t_u - t_o)][CTS]$$
(11)

If the <u>CIS is aligned with the dynamic equinox</u>, that is, $E_I = I$, then

$$[\underline{CTS}]' = SNP R_2(\Delta n t_u) R_3[E_0 + (E-\Delta m) t_u][\underline{CIS}]$$

Thus

$$[\underline{CTS}]' = R_1(\Delta n t_u \sin\theta) R_2(\Delta n t_u \cos\theta) R_3[E_0 + (E-\Delta m) t_u][\underline{CTS}]$$
(12)

If the alignment is made over some time period (say, five days or so) T_u is the mean epoch of alignment, and the values $\sin\theta$ and $\cos\theta$ are the mean values within this time span and can be averaged to zero. In this case

$$[\underline{CTS}]' = R_3[(E-\Delta m)(t_u - t_o)][\underline{CTS}]$$
(11')

for the CIS linked with the stellar system equinox, and

$$[\underline{CTS}]' = R_3[E_0 + (E_{-\Delta m}) t_u][\underline{CTS}]$$
(12')

when aligned with the dynamic equinox. Thus the relation between the new and old CTS's is a small rotation around the third axis. Expressed in longitude (positive to the East),

$$\delta \lambda = \lambda' - \lambda = (\Delta m - E)(t_{\mu} - t_{\rho})$$
(11")

for the CIS linked with the stellar system equinox, and

$$\delta \lambda = \lambda' - \lambda = (\Delta m - E) t_{\mu} - E_0 \qquad (12")$$

when aligned with the dynamic equinox.

For a CIS linked with the stellar system, if $t_u = t_o$, then $\delta \lambda = 0$; otherwise a shift in longitude is necessary. As for a CIS aligned with the dynamic equinox, the CTS longitude origin shift generally cannot be avoided.

1.4 The Effect of the Time-Invariant CTS on the ERP's

The new CTS' at the time of alignment T_u can then be determined as outlined in the previous section, i.e., in the stellar CIS case [<u>CTS</u>]' = [<u>CTS</u>], and in the non-stellar cases as given by eqs. (11), (11') or (12), (12').

The next step is to keep the new CTS time invariant and to find the resulting ERP's at any time other than T_u . Substituting eq. (11') for the left side of eq. (1"), and eq. (9) in the right-hand side, after some derivation and neglecting second-order terms, one gets

$$[\underline{CTS}] \stackrel{*}{=} R_2(-x_p') R_1(-y_p') R_3[(GMST)_0 + \omega_e UT1' + Eq. E] \cdot R_2[\Delta n(t-t_0)] R_3[(\dot{E}-\Delta m)(t-t_u)] NP [\underline{CIS}]$$

Comparing this equation with eq. (1),

$$R_{2}(-x_{p}^{+}) R_{1}(-y_{p}^{+}) R_{3}[(GMST)_{0} + \omega_{e} UT1^{+} + Eq. E] R_{2}[\Delta n(t-t_{0})] \cdot R_{3}[(\dot{E}-\Delta m)(t-t_{\mu})] = S$$

or

$$R_{2}[-x_{p}' + \Delta n(t-t_{0})\cos\theta] R_{1}[-y_{p}' + \Delta n(t-t_{0})\sin\theta] R_{3}\{(GMST)_{0} + Eq. E + [\omega_{e} UT1' + (E-\Delta m)(t-t_{u})]\} = R_{2}(-x_{p}) R_{1}(-y_{p}) R_{3}[(GMST)_{0} + \omega_{e} UT1 + Eq. E]$$

From the above it is obvious that over a limited time span (otherwise secondorder terms must be added),

$$\Delta x_{p} = x_{p}' - x_{p} = \Delta n(t-t_{o}) \cos \theta$$

$$\Delta y_{p} = y_{p}' - y_{p} = \Delta n(t-t_{o}) \sin \theta$$

$$\Delta UT1 = UT1' - UT1 = (\Delta m - E)(t-t_{u})/\omega_{o}$$
(13)

The above are in the case of a non-stellar CIS linked with the stellar system. For the dynamic equinox alignment, substitute eq. (12') for the left side of eq. (1") and let $E_T = I$. The results are

$$\Delta x_{p} = \Delta nt \cos \theta$$

$$\Delta y_{p} = \Delta nt \sin \theta \qquad (14)$$

$$\Delta UT1 = (\Delta m - \dot{E})(t - t_{u})/\omega_{e}$$

For both cases $\triangle UT1$ is the same; so is the rate of $\triangle UT1$:

$$\frac{d\Delta UT1}{dt} = (\Delta m - E)/\omega_e = -0.157 \text{ ms/yr}$$
(15)

In conclusion, in the case of a non-stellar CIS, changes in the precessional constant and the equinox will result in changes in both the CTS and the ERP's. The CTS change is a longitude origin shift. The ERP changes are diurnal terms in the polar motion components with amplitudes linearly increasing with time and a constant rate change in UT1. One point worth stressing is that these are the differences of the same system (technique) between the new and old cases, not the differences between different systems (techniques). Also the diurnal term which is evident in polar motion is not the diurnal <u>true</u> polar motion, but an artifact due to the time invariant CTS constraint applied.

2. GENERAL SOLUTION: SMALL CIS ROTATIONS AND THEIR EFFECT ON THE CTS

2.1 Changes in the Earth Rotation Parameters

In the general case, eq. (13) or (14) can be written in the following form

 $\Delta X_p = \pi \alpha_1 \text{ sing } + \alpha_2 \text{ cosg}$ $\Delta Y_p = \alpha_1 \text{ cosg} + \alpha_2 \text{ sing}$ $\Delta 0 = \pi \alpha_3$

where the small angles α_1 represent the changes in the sense

N'P'M' [CIS]' = $R_1(\alpha_1) R_2(\alpha_2) R_3(\alpha_3)$ NPM [CIS]

(16)

Since

 $\theta = (GMST)_0 + \omega_0 UT1 + Eq. E$

there are several possibilities for changing 0. If the nutation is assumed to be unchanged, α_3 either may be absorbed into $(GMST)_0$, i.e., it becomes a change in the Greenwich Mean Sidereal Time; or, as before, it may go into UT1 ($\Delta UT1 = \alpha_3/\omega_0$); or it can be incorporated partially in (GMST)_0 and partially in UT1. When α_3 is placed (fully or partly) into UT1, then if UT1 is still to be continuous at the epoch T_u , the longitude λ has to absorb the one-time discontinuity as shown before. Finally, if α_3 is a nutation correction, then α_4 must be combined with Eq. E (see Section 3).

The corrections for precession, for the equinox, and for proper motion may be written in the following forms respectively

 $\Delta p = R_2(\Delta nt) R_3(-\Delta mt)$ $E_I = R_2(E_{I_2}) R_3(E_{I_2})$ $\Delta M = R_2(\Delta M_2) R_3(\Delta M_3)$

where, from comparisons with earlier results, in the case of the stellar CIS, $\Delta M_2 = -\Delta nt$, $\Delta M_3 = (\Delta m-E)t$, $E_{I_2} = 0$, $E_{I_3} = -E_0$; for the non-stellar CIS aligned with the dynamic equinox, $E_{I_2} = E_{I_3} = \Delta M_2 = \Delta M_3 = 0$; and in the case of the non-stellar CIS linked with the stellar system, $E_{I_2} = -\Delta nt_0$, $E_{I_3} = -E_0 + (\Delta m-E)t_0$, $\Delta M_2 = \Delta M_3 = 0$.

In any of the above cases

$$\alpha_1 = 0$$

$$\alpha_2 = \Delta nt + E_{I_2} + \Delta M_2$$

$$\alpha_3 = -\Delta mt + E_{I_3} + \Delta M_3$$
(17)

Thus, for example, in the case of the stellar CIS

$$\alpha_1 = \alpha_2 = 0$$

$$\alpha_3 = -E_0 - Et$$

$$\Delta \theta = E_0 + Et$$
(17')

If we let $\Delta 0$ be the $\Delta(GMST)_0$, as we did before, then eq. (17') is equivalent to eq. (3).

In the case where the non-stellar CIS is linked at T_0 with the stellar system,

$$\alpha_{1} = 0$$

$$\alpha_{2} = \Delta n(t-t_{0})$$

$$\alpha_{3} = -E_{0} + (\Delta m - E)t_{0} - \Delta m t$$

$$\Delta \theta = E_{0} + (E - \Delta m)t_{0} + \Delta m t$$
(17")

If we let $\Delta(GMST)_0 = E_0 + \tilde{E}t$, and let the ERP's be continuous at T_u , then eq. (17") is equivalent to eqs. (11") and (13). The analogy can also be established for the case of the non-stellar CIS linked to the dynamic equinox (eq. (14)).

2.2 Options to Change the CTS (Due to $\Delta \theta$)

As shown, in the case of equinox and precession constant corrections, $\Delta \theta = E_0 + \dot{E}t$ for the stellar system, and $\Delta \theta = -E_{I_3} + \Delta mt$ for the non-stellar systems

 $\Delta \theta$ can also be written (assuming no change in nutation and the one-time discontinuity in UTI absorbed in the longitudes, $\delta \lambda$, mentioned earlier)

 $\Delta \theta = \Delta (GMST)_0 + \omega_{\alpha} \Delta UT1 + \delta \lambda$

Thus, as stated above, one can abscrb $\Delta \theta$ either in $\Delta(GMST)_0$, or $\Delta UT1$, or $\delta \lambda$, or in some combinations of these. To get a definite (unique) solution, some constraint is needed. Mathematically, there are quite a number of possible choices for such a constraint, but practically only a few are meaningful. Below we deal with three sets of options. Which option is the best surely will be the subject of many discussions.

<u>Set A Options</u>. Here the basic requirements are: (i) no discontinuity in ERP's at the epoch T_u , (ii) the change in the Greenwich Mean Sidereal Time formula is the same for all CIS's, though different for each option.

Set A Op	tions	Stellar CIS ∆0 = E₀ + Ėt	Non-stellar CIS $\Delta \theta = -E_{I_3} + \Delta mt$
Option I	Δ(GMST)₀	E₀ + Ėt	E₀ + Ét
	^ω e ΔUT1	0	(△m-Ė)(t-t _u)
	δλ	0	(△m-Ė)t _u - E _{I3} - E₀
Option II	Δ(GMST)₀	O	O
	ω _e ΔUT1	Ė(t-t _u)	∆m(t-t _u)
	δλ	E₀ + Ėt _u	-E _{I3} + ∆mt _u
Option III	Δ(GMST)₀	∆mt	∆mt
	ω _e ΔUT1	(Ė-∆m)(t-t _u)	O
	δλ	E₀ + (Ė-∆m)t _u	-E _{I3}

Options I, II, and III above are similar to Tables 1, 2, and 3 respectively in [Williams and Melbourne 1981]. (The main difference appears to be

that for the non-stellar cases the general precession in right ascension Am is replaced by what they call "the average value over all observations of the effects of the precession corrections in right ascension" < $\dot{\alpha}_n$ >. For VLBI $\langle \dot{\alpha}_n \rangle = \Delta p_1 \cos \varepsilon - \Delta \dot{\chi} = \Delta m$, but for LLR $\langle \dot{\alpha}_n \rangle = \Delta p_1 - \Delta \dot{\chi} \neq \Delta m$. We already elaborated on Option I in Section 1.1. Option 1 is the presently accepted approach for the new FK5 CIS. But, as pointed out by [Williams and Melbourne 1981], for future possible new improvement of the precession constant and equinox corrections, this option might not be the best. They favor Option III because the space techniques are becoming the dominant source of information about the transformation parameters between the CIS and CTS frames and because this option keeps UT1 invariant to improved values of the precession constant and the equinox position for the space techniques. The common geodetic disadvantage of Set A options is the required shift in the longitude origin (except in Option I for the stellar CIS case), the worst thing being that these shifts are different in the cases of stellar and nonstellar CIS's.

<u>Set B Options</u>. Here the basic requirements are: (i) no change in the CTS, i.e., $\delta\lambda = 0$, (ii) as before, the Greenwich Mean Sidereal Time formula change is the same in all CIS cases, but different for each option.

The major inconvenience of Set B options is the change in UT1, not only in the rate, but also in the necessary discontinuity. The value of the discontinuity would need to be added with opposite sign to the UT1 at the epoch when the changes (new constants) are introduced.

		OF FOON 4	
Set B O	otions	Stellar CIS ∆0 = E₀ + Ét	Non-stellar CIS $\Delta \theta = -E_{I_3} + \Delta mt$
Option IV	δλ	0	0
	Δ(GMST)ο	0	0
	ω _e ΔUT1	E₀ + Ėt	-E _{I3} + ∆mt
Option V	δλ	0	0
	Δ (GMST)₀	E₀ + Ėt	E₀ + Ėt
	ω _e ΔUT1	0	-E _{I3} - E₀ + (∆m-Ė)t
Option VI	δλ	0	0
	Δ(GMST)υ	-E _{I3} + ∆mt	-E _{I3} + ∆mt
	ω _e ΔUT1	E₀ + E _{I3} + (Ė-∆m)t	0

ORIGINAL PAGE IS

<u>Set C Option</u>. Here the basic requirements are: (i) no change in CTS, (ii) no change in UT1, i.e., $\Delta \theta$ is entirely absorbed in Δ (GMST)₀.

Set C Op	otion	Stellar CIS ∆0 = E₀ + Ėt	Non-stellar CIS $\Delta \theta = -E_{I_3} + \Delta mt$
· · · · · · · · · · · · · · · · · · ·	δλ	0	0
Option VII	ω _e ∆UT1	0	0
	∆(GMST)₀	E₀ + Ét	-E _{I3} + ∆mt

Although this option is probably the preference of geodesists, it may seem to be unorthodox from the traditional astronomical point of view. How can the formulae for Greenwich Mean Sidereal Time for different CIS's be different? What will the astronomical meaning of $(GMST)_0$ be? However, one can view the formula for Greenwich Mean Sidereal Time as composed of two parts: The first part, $(GMST)_0$, has its original astronomical meaning, while the second part, $\Delta(GMST)_0$ is only a correction particular for a given CIS. It would make sense that since the changes in precession and the equinox affect different CIS's in different ways, this correction should also be different. From this point of view, Option VII seems plausible and even preferable for geodetic use.

It should also be noted that after the new equinox and precession changes are introduced (once) into $\Delta(GMST)_0$, this option could become the equivalent of referencing the GMST to a fixed point on the equator, instead of to the mean equinox of date, the current practice. As pointed out by a number of authors, the advantage of such a change would be overwhelming and would make the future CTS stable against changes in the precession constant, etc. [Guinot 1979, Murray 1979, Williams and Melbourne 1981, Mueller 1981].

3. EFFECT OF ASTRONOMICAL NUTATION CHANGES ON EARTH ROTATION PARAMETERS

According to the principle in Section 2.1, it is also easy to deal with any future changes in nutation. The nutation matrix N is [Mueller 1969]

> $N = R_1(-\varepsilon - \Delta \varepsilon) R_3(-\Delta \psi) R_1(\varepsilon)$ = $R_1(-\Delta \varepsilon) R_2(\Delta \psi \text{ sine}) R_3(-\Delta \psi \text{ cose})$

where $\Delta \psi$ and $\Delta \varepsilon$ are the nutation in longitude and obliquity respectively, and ε is the obliquity of the ecliptic. If $\delta \Delta \varepsilon$ and $\delta \Delta \psi$ are the respective corrections to $\Delta \varepsilon$ and $\Delta \psi$, then one can easily obtain the nutation correction matrix,

 $\Delta N \doteq R_1(-\delta \Delta \varepsilon) R_2(\delta \Delta \psi \text{ sine}) R_3(-\delta \Delta \psi \text{ cose})$

Thus in the notation of eq. (16),

```
-\delta\Delta\varepsilon = \alpha_1
\delta\Delta\psi \sin\varepsilon = \alpha_2
-\delta\Delta\psi \cos\varepsilon = \alpha_3
```

and, therefore,

 $\Delta x_{p} = \delta \Delta \varepsilon \sin \theta + \delta \Delta \psi \sin \varepsilon \cos \theta$ $\Delta y_{p} = -\delta \Delta \varepsilon \cos \theta + \delta \Delta \psi \sin \varepsilon \sin \theta$ $\Delta \theta = -\alpha_{3} = \delta \Delta \psi \cos \varepsilon$

Thus, as expected, the effects on polar motion components are diurnal terms $(\delta \Delta \psi \text{ and } \delta \Delta \epsilon \text{ are long periodic})$. Again, this is a diurnal artifact in polar motion due to the introduction of the new nutation and not diurnal true polar motion.

As far as the term $\Delta \theta = \delta \Delta \psi$ cose is concerned, if it is incorporated into the Eq. E, neither the longitude origin nor the UT1 will be affected.

APPENDIX

EFFECTS OF DIFFERENCES BETWEEN VARIOUS CTS'S AND CIS'S ON EARTH ROTATION PARAMETERS AND THE DETERMINATION OF SUCH DIFFERENCES

The two CIS's (and two CTS's) inherent in two different techniques (e.g., SLR and VLBI) are generally not exactly identical [Mueller 1981]. Suppose the relation between the two CIS's at any epoch is (common nutation (N) and precession (P) matrices are assumed to be used in both techniques)

X

$$[\underline{CIS}]^{11} = R_1(\alpha_1) R_2(\alpha_2) R_3(\alpha_3) [\underline{CIS}]^1$$
(A.1)

Similarly, the relation between the two CTS's is

$$\left[\underline{CTS}\right]^{II} = R_1(\beta_1) R_2(\beta_2) R_3(\beta_3) \left[\underline{CTS}\right]^{I}$$
(A.2)

where α_{i} and β_{i} are small rotation angles about the axes "i".

The transformation from CIS to CTS again is
$$[\underline{CTS}]^{I} = S^{I} N P [\underline{CIS}]^{I}$$
(A.3)

and

$$[\underline{CTS}]^{II} = S^{II} N P [\underline{CIS}]^{II}$$
(A.4)

Substituting eq. (A.1) for the last term of the right-hand side of eq. (A.4), and eq. (A.2) for the left-hand side,

 $R_1(\beta_1) R_2(\beta_2) R_3(\beta_3) [CTS]^I = S^{II} N P R_1(\alpha_1) R_2(\alpha_2) R_3(\alpha_3) [CIS]^I$ After some reduction, neglecting second-order terms,

$$[\underline{CTS}]^{I} = R_{1}(-\beta_{1} + \alpha_{1} \cos\theta + \alpha_{2} \sin\theta) R_{2}(-\beta_{2} - \alpha_{1} \sin\theta + \alpha_{2} \cos\theta) \cdot R_{3}(-\beta_{3} + \alpha_{3}) S^{II} N P [\underline{CIS}]^{I}$$

Comparing the above equation with (A.3)

$$S^{1} = R_{1}(-\beta_{1} + \alpha_{1} \cos\theta + \alpha_{2} \sin\theta) R_{2}(-\beta_{2} - \alpha_{1} \sin\theta + \alpha_{2} \cos\theta) + R_{3}(-\beta_{3} + \alpha_{3}) S^{II}$$

Or

 $-\Delta y_{p} = -(y_{p}^{I} - y_{p}^{II}) = -\beta_{1} + \alpha_{1} \cos\theta + \alpha_{2} \sin\theta$ $-\Delta x_{p} = -(x_{p}^{I} - x_{p}^{II}) = -\beta_{2} - \alpha_{1} \sin\theta + \alpha_{2} \cos\theta$

(A.5)

 $\omega_{e} \Delta UT1 = \omega_{e} (UT1^{I} - UT1^{II}) = -\beta_{3} + \alpha_{3}$

Thus the CTS differences (β angles) cause biases in all earth rotation parameters. Because of the modulation of the earth's diurnal rotation, the effect of CIS differences (α_1 , α_2) on polar motion components are diurnal terms, while the effect of α_3 on UT1 is again a bias.

The direct way to determine all the β angles is the method of station collocation, i.e., to position two different types of techniques at the same location.

The "observation" equation is

• ••	δ1		0	β₃	-β ₂	×i		×i	•
$\Delta \underline{x}_{i} = \underline{x}_{i}^{I} - \underline{x}_{i}^{II} = -$	δ2	+	- β ₃	0	β1	У	+ c	Уi	+ ⊻ _i
, . ,	δз		β ₂	-β ₁	0	z		zi	

where $\underline{x_i^I}$ and $\underline{x_i^{II}}$ are the determined coordinates of the same collocated station i in the two CTS's, $\underline{\delta_i}$ is the translation vector, and c is the scale difference. One must have at least three collocated stations if all seven unknowns are to be solved for.

For connecting the CIS's, there are a few methods such as the use of space astrometry to connect the stellar CIS and the radio source CIS, or using differential VLBI (which, for example, was used when the Viking Mars Orbiters and a quasar were near eclipsing) to connect the planetary and radio source CIS's (see [Kovalevsky and Mueller 1981]). These are direct approaches. One indirect method is via station collocation, i.e., using the earth as an intermediate body (see [Kovalevsky 1980]): First by station collocation one determines the CTS difference (β angles) as above, then through earth rotation parameter differences determined over the same time period one finds the CIS difference (α angles). Eq. (A.5) is the basi's for connecting the two CIS's. More details on this subject may be found in [Mueller et al. 1982].

When considering the above method one should note that the diurnal polar motion difference terms in eq. (A.5) will show up as long as there are differences between the two CIS's (i.e., α_1 and α_2 exist). This may even

be the case in situations when one (or both) of the techniques solve for rotations of its CIS, resulting in no (individual) diurnal polar motion. This, of course, would mean that the adopted precessional constant is discarded.

ACKNOWLEDGMENTS. Thanks are due to W.G. Melbourne and J.G. Williams of the Jet Propulsion Laboratory and D.D. McCarthy of the U.S. Naval Observatory for useful discussions and comments. This work was supported in part by NASA Research Grant NSG 5265 (OSURF Project 711055). 1

REFERENCES

- Aoki, S., B. Guinot, G.H. Kaplan, H. Kinoshita, D.D. McCarthy and P.K. Seidelmann (1982) The new Definition of Universal Time, <u>Astron. Astrophys.</u> 105, 359-361.
- Fricke, W. (1981) Definition and Practical Realization of the Reference Frame in the FK5--The Role of Planetary Dynamics and Stellar Kinematics in the Definition, <u>Reference Coordinate Systems for Earth Dynamics</u>, E.M. Gaposchkin and B. Kołaczek, eds., Reidel.
- Guinot, B. (1979) Basic Problems in the Kinematics of the Rotation of the Earth, <u>Time and the Earth's Rotation</u>, D.D. McCarthy and J.D.H. Pilkington, eds., Reidel, 6-18.

Kovalevsky, J. (1980) Modern Approaches to Research in Dynamical Astronomy, <u>Astronomische Gessellschaft Mitteilungen 48</u>, Hamburg.

Kovalevsky, J. and I.I. Mueller (1981) Comments on Conventional Terrestrial and Quasi-Inertial Reference Systems, <u>Reference Coordinate Systems for</u> <u>Earth Dynamics</u>, E.M. Gaposchkin and B. Kołaczek, eds., Reidel.

- Mueller, I.I. (1969) <u>Spherical and Practical Astronomy As Applied to Geodesy</u> Ungar Publ., New York.
- Mueller, I.I. (1981) Reference Coordinate Systems for Earth Dynamics: A Preview, <u>Reference Coordinate Systems for Earth Dynamics</u>, E.M. Gaposchkin and B. Kołaczek, eds., Reidel.

Mueller, I,I. S.-Y. Zhu and Y. Bock (1982) Reference Frame Requirements and the MERIT Campaign, Dep. of Geodetic Science and Surveying Rep. 329, Ohio State Univ., Columbus.

- Murray, C.A. (1979) The Ephemeris Reference Frame for Astrometry, <u>Time and the</u> <u>Earth's Rotation</u>, D.D. McCarthy and J.D.H. Pilkington, eds., Reidel, 165-168.
- Williams, J.G. and W.G. Melbourne (1981) Comments on the Effect of Adopting New Precession and Equinox Correction, Proc. of IAU Colloquium 63: <u>High Precision Earth Rotation and Earth-Moon Dynamics: Lunar Distances</u> <u>and Related Observations</u>, O. Calame, ed., Reidel.

Dz-43 N83 13539

2.2 Utilization of Range-Difference Observations in Geodynamics (Research Contract NAS5-25888)

2.21 Utilization of Simultaneous Lageos Bange-Differences in Geodynamics

Introduction

The following is a summary of the research performed during the past six months under the Lageos project, dealing with the utilization of simultaneous laser range-differences (SRD) for the determination of earth orientation and baseline variations. Reported are some results from the Aug. 1980 Lageos data collected during the short MERIT campaign, and simulations for a possible station arrangement for the main campaign (to begin in 1983).

2.211 Simulations for a proposed MERIT83 laser network.

Based on an optimal global laser station distribution (likely to be realizable by mid-1983) proposed at a recent meeting of the study group (cf. GQTES proposal in last semiannual report), a simulation study for baseline recovery was performed. Except for the fact that different stations (seventeen total) are involved, this simulation was similar to the one previously reported for the MERIT80 network in the last report. The station locations and the data distribution are given in Table 1 [(a)- (b)]. Baseline estimates and their statistics were computed for both the range and the SRD adjustments. In order to assess the effect

of orbital biases on the baseline recovery, the orbit used in the adjustments (range and SRD) was biased as follows :

Radial	bias	:	2.00	
Along t	rack bias	:	0.60	D
Across	track bia	s:	-1.20	m

Two different adjustments were performed. In the first case the coordinates of all stations were obtained in a simultaneous adjustment based on the data collected from all baseline pairs. On the basis or this solution the baselines between all possible station combinations were obtained along with their formal accuracies and differences with respect to their "true" values. The results of this solution for the station coordinates are given in Table 2 for the range adjustment and in Table 3 for the SRD adjustment. The baseline results are shown in Table 4.

As it can be seen from the last table, in all cases except for two, the baseline lengths have been overestimated although the errors in the SRD case are about an order of magnitude smaller than the ones for the range adjustment. Since the radial bias results in an "expansion" of the network of satellite positions, this should come as no surprise. The stations have a global distribution and since the observations from all stations are adjusted simultaneously, their positions become interdependent and the aforementioned expansion affects all of them similarly.

The results of this first adjustment prompted us to test the recovery of baselines from individual adjustments. In this second case the data collected from each pair of stations are

adjusted independently and the estimated baselines are only the ones defined by coobserving station pairs. The results of this second type solution are shown in Table 5. What is obvious again is that the SRD results are again superior to the range results for baselines and station coordinates alike. The quality of the results with respect to the latter is characterized by the norm [[X]] of the six coordinate differences between the true and estimated positions of the stations defining each baseline.

The most interesting observation though in this solution is that on the basis of the same data, the range adjustment now underestimates the baselines and the recovery errors are all negative. For the SRD results, there seems to be no bias preference and those errors are rather randomly distributed and in almost all cases at the centimeter level. The three baselines for which the range adjustment has given better results than the SRD, all have lengths in excess of 7000 km and very few observations. As it has been previously reported the SRD mode is much more geometry dependent than the range mode, and as the results of this table show it admits of its limitations very eagerly (note the formal accuracies on those baselines !). Unlike the SRD mode, the formal accuracies for the range mode give no hint whatsoever as to the real accuracy of the results. Even though the recovery errors are of the order of a few decimeters in all cases, the reported σ 's are hardly ever higher than 2 cm 1

On the basis of these simulations one can conclude that the

	sicha (n) i	0.100	0.100 P.100	- 100 - 1	0,100	0.100	0.100	6, 100	0.100	0.100	e. 160 0- 160	0.100	0.100 0.100 0.100			0	rig F p	INAL OOR	PAG QUA	E 12	3 7						
	2) 7	3231791.056	4881492.271 9940258 973	1003750 674	4296685.489	5325996.607	4933550.635	3637871 329	2740519.741	4075154.589	3070549,690 5070549,699	4400060.975	3817397.791 1796312.986 4408096.973			B0301	925	925		B1715	3248	3248		*			
		0.932	3.678 153	1 449	162.1	0.257	0.0 643	12.0	6.968	3.469	9.038 7.357	9.882	3.462 4.122 7.505 7.505			B0311	1475	1475		9020A	3725	3725		*TOTAL	64991		64991
		-5332 (3)	90106 90106-	621 HHF-	-445812	76327	110663	322017	-567418	-419884	5042333 -13424	154535	191049 -580242 63956			B1101	2648	2648		B1702	\$573	3734		1 1 0 UL	206		206
ş	6	10.442	513.305 MA 683	104.818	012.742	750.872	035.768 21.400	37,800	33.601	274.096	155.551	316.653	37.251 80.115 59.258			B0411	1972	1972		11317	3531	3531		R1283	G).	0
ST	×	-13245	40746 -54645		14922	33927	40220	-41216	9615	-25162	-23091	-42458	472U6 19413 45507			B1001	2055	2056		B0715	2942	2942		N1914	1613		1613
INATE LI		000	04		400	0	. .4		000	0	20	000	000	isel ine		B1016	858	858		B1017	223	223		TA912	183	1	183
ON COOLU	HEIGH	1580.	o e		67.	0			100.	00	90	1090.	000	s per Bā	BASELINE	B0116	497	497	BASELINE	B0407	1221	1221	Dan set. I NE	10014	0	•	0
ITAT STATI	-	0.0	0.0		.720	0.0	q •		.200	0.0	0.0	0.0	000	ervation		B0416	512	512		B0506	1297	1297		00200	129	9 1. 7	129
TICIPATI	100111030	6	222	19	30 22	0			37	4.5		0	000	of Obs		B0510	2248	2248		B0617	3477	3477		R0314	48		48
PAR		266	505		2110	13	0 4	143	279	239	358	169	2892 9892 99	ributior		10602	3806	3806		B1708	9226	3730		RAFAI	2174		2174
	11006	9.0	0.0 0.0		6 46.518	0.0	0.0		6 47.130	0.0 0.0	9.0 9.0 9.0	0.0	000	o) Dist		B0815	3310	3310		B0615	2983	2988		nû3 1 k		7	0
,		30 31	49 0 0 2		1	57	12		52 52	39		- 45	-16 -16 -21			B060R	6626	6828		B1302	3601	3601	ł	104	2333		2333
 . 1	•	086	9.14 1.20	150	160	095	116	035	069	051	070 901	943	940 942 942			-SSV-1	1	*TOTAL*		PASS.	1	*TOTAL*		PASSe		•	*IVLQL*
	STATION	FTUAWS 7(NETTZE 7		NESTFO 7	ONSALA 70	MERSIAN 20	IAPAN 7	RICHNO 74	OUINCY 7	YAILAGA 7 CHILBO 7	Olunona 7	DIONYS 7 ANEQUI 7 CHASSE 7		22		• • .			ſ						•	

Table 2 Recovered S	Station (Coordinates (Range	Mode)
---------------------	-----------	---------------	-------	-------

STATION NO. 3 7051 Apriori estinate Ad Mistments	X -2516274-896042	-4198843.469479 -1.351438	Z 4075154-588717
ADADA I UCIALO		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44066476
ADJUSTED POSITION	-2516276-183325	-4198844-820917	4075154.410809
STATION NO. 1 7063	×	Ι γ	Z
APRIORI ESTIMATE	1130304-817676	-4831721-449137	3993759.624496
ADJUSTMENTS	-Q. 267394	-1-937610	1.854899
ADJUSTED POSITION	1130304.550281	-4831723.386754	3993761.479395
PRAVION NO. + 7040	v	v	· y
APRIORI ESTIMATE	961533.600910	-5674186.967561	2740519.740502
ADJUSTNENTS	-0-264610	-2.204586	1.526215
ADJUSTED POSITION	961533.336300	-5674189.172147	2740521-266717
APRIORI ESTIMATE	X -1324510-442373	4 -5332139-932091	د 3231791-055906
ADJUSTNENTS	-0.902349	-1.830874	1,691947
ADJUSTED POSITION	-1324511-344721	-5332141.762966	3231792.747852
ADDIDDI ESTIMATE		T 5042839-037657	4 ************************************
ADJUSTNENTS	-0.975459	1-621840	-1.359841
ADJUSTED POSITION	-2389126.306750	5042840-659397	-3078752.088062
		·	_
STATION NO. 1 7091	X	¥ 	Z 4294005-488571
ADJUSTNENTS	-0-037315	-1.836603	1.862885
ACJUSTED POSITION	1492212.704682	-4458123.627538	4296007-351456
STATION NO. : 7095	×	Y	Ż
APRIORI ESTINATE	3392750-871854	783278-256725	5325906.606633
	1110101		
ADJUSTED POSITION	3392752.340862	783278-130219	5325908-650498
	u		
APRIORI ESTIMATE	× -5464096-682969	-2402363-153199	2240358.272655
ADJUSTMENTS	-2.035242	-0.395526	1.552528
ADJUSTED POSITION	-5464098-718211	-2402363.540725	2240359.825183
STATION ND. : 7901	X	Y	EABARIA PARA
ADJUSTNENTS	3077391-318803 1-470786	-134247.357044 -0-208830	5070>49.689834 1.992617
ADJUSTED POSITION	3844342.789649	-134247-565874	5070551.682451

Table 2 (cont'd)

STATION NO. 1 7907 Apriori Estinate Adjustments	X 1941330=114913 ~0-233499	4 	2 -1796312.985770 0.774573
ADJUSTED POSITION	1941329-881414	~5802026.395407	-1796312-211197
STATION NO. 1 7911 Apriori estimate Adjustments	X 4022035_767630 1=390632	V 0.0 -0.343076	2 4933550.635358 <u>2.103931</u>
ADJUSTED POSITION	4022037-158262	-0.343076	4933552.739240
STATION NO. : 7914 Apriori Estinate Adjustnents	X 4074613-304579 1+547344	431963-67H222 	2.059665
ADJUSTED POSITION	4074614+851923	931963-488525	4801494-330699
STATION NO. 1 7933 Apriori Estinate Adjustnents	-4121637.799587 -1.710228	4 3220176-370484 1.738149	z 3637871.319704 1.791909
ADJUSTED POSITION	-4121439.509815	3220178.108633	3637873-111614
STATION NO. 1 7940 Apriori estimate Adjustments	X 4728637.250678 L.733165	Y 1910493-461735 ~0-080564	2 2017397.791492 1.959695
ADJUSTED POSITION	4728438-983843	1910493-381171	3817399.751187
STATION NO. 1 7942 Apriori estinate Adjustments	× +++6885.nq27088+ 01641011	439567-504711 ~0-203136	2 4408096.973499 2.022975
ADJUSTED POSITION	4550760.875054	639567.301575	4408098,996474
STAPION NO. 1 7943 Apriori estimate Adjustnents	X -4245816.653287 -0.801772	1 1545350-881948 2-071760	2 -4488060.975056 -1.331585
ADJUSTED POSITION	-4243817-455039	1545352.953708	-4488062-306640
STATION NO. 1 7999 Apriori estinate Adjustments	X 4130031_489874 1.644699	y 1106638,602427 -0,043504	2 4716882.074958 1.998229
ADJUSTED POSITION	4130033.134572	1106638.558919	4714884.073187

*

Table 3 Recovered Station Coordinates (SRD Mode)

STATION NO. : 7051 Apriori estimate Adjustments	× -2516274-896042 -0-562246	-4198843.469479 0-077679	2 4075154-588717 0-542875
ADJUSTED POSITION	-2516275.458287	-4198843.391800	4075155.141552
STATION NO. 3 7063 Apriori estimate Adjustments	X 1130304+817676 ∞Cr412984	449137 -4831721.449137 -0.339656	Z 3993759.624496 0.568841
ADJUSTED POSITION	1130304.404692	-48317210788792	3993740.193337
STATION NO. 1 7069 Apriori Estimate Adjustments	× 961533.600910 ~0.493799	-5674106.967561 -0.372649	2740519.740502 0.504026
ADJUSTED POSITION	961533.107111	-5674187,340210	2740520-244528
STATION NO. : 7086 Apriori Estimate Adjustments	× -1324510-442373 -0-614059	Y -5332139-932091 -0.110826	Z 3231791.055906 0.512840
ADJUSTED POSITION	-1324511-056431	-5332140.042917	3231791.568746
STATION NO. : 7090 Apriori estinate Adjustnents	X -2389125-331291 0+287588	Y 5042839-037557 0.480930	۲ -3078750.728221 0.222993
ADJUSTED POSITION	-2389125.043703	5042839.518487	-3078750-505229
STATION NO. 2 7091 Apriori estinate Adjustnents	X 1492212_741998 -0-348903	44581211790935 -0.347854	2 • • • 296005 • • 488571 • • 591 585
ADJUSTED POSITION	1492212.393095	-4458122-138789	4296006-080157
STATION NO. : 7095 Apriori Estinate Adjustments	X 3392750-871854 0-250456	Y 783278-256725 -0-309695	2 5325906.606633 0.704342
ADJUSTED POSITION	3392751-122310	783277.947029	5325907-310975
STATION NO. : 7120 Apriori estimate Adjustnents	× -5464096.682969 -0.589684	y -2402363.153199 0.486807	Z 2240358.272655 0.474197
ADJUSTED POSITION	-5464097-272654	-2402362.666392	2240358-746053
STATION NO. : 7901 Apriori estimate Adjustments	X 3844341+318863 0=175767	Y −134247.357044 ©0.397336	2 5070549.889834 0.886721
ADJUSTED POSITION	3844341.494631	-134247.754380	5070550.376555

١

Table 3 (cont'd)

STATION NO. 2 7907 Apriori Estinate Aojustments	X 1941330.114913 -0.444374	Y - 5802024 - 122161 - 04 522985	2 - 1796312•985770 0+256872
ADJUSTED POSITION	1941329.670539	-5802024.645146	-1796312,728899
STATION NO. 3 7911 Aprior: Sstimate Adjustments	X 4022035•767630 0•198181	¥ 0•0 −0•407657	2 4933550 • 635358 0 • 673034
ADJUSTED POSITION	4022035-965812	-0-407657	4933551.308392
STATION NO. 3 7914 Apriori estimate Adjustments	X 4074613.304579 0-301524	Y 931963-678222 -0.373080	Z 4801492.271034 0.468115
ADJUSTED POSITION	4074613+606103	931963.305142	4801492-939149
STATION NO. : 7935 Apriori estimate Adjustments	X -4121637=799587 0=044690	¥ 3220176±370484 0=580912	Z 3637871-319704 0-490394
ADJUSTED POSITION	-4121637.754897	3220176.951396	3637871.810098
STATION NO. : 7940 Apriori Estihate Adjustments Adjusted Position	X 4728637.250678 0.444574 \$728637.695252	Y 1910493.461735 —0.387945 1910493_073790	2 3817397,791492 0=619332 3817398-410824
STATION NO. 1 7942 Apriori estimate Adjustments	X 4550759-258444 0-296323 4550759-554748	y 639567-504711 0-433382 639567-071329	Z 4408096-973499 0-648499 4408097-621998
	43301370334100	0379070072927	
STATION NO. : 7943 Apriori estinate Adjustments	X -4245816.653287 -0.249487	Y 1545350-881948 0_494039	Z -4488060-975056 0-067337
ADJUSTED POSITION	-4245816-902774	1545351.375987	-4488060.907719
STATION NO. 2 7999 Apriori Estinate Adjustments	X 4130031.489874 0.324886	Y 1106638-602427 -0-372003	2 4716882.074958 0.668722
ADJUSTED POSITION	4130031.814759	1106638.230423	4716882.743680

For Length Adjusted Error 3 Adjusted Error 7001 7001 7000 1006627-505 1006627-605 1006627-505 100627-505 100627-505 100627-505 100627-505 100627-505 100627-505 100627-505 100727-505 10027-505 10027-505 10027-505 100727-505<	Baseli	ne	A Priori	Ra	nges		S	sRD's	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	for Stat	ions	Length	Adjusted	Error	0	Adjusted	Error	ġ
7001 7004 <th704< th=""> 7004 7004 7</th704<>	1021 ==>	7063	3701986.397	3701987.501	1-104	+10-0	3701986-615	0.218	0-009
Note Note <th< td=""><td><pre>1001 ==></pre></td><td>1069</td><td>4006624.584</td><td>4006625.884</td><td>1.300</td><td>0-014</td><td>4006624-825</td><td>0.241</td><td>010-010</td></th<>	<pre>1001 ==></pre>	1069	4006624.584	4006625.884	1.300	0-014	4006624-825	0.241	010-010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre><pre>100</pre></pre>	1086	1848222•236		0-602	0.012	L848222.336	0.100	0-006
1001 1002 1003 <th< td=""><td></td><td></td><td>101-00110011</td><td>004°74770777777077</td><td>2070 I</td><td></td><td>41/98//9811 500 1000007</td><td>050°0</td><td>9/0-0</td></th<>			101-00110011	004°74770777777077	2070 I		41/98//9811 500 1000007	050°0	9/0-0
7051 710 3090406.182 3090406.182 3090406.182 3090406.428 1.1130 0.023 3090406.428 0.031 7641176.051 764116.051	<== 150L	7095	7829591.498	7829594.393	2-895	0-010	7829591-889	195-0	0-018
Not Total Target Total Target <thtotal target<="" th=""> Total Target</thtotal>	7051 ==>	7120	3909408-182	3909409.312	1.130	0-020	3909408-428	0=246	110-0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7051 ==>	1062	7613750-166	7613753.103	2-936	0.013	7613750.547	0.380	0-017
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7051 ==>	1061	7544174-051	7544175.685	1.634	0.037	1544174.479	0.428	0.022
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<== 1501	1161	7817713.002	7817715-815	2.812	0.012	166-6177187	0.389	0-017
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7051 ==>	1914	8384065.582	8384068.542	2-960	110-0	8384065.995	614-0	0-018
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1935	7603305.998	7603309.103	3-106	0-037	7603306-364	0-366	0.029
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<== 100/ <== 150/	1940	9450403.508	9480400.031 8571110 846	3.123		9480463-975	0-468	610-0
7051 7105 552884.534 652881.645 5.112 0.011 552884.521 0.012 7063 7090 1519481.657 0.417 0.013 1519481.701 7063 7091 1519481.747 151841.5.27 0.013 1519481.791 7063 7091 150180.137 724300.571 0.2315 0.013 1519481.701 7063 7901 551967.465 0.013 0.0134 0.013 1519481.202 7063 7911 552090.577 2.2300 0.013 5530979.726 0.23 7063 7911 5724300.577 7243091.517 2.230 0.011 264577.039 7063 7914 570881.054 7243091.517 2.238 0.0121 264577.039 7063 7914 570881.054 774.0488.766 0.012 5652381.067 0.02 7063 794491.411 57081.616 2.4473 2.230 0.011 104577.049 0.012 7064 706491.616 704491.616 2.4918	7051 ==>	2943	10455416.980	10455421.363		0.014	10455417.555	0-575	010-078
7063 7063 7064 1519,4817,40 1519,4817,65 0.013 2545601.300 12645705.300 1264570 12645705.300 1264570 1264570 1264570 1264570 1264570 1264576.300 1264576.300 1264576.300 1264576.300 126457676 126457676 126457676 126457676 126457676 12645676.300 12645676.300 1264576765 126457676 126457676 126457676 126457676 126457676 1264576766 1264576766 1264576766 1264576766 1264576766 1264576766 1264576766 1264576766 1264577666 12645677666 1264577666	7051 ==>	6662	8528384.534	8528387-646	3-112	110-0	8528384.954	0-420	0-018
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7063 ==>	7069	1519487.440	1519487.859	0.419	0-012	1519487.521	0-081	0.006
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7063 ==>	7086	2618612.747	2618613.369	0-622	0-013	2618612-908	0.161	0.007
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7063 ##	1090	12645700.300	12645705.074	4-774	0-023	12645700.939	0.639	0.076
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7063 ==>	160/	601586.746	601586-951	0.205	0-013	601586.791	0-045	0-006
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre><== E907</pre>	660J	958-1058510 275 0005255	41°0168619	2.315	0.010	6198508.137	0.298	0-016
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre><== COU1</pre>	1002	616-0806#71 5530070 553	5520081 811 5520081 811	002•2		1243088.834 5520070 725	104-0	0.018
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7063 ==>	1061	5926566-472	5926567.587	1-115	0-036	50565662807	162-0	010-0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7063 ==>	1167	5706839-391	5708841.621	2.230	0.012	5708839-660	0-269	0-016
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7063 ==>	7914	6522380.757	6522383.146	2.389	0.011	6522381-062	0.305	0.016
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7063 ==>	7935	9619907.238	9619911.155	3-867	0 -034	9619907-812	0-524	0.030
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7063 ==>	1940	7644381-054	7644383.631	2.577	0.012	7644381-414	0•360	0-017
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>/== E90/ </pre>	2961	\$465770.398	6465772.873	2.475	110-0	6465770.699	106-0	0.616
7069 ==> 7096 $2363121-040$ $2363121-745$ 0.705 0.013 $2363121-196$ 0.013 7069 ==> 7091 2044497.683 2044498.217 0.534 0.013 2044497.802 0.013 7069 ==> 7091 2044497.683 2044498.217 0.534 0.013 2044497.802 0.013 7069 ==> 7120 7279481 7368439.412 7368439.812 0.03 7069 ==> 7120 72279481.534 722791.534 0.021 7227948.014 0.03 7069 ==> 7907 6665627.504 7221981.735 0.013 6665624.894 0.03 7069 ==> 7914 7588155.504 7234.911 2.481 0.012 7227982.014 0.03 7069 ==> 7914 7588155.504 7368057.894 0.022 0.012 7227982.014 0.03 7069 ==> 7914 7588155.504 7328455.504 0.012 2.4423 0.03 7069 ==> 7944 7588155.504 7743 0.012 0.032 6665654.893 0.03	Car COUL	7990	L1893840-209	118.44826811	4.003 7.552	110 0	11895840 - 939	167.0	0.072
7069 ==> 7090 12646954.988 12646959.747 4.759 0.024 126446955.633 0.04 $7069 ==>$ 7091 2044497.683 2044497.683 2044497.683 0.013 2044497.802 0.013 $7069 ==>$ 7095 7368439.441 73684432.015 2.575 0.0113 7064497.802 0.3 $7069 ==>$ 7120 7227981.538 1227981.929 0.020 7227982.014 0.3 $7069 ==>$ 7907 4643187.992 66656271.134 2.5472 0.013 66655624.861 0.3 $7069 ==>$ 7907 4643187.992 6669734.911 2.4481 0.012 6665624.861 0.3 $7069 ==>$ 7914 7688155.202 7588157.844 2.4481 0.012 6665624.8194 0.3 $7069 ==>$ 7914 7588155.606 $10283659.6527.119$ 2.4481 0.012 6665654.8194 0.2 $7069 ==>$ 7914 7588155.606 $10283659.6527.119$ 2.4481 0.012 166493152.766 0.3 $7069 ==>$ 7914 7668155.504 $10283659.6527.119$ 2.6422 0.012 17640935.897 $0.63772.766$ $7069 ==>$ 7942 1761122.810 174566394.925 $0.2732.766$ $0.2732.766$ 0.377766 $7069 ==>$ 7942 17660335.187 17466939.925 $0.27575.5480772.2605$ 0.737766 0.27765 $7069 ==>$ 7942 1741122.8107719 17741125.605 2.7795 0.0127 1766935.455 <td><== 690L</td> <td>7086</td> <td>2363121-040</td> <td>2363121-745</td> <td>0-705</td> <td>0-013</td> <td>23631212196</td> <td>0.156</td> <td>010-0</td>	<== 690L	7086	2363121-040	2363121-745	0-705	0-013	23631212196	0.156	010-0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7069 ==>	1090	12646954.988	12646959.747	4-759	0.024	12646955-633	0646	670.0
7069 = 7 7095 7368439.441 7368442.015 2.575 0.011 7368439.812 0.3 $7069 = 7$ 7120 7227981.538 7227983.929 2.391 0.020 7227982.014 0.3 $7069 = 7$ 7901 66656274.561 66656271.134 2.572 0.013 6665524.894 0.3 $7069 = 7$ 7911 66656244.561 66656271.134 2.572 0.012 669732.766 0.3 $7069 = 7$ 7911 6809732.429 6809734.911 2.6442 0.012 7588155.572 0.3 $7069 = 7$ 7914 7588155.202 7588157.844 2.6442 0.012 7588155.572 0.3 $7069 = 7$ 7914 7588155.202 7588157.844 2.6442 0.012 7588155.572 0.3 $7069 = 7$ 7940 8536877.895 8558876.6027 0.012 7588155.572 0.3 $7069 = 7$ 7940 8536877.895 8558876.6027 0.012 $7588155.556.062$ 0.3 $7069 = 7$ 7940 8536877.895 2.873 0.012 7588155.5572 0.3 $7069 = 7$ 7940 8536877.891 2.773 0.012 $174669356.966.062$ 0.5 $7069 = 7$ 7940 1746125.6207 2.8723 0.012 17669356.662 0.5 $7069 = 7797799971741125.660572.77950.01227761022.634.4220.57069 = 7797799971741125.660572.77950.012217660$	7069 ==>	1601	2044497.683	2044498.217	0.534	0.013	2044497.802	0.119	0.006
7069 = 1727981.538 7227981.538 7227981.538 7227982.014 0.45 $7069 = 7700$ 7227981.538 7227981.538 7227982.014 0.3 $7069 = 7901$ 6665624.561 6665627.134 2.572 0.013 6665624.894 0.3 $7069 = 7901$ 6665624.561 6665627.134 2.572 0.013 666524.694 0.2 $7069 = 7911$ 6809732.429 6609734.911 2.4481 0.012 6809732.766 0.3 $7069 = 7914$ 7914 7588155.504 10283659.652 4.148 0.012 7688155.572 0.3 $7069 = 7943$ 7914 7588155.504 10283659.652 4.148 0.012 7688155.572 0.3 $7069 = 7942$ 774102.810 7451636.775 2.713 0.0112 7651634.423 0.3 $7069 = 7943$ 11466935.187 11466939.925 4.778 0.0112 7651634.423 0.3 $7069 = 7942$ 7451634.775 2.7713 0.0112 7651636.6052 0.57 $7069 = 7943$ 11466935.187 11466939.925 4.778 0.0122 7741122.810 7741122.605 0.2772 $7069 = 77993$ 7999 7741122.810 7741125.605 0.2792 0.0122 7741122.810 0.0122 $7066 = 5777$ 7091 $11466935.846.041$ 0.8358 0.0122 1741122.810 0.0122 $7086 = 577001$ 12190017.682 12190017.682 2.7722 0.0123 1025763.455 0.0131 7086	1069 ==>	7095	7368439.441	7368442.015	2.575	0-011	7368439-812	176-0	0-017
1005 = 7 7901 $0005024, 501$ $0005024, 692$ 0.013 $6665524, 694$ $0.0.33$ $7069 = 7$ 7901 6643188.7992 6643188.7392 0.0122 $6669734, 248$ $0.0.231$ $7069 = 7$ 7914 $56809732, 429$ $6809734, 911$ 2.442 0.0122 $6693132, 766$ 0.331 $7069 = 7$ 7914 $7588155, 502$ $7588157, 844$ 2.6422 0.0122 $6693132, 7766$ 0.331 $7069 = 7$ 7935 $10283655, 504$ $10283655, 504$ $10283655, 504$ $10283655, 504$ $10283655, 504$ 0.0371 $7069 = 7$ 7942 $7551634, 061$ $7451636, 775$ 2.8233 0.0122 1868.310 0.431 $7069 = 7$ 7942 $7451634, 061$ $7451636, 775$ 2.7733 0.012 $7451634, 423$ 0.3717 $7069 = 7$ 7943 $11466935, 187$ $11466939, 925$ 4.7738 0.012 $7741123, 188$ 0.3745 $7069 = 7$ 7999 $7741122, 810$ $7741125, 605$ 2.7795 0.012 $17451634, 423$ 0.3775 $7069 = 7$ 7999 $11466935, 187$ $11466939, 925$ 4.7738 0.012 $7741123, 188$ 0.3745 $7066 = 7797$ 7091 $2199017, 682$ $121990017, 682$ $121990222, 207$ 2.7792 0.013 $3135345, 4755$ $0.65755, 4956$ $7086 = 77095$ $80022263, 047$ 7.792 0.013 $7557523, 060$ $0.311766, 358$ 0.013 7095 $80022263, 047$ $80022265, 839$ 2.7792	7069 #	7120	7227981.538	7227983.929	2.391	0-020	7227982-014	0-476	0-018
7069 $=>$ 7911 6809732.429 6809734.911 2.4481 0.012 6809732.766 0.331 7069 $=>$ 7914 7588155.202 7588155.602 0.337 10283655.602 0.337 7069 $=>$ 7940 8536867.895 8536870.719 2.642 0.012 6809732.766 0.337 7069 $=>$ 7940 8536867.895 8536870.719 2.823 0.012 8536868.310 0.637 7069 $=>$ 7942 7451634.061 7451636.775 2.713 0.012 8536868.310 0.637 7069 $=>$ 7943 11466935.187 11466939.925 4.738 0.012 1741122.897 0.377 7069 $=>$ 7993 7741122.810 7741125.605 2.795 0.012 77411223.188 0.577 7086 $=>$ 7091 211960917.682 121900222.207 3135345.406 0.517 7086 $=>$ 7091 3135345.406 0.013 3135345.406 0.517 7086 $=>$	<== 6901 <== 0402	1061	10C*+20C000 200_7815272	0000021.134 4443188,735	210.2	0.013	6665624.894 4423188 248	0.333	10.0
7069 ==>79147588155.2027588157.844 2.642 0.0127588155.5720.037069 ==>793510283655.50410283659.652 4.148 0.03710283656.0620.67069 ==>79427451634.0617451636.775 2.823 0.0128536868.3100.47069 ==>79427451634.0617451636.775 2.713 0.0128536868.3100.47069 ==>794311466935.18711466939.925 4.738 0.01211466935.8970.37069 ==>79937741122.8107741125.605 2.7795 0.0121741123.1880.37069 ==>709012190017.682121900222.207 4.525 0.0121741123.1880.37086 ==>70913135345.2073135346.0410.8340.0133135345.4060.47086 ==>70913135345.2073135346.0410.8340.0133135345.4060.47086 ==>71205167467.7791.7480.0133135345.4060.47086 ==>71205167466.0315167467.7791.7480.0195167466.3580.37086 ==>71205167466.0315167467.7791.7480.0195167466.3580.37086 ==>71205167466.0315167467.7791.7480.0195167466.3580.37086 ==>71205167466.0315167467.7791.7480.0195167466.3580.37086 ==>7901757522.4922.8120.0195	<== 690L	1162	6809732.429	116 75734 911	2.481	0-012	6809732.766	0-336	210-0
7069 ==>793510283655.50410283659.652 6.148 0.03710283656.0620.57069 ==>79427451634.0617451636.7752.8230.0128536868.3100.47069 ==>79427451634.0617451636.7752.7130.0128536868.3100.37069 ==>794311466935.18711466939.925 4.738 0.01211466935.8970.37069 ==>794311466935.18711466939.925 4.738 0.01211466935.8970.37069 ==>79937741122.8107741125.605 2.7795 0.01211466935.8970.37086 ==>70913135345.2073135346.0410.8340.0133135345.4060.47086 ==>70913135345.2073135346.0410.8340.0133135345.4060.47086 ==>70958002263.0478002266.8392.77920.0133135345.4060.47086 ==>71205167466.0315167467.7791.7480.0195167466.3580.37086 ==>71205167466.0315167467.7791.7780.0195167466.3580.37086 ==>71205167466.0315167467.7791.7480.0195167466.3580.37086 ==>71205167466.0315167467.7792.7920.0195167466.3580.37086 ==>77017557522.6807557525.4922.8120.0195557523.0660.3	<== 690L	7914	7588155-202	7588157.844	2-642	0.012	7588155-572	0.370	0.018
7069 ==> 7940 8536867.895 8536870.719 2.823 0.012 8536868.310 0.4 $7069 ==>$ 7942 7451634.061 7451636.775 2.713 0.011 7451634.423 0.3 $7069 ==>$ 7943 11466935.187 11466939.925 4.738 0.012 11466935.897 0.3 $7069 ==>$ 7999 7741122.810 7741125.605 2.7795 0.012 17466935.897 0.3 $7069 ==>$ 7999 7741122.810 7741125.605 2.7795 0.012 17466935.897 0.3 $7086 ==>$ 7090 12190017.682 12190022.207 4.525 0.013 3135345.406 0.1 $7086 ==>$ 7091 3135345.207 3135346.041 0.013 2.7792 0.013 3135345.406 0.1 $7086 ==>$ 7091 3135345.0077 3135346.041 0.013 2.7792 0.013 3135345.406 0.1 $7086 ==>$ 7091 $3135345.047.779$ 1.778 0.0199 5167466.358 0.3 $7086 ==>$ 7120 5167466.031 5167467.779 2.792 0.0199 5167466.358 0.3 $7086 ==>$ 7901 7577522.680 757525.492 2.812 0.019 7557523.066 0.3 $7086 ==>$ 7901 7577522.680 757525.492 2.812 0.019 7557522.066 0.3	<== 690L	7935	10283655.504	10283659.652	4.148	160.0	10283656-062	0.557	0-031
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7069 ==>	1940	8536867-895	8536870.719	2-823	0.012	8536868.310	0.415	0.019
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7069 == ×	7942	7451634.061	7451636.775	2.713	0-011	7451634.423	0-361	0-018
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre><== 6901</pre>	1943	11466935.187	11466939.925	4.138	0-015	11466935.897	0-710	0-073
7086 ==> 7091 3135345.207 3135346.041 0.834 0.013 3135345.406 0.1 7086 ==> 7095 8002263.047 8002265.839 2.792 0.009 8002263.455 0.4 7086 ==> 7120 5167466.031 5167467.779 1.748 0.019 5167466.358 0.34 7086 ==> 7120 5167466.031 5167467.779 1.748 0.019 5167466.358 0.34 7086 ==> 7120 5167466.031 5167467.779 1.748 0.019 51677666.358 0.34 7086 ==> 7901 7557522.680 755755.492 2.812 0.011 7557523.066 0.34	7086 == 2	6667	12190017-682	12140022.207	6-575 6-575	0-025	121411423.1481	0.575	0-018
7086 ==> 7095 8002263.457 8002265.839 2.742 0.009 8002263.455 0.4 7086 ==> 7120 5167466.031 5167467.779 1.748 0.019 5167466.358 0.3 7086 ==> 7120 51677626.031 5167467.779 1.748 0.019 5167466.358 0.3 7086 ==> 7901 7557522.680 7557525.492 2.812 0.011 7557523.066 0.3	7086 ==>	1601	3135345.207	3135346.041	0-834	0.013	3135345-406	0-199	0-008
7086 ==> 7120 5167466.031 5167467.779 1.748 0.019 5167466.358 0.3 7086 ==> 7901 7557522.680 7557525.492 2.812 0.011 7557523.066 0.3	7086 ==>	2601	8002263-047	8002265-839	2.742	0.009	8002263.455	0.408	0-018
7086 ==> 7901 7557522.680 7557525.492 2.812 0.011 7557523.066 0.3	7086 ==>	7120	5167466.031	5167467.779	1.748	610-0	5167466.358	0.327	0.014
	7086 ==>	1061	7557522+680	7557525-492	2-812	110-0	1557523-066	0.385	0.017

Recovered Baselines and Associated Statistics

Table 4

ORIGINAL PAGE IS OF POOR QUALITY

١

27.

	000
	5107103
	362 11
(p,	02102
(cont	LOOL
able 4	300E
	

7907 6014011.6 710410365.5 7104128		35 6014012.800 14 7740368.214 33 8417464 565	1.165 2.699 2.861	0.035 0.010 0.010	6014011-974 7740365-906 8417452-125	0.338 0.392	0-018
7935 9007271.328 9007274.972	28 9007274.972		3.644	0.038	621-77-11-0 601271-173	0.451	
7940 9457233.777 9457236.621 7942 8459537_776 8459540_720	77 9457236•621 76 8459540-720		3-045	110-0	9457234_249 8459538_199	0.472	0-018
7943 10743836-617 10743841-260	17 10743841.260	_	4.643	0.013	10743837.225	0.608	0-078
7999 8568278*243 8568281*260 7001 13438060 638 13638045 406	43 8568281•260 18 12438045 406		3-018 2 763	010-0	8568278.671	0.428	0.019
7095 11054963。383 11054967.922	33 11054967 . 922		5.540	0.013	11054964-034	0.651	0.081
7120 9652947.997 9652951.496	97 9652951.496		3.498	0.029	9652948-411	E14-0	0.069
7901 11492146.332 11492150.861	32 11492150-861		4.529	0-015	11492146-996	0.664	0.080
7907 11747103°941 11747708°043 7011 11423730 158 11752733 770	11/47708.043 54 54 54 54 54 54 54 54 54 54 54 54 54		4.102 6 421	160-0	11747704.602 1147704.602	0.661	0.059
7914 10989879.121 - 10989883.735	21 ~ 10989883.735		4.613	0.013	10989879-768	0.647	0.080
7935 7171939-095 7171942-195	7171942-195		3-100	0-031	7171939.379	0.284	0-073
T74-00859501 101-99759500.671	173-00959501 10		4-570	0.013	EE7.99764E01	0.632	0.077
7942 11117719.497 11117724.116	97 11117724.116		4.619	0.013	11117720.151	0-654	0.079
7943 4203079.994 4203079.533	94 4203079.533		-0-461	0.042	4203080.272	0.279	0-039
7999 L0897934.223 L0897938.794	23 10897938.794		4.571	0-013	10.897934-872	0-649	0*080
7095 5669657.481 5669659.600	BL 5669659 - 600		2.119	0.011	5669657.738	0.257	0.015
7120 7539368.002 7539370.323	22 1539370.323		2.321	0+022	7539368-484	0.482	610-0
7901 4982802-192 4982804-336	92 4982804.336		2-145	0"013	4982802-411	0.220	0-015
7907 6254928.000 6254929.140			1.140	0.036	6254928.357	0.357	0.019
1914 5100340•2340•234 500010 1141 104 5100010 513 5000110 500			87N•7	210.0	104*066016 320 0110003	977*0	470°0
7935 9534546 210-0110755 757 7935 9534546, 757	12 9534400°606		21112	0-032	010-110-25	523°0	
7940 7159802.313 7159804.669	13 7159804.669		2.356	0.012	7159802-634	0-321	0-016
7942 5945898.372 5945900.626	72 5945900.626		2.254	0.011	5945898.632	0.260	0-015
7943 12088278-997 12088283-622	97 12088283-622		4.625	0.017	12088279-749	0.752	0-070
7999 6172664-180 6172666-525	80 6172666-525		2.345	0.012	6172664-452	0.271	0-016
7120 9905183-912 9905187-285	12 9905187-285		3.373	0.020	9905184-478	0.567	0-026
7901 1054037.162 1054037.247	62 1054037 • 247		0-085	0-010	1054037.210	0.049	0.005
7907 9808100.813 9808103.428	13 9808103.428		2.615	0.034	9808101-384	0-571	0-025
1911 10/8641•514 10/8641•504			060-0	010.0	10/8641-566	260.0	0-004
121•166710 011•166710 4161 189-9662208 801-1662208 461	101-106210 01		3.573	0-022	201-102210 207799250	0-505	*00°0
7940 2308853_694 2308853_924	34 2308853-924		0-230	0-009	2308853_824	0-130	0-006
7942 1484591.097 1484591.233	97 1484591.233		0-135	0.008	1484591 . 180	0.082	0-004
7943 12459631-945 12459636-131	45 12459636.131		4-185	0.025	12459632.803	0.857	0-058
7999 1009482.790 1009482.972	90 1009482.972		0.182	010*0	1009482-846	0-056	0-004
7901 9990062.600 9990066.034	3990066-034		3-434	0.021	EL1-E300666	0.573	0.026
7907 9093555.719 3093558.233	19 003558.233		2-515	0.035	9093556.311	0-592	0-023
7911 10149450.364 10149453.725	64 10149453.725		3.361	0.021	10149450.941	0.577	0.026
7914 10424208.891 10424212.360	91 10424212-360		3-469	0-020	10424209-479	0.588	0-026
7935 5947116.046 5947118.193	66 5947118.193		2.147	0.045	5947116.282	0.236	0.028
7940 11179428-021 11179431-635	269-16562111 12		3.615	0.019	11179428-647	0-626	0-027
7942 10680768.532 10688772.104	32 10688772+104		3.572	0.020	10688769.136	0.604	0-026
7943 7895585.976 7895589.858	76 7895589-858		3.882	0.016	7895586.379	0-403	0-076
7999 10511591.643 10511595.224	43 10511595•224		3.581	0.020	10511592.237	0.594	0-027

¥,,

1

ſ

10	<== 106L	1907	9104885-947	9104886.507	2-560	0-034	9104886.479	0-532	0-025
02	(== 1062	1161 4	261469.713	261469-531	-0.182	0.013	261469-730	0-017	0-005
03	(== 1061	7914	1123487.006	1123487-024	0-018	110-0	1123487-060	0.053	0-004
90	(== 1062	7935	8761366.855	8761370-526	3-670	0-023	8761367-381	0.526	0.033
02	(== 106L	7940	2556038-730	2556038.940	0-210	0.012	2556038-864	0.134	0.007
06	(=* 1062	7942	1239620.646	1239620-717	0.070	110-0	1239620-713	0-067	0.005
01	(== 106L	1943	12634822-678	12634826.951	4.273	0.025	12634823-537	0.859	0.059
80	(== 1061	566L ·	1321551.217	1321551-409	161.0	0.012	1321551.278	190-0	0-005
60	(== 1061	1162 .	9126000.454	9126003-032	2-578	0.034	9126000-981	0.527	0.025
10	<== 106L	+161 -	9665843.112	9665845.834	2.722	0.033	9665843.662	0.550	0.026
	(== 1061	1935	12152779-136	12152783-306	4.170	0.053	12152779-816	0.680	TE0-0
12	(== 1061	0561	9938096.258	9938099°181	2.923	0-031	9938096-817	0.559	0.027
13	(== 106L	1942	9316540°457	9316543.238	2.781	0-032	9316540-987	0-530	0-026
4	(== 106L	1943	9975480.531	9975484.652	4.121	0.023	9975481.210	619-0	0-064
12	(== 106L	666L .	9743805.430	9743808.250	2-821	0.033	9743805-985	0-555	0-026
16	(== 116L	1914	942740.742	942740.909	0.167	010-0	942740.783	140-0	0-005
17	(== 116L	1935	88525555,558	8852559.214	3.655	0.023	8852556.086	0.528	0-033
18	(== 116L	0962 .	2322728.588	2322728-978	0.389	0.011	2322728-705	0.117	0.006
19	(== 116L	1942	982189.734	982189.990	0-256	010-0	982189-783	0.049	0-005
20	(== 1161	1943	12629816.243	12629820.537	4.294	0.025	12629817-099	0-855	0-058
21	(== 116L	666L ·	1132809-489	1132809-826	TEE-0	0-011	1132809-536	0.048	0.005
22	(== 516L	5261 .	8588856.921	8588860-579	3.659	0.022	8588857-444	0.523	0-033
23	(== +161	1940	1534180.499	1534180-712	0.213	0.010	1534180-582	0-083	0-005
24	(== 516L	7942	683352.290	683352.365	0.975	0.009	683352-323	0.033	0.003
52	(== \$161	1943	12486056.145	12486060.345	4-200	0.0126	12486057-002	0.857	0-056
56	7914 == 7	6662	201844.964	201845-143	621*0	0-010	201844-972	0-007	0-004
27	7935 ==>	1940	8948456.154	8948459.829	3.675	0-021	8948456-694	0*240	0.033
28	(== 5661	7942	9080928.389	5280932-138	3.748	0.022	9080928-93L	0.542	0.033
29	7935 ==	1943	8297664.519	8297667.497	2.978	0-047	8297664-955	0.436	9-0-0
30	7935 ==>	666L	8586113.915	8586117-604	3.689	0-022	8586114-442	0.526	0-034
IE	(== 0+6L	27942	1412734-544	1412734-695	0.151	0-009	1412734-616	0-072	900-0
32	(== 0562	E96L .	12233347.755	12233351-785	060-7	0-028	12233348-613	0.858	0-053
	(== 0%)	666L ·	1346693.532	1346693•574	0-043	0.010	1346693-608	0.077	0-004
34	(== 256L	1943	12543596-675	12543600-914	4.239	0~026	12543597-537	0.862	0-056
35	(== 296L	666L .	700368.121	700368-199	0-079	0.009	700368.153	0.033	0.003
36	(== 5461	666L ·	12453042.887	12453047-068	191-7	0-026	12453043.748	0-861	0.056

Table 4 (cont'd)

1

Adjustments
Individual
from
Recovery
Baseline
able 5

1

BASELINE	APRIORI		RNGE	врзиятие	I'N'		RD AD	JUSTMEN	
FOR STATIONS	LENGTH	\$80 #	11×11	ERROR	<b< th=""><th>240 ×</th><th>12 > 12</th><th>00001</th><th>4</th></b<>	240 ×	12 > 12	00001	4
416L <== 106L	1123447.000	7202	3-572	-0-117	013			ERKOK	5
10462 <==> 1040	460. ECUBUES	5975	20115	-0.362		1005	16.4		0.018
	70U3 00. L.Z.L	1460	U. 7.3 U.	-0.046	0-019	3730	1.190		
	160 TAChest	+640	2.242	-0-228	0-020	3477	1.371	0.634	
1053 ==> 7911	165.900075	2442	2- 60+0	-1-076	120-0	1297	0.454	514-0	C.32.0
1009 ==> 7942	7+51634.001	440	2-005	1.42.1-		1221 .		172.0	6/2°
	2322726.588	5885	3.513	-0.342	0-020	2462			2010
	040-0706771	2001	152.5	-0-187	0-020	ILCE	1.471		020-1
7911 ==> 7095	1074541-514	7450	10770	140-0-	0.019	3734	1.030	-0.631	01000
0761 <== 7461	1412734.544	6496	13. but			2715	1.041	500-0-	0-013
1095 ==> 7999	1009482.790	7476	3.618	-0.156	6.020 ·	0717	1.00		
	1440093-532	6620 7213	3.611	-0-194	0.019	OTEE	1.572	0.000	
	017-162710	9677	2000		0-020	3805	1.074	č20.0 .	orn-n
7063 ==> 7907	2926506.472	1024	2.409			8477	1.336	0.010	670-0
7086 ==> 7907	cco.110+10a	465	2.794	-1.264	0.060	161	0000		ちていて、
	5043167-992	1/10	3-052	-0. 464	0.037	858	0.700	Ú. 16B	170-10
70607 <== 2007	040-1210002	7774	242.4	-0-172 -0-172	CZ0•0	2056	1-250	0-0-1	0.030
7051 ==> 7080	10+4222-236	5290	140 E	-0-308		7771	1.150	0.036	690°0
7120 ==> 7051	5909+C3+142	2920	3.220	-0.72+	0.030	1475			
	102.04010	1850	2.968	166.0-	0+0-0	925	0.647	0.00 0.00	
7040 == 1000 7040 == 7046	141-21 00102	004		-0.422	0.025	2233	0.925	0.090	0.039
7120 ==> 7935	24-71 10-0-6	1342				41.12	1-520	1.5.7	うらつ・つ
79.55 ==> 70.90	240.25.91Th	1.0	2.609	-1.008	0.1.0		1-2/0	-6.302	ゴナキ・つ
	4203079-994	3226	3.100	-0-611	0-029	EISI	1.428	-0.00	
	966 COCCODE	114	790-7	-1.404	0.20Z	200	10.245	670-1	UET-R

ORIGINAL PAGE IS OF POOR QUALITY

あん しょうかい くぶぶろし ため 読み 表示のな

Ì

SRD mode will in all likelthood provide more meaningful results in the presence of unmodeled orbital biases than the range mode, and it will also give more reliable accuracy estimates for those results. Comparing the batch (global) solution to that of individual adjustments, the latter seems to be by far a better approach in the case of SRD observations, although the opposite is true for the range observations. Compare for instance the level of recovery errors between Tables 4 and 5.

2.212 Preliminary Results from Lageos Data Analysis.

Lageos ranging data collected from ten stations over the period August 14-29,1980 (during the short MERIT campaign) were used in GEOSPP81 for baseline recovery. A total of 24240 ranges were selected with effort to balance the distribution among stations whose observability performance shows wild variations (cf. station 7090 with over 60000 ranges during August, and station 7092 with hardly over 3000 in the same period of time). The summary of the data distribution per pass per station is given in Table 6 [(a) - (j)]. The ill-conditioning of the normal equations due to the lack of origin of longitudes definition is overcome by applying a small weight in all three coordinates of all stations, corresponding to a G=+50 m. This way the origin of longitudes does not depend on a single station but rather the ensemble of them. The separation of the X and Y coordinates is thus not as good as it would be if one longitude ware fixed absolutely, but that has no effect on the baselines. This high correlation between X and Y is also reflected in the estimated

and the second sec

ACTIVATION DE CONTRACTOR D

formal accuracies for these coordinates, Table 7. The orbital model and the constants used in the solution are shown in Table 8. Baseline results of the adjustment are given in Table 9, and an analytical breakdown of the residuals after the adjustment are given in Table 10 [(a)-(j)]. Notice that the fact that station 7907 (ARELAS) is the one with the fewest observations (only 489) shows very clearly in the estimation of baselines which emanate from that station (Table 9).

Care should be taken in comparing these results with other solutions for the fact that these baselines are reckoned between the optical centers of the corresponding laser instruments and not the stations' validation points.

This investigation is now being completed, and the final report is in preparation by E. Pavlis, to appear in the report series of the Department of Geodetic Science and Surveying, The Ohio State University.
and the second second

Table 6 (a)

united and the second second

÷.

UBSERVATION SUMMARY

STATION	IDENTIFICATION NO. :	70 03	NUMBER OF PASSES	TRACKED :	10 NUMBER OF	OBSERVATIONS : 4284
PASS NU.	SEGINALAG DATE	ENDING Y YMMUD	DA TE HIMMSS.S	SECUNOS	DESERVATIONS	DENSITY LAG A (UNE PUINT PER A SELS)
	BUUSI4 2011 4.0 BUOSCO B14 6.0 BOOG2 90040.0 0 BUUS2 122631.0 0 BUUS25 52148.0 0 BUUS25 531.0 0 BUUS25 1231.0 0 BUUS27 1232.0 0 BUUS28 74317.0 0	d UU 914 8 00 420 8 00 522 8 00 522 8 00 525 8 00 522 8 00 52 8 00 50 8 000 500 8 000 500 8 0000000000	163236.0 84127.0 92534.0 125440.0 901.6.0 153110.0 95222.0 162513.0 200556.0 82441.0	1292.0 1441.0 1494.0 1494.0 2350.0 2350.0 2410.0 2550.0 2444.0	477 202 859 1 1550 14 147	323.00 3.44 7.40 201.50 6.0 1.61 375.75 102.14 2.15

(b)

UBSERVATION SUMMARY

STATION	IUENTIFICATION NU. 1	70.90 N	UMBER OF PASSES	TRACKED :	30 NUMBER OF	OBSERVATIONS : 4143
PASS NO.	BEGINNING DATE	ENDING YYMMDD H	DA TE HMMSS-S	DUKA TIUN SECUNDS	UBSERVATIONS	DENSITY LAG & (UNE POINT PER & SEGS)
1	100014 71524-U	800814	81120.0	2156.0	.97	22+63
4	#00#14 110144+0	800814 1	134 4-0	5195-0	<u>+07</u>	13+01
2		200014 10		5257 •1	195	
- 2	800815 94841-0	800815 10	02222.0	2641.0		11127
2	A00415 162235-0	400815 18	5275.0	1410.0	141	12182
7	HOUHIS 1941 5-0	800815 20	02036.0	2853.0	263	14.35
÷.	000010 91445.0	BOOBIS	94442.0	2037.0	119	17.12
- 9	#00ala 124141.0	800418 12	259 1.0	1040.0	- 67	15.52
70	800818 190034+U	8 CUB18 19	953 1.0	2787.0	171	10+30
14	800019 111532.0	800819 11	14928+0	2030-0	136	14.91
12	A00413 112012-0	800017 IS	F3730 •0	5-41-0	203	14+44
15	#00#1A 515451+0	800813 ST	12323•N	13(4•8	28	11+74
12		400420 20		1520.0	162	17-20
5	HOUN21 HA132.0	HILH21 (91537.0	2045-11	104	19-44
17	A00422 72765.0	HIJA22 1	74943.0	1418.0		24.46
ĩà	400522 104041.0	803822 1	11438.0	227710	162	14106
19	AGUAZZ 171526-0	800822 17	75657.0	2491.0	173	14.40
ZÓ	800822 JU4750.0	500522 21	120 5.0	2409.0	136	17.71
21	800826 84746.0	800826	928 7.0	2421.0	155	10.04
22	800426 122010-0	800526 12	23826-0	1040-0	· • •	46.27
<i>4</i> 3	800826 1534 1.0	800826 1	5575 9 • 0	1438.0		10.34
24	800820 1047 2-0		Y 2 2 4 X • X	<u> </u>	र्न्नू	Leezu
25	000021 102022-0	<u> </u>	15313-0	7441.6	115	10+72
- 49				34 34 60	1.2	13.30
54				2100.0	152	
50	AUGA24 161267.0	A (10) A 2 A 1	64735 -U	2084.0	154	1.1.20
30	800828 1937 5-0	200121 20	022 5.0	2700 0	214	12.62

(c)

UBSERVATION SUMMARY

STATION	IDENTIFICATION NO. :	70.91	NUMBER OF PASSES	TRACKED :	4 NUMBER OF	UBSERVATIONS : 1100
PASS NO.	BEGINNING DATE	UNDING YAMDD	DA TE HHMMSS.S	DURATION	OBSERVATIONS	UENSITY LAG X LUNE PUINT PER X SECSI
34	100815 181925.0 100815 72153.0 80826 555.0 80826 555.0 80826 103656.0	400 #15 400 #15 400 #18 400 #26 800 #26	183830.0 75931.0 72644.0 119941.0	1145.0 1718.0 1879.0 1905.0	137 352 240 439	6.30 4.60 7.63 4.40

(d)

OBSERVATION SUMMARY

STATION I	LUENTIFICAT LM NU. :	70 92	NUMBER OF	PASSES TRACKED :	5 NUMBER OF	UBSERVATIONS = 2253
PASS	BEGINNING DATE YYMMOU HHMMSS.S	ENU ING	DATE HHMMSS.S	DURATION SECUNDS	UBSERVATIONS	DENSITY LAG A (UNE PUINT PER A SELS)
	800823 153228.0 800824 141353.0 300824 173125.0 800825 1813 4.0 800825 1813 4.0	300823 800824 300824 800825 800825	160149.0 1433 6.0 1811 5.0 165055.0 151250.0	1761.0 1153.0 2360.0 2271.0 174.0	322 286 1273 363	5.47 4.03 1.67 0.20 19.33

Table 6 (cont'd)

ORIGINAL PAGE IS OF POOR QUALITY

	(e)	UBSERVATIO	N SUNAARY	
STATION	IDENTIFICATION NU.	1 70 96 NUMBER UP	PASSES TRACKED : 6	NUNBER UP USSERVATIONS 1 2450
PASS NU.	BEGINNING DATE	ÉNDING UATE	DURATION UNSER	VATIONS DENSITY LAG X (ONE PUINT PER A SECS)
		400417 1345 7.0 400414 1545 0.0 400414 143414.0 40040 143414.0 600407 41340.0		······································

(f)

UBSERVATION SUMMARY

STATION	IDENTIFICATION NO. 1	71.14	NUMBER UP PASSES	TRACKED :	11 NUMBER OF	UBSERVATIONS : 1866
PASS ND.	VELINNING DATE	ENDING YYMADD	DA TE HHMMSS-S	DURATION	USERVATIONS	UNE PUINT PER A SELSI
TE as user	+00020 11-0 6.0 +00020 2110 3.0 +00021 21243.0 +00021 2124.0 +00022 1234.0 +00022 1234.0 +00022 1234.0 +00022 1234.0 +00022 1234.0 +00027 1254.0 +00027 1254.0 +00027 230754.0	8 00 820 8 00 820 8 00 820 8 00 822 8 00 822 8 00 822 8 00 822 8 00 827 8 00 827 8 00 827 8 00 827 8 00 827	120748.0 222859.0 1106.90 2116.70.0 21239.0 1239.0 21239.0 212131.0 94.152.0 1303.5.0 231434.0	1182.0 1130.0 1307.0 1013.0 4101.0 4101.0 4101.0 1040.0 1040.0 1040.0		6.49 6.42 2.90 151.89 6.21 5.39 1.77.83 7.83 7.85 7.85 7.85 7.85 7.85 7.85 7.85 7.85

(g)

UBSERVATION SUMMARY

STATION	IDENTIFICATION NO. 1	/1 15	NUMBER UP PASS	ES TRACKED I	12 NURBER U	PUBSERVATIONS : 1200
PASS	BEGINNING DATE	ENDING Y YMMDD	UA TE HHMMSS.S	DURATION	DESERVATIONS	DENSITY LAG X IONE PUINT PER A SEUS)
1 2 3 4 5 4 7 8 9 0 14 12	400414 131514.0 400414 195334.0 400415 1145 3.0 400615 1145 3.0 400618 110623.0 400618 110623.0 400618 145055.0 400418 211924.0 400419 13129.0 400420 11447.0 400422 1244 7.0	+18008 +18008 +18008 +18008 818008 91	133542.0 200529.0 121624.0 221246.0 11414.0 21414.0 214154.0 1012546.0 101254.0 10354.0 123354.0 123354.0 12354.0	1224.0 711.0 2001.0 1921.0 1318.0 1348.0 1348.0 1348.0 1348.0 1348.0 1348.0 1348.0 1348.0 1348.0 1013.0 1013.0 1013.0 1013.0 100000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1	204 294 3 294 172 172 123 294 372 372 372 372 374	4.54 5.4.54 5.4.55 3.55 4.55 1.55 1

(h)

UBSERVATION SUMMARY

STATION	IDENTIFICATION NUL 1	71.20	NUMBER OF PASS	ES TRACKED :	10 NUMBER UP	USERVATIONS : 1904
PASS	BEGINNING DATE	ENU ING Y YMMDD	DATE HHMMSS.S	DURA) LON SECUNDS	OUSERVATIONS	UENSLTY LAG A IUNE PUINT PER A SECSI
	800814 131956.0 800814 165838.0 800815 25457.0	800814 800814 800815	135240.0 171227.0 31424.0	1964 - 0 629 - 0 1297 - 0	225	6.73 14.84 14.14
	600615 121219-0 600615 152230-0 800621 141930-0 600622 125343-0	800815 800815 800821 800821	122237.0 160610.0 150035.0	2614 -0 2614 -0 2759 -0 2573 -0	147 340	14 - 71 13 - 94 1 - 97
	800822 163825.0 800825 155656.0	800822	165250.0	865.U	50	17.30

Table 6 (cont'd)

- - -

	(1)	UBSE	RVATION	S.U.H.H.A.R	Y	
STATION	IDENTIFICATION NU. :	7907	NUMBER OF PASSES	TRACKED :	20 NUMBER UF	UNSERVATIONS 1 409
PASS NJ.	WEGINNING DATE	ENDING Y YMMDO	DA TE HHHHSS.S	DURATION SECUNUS	UBSERVATIONS	UNE FUINT PER A SEUSI
	00014 02230.1 00014 9537.4 00015 9230.0 00016 24237.7 00017 92152.3 00018 75452.3 00018 75452.3 00018 75452.3 00018 9337.5 000419 101022.6 000420 9331.5.1 000420 9331.5.1 000420 9331.5.1 000422 9331.5.1 000423 9024.7 000424 9331.5.1 000425 9232.7.5 000427 9024.5.3 000427 9012.2.3 000427 9012.2.3 000427 9012.2.3 000427 9012.2.3 000427 9012.2.3 000427 9012.2.3 000427 9012.2.3 000428 9012.2.3 000429 9012.2.3 000429 9012.2.3 000429 9012.2.3 000429 9012.2.3 <td></td> <td>62722.5 1014 0.3 #352.5 714 0.2 23443 7.J 93645.2 80532.6 64315.1 102945.2 900 7.4 7333 7.6 00830.1 95145.1 92052.6 533 7.6 9150.3 7.5 83922.6</td> <td>2 y 2 . 4 1 y 2 . 4 1 y 2 . 5 1 y 2 . 5 7 y 0 . 0 7 y 0 . 0</td> <td>121195249534557892829 221195249534557892829 221353 21 22 22 22 22 22 22 22 22 22 22 22 22</td> <td>24.37 27.63 16.91 24.03 74.03 74.03 74.03 74.03 75.17 27.31 71.90 73.42 70.02 72.020</td>		62722.5 1014 0.3 #352.5 714 0.2 23443 7.J 93645.2 80532.6 64315.1 102945.2 900 7.4 7333 7.6 00830.1 95145.1 92052.6 533 7.6 9150.3 7.5 83922.6	2 y 2 . 4 1 y 2 . 4 1 y 2 . 5 1 y 2 . 5 7 y 0 . 0 7 y 0 . 0	121195249534557892829 221195249534557892829 221353 21 22 22 22 22 22 22 22 22 22 22 22 22	24.37 27.63 16.91 24.03 74.03 74.03 74.03 74.03 75.17 27.31 71.90 73.42 70.02 72.020

(j)

OBSERVATION SUMMARY

STATION	IDENTIFICATION NU. :	7943	NUMBER OF PASSES	FRACKED :	32 NUMBER OF	UDŠEKVATIONS 1 3410
PASS	NEGINNING DATE	ENDING	DATE HHMMSS-S	DURATIUN SECUNUS	UBSERVATIONS	DENSITY LAG X (UNE PUINT PER A SEUS)
12345 7890 101 12345 101 12345 145 145	BOUGIA BOUGIA BOUGIA BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BOUGAIS BO	3 00 814 8 00 814 8 00 815 8 00 815 8 00 815 8 00 815 8 00 815 8 00 816 8 00 815 8 00 817 8 00 818 8 00 815 8 00 805 8 00 800 8 00 800 8 00 800 8 00 800 8 00 800 8 00 800 8 00 8	112015 2 112015 2 100630 3 132145 0 20095 2 4 84152 7 1204 7 8 1331 7 7 1204 7 8 1331 7 7 1204 7 8 13405 0 12405 0 1	1525-1 1927-3 1925-3 1925-3 1925-3 1925-3 192274-3 19227-5 19314-97 19314-97 19314-97 19314-97 1935-0 193	50 122 62 63 64 64 75 75 75 75 100 170 100 75	20.02 19.05 23.23 23.23 17.89 10.444 10.03 12.95 14.30 41.17 20.05 21.40 13.11 13.97 14.30 13.21 13.25
19 20 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	$\begin{array}{c} 100321 \\ 100321 \\ 100321 \\ 100321 \\ 100022 \\ 102022 \\ 102022 \\ 10425 \\ 200323 \\ 10425 \\ 100323 \\ 100323 \\ 100325 \\ 1031730 \\ 200325 \\ 103237 \\ 100326 \\ 103237 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 103227 \\ 100326 \\ 10032 $		15615 -2 19159 -9 10115 -2 14145 -2 14145 -2 175022 -4 940 0 -1 134430 -1 134430 -1 122037 -7 15592 -5 13145 -1	22699.05 24992.05 24992.05 24992.05 26299.09 26299.09 26299.09 26299.00 26299.00 29992.00 2999.00 2999.00 2999.00 2999.00 2999.00 2999.00 2999.00 2999.00 2999.00 2999.00 2999.00 2999.00 2999.00 2999.00 2999.00 2999.00 2000.00000000	79 178 38 88 172 73 67 57 57 463 1691 262 97 61	20.90 13.99 39.20 23.70 40.44 6.03 24.10 10.60 11.70 11.70 11.40 20.03 25.00 25.00

A Priori Station Information and Final Solution Summary Table 7

I VI ION	(H) X	(H) X	INT. 7
7003	1130711.7	L.1721534-	599-088°
0601	62009862-	2.ELLENC	C.82C870E-
1401	14924545	T-1821 ch-	429oil1-0
240L	-01+3++ &= 5	9° ou l'hoc 1	1034104-0
36 <u>0</u> F		-140 L 97. B	E.BTONOCI-
7115	-241042402-	-++1 1802.2	303606.1
ĊI I E	+-1 00Učc2-	1.01 00001	3660999.2
7120			22+2228-6
10.61	1-2012-41	->604078-9	-179693b.6
2443	1-1-1-2-2-1	20771J.U	0-966+595-

APRICHL WEIGHT MIX.

ะจ-เม่นประว	20-000-20	5 0-10)00+*0	
0.4000-U3	0-1 0-0	0.4000-03 0.4	
\$1AT1000-03 0.4000-03 6.0 0.0	>¶AT(UNE ====================================	STATIUM 9 0.40000-03 0.0	
0.40000	0.400 iui	Fn-10004-0	
ე. +სსეს–ს3 წ. ს	0. +0000-43 0. u	ບ - 4ພວບີໄປບ3 G - ບ	
51AT1UN# 2 0.46000-U3 0.0 0.0	<pre>% #NJ2LAT % #NU00-0:0 0.0 0.0 0.0</pre>	51AT1LM# 8 0.40003-03 0.0 0.0	
60-0000+*0	0-0000-03	E 0- 0003 + - 0	60-1000¢**0
0.0 0.0	0000003 00	ני-טטטני-ט ט גו	0-1001-03 0-1
STATION® 1 0.44000-45 0.0 0.0	STATIJNE + 6.4000-03 0.0 0.0	5TATIUNE 7 0.4000-03 0.0	SFAFLUN# 10 0.40000-03 0.0 0.0

N AUJUSTMENT STATISTICS FUR IT HATION :

0•1760 0•1766 U 1745.8-U+ 5508.U-12 5

N PASS BY PASS BREAKDUMN OF AUJUSTNENT STALISTICS FOR THERATION : TGIAL Nº-UF NUMBER UF NUMBER UF MEIGHTED 55. DËGREES UF YAMIANCE <u>MEPTIJ INIS UF</u> TAE MEAN UF Cunstraints ubservatiums panametens uf residuals Frredum Cumpunint <mark>aubs--d nesiduals</mark> residuals ag 24240 42 0.4750 42 0.4760600404 24234 0.1761 0.18 0.4155 --U.UOUS STATIONS P.M.STEPS UKAIT 0 ¢ 90 PASS NO.

677-70 6777-70 TUTAL MUMBER OF OBSERVATIONS ... AKITAMEFIC MEAN OF RESIDUALS ... RMS OF ALL RESIDUALS

ORIGINAL PAGE IS OF POOR QUALITY

		1					
original p of poor q	AGE IS UALITY.	103-103-103-103-103-103-103-103-103-103-	0.14074	(M) 	0. 67 .462	(N) Z 96.96.96.96 96.0000-0- 90000-0 27.572 27.572-10.0006.95	9 . U3962
		ү (М) 13 6+109 -1-1-0. 1-0-10- 2-21-6-7 136+109-11-6-7	+4587 °L	-996195, 2026 -96624 -04224 -04224 -04224 -04224 -996295, 2026	1.23226	T (N) 	2. ásTT3
		2907 - 1092 	967 T 9 F 7		£7181-1	-111 : 111 : 111 -2420-01-12202 -2420-0 -24120-0 -24120-0 -2420-01-12	5
		FIMAL MÉSULTS FOM STAT APMIONL ESTIMATE = CUNNENT AUJUSTMENT = TOTAL ADJUSTMENT = AUJUSTED ESTIMATE =	STANDARD LEVIATION =	FIML RESULTS FOR STAT Resolute Stimate Apriori Estimate Current adjustment Total Adjustment Adjusted Estimate	STANDARD LIEVIATION :	FLMAL NESALTS FUN STATI SECONDAL ESTIMATE : CUMAENT AUJUSTNENT : TUTAL ADJUSTNENT : ADJUSTED ESTIMATE :	STARBARD LEVIATION :
х 		1.4.1 2 99469-939496 70000-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	4<9čU-0	(N) 7 71210-12- 71210-10- 71164-0 77164-0 700-12-20-06-	2-560-0	2 (M) 429641 [.45739 -0-0-0-2524 25246.0	celm.0
		(M) Y 905405-1761680- 07860-0 07860-0 07860-0	J. 34052	111 1 21275 1 21275 1 21275 1 21275 1 21275 1 2063334 101	2°83255	Y (N) 	1. Te902
ont'd)		coll :	\$6175°C	1090 : 1090 1092-9-9-9-9-1-9- 1092-9-9-9-9-1-9- 1092-9-9-9-9-1-9-1-9- 1092-9-9-9-1-9-1-9-1-9-1-9-1-9-1-9-1-9-1-9	17616-0	1907 : 8 MUK 20050-2- 2012-0-2- 2012-0-2- 2012-1-2-2-2-1 2005-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	1+++b
Table 7 (cc		TMAL RESULTS FOR STAT PRIORI ESTIMATE : UNKENT AUJUSTAENT : UTAL AUJUSTAENT : DUUSTED ESTIMATE :	IANDARD UEVLATIÚN :	TIML RESULTS FOR STAT	standakû Devlatluk #	FINAL RESULTS FUR STAT	STANDARD VÉVIATION :

37

.

	-10211-5169611- 	2+160-0		E1+70_1929404- 9000.u- 7u-101e-u 7u-101e-u	G. U33et	ORIGII OF PC	VAL PAGE FOR QUALIT	is TY
	Y 41) 	2°3035+		N N Y 267740. 24779 26020- 2- 260214.2 2672140. 22703	00ELZ *5		12/M1 TUU2 12/55-1116 50020-0 50020-0 80020-0 80020-0116 80020-0116	70000
2062 M	(M) X (M) 19-2763-20050 9-22-2-2-20050 19-22-2-2-2-21292	0.44123	6467 : a NG	(N) X CUUD-1-1-0-0- 1-2.0-0-1- T-2.0-1 T-2.2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	3+17+00		14/11 14/11 14/14/14 14/14/14 14/14/14 14/14/14 14/14/14 14/14/14 14/14/14 14/14/14	Uàct0.0 = 1 Y2tW1.0 = 1
NESULTS FOR STATE	RE ESTIMATE : NY AUJUSTNEMT : ADJUSTNEMT : TED ESTIMATE :	ARD DEVLATION :	KESULTS FUK STATH	LL ESTIMATE : ADJUSTNENT : ADJUSTNENT : ADJUSTNENT : FED ESTIMATE :	WD DEVIATION :		12000 1012 1012 1012 1012 1012 1012 101	6.00103 MMS VELIULT
FINAL	A APKIO	b STAND	FIML	A APAIDA 7 CUARED 0 101AL 0 ADJUSI	6 STAND		(N) 7 11000-0 11000-0 11000-0 11000-0 11000-0 11000-0 1000	C=2+7)=0
	(N) 7 (N) 7 (0,000 (0,000) (N) 2 (N)	1720-0		L [M] 224/229-4613 0-6000 224/229-4614 224/229-4614	965D.U		7.69- 6.94 9.1666 9.1262 9.1262 20100	04394 36920
	r (M) 143.13636 -0.01491 0.92454 M3.16746	ź. T 6733		((N) 402, 05-47 -0, 02-52 2, 25478 402, 05022	6. 48051		(N) Y 	
					N	10-105C	(H) 7831448.0 72741 177-0 142 143 7881 243 243 243 243 243 243 243 243 243 243 243	7-00141
CTTL : . NOT	(N) X 2350e09 -0 245c9, 1- 245c9, 1-	+61C- C	1111 5 : 7120	(N) X 2680-100001 12110-0 12120-0-100001	2.45UA	FUK PASS # =70	MTE =	I = NOLTA
INAL NESULTS FOR STAT	PAIDRI ESTIMATE : Urrent Augustment : Utal Adjustment : DJUSTED estimate :	TANJAKO VEVIATION :	IMAL RESULTS FUR STAT	PRIUKL ESTIMATE : .urkent aujustment : .utal aujustment : Djusted estimate :	TANDARD VËVLATION :	FINAL RESULTS	APRIDRI ESTIN Current adjug Tutal adjuste Adjusted Esti T.U.R.U. Esti	STANJAND LIEVI

1

(cont'd)

Table 7

Table 8 Constants and Force Model for GEOSPP

EARTH CONSTANTS USED BY GENSPRON :

SPEED OF LIGHT..... Astrummical unit... Sular Prés at lau... Singlé Range acc....: 0.6537414.140000041747 0.29825504000000000415 0.3986004125000000415 14375112927100000-04

ij

(M/S) (M/NL) (M)

GENVÜTENTIAL MUDEL USED IN THÌS NUM : PUSLA | 12 X 12

~

ZUNALS

VALUE	[Ŋ-(\0)+55+° C- [Ŋ-(\0)+55°2-	
N N	00	
22	9 T	
VALUE	2.538210-07 2.44600-07	
N EX	99	
a la	^ 9	
VALUE	1.624210-u6 1.212660-07	
INDEX N N	49	
VALUE	2. 102480-06 2. 102480-07	
X T	00	
INU	1	ALS
V ALUÉ	-1.04263U-03 3.573/40-07 1.930420-07	IALS AND TESSER
XXX	000	CTOR
ž z	NPN	S.E.

3	EX.	X >	UÉ .	<u>UNI</u>	ă	1 V I	LUE	JN	EX.	IVA .	
2	z	U	Ŋ	2	r	J	л	Z	z	U	~
N		9u-06694.6-	60-1+9+5+-6-	Ņ	N	1.573620-00	70-069050-6-	i M	-	21899ou-un	20-0-2-2
m	۷	3.084020-07	-2.057060-07	63	m	1.005870-07	1.973640-07	.*	-	Tu-014140. č-	10-01/044-4-
÷	~	7-930240-06	1.417160-07	*	m	5.939230-08	-1-209660-68	4	4	04050-04	21-(1/2014-4
ŝ	-	40-0°2044-4-	-7.98022004	-0	2	1-047310-07				-1-102205-1-	-7-054540-1-
ŝ	4	-2,~255800-09	01-Oceuan e	- 10	N.		91-05000 4-1-	4) -		
•	2	60-021561-9		••	m	1.249020-09	11-055464-6	a a	• •	-3-65362D-10	-1-127040-49
0	ŝ	-2.132000-10	01-02356	9	¢	1.889560-12	11-060526-5-	7	-	L-954250-U7	au-libčaul -d
-	2	30-052156-68	1.073410-04	-	m	3-4514+0-09	-5.02550-09	-	4	01-010265-5-	-2-6664-lu-10
,	ŝ	4.654430-12	11-11+1416-1	~	٥	-2.5u399U-11	1	~	1	1-19-261-1	21-1123223-5
3	-	1.849620-00	**U80890-08	3)	2	6.lo0660-09	** 100-050-09	- 13	-	AI-UTUIN.C-	
10	*	1.1-טנטלט 1.5-	9.745541-11	10	'n	-2.723420-12	1	3	0	21-088602.1-	21-licuEda_a
.0	•	2.407770+.6	3.70174U-L3	Ð	3	-1.5oupd0-13	L-006220.1	G .	-	1.025460-07	au-U23uc3-1
		•									
3	N	L+5+0690-09	40-105cot. 1-	9	n	-1-1212910-09	-1.324920-10	0	4	21-0+0+14-4-	21-174816-1
9	A	2.449460-13	-6.4U710-12	9	٥	5.715720-13	2.342020-12	3	-	21-0mc18-1-	- I-Wowee, - I-
¢,	IJ	6-0 10000-14	-1-0+07cb. +-	\$	ð	-4-34941U-15	22716US	7C	-	01-13-6-68-4	מו-המטכצימ-
2	N	-4.0-0440840	-6.272 wou-10	01	7	-1.022380-10	-9- 400540-10	3	4	-11-001-01-c-	11-070560-6-
2	•	21-000626-E-	21-0+++0++2-	10	-0	-2-564670-13	-1-000000-0-	1	~	2-100bca1-2	ci-hotola-f
91	5	c1-W++0C++	دلاسافيددد الا-	10	œ	2-242340-15	01-0525+3. 0 -	P C	10	01-065525.4	01-120800-1-
						•					
11	Ä	01-01602 0° C	-4.12224u-09	T	2	2.478020-09	-4-0%01/8-%-	11	1	11-0u0/r.t-	ux-U/cz/c.d-
H	÷	-1-020000-1-	11-261646.5-	11	۸	1.90obuu-12	3.204410-12		٥	21-UC[26c.8	21-Ubfell.1
1	-	c1-uc0o1 0. č	+1-1027+2.E-	11	Ð	1.723160-10	1-141720-15	11	\$	-1-0509ca.1-	01-024500-2
T	3	12-010216. 5-	-4.034.0U-La	11	11	0.3301oU-16	-1.00384Ü-17	2	4	du-0227+c.E-	0~012621-6-
7	N	01-00762 V.E		12	71	61-UUEEUE.2	1.126970-10	14	ŧ	11-08+00-11	-1-01 6160-1-
12	n	1-172210-12	£1-0*6010° E	12	0	2.154451.5	47-024454-8	77	2	CU02022-2-	C1-044040-4
21	1	41-(4514č-č-	5-27651 (J-16	2	9	A1-4157940-1	71-110000C-F		2		
	77	7-2174-00-19	-2-11-40-19	12	· 7			4	2	at	17-170004-1
j	;			;	l						

いため、北方が対応にいたのである。

ORIGINAL PAGE IS OF POOR QUALITY

(cont'd) Table 8

140.0 SEC 0.0 SEC 600.0 SEC EQUATIONS OF AUTION 1.60-07 VARIATIONAL EQUATIONS..... 1.60-05 INT.MESSAGE OUTPUT UNIT : 21 NUMINAL STEPSIZE...... RELATIVE ACCURACY

PEATURBATION MUMEL :

40

(12,12) 1 4, 4) YES	YES	YES	YES
	11-11 (N/S2)	(N/S2) (N/S2) (N/S2)	(MG) (= 1.1729
AT LUNS	16N5	= 0.0 = 0.0 :\$SUKE	5 = 406.9000 41171 411717 411717 411711 411711111 411711 411711 4117111 4117111 411711111111
TIAL EQU	D ACCELEKAT MG TRACK	55 JKALK Ial Diatiun pre Ellite area	ELLITE MASS CELITE KEFL Rim Tidës. E Mu. K
EUPUTEN 	ALUN ALUN	CHU RAD Satar Ka	SAT SAT SAT SAT SAT

U- 60	C0-01
# ¥	2
8	MEAK
E AV	UH LAL
KALI AL	714UH
E II	Ĩ.
umater.	NUMBER
	VOJHS

70%6 STATTUMS UNSERVING INTS FASS 1 7063 7090 7091 7092 9

.

ŧ,

2943

INPUT INFORMATION FIR PASS : 7003901.01

21.2.1

INEKTIAL CAKTESIAN (LÉNENTS AT THÈ EPOCH : analogoactesiana de la constant de la Z (M) X (M) (M) X

-4377042.00	ToosoE.IIIE ToosoE.IIIE
-594700-142	YUUT (A/S) -474.420057
-5492161.430	(274) TUUX -4720-0520-052

APHILAT NEICHT MATKLY :

0-0

99

000

0000

00000

ORIGINAL PAGE IS OF POOR QUALITY

. Second

ì

Table 9

BASELINE ESTIMATES AND RELATED STATISTICS :

alle ser risere.

The second second

BASELINER	STATIONA	STATLUNG	APRIORI EST.	ADJUSTED VAL.	ULFF.LA-e)	SIGHA	RELATIVE ALC.
ì	7003 ==	7040	12045951.701	12045950.847	-0.414	0.ULU	40-046.6
2	7003 ==>	1041	602032-143	602032.104	Ú-ÚZ4	0.030	1.440-07
ŝ	7063 440	7092	10003296.515	10003295.433	-0.002	0.025	0.030-09
	70.3	7046	¥890+73.055	9840471.520	-1.528	0.022	5-190-09
5	7063>	7114	3 502138.713	3502137 .442	-1.272	0-041	2.740-04
6	7003 ==>	7115	3501893.178	3501891.797	-1.301	0.037	2.520-00
7	7063 400	7120	7244020.742	7244019.261	-1.442	0.028	9.230-09
ŝ	7063 ***	7907	5928036.951	5928019 1003	-17.948	0.045	3-410-08
ý	7003 ==>	7943	12108539-054	12108535-064	-0.990	0.010	3.48D-09
10	7090	7091	12018100.002	12638160-219	0.150	0.024	4-520-09
A Å	7090 ==>	7092	0074009.770	6674004-743	-1.027	0.024	8-010-09
12	7090	7040	7247520.432	7247520.743	0.311	0.023	7.680-09
13	7040	7114	11768618.014	11764010.337	0.343	0.ula	3-070-09
14	7090 ==>	7115	11810028.850	11810629.014	0.158	0.016	3-200-09
Ĩ5	7090 =	7120	9050458.579	9656458.910	166.0	0.021	5-120-09
1.	7090	7907	11750456-119	11750458.620	2.500	0.034	6-920-09
17	7090 ==>	7943	3196328.733	3190328.040	-0.047	U.UZI	1.550-04
18	7091 ==>	7092	10141371.223	10141371.002	0.379	0.031	7-210-09
19	7091 ===>	7096	10199043.124	10199042.530	-0.547	0-025	3.440-09
فانج	7091 ***	7114	3929720.000	3929728.019	-0.782	0.039	2.340-08
21	7091 445	7115	3900598.445	3900597.570	=0.815	0-034	2.070-08
22	7091 ==>	7120	7540273.824	7540273.123	-0.701	0.029	4-100-04
53	7091 40	7407	0257037.782	6257020.271	-17.511	0.088	5.350-04
24	7091 ==>	7743	12248596.212	12249596.272	0.054	0.022	4.380-09
25	7092 =>>	7090	3514556.646	3514554.371	-2.310	0-021	1-#40-04
26	7092 ==>	7114	7479017.596	7479018-401	0.005	0-027	8.500-09
27	7092 20	7115	7584680.410	7504001.155	0.745	0-058	4.760-04
24	7042 **>	7120	4015538.430	4015538.979	0.000	0.028	1.040-08
29	- 7いりえ エルシ	1901	11171115.715	11171110-424	-2-291	0.041	8.740-04
30	7092 = xX	7943	5192043-026	2745040°7435	-2.044	0.024	l.l.D-úe
41	7046	7114	7414696.951	7414696.912	-0-0+0	0-020	7-400-09
32	7096 ***	7115	7402692.901	7402692.731	-0.170	0.025	8.030-09
33	7076 ==>>	7120	4112220-542	4112220.461	-0.0al	0-025	1.440-08
34	7090 ==	7907	9373094.052	9373043.497	-0.354	0.044	1-110-08
- 2 C	7096 ==>	7943	4554571.701	+554572.165	0.404	0.024	7*540-04
36	7114 ====	7115	258289.956	238290-167	0.510	0.030	3-330-07
37	7114	7120	4022959.527	4022959.205	-0-022	0.031	1-910-08
38	7114	7907	72-3602-178	72+3580.024	-14+124	0.076	2.490-08
39	7114 #10	7943	10587702.281	10581702.70%	U_440	0.018	4.050-09
+0	7115 ##) 71 <u>-</u> 0	4096904.174	4090904.140	-0.027	0-031	7-140-09
4 k .	7115 820	7907	7038726-657	7038712.240	-14-411	0.074	2.510-08
42	7115 410	7943	10 595 990 . 172	10595990.425	0.253	0.018	+ + 0 VD-0 Y
43	7120	1441	4041401.001	ANA13AA *398	-4-212	0.054	1.360-04
	7120 ***	7743	19903999	7840484.300	0.401	0.022	0.750-04
45	7907 ##	- 7943	14787493-058	10787496.735	3-646	0.041	4.940-09

(a)	CONSOLIC	ATED STATISTICS	FOR STATION	2 7063				
PASS	OBSERV	RÉSID MEAN		DEVIATION	LENGTH	MIN RESU	MAX RESU	MEAN CLOS
L	4	-0.9288	5.383	6.123	1292.00	-8.493	5.007	-0.93
2	477	0.1070	0.237	0.212	1641.00	-2.866	Ö. 398	0.11
3	202	0.1237	0.643	0.632	1494.00	-6.840	5.480	0.12
4	6	-2.0976	3.459	3.012	1689.00	÷5.903	1.408	-2.10
5	859	0-1242	0.225	0.187	2358.00	-2.436	0.473	0.12
6	1	0.0458	0.046	0+0	0.0	0.046	0.046	0.05
7	1550	0.0139	0.322	0.321	2810.00	-4.383	8.987	0.01
8	4	-4.4022	5.625	4.043	1503.00	-9.652	-1.045	-4.40
9	14	-0.4982	2.473	2.514	2550.00	-4.545	5.946	-0.50
10	1167	-0.1706	0464	0.432	2484.00	-6.694	7+124	-0.17

Table IV Residual Summaries by Stat	10	tati	-S'	bv.	es	Summari	lua I	Resid	10	ble	Ta
-------------------------------------	----	------	-----	-----	----	---------	-------	-------	----	-----	----

(b)

CONSOLIDATED STATISTICS FOR STATION : 7090

PASS	OB SERV	RESID MEAN	RMS ==============	DEVIATION	LENGTH	MIN RESD	MAX RESD	MEAN CLUS
1	97	0.0882	0.130	0.095	2156.00	-0.221	0.344	0.09
2	167	-0.0325	0.104	0.099	2182.00	-0.337	0.177	-0.03
3	182	-0.0892	0.131	0.096	2519.00	-0.513	0.131	-0.09
4	207	0.0322	0.109	0.105	2471.00	-0.282	0.264	0.03
5	196	0.0335	0.140	0.137	2631.00	-0-433	0.448	0.03
6	141	-0.0832	0+142	0.116	1810-00	-0.386	0.192	-0.08
7	263	-0.0764	0.119	0.091	2853.00	-0.427	0.177	-0.08
8	119	0.0891	0.138	0.106	2037.01	-0.153	0.384	009
9	67	-0.0531	0.093	0.078	1040.00	-0.235	0.145	-0.05
10	171	-0.0780	0.122	0.094	2787.00	-0.471	0.181	-0.08
11	136	-0.0981	0.138	0.097	2036.00	-0.45L	0.101	-0.10
12	203	-0,0640	0.112	0.092	2481.00	-0.526	0.145	-0.06
13	50	0.0123	0.080	0.079	574-00	-0.157	0.216	0.01
14	29	0.0674	0=143	0.128	1287.00	-0.219	0.286	0.07
15	136	-0.0940	0-124	0.081	2339.00	-0.347	0.092	-0.09
16	104	0.1106	0.435	0-422	2645.00	-3.875	0.378	0.11
17	55	0.1305	0.233	0.194	1318.01	-0.282	0.690	0.13
18	162	-0-1606	0.204	0.126	2271.00	-0.472	0.071	-0.16
19	173	0.0735	0.136	0-114	2491.00	-0.272	0.326	0.07
20	136	-0.1598	0.212	0-140	2409.00	-0.567	0.111	-0.16
21	155	0.0943	0.185	0.159	2421.00	-0.323	0.378	0.09
2 2	41	0.0313	0.069	0.062	1090.00	-0.113	0.143	0.03
23	88	0.1992	0.218	0.088	1438.00	-0.102	0.348	0.20
24	233	-0.0433	0.112	0.104	2842.00	-0.597	0.195	-0.04
25	115	0.1264	0.156	0.092	1947.00	-0.168	0.345	0.13
26	6	0.1585	0.172	0.073	93.00	0.071	0.280	0.16
27	189	0.0197	0.128	0.126	2638.00	-0.289	0.294	0.02
28	154	0.0887	0.123	0.085	2109.00	-0.164	0.328	0.09
29	154	-0.0249	0.223	0.223	2088.00	-0.567	0.398	-0.02
30	214	0.0598	0.128	0.114	2700.00	-0-379	0.292	0.06

Table 10 (cont'd)

(c)	CONSOLT	DATED STATISTICS	FOR STATION	: 7091				
PASS	OBSERV	RESID MEAN	RHS	DEVIATION	LENGTH	MIN RESD	MAX RESD	MEAN CLOS
1 -	137	0.0824	0.271	0.259	1145.00	-0.750	0.683	0.08
2	352	-0.0646	0.182	0-171	1718.00	-1.040	0.346	-0.06
3	240	0-0505	0.169	0-162	1879.00	-0.545	0.450	0.05
4	439	-0.0202	0.314	0.313	1965-01	-1.142	4.742	-0.02

(d)

CONSOLIDATED STATISTICS FOR STATION 1 7092

OB SERV	RESID MEAN	RMS	DEVIATION	LENGTH	MIN RESD	MAX RESD	MEAN CLOS
322	0.2185	0.268	0.156	1761.01	-0.258	0.527	0.22
286	-0.1712	0.268	0.206	1153.00	-0-845	0.666	-0.17
1273	-0-0004	0.239	0.239	2380.00	-1-234	0.986	-0.00
363	-0.0324	0.304	0.303	2271.00	-1.293	0.734	-0.03
9	0.0926	0.331	0.337	174.00	-0.367	0.726	0.09
	08 SERV 322 286 1273 363 9	OB SERV RESID NEAN 322 0.2185 286 -0.1712 1273 -0.0004 363 -0.0324 9 0.0926	OB SERV RESID MEAN RMS 322 0.2185 0.268 286 -0.1712 0.268 1273 -0.0004 0.239 363 -0.0324 0.304 9 0.0926 0.331	OB SERV RESID NEAN RMS DEVIATION 322 0.2185 0.268 0.156 286 -0.1712 0.268 0.206 1273 -0.0004 0.239 0.239 363 -0.0324 0.304 0.303 9 0.0926 0.331 0.337	OB SERV RESID MEAN RMS DEVIATION LENGTH 322 0.2185 0.268 0.156 1761.01 286 -0.1712 0.268 0.206 1153.00 1273 -0.0004 0.239 0.239 2380.00 363 -0.0324 0.304 0.303 2271.00 9 0.0926 0.331 0.337 174.00	OB SERV RESID MEAN RMS DEVIATION LENGTH MIN RESD 322 0.2185 0.268 0.156 1761.01 -0.258 286 -0.1712 0.268 0.206 1153.00 -0.845 1273 -0.0004 0.239 0.239 2380.00 -1.234 363 -0.0324 0.304 0.303 2271.00 -1.293 9 0.0926 0.331 0.337 174.00 -0.367	OB SERV RESID NEAN RMS DEVIATION LENGTH MIN RESD MAX RESD 322 0.2185 0.268 0.156 1761.01 -0.258 0.527 286 -0.1712 0.268 0.206 1153.00 -0.845 0.666 1273 -0.0004 0.239 0.239 2380.00 -1.234 0.986 363 -0.0324 0.304 0.303 2271.00 -1.293 0.734 9 0.0926 0.331 0.337 174.00 -0.367 0.774

(e)

CUNSOLIDATED STATISTICS FOR STATION : 7096

PASS	UBSERV	RESID MEAN	RMS	DEVIATION	LENGTH	MIN RESD	MAX RESD	MEAN CLCS
1	969	0.0018	0.189	0.189	2384.00	-0.583	0.545	0.01
2	461	0.0359	0.150	0.146	2008.99	-0.731	0.331	0-04
3	268	-0.1355	0.257	0.219	1109.01	-0.931	0.313	-0.14
4	91	-0-3075	0.391	0.244	652.00	-0.953	0.122	-0.31
5	45	0=0547	0.166	0.158	924.30	-0.451	0.356	0.06
6	616	0.0351	0.213	0.210	1368.01	-1.019	0.531	0.04

(f)

CONSOLIDATED STATISTICS FUR STATION : 7114

PASS	OBSERV	RESID MEAN	RMS	DEVIATION	LENGTH	MIN RESD	MAX RESD	MEAN CLOS
1	182	-0.0405	0.176	0.172	1181.99	-0.458	1.003	-0.04
2	17	-0.1346	1.475	1.514	1136.00	-4.979	2.632	-0.13
3	855	0.0155	0.263	0.262	2535.00	-3.965	1.966	0.02
4	9	1.1201	2.490	2.358	1367.00	-1.729	5.392	1.12
5	161	0.0939	0+155	0.124	1009.99	-0-310	0.465	0.09
6,	390	-0.0036	0.129	0.129	2102.99	-0.387	0.968	-0.00
7	6	-0.7358	3.655	3.922	887.00	-4.838	6.072	-0.74
8	228	-0+0292	0.350	0.349	1045.00	-0.384	4.296	-0.03
9	.7	0.0771	0.111	0.086	676.00	0.001	0.236	0.08
10	7	0-4243	0.703	0.606	1080.00	0.099	1.779	0.42
11	4	-4.5052	5.795	4.208	400.00	-8.096	0.651	-4.51
7 8 9 10 11	6 228 7 7 4	-0.7358 -0.0292 0.0771 0.4243 -4.5052	3.655 0.350 0.111 0.703 5.795	3.922 0.344 0.086 0.606 4.208	887.00 1045.00 676.00 1080.00 400.00	-0.387 -0.384 0.001 0.099 -8.096	6.072 4.296 0.236 1.779 0.651	-0. -0. 0. 0.

Table 10 (cont'd)

(g)	CONSOL	IDATED STATISTICS	FOR STATION	: 7115			v	
PASS	OBSERV	RESID MEAN	RUS HARASI JAABARA	DEVIATION	LENGTH	MIN RESD	MAX RESD	MEAN CLUS
L	264	0.0850	0.131	0-099	1224.01	-0.178	0.379	0.08
2	29	0.2660	0.280	0.088	711.00	0.077	0.410	0.27
3	384	-0.0730	1.057	1.056	2001.00	-6.960	0.595	-0.07
4	27	-6.7929	6.793	0.090	1021.00	~6.969	-6.617	-6.79
<u> </u>	500	0.0934	0.151	0.119	2271.00	-0.422	1.147	0.09
٠	38	0.3169	0.328	0.086	1313.00	0.120	0.488	0.32
7	172	0.3589	0.511	0.364	1346.00	-0.525	4.824	0.36
8	63	-0.0468	0-145	0.138	889.00	-0-346	0.257	-0.05
9	119	-0.2538	0.312	0-181	1913.00	-0.739	0.504	-0.25
10	588	0.1708	0.213	0.128	2727.00	-0.255	1.811	0.17
11	37	0.1305	0.165	0.102	1608.00	-0.075	0.363	0.13
12	44	0.2436	0.286	0.151	652.00	-0.040	0.949	0.24

(h)

CONSOLIDATED STATISTICS FOR STATION : 7120

PASS	OBSERV	RESID MEAN	RMS	DEVIATION	LENGTH	MIN RESD	NAX RESD	HEAN CLOS
1	225	-0.1213	0.142	0.073	1964.00	-0.380	0.120	-0.12
2	44	-0.0037	0.157	0.159	829.00	-0.112	0.180	-0.00
3	160	0.0996	0.140	0.098	1297.00	-0-225	0.313	0.10
° 4	42	-0.0689	0.108	0-084	618.00	-0.218	0.098	-0.07
5	187	0.0268	0.133	0-131	2614.00	-0.337	0.857	0.03
6	346	-0.0766	0.114	0.085	2759.00	-0.348	0.247	-0.09
7	401	0.0931	0.138	0.102	2573.00	-0.259	0.298	0.09
8	50	-0.2583	0.294	0.141	865.00	-0.511	0.034	-0.26
9	121	-0.1879	0.216	0.107	1655.00	-0.380	0.104	-0.19
10	328	0.1102	0.163	0.120	2417.00	-0.221	0.409	0.11

(i)

CONSOLIDATED STATISTICS FOR STATION : 7907

PASS	OBSERV	RESID MEAN	RMS	DEVIATION	LENGTH	MIN RESD	MAX RESD	MEAN CLUS
L	12	0.1231	0.366	0.360	292.40	-0.408	U. 939	0.12
2	41	-0.0135	0.604	0.611	1132.95	-1.520	0.761	-0.01
3	51	0.0917	0.509	0.505	802.51	-1.291	0.803	0.09
4	19	-0.0486	0.335	0.341	1027.76	-0.767	0.561	-0.05
5	5	-0.0084	0.596	0.666	360.15	-1.164	0.446	-0.01
6	52	0.1667	0.521	0.498	892.90	-0.951	2.032	0.17
7	24	0.0601	0.401	0.405	660.27	-0.925	0.724	0.06
8	19	-0.2028	0.393	0.346	607.64	-0.868	0.360	-0.20
9	35	0-0493	0.288	0.287	1162.58	-0.648	0.640	0.05
10	53	-0.0616	0,408	0.408	914.95	-1.008	0-881	-0.06
11 L	34	-0.0226	0.398	0-403	967.53	-1-199	0.697	-0.02
12	5	0.2501	0-257	0.065	360-10	0.169	0.303	0.25
13	24	-0.5918	1.005	0.830	1110.02	-2.043	0.962	-0.59
14	17	0.0004	0-813	0.838	689.98	-1.536	1.569	0.00
15	8	0.2717	0= 528	0.484	420.00	-0.434	1.126	0.27
16	9	-0.1124	0.568	0.590	465.05	-1.312	0.452	-0.11
17	22	-0.1859	0.744	0.737	847.96	-1.970	1.863	-0.19
18	28	0.2387	0.405	0.333	1012.50	-0.646	0.796	0.24
19	2	-0.3987	0.425	0.207	90.00	-0.545	-0.252	-0.40
20	29	0.0272	0-411	0-417	779.97	-0.855	0.698	0.03

original page **i3** of poor quality

S CONTRACTOR

ł

Table 10 (cont'd)

(J)	CONSOL I	DATED STATISTICS	FOR STATION	: 7943				
PASS	OBSERV	RESID NEAN	RMS	DEVIATION	LENGTH	NIN RESO	AX RESO	MEAN CLUS
1	56	0.0012	0.433	0.437	1154.92	-1.019	0.959	0.00
2	122	0.0426	0.338	0.336	2325.29	-1.432	0.815	0.04
3	82	-0.0668	0.439	0.437	1905.10	-1.252	1.074	-0.07
4	98	-0.0301	0.408	0.409	2272.34	-0.970	0.715	-0.03
5	83	0.0633	0.426	0.424	1484-75	-1.229	1.222	0.06
6	85	0.0516	0.337	0.335	1547.79	-0.917	0.872	0.05
7	90	0-1375	0-292	0.259	1424-39	-0.489	0.991	0-14
	212	-0.0796	0.316	0.309	2744.95	-0.864	0.679	-0.08
9	159	0.0983	0-344	0.330	2910.00	-0.720	0.861	0.10
LÖ	47	-0.0243	0.511	0.516	1934.86	-1.052	1.198	-0.02
11	5.4	0.0337	0.429	0-432	1514.65	-1.193	1.353	0.03
12	75	-0-1024	0.552	0.546	1605.00	-1.306	0.974	-0.10
13	139	0.0414	0.239	0.236	1822.48	-0.681	0.594	0.04
14	100	-0.0034	0.375	0.377	1897.49	-0.853	1.041	-0.00
15	170	-0.0420	0.414	0.413	2955.00	-1.047	1.295	-0.04
16	106	-0.0837	0.347	0.338	1890.00	-1.137	0.715	-0.08
17	90	-0.0132	0.280	0.281	1919-92	-0.878	0.702	-0.01
18	44	-0.0889	0-470	0.467	2167.47	-1-129	0.643	-0.09
19	79	0.1667	0-424	0.392	2287.55	-0,943	0.849	0.17
20	178	0.0212	0-282	0.282	2489.80	-0.607	1.253	0.02
21	38	-0.1376	0.425	0.417	1492.55	-1.638	1.460	-0.14
22	88	-0.0665	0.485	0.483	2092.54	-1-147	1.249	-0.07
23	172	-0.0355	0.263	0.261	2827.32	-0.071	0.611	-0.04
24	73	-0.3053	0-399	0.259	629.94	-0.896	0-117	-0.31
25	67	0.0351	0.448	0.450	1619.87	-1.124	0.798	0.04
26	96	-0.0945	0+596	0.592	1619.69	-1.605	1.349	≻0 +09
27	163	-0-1419	0.279	0.241	1919.90	-0.771	0.511	-0.14
28	191	0.1105	0.330	0.312	1994.97	-0.727	0.898	0.11
29	262	0.1799	0.365	0.318	2999-78	-0.819	0.837	0.18
30	97	0.1417	0.282	0.245	1942.65	-0.673	0.703	0-14
31	61	0.1398	0.466	0.448	2175.10	-0.951	0.875	0.14
32	41	-0.0845	0.485	0.483	1507.44	-1.351	0.607	-0.04

D3-43 N83 13540

١

and a

2.22 Doppler Experiments

2.221 Geometric Adjustment of Simultaneous Doppler-Derived Range Differences

The results of work on this topic are described in a paper presented at the Third Internation Symposium on the Use of Artificial Satellites for Geodesy and Geodynamics, Ermioni, Greece, September 20-25, 1982. It appears on the following pages and will be published in the proceedings of the symposium obtainable from the National Technical University, Athens. Third International Symposium on the Use of Artificial Satellites for Geodesy and Geodynamics, Ermioni, Greece, September 20-25, 1982

GEOMETRIC ADJUSTMENT OF SIMULTANEOUS DOPPLER-DERIVED RANGE DIFFERENCES

٦

^J Chengze Zhang* and Ivan I. Mueller Department of Geodetic Science and Surveying The Ohio State University, Columbus, Ohio 43210 USA

ABSTRACT. A mathematical model for the use of simultaneous Dopplerderived correlated ranges in the geometric mode is presented. The model is tested with data taken during the EDOC-2 campaign with different integration intervals. The results of this adjustment are compared with the EDOC-2 adopted solution and those from an uncorrelated model [Schneeberger et al. 1982] used earlier to provide more economical calculations.

The analysis of the comparison shows that the correlated mode is superior to the uncorrelated one when the optimum integration interval of 23 seconds is used.

1. INTRODUCTION

The geometric purpose of satellite geodesy is to tie remote stations together in the same geometric system. Its ultimate aim is to determine the coordinates of unknown ground stations [Mueller 1984].

Satellite geodesy with Doppler techniques is based on the principle that a frequency transmitted from a satellite-borne transmitter moving relative to a ground receiver is observed shifted by the Doppler effect. The observations are Doppler counts which are measures of the range change between the satellite and the receiver during the integration interval [Wells 1974].

In the geometric mode for Doppler observations, the satellite is regarded as a benchmark in space and its coordinates at the observation instants are unknowns which are solved in an adjustment with the unknown coordinates of ground stations. Such solutions are based on geometric rather than dynamic principles; therefore the calculations are relatively simple and do not require extensive computer programs.

^{*}On leave from the Institute of Geodesy and Geophysics, Chinese Academy of Sciences. Wuhan, People's Republic of China.

In a previous study [Schneeberger et al. 1982], the Doppler-derived ranges were regarded as uncorrelated pseudo-observations as a further simplification (to save computer time). In fact, since the Doppler-derived ranges are calculated from Doppler counts, it is obvious that there exist correlations between them in a given pass. The purpose of this study is to investigate the use of Doppler-derived correlated ranges in the geometric mode.

1

This method is then tested against a data set from which a dynamic solution is available. The results are compared with both the dynamic solutions and the uncorrelated geometric one.

2. SUMMARY OF THE PREVIOUS STUDY BASED ON UNCORRELATED OBSERVATIONS [SCHNEEBERGER ET AL. 1982]

2.1 Definitions

The coordinate system in which the computations are performed is an earth-fixed Cartesian system. It is defined by the assigned six coordinates distributed among at least three ground stations. A satellite point is the position of a satellite at a certain epoch. An event is the set of all observations to a satellite point. A pass is a set of satellite points between two epochs which are observed without interruption from at least six ground stations. A Doppler-derived range is a pseudo-observation derived by adding the range differences computed from Doppler counts to an estimated initial range.

2.2 Doppler-Derived Ranges

The basic equation which related the ratio between the received frequency f and the transmitted frequency f_0 to the range rate between transmitter and receiver (r) is accredited to Doppler (1803-1853):

$$\frac{\mathbf{f}}{\mathbf{f}_{c}} = \left(\frac{\mathbf{c}}{\mathbf{c} + \tilde{\mathbf{r}}}\right) \approx \left(1 - \frac{\dot{\mathbf{r}}}{\mathbf{c}}\right)$$

where c is the velocity of propagation for electromagnetic waves in a vacuum. This equation has to be integrated to find a relation between the shifted frequency and the range difference during a time interval t. A detailed derivation can be found in [Brown and Trotter 1969] resulting in

$$r_{j} - r_{j-1} = \lambda_0 (N_j - \Delta f_{00} t_j) + S$$
 (1)

where

r_j r_{j-1} N_j

= range at epoch T_{j-1}

= range between receiver and transmitter at epoch T,

= the integrated Doppler shift over time interval $t_j = T_j - T_{j-1}$ (referred to as the Doppler count) Δf_{00} = the difference between the transmitted frequency and the reference frequency generated in the receiver

 $\lambda_0 = \frac{f_0}{c}$ = wavelength corresponding to the frequency of transmission f_0

= correction term representing all systematic errors such as bias in the difference between the adopted transmitted and reference frequencies, and/or the drift rates of transmitter and receiver frequencies.

Substituting the range difference computed from the Doppler count

$$\Delta r_{i} = \lambda_{0} (N_{i} + \Delta f_{00} t_{i})$$

into equation (1), the range at epoch T_{i} is

S

$$r_j = r_{j-1} + \Delta r_j + S_j$$

If the range r_0 at an initial epoch T_0 is known, the range for an epoch T_k can then be calculated from (taking into account that most instruments reset the Doppler count for each interval)

 $r_{k} = r_{0} + \sum_{j=1}^{k} \Delta r_{j} + S_{k}$ (2)

This equation is correct only in a vacuum. Since the signal is passing through the ionosphere and the troposphere, the range has to be corrected for refractive effects. The ionospheric refraction is automatically compensated (to first order) by measuring the Doppler shift of the two different frequencies (400 and 150 MHz) [Krakiwsky and Wells 1971]. Each range has to be corrected therefore only for the tropospheric refraction ΔT_r . The tropospheric refraction model used in this study is the one outlined in [Brown and Trotter, 1973], using the Smith-Weintraub model for the index of refraction [Jordan et al. 1966].

Since the initial range in equation (2) is not known, we must use an approximate initial range r_0^1 and add a correction term a_0 to be estimated from the adjustment,

 $r_0 = r_0^1 + a_0$

 a_0 is considered part of the systematic error term S_k in equation (2). The modelling of the other systematic effects in S_k is k given in great detail in [Brown and Trotter 1969; Kouba and Boal 1976]. In this study only two major terms are used: a + bt. The main cause of the constant term a is the possible bias in the adopted frequency f_0 , and the initial range error a_0 above. The time dependent term bt is caused mainly by the difference in the adopted values for the transmitter and receiver frequencies (frequency offset) Δf_{00} . Other terms in the systematic error model mentioned by Brown and Trotter [1969] but not considered in this study are range dependency, a function of the second power of time, and a function of the elevation angle (for residual refraction errors). An explanation of why only the above two terms are used here may be found in [Schneeberger 1982].

Substituting all terms for S and the correction for tropospheric refraction equation (2) can be written as

$$r_{ik} = r_0 + \sum_{j=1}^{k} \Delta r_j + \Delta T_r + a_i + b_i t_k$$

where the subscript i refers to ground station i. Defining the Doppler-derived range as

$$r_{D_k} = r_0 + \sum_{j=1}^{K} \Delta r_j + \Delta T_r$$
, (2')

and recalling that

$$r_{ik} = \sqrt{(X_k - X_i)^2 + (Y_k - Y_i)^2 + (Z_k - Z_i)^2}$$

and changing the signs of a and b, we arrive at the mathematical model

$$r_{D_{ik}} = \sqrt{(X_{k} - X_{i})^{2} + (Y_{k} - Y_{i})^{2} + (Z_{k} - Z_{i})^{2} + a_{ik} + b_{ik}t_{k}}$$
(3)

where r_{Dik} is the Doppler-derived pseudo-range (derived from the measured Doppler counts and corrected for tropospheric refraction), and the unknown parameters to be solved for in a least squares adjustment are

X ₁ , Y ₁ , Z ₁	the unknown station (i) coordinates
x _k , Y _k , Z _k	the unknown satellite (k) coordinates
aie, bie	the unknown coefficients used to model systematic errors for each station (i) and pass (£)

 t_{L} is the time elapsed from the epoch of the initial range r_{0} .

2.3 Least Squares Adjustment

The mathematical model developed above has the form of an observation equation:

$$L_a = F(X_a)$$

ORIGINAL PAGE IS

(4)

where L_a is the adjusted Doppler-derived range, and X_a is the vector of the unknown^a parameters which can be divided into three ^a subvectors:

 $XG_a = XG_0 + XG$ containing the coordinates of the ground stations $XC_a = XC_0 + XC$ containing the error coefficients a, b $XS_a = XS_0 + XS$ containing the satellite coordinates

Equation (3) can be written in linearized form

$$r_{\text{Dike}} + v_{\text{ike}} = F_{\text{ike}}^{0} + \frac{\partial F}{\partial XG} \Big|_{X_{0}} \cdot XG_{i} + \frac{\partial F}{\partial XC} \Big|_{X_{0}} \cdot XC_{ie} + \frac{\partial F}{\partial XS} \Big|_{X_{0}} \cdot XS_{k} + \dots$$
(5)

or, after neglecting higher-order terms

$$v_{ike} = A_{ike} \cdot XG_i + C_{ike} \cdot XC_{ie} + S_{ike} \cdot XS_k - W_{ike}$$

where

$$A_{ikl} = \frac{\partial F}{\partial XG}\Big|_{XG_{i}^{0} XC_{il}^{0} XS_{k}^{0}} = \left(-\frac{X_{k}^{0} - X_{i}^{0}}{r_{0} ikl}, -\frac{Y_{k}^{0} - Y_{i}^{0}}{r_{0} ikl}, -\frac{Z_{k}^{0} - Z_{i}^{0}}{r_{0} ikl}\right)$$

$$C_{ikl} = \frac{\partial F}{\partial XC}\Big|_{XG_{il}^{0} XC_{il}^{0} XS_{k}^{0}} = (1, t_{k})$$

$$S_{ikl} = \frac{\partial F}{\partial XS}\Big|_{XG_{il}^{0} XC_{il}^{0} XS_{k}^{0}} = -A_{ikl}$$

$$W_{ikl} = r_{Dikl} - (r_{0} ikl + a_{0} il + b_{0} ilt_{k})$$

$$r_{0ik} = \sqrt{(X_{k}^{0} - X_{i}^{0})^{2} + (Y_{k}^{0} - Y_{i}^{0})^{2} + (Z_{k}^{0} - Z_{i}^{0})^{2}}$$

In this study all pseudo-range observations are assumed to have equal weight. For reason of convenience in programming, the a priori variance of unit weight is chosen to be equal to the variance of a range observation

$\sigma_0^2 = \sigma_{DR}^2$

Therefore all observations have the weight one. Further details of this least squares adjustment as used in the Geometric Doppler (GEODOR) computer program may be found in [Schneeberger 1982].

ORIGINAL PAGE IS

3. ADJUSTMENT WITH CORRELATIONS CONSIDERED

Contraction of the second second second

3.1 Mathematical Model

The correlation existing in the Doppler-derived ranges are considered in this study by assuming that the range differences (computed from the Doppler counts) are independent observations.

Under this consideration, substituting eq. (2') into (3) and moving all the terms to the left side, we obtain

$$\sqrt{(X_{k}-X_{j})^{2} + (Y_{k}-Y_{j})^{2} + (Z_{k}-Z_{j})^{2}} + a_{j\ell} + b_{j\ell}t_{k} - r_{0} - \sum_{j=1}^{K} \Delta r_{j} - \Delta T_{r} = 0$$
(6)

Thus the model becomes the form of a condition equation with parameters:

$$F(L_a, X_a) = 0 \tag{7}$$

Eq. (6) can be written in a linearized form, using the same notation as before,

$$A_{ik\ell}X_{i} + C_{ik}XC_{ik\ell} + S_{ik\ell}XS_{k} + \sum_{j=1}^{K} B_{ik\ell}V_{j} - W_{ik\ell} = 0$$
(8)

where B_{iko} stands for the derivatives of F with respect to Δr_i , i.e.,

$$B_{ikl} = \frac{\partial F}{\partial \Delta r_{j}} = \begin{cases} -1 & \text{if } j \leq k \\ 0 & \text{if } j > k \end{cases}$$
(9)

All the observations are assumed to have equal weight. For convenience in programming, the a priori variance of unit weight is chosen to be equal to the variance of a range difference observation

$$\sigma_0^2 = \sigma_{\Delta r}^2$$

Therefore, all the observations have unit weight. For the detail of the derivations of the mathematical model and the method of solving this problem, see [Zhang 1982].

3.2 Construction of Normal Equations

The solution of the normal equation system for the least squares model of condition equations with parameters has the following form [Uotila 1976]:

$$X = -(A^{T}M^{-1}A)^{-1} A^{T} M^{-1}W$$
 (10)

where

$$M^{-1} = (B P^{-1} B^{T})^{-1}$$

1

(12)

Therefore, before constructing the normal equation system, M^{-1} has to be found first. Fortunately, the matrix B has a regular configuration, and so does the matrix M^{-1} [Ashkenazi et al. 1980]. For the sake of simplicity, we investigate a matrix B for one station and one pass. From eqs. (8) and (9) it is evident that the matrix B has the form

		-1	0	0	0	• • •	0
		-1	-1	0	0	• • •	0
В	=	-1	-1	-1	0	• • •	0
		•	:	•	•	• • •	
		-1	-1	-1	-1		-1

If one assumes uniform weight and no correlations between the range differences, and chooses the variance of unit weight equal to the variance of range difference observation, the matrix P will become an identity matrix. Then the matrix M can be written as

	1	1	1	1		1	
	1	2	2	2		2	
$M = B P^{-1}B^{T} = 0$	1	2	3	3		3	(13)
	•	• • •	:	•	•	:	
	1	2	3	4		'n	

where n is the number of observations in this pass. M^{-1} is found by inverting M:

		2	-1	0	0	• • •	0	0	0	
		-1	2	-1	0	• • •	0	0	0	
M-1 -	_	0	-1	2	-1	•••	0	0	0	(14)
		•	•	•	•	•	•		•	
		0.	0	0	0	• • •	-1	2	-1	
		0	0	0	0	• • •	0	-1	1	

Since M^{-1} is a regular diagonal matrix, it will not invite much difficulty when constructing normal equations. For the case of more than one station and more than one pass, matrices B and M^{-1} can easily be found by using the same method [Zhang 1982].

After the matrix M^{-1} is found, all the coefficients of the normal equation system can be calculated. Since this normal equation system is still of the sparsity pattern, a method called second-order partitioned regression can be used to eliminate the unknowns to save storage and computing time [Brown and Trotter 1969].

4. NUMERICAL TEST

4.1 Solutions and Their Comparisons

The data taken during EDOC-2 was used for testing the uncorrelated and correlated modes. Fig. 1 shows the network used which is chosen from EDOC-2. There were many solutions for each mode, but only the best

Fig. 1 EDOC-2 network [Boucher et al. 1981]

one of each mode can be presented here. Table 1 is a summary of these two solutions. Solution F4-5 is in the uncorrelated mode; solution C-5 in the correlated mode. The integration intervals of both solutions are 5 x 4.6 = 23 seconds.

and a set of the set of the second second

The information of solutions using different integration intervals from the correlated mode is collected in Table 2. In the designation C-i, i indicates the integration integrals used, e.g., in case of i = 2, the range change is over 2 x 4.6 = 9.2 s. Fig. 2 gives a visual comparison of these solutions. It is obvious that the solution with i = 5 is the best.

4.2 Test of the Systematic Error Model

In this study as in the earlier one only the two major terms are used for modeling the systematic effects: a + bt. The residuals of the observations of randomly selected passes from the total of 193 passes were plotted for each station. Fig. 3 is one example. Investigating the distributions of the residuals of the observations at each station, no significant remaining systematic effect is found, which indicates that the two major terms used for modeling the systematic effects are reasonable.

4.3 Test of the Residuals

From Table 1 we can find that the correlated mode is superior to the uncorrelated one. In spite of that, there are still significant differences between solutions C-5 and EDOC-2. In order to find the reason, the residuals of all observations were investigated. Table 3 lists the statistics of the residuals of the observations over the ten worst passes.

Checking this table, one can see that the maximum residual is as large as 160 m, and the ratio of the number of the observations whose absolute residuals are larger than three times the standard deviation, to the total number of the observations for each one of the worst passes is high. The worst one is as high as 11.2%. This indicates that there may be blunders in the data set.

4.4 Problem of Weights

As stated earlier, all observations are assumed to have equal weight and the a priori variance of unit weight is chosen to be equal to the variance of a range difference observation

$$\sigma_0^2 = \sigma_{\Delta r}^2 = 1.0$$

In Table 2 one can see that the a posteriori standard deviations of unit weight for all the solutions are much larger than the chosen a priori one. For instance the a posteriori standard deviation of unit weight of the best solution, C-5, is as large as 3.4.

original page **is** of poor quality

Table 1 Summary of Solutions F4-5 and C-5

Solution No.:	F4-5	C-5
Total No. of Passes.Processed Total No. of Events	193 3,430	193 3,430
No. of Unknowns Station Coordinates Error Coefficients Satellite Coordinates Total No. of Unknowns	30 3,312 10,290 13,632	30 3,312 10,290 13,632
Total No. of Observations Degrees of Freedom	27,531 13,899	27,531 13,899
A Priori Weight Information: Range (or Range Difference) Error Coefficient σ_a Error Coefficient σ_b Fixed Station Coordinates $\sigma\chi$, $\sigma\gamma$, σ_Z Other Station Coordinates $\sigma\chi$, $\sigma\gamma$, σ_Z 3 Satellite Events/Pass $\sigma\chi$, $\sigma\gamma$, σ_Z	1 m 50 m 38 m / 2 min 1 mm 100 m 10 m	1 m 50 m 38 m / 2 min 1 mm 100 m 10 m
A Posteriori Standard Deviation of Unit Weight	3.5 m	3.4 m
Coordinate Differences with Respect to EDOC-2 Solution (all units in m)	Δφ Δλ ΔΗ	Δφ Δλ ΔΗ
Station No. 220* (* indicates fixed station) 221 222 223 224 225 226* 230 231* 232 233 234 235	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Average absolute difference (m) (10 stations)	2.6 13.0 14.0 ±2.8 ±5.2 ±4.6	2.2 5.8 6.7 ±4.7 ±8.9 ±7.9
Average absolute difference in position (m)	20.8 ±21.7	10.8 ±6.6
Average absolute station-to-station chord distance difference (m)	10.2 ±10.5	5.5 ±4.5

Table 2	Comparison	of	the	Different	Integration	Intervals	Used	in
	Adjustment							

Name of Solution:	C-2	C-5	C-10	C-15
Integration interval (seconds)	9.2	23	46	69
Computing time (minutes)*	25.20	8.83	5.96	2.79
A posteriori standard deviation of unit weight	2.4	3.4	4.5	5.9
Average total absolute difference in position (m) (10 stations)	10.9 ±7.3	10.9 ±6.6	22.0 ±19.3	33.8 ±37.1
Average absolute station-to-station chord distance difference (m)	6.4 ±5.6	5.5 ±4.4	8.9 ±8.2	17.1 ±19.2
	1			

*using an Amdahl 470

58

.

No	Pass		N	umber	of Obser	vation	S		
NO.	No.	Total	v >	3σ	v >	2σ	v > 1	0 .0 m	vl _{max} (m)
			Number	%	Number	%	Number	%	
1	49	207	20	9.7	27	13.0	17	8.2	160.8
2	46	187	18	9.6	38	20.3	13	7.0	126.1
3	187	143	16	11.2	27	18.9	12	8.4	41.4
4	21	262	19	7.3	32	11.8	10	3.8	53.0
5	43	181	9	5.0	17	9.4	8	4.4	39.5
6	180	142	9	6.3	15	10.6	8	5.6	25.6
7	51	221	10	4.5	15	6.8	7	3.2	17.2
8	26	186	10	5.4	12	6.5	5	2.7	26.0
9	25	105	6	5.7	7	6.7	5	4.8	31.6
10	16	195	7	3.6	10	5.1	4	2.1	37.4

Table 3 Statistics of the Residuals of the Observations of the , Ten Worst Passes

care managed a stately a management of a product.

Table 4 presents the comparison of the weights of each station calculated from the residuals over all passes. The weights of the stations differ from each other for solutions C-5; the largest one is ninefold as large as the smallest one. When the ten worst passes are taken out, the weights are close to each other, and the a posteriori standard deviation of unit weight is decreased from 3.4 to 2.0. It is seen that the existence of blunders is probably the most important detrimental factor in the solution.

Unfortunately, neither taking out the ten worst passes nor repeating , the computation with the different weights for each station improved the result. It is likely that although taking out the ten worst passes removed the major blunders, it also resulted in losing many useful observations.

> ORIGINAL PAGE IS OF, POOR QUALITY

Station	All Pass	es Used		W/o 10 Wor	st Passe	2S
No.	No. of Obs.	ð	р	No. of Obs.	ô	р
220	1579	2.08	2.7	1473	1.73	1.3
221	1668	1.72	4.0	1606	1.56	1.6
222	2912	3.30	1.1	2711	1.33	2.2
223	1862	1.30	6.9	1777	1.27	2.4
224	2821	1.77	3.7	2631	1.49	1.7
225	1893	2.19	2.4	1757	1.33	2.2
226	845	2.56	1.8	763	1.26	2.4
230	2505	2.26	2.3	2435	1.21	2.7
231	2789	3.85	0.8	2609	1.87	1.1
232	2391	2.42	2.0	2205	1.30	2.3
233	2760	1.67	4.2	2575	1.30	2.3
234	2641	2.36	2.1	2444	0.99	4.0
235	865	1.25	7.5	809	1.01	3.8
Degree of Freedom		13,899			12,910	· · · · · · · · · · · · · · · · · · ·
σ̂ο		3.4			2.0	

Table 4 Comparisons of the Weights of Each Station

5. CONCLUSIONS

On the basis of the comparisons, the folloiwng conclusions can be drawn:

(1) The geometric mode of solving the problem of simultaneous Dopplerderived ranges without considering the correlation is a weak one.

(2) The correlated geometric mode leads to better results. Comparing with the uncorrelated solution, the correlated mode reduced the average total absolute differences (with respect to EDOC-2) in position from 20.8 ± 21.7 m to 10.9 ± 6.6 m; and the average absolute station-to-station chord distance differences from 10.2 ± 10.5 m to 5.5 ± 4.5 m.

(3) The choice of the optimum integration interval is very important for the use of simultaneous Doppler-derived ranges in the geometric mode. The examples of this study demonstrate that the optimum integration interval is 23 s, which agrees with that suggested by [Ashkenazi et al. 1980]. ACKNOWLEDGMENTS. The EDOC-2 data set was obtained through the efforts of Peter Wilson, Inst. f. Angewandte Geodäsie, Frankfurt, FRG, and Claude Boucher, Inst. Geographique National, France. Mr. R. Schneeberger developed the uncorrelated geometric mode and wrote the program GEODOR. The Instruction and Research Computer Center of The Ohio State University provided computer support.

A CALL AND AND AND AND AND A CALL AND A

REFERENCES

- Ashkenazi, V., D.N. McLintock and R.M. Sykes (1980) "Doppler Integration Intervals and Correlation," <u>Phil. Trans. Roy. Soc., A 294</u>, 337-384.
- Boucher, C., P. Paquet and P. Wilson (1981) "Final Report on the Observations Carried Out in the Second European Doppler Observation Campaign (EDOC-2) for Position Determinations at 37 Satellite Tracking Stations," <u>D.G.K.,</u> <u>B 225</u>, Frankfurt.
- Brown, D.C. and J.E. Trotter (1969) <u>SAGA, A computer Program for Short Arc</u> <u>Geodetic Adjustment of Satellite Observations</u>, DBA Systems Inc., Melbourne, Florida.
- Jordan/Eggert/Kneissl (1966) <u>Handbuch der Vermessungskunde</u>, <u>Band IV</u>. J.B. Metzlersche Verlagsbuchhandlung, Stuttgart, FRG.
- Kouba, J. and J.D. Boal (1976) "Program GEODOP," Dept. of Engineering, Mines and Resources Canada, Ottawa.
- Krakiwsky, E.J. and D.E. Wells (1971) "Mathematical Models for Positioning by Satellite," Lecture Notes No. 17, Dept. of Surveying Engineering, Univ. of New Brunswick, Fredericton, Canada.

Mueller, I.I. (1964) Introduction to Satellite Geodesy, Ungar Publ., New York.

- Schneeberger, R. (1982) <u>Use of Simultaneous Doppler-Derived Ranges from the</u> <u>EDOC-2 Campaign in the Geometric Mode</u>, MS thesis, Dept. of Geodetic Science and Surveying, Ohio State Univ., Columbus.
- Schneeberger, R., D. Pavlis and I.I. Mueller (1982) "Use of Simultaneous Doppler-Derived Ranges in the Geometric Mode," <u>Proc. of 3rd Inter-</u> <u>national Symp. on Satellite Doppler Positioning</u>, Physical Science Laboratory, New Mexico State University, Las Cruces.
- Uotila, U. (1976) "Adjustment Computation with Matrices," Lecture Notes, Department of Geodetic Science, Ohio State Univ., Columbus.
- Wells, D.E. (1974) "Doppler Satellite Control," Tech. Rep. 29, Univ. of New Brunswick, Fredericton, N.B., Canada.
- Zhang, C. (1982) <u>Use of Simultaneous Doppler-Derived Correlated Ranges in</u> <u>the Geometric Mode</u>, MS thesis, Dept. of Geodetic Science and Surveying, Ohio State Univ., Columbus.

and the second s

2.222 Doppler Intercomparison Experiment

In the previous semi-annual report, preliminary results of the 1979 CSU comparison test of Doppler receivers are given. Since that time a final report on the comparison has been completed [Archinal, 1982] as a Master's thesis (and soon as a report of the Department of Geodetic Science and Surveying).

In this report, some of the results presented in the previous report are revised, and some additional final results are presented as well. For a more detailed discussion of the following, refer to [Archinal, 1982], and [Archinal and Mueller, 1982].

FINAL RESULTS OF DATA BEDUCTION

As mentioned above, some of the results presented here are slightly different than those given in the last report. This is primarily due to:

- a) The determination and use of receiver time delays in the GEODOP processing.
- b) The modification of GEUDCP to allow the input of a "common station noise" estimate, and use of this option, along with the use of a variance estimation process in GEODCP as well.

Therefore revised versions of the tracking statistics and chord difference results are given here, along with new information concerning the estimation of the receivers' clservational (range rate) error and oscillator statility.

Tracking Statistics

The statistics on the number of passes tracked, used in PREDOP, and two types of GEODOP runs are presented in table 1. Although several numbers have changed substantially from those given in the last report, most of the results given there are still valid. In addition to those results, it should be noted that if these statistics are broken down by antenna setup (as in [Archinal, 1982, FP. 61-70]), it becomes clear that:

- a) The CMA-751 and the JMB-1As generally tracked about the same number of passes, and slightly more than the MX1502 (when operating correctly and tracking continuously).
- b) There is no bias due to antenna location, at least when PdEDOP rejections are considered. The relative percentages of rejections stayed fairly constant for all setups for the JMR-1A #2 and MX1502. No conclusions can be drawn for the CMA-751 due to its faulty antenna cable (on all but one site), or for the JMR-1A #1, since it only occupied one site.

The GEODOP statistics (for a multi-station broaucast ephemeris solution and a single station precise ephemeris solution) show a fairly consistant observations ass value for all instruments, except for the MX1502, which has a higher value in both solutions. This higher value is due to the fact that the MX1502 was recording only (the better) passes which meached over 15 degrees altitude on the first setup, which strongly affects the grand totals shown here. The observations/pass for the CMA-751 are not representative here either, since it was operating properly only during the first and last setup.

Chord Difference Results

Table 2 shows absolute differences obtained in the chord distance between all pairs of instruments for each antenna setup for multi-station and precise ephemeris solutions. Many of these values are different from those given in the previous report, with generally smaller standard deviations and chord differences than previously reported. This is probably due to the changes in weighting and the retter determined delays respectively, and points out the value of the

IABLE 1	SUMMARY OF TR 1979 274 ^d 14 ^H	acking and pi - 317 ^d 16 ^H	ISS/DOPPLER COU	NT ACCEPTANCE				
INSTRUMENT	NO. PASSES Tracked	NO. PASSES Tracked Per day	NO. PASSES AFTER PKEDOP	NO. PASSES AFTER MULTI-STA	(DOPPLER GEODOP S	OLUTION	ASS)	
CNA-751 1	827	19,2	680 one ti			SHINID	- Р.Е.	
JMR-IA #1 2	231	20.6	. V 70 000	(9'LL) HAC	725 4	290	(17.5)	
JMR-IA #2	919		198 /FT	185 (16.5)	80%	11	(17.6)	
MX-1502 3	RUE	C.12	770 84 X	642 (16.5)	707	317	(16.5)	
	(no	18.7	483 60 2	429 (17.9)	537	190	(18.4)	
1 run are								
07 Tc/-mm	ST PASSES DUE	TO FAULTY AND	ENNA CABLE, IN	TERMITTENTI V 1		4		
² JMR-1A #1 (JBSERVED ONLY I	JURING 274 ^D 1	4 ⁴ - 285 ^D 19 ^H ,		SCINEEN 2	286° AND	302 ⁿ	
⁵ MX-1502 MAS Between 289 Available A MX-1502 Mas	NOT TRACKING D 18 ⁴⁴ AND 310 ^d Fter Predop IS UNABLE TO MAJ(CONTINUOUSLY 04 ^H . THE LJ DUE MAINLY 7 DRITY VOTE.	UNTIL 291 ^D 17 ^H Arge Difference 0 206 Passes (3	¹ And Had Brea Between numbi 26 X of Those 7	Kdowns II Er of Pas [racked)	NTERMITT SSES TRA WHICH TI	ently Cked and He	
X's ARE WITH	I RESPECT TO NU	MBER OF PASS	ES TRACKED.		·			

3

ξų

JMR-1A #1 TO JMR-1A #1 TO S ro MX-1502 5 ß 36 35 22 £ Р JMR-1A #2 MX-1502 PRECISE EPHEMERIS - 2 SATELLITES DIFF 16 23 8 -47 5 18 21 MULTI-STATION SOLUTIONS CMA-751 TO JMR-IA #2 2 36 20 17 10 27 Ь MX-1502 DIFF n -83 -12 贸 -15 8 63 CMA-751 TO 20 CMA-751 TO JMR-JA #1 36 16 10 16 21 ~ JMR-1A #2 Ь DIFF 28 ~ --30 18 17 - 7 1 JMR-1A #1 TO 2 T0 MX-1502 29 21 00 Ρ Ы 26 20 MX-1502 JMR-1A #2 **BROADCAST EPHEMERIS - 5 SATELLITES** DIFF Ħ -55 б 20 -20 -34 MULTI-STATION SOLUTIONS ١ JMR-1A #1 TO 7.2 M TO 22.2 M IN LENGTH CMA-751 TO JMR-1A #2 ~ 12 S 5 22 12 Ś MX-1502 DIFF E S و -33 1 -13 m I CMA-751 TO JMR-1A #1 12 CMA-751 T0 10 32 10 4 Q П JMR-1A #2 Ь DIFF m -25 Ó 21 ß -17 П WE I GHTED MEAN ANTENNA SETUP # **TABLE 2** S

ORIGINAL PAGE IS OF POOR QUALITY

¥, 0

1

ABSOLUTE DIFFERENCES IN CM OVER CHORD DISTANCES RANGING FROM

more rigorus weighting and better determination of delay for these solutions.

Even with the differences, the previous result still holds, that most of the differences (all except two) lie within their three sigma value. A new result is that the single baseline determined between instruments of the same type (between the two JNE-1As on setup #1) did not show significantly better results than pairings between any other instrument combination. In conclusion, it appears that there is no evidence that any of these instruments are kiased against one another for chord determinations (over short distances).

1

Another additional result shown by this table is that the precise ephemeris two satellite solutions for chord distances do not appear to have necessarily higher accuracy or precision than the corresponding broadcast ephemeris five satellite solutions, and in fact the precision of the broadcast ephemeris solution is better in <u>all</u> cases. This simply indicates that the greater number of observations in the broadcast ephemeris solution improves the results more than the corresponding increase in ephemeris accuracy of the precise ephemeris solution. This would imply that if only chord distances were needed from Doppler observations, then generally broadcast ephemeris solutions would be preferable to precise ephemeris solutions, since the former usually have more data available.

<u>Bange Rate Measurement Errors</u>

Using procedures described in detail in [Archinal, 1982, pp. 70-79], estimates of the common station noise and each instrument's range rate standard deviation were made for each setup and precise ephemeris satellite. The results are shown in table 3 and discussed here.

First of all, the common station noise was estimated by processing only simultaneous observatins and precise ephemeris orbits. The common station (cr "interstation" cr "satellite" noise) estimates were made using the common station estimated variance-covariance matrix output by GECECE to cbtain the values shown in column three of table 3. The results vary with satellite and time during the entire test, with an amount between 3.4 and 7.5 cm/30 seconds. The overall average value (weighted mean of all observation pairs) is 4.9 cm/30 seconds. Since the range was not tcc great,

TABLE	M	ESTIMAT	ION OF COMMON S D DEVIATION	TATION NOISE AND	INSTRUMEN	T RANGE RATE		·
SETUF		SATELLITE NO.	NG, OF OBSERVATIONS (1)	COMMON STATION NOISE (2)	C_A-751 (3)	JMR-1A #1 (3)	JMR-1A #2 (3)	MX-1502 (3)
-		14 19	263 277	4.8 3.4	8.8 7.9	12.0 11.8	9.2 9.5	12.3 11.4
8		14 19	75 123	3.4 6.5	1 1			
m		14 19	26 52	0.4	; ;			.1 1
4		14 19	161 157	7.5 3.5	12.8		12.4 	14.5
D		14 ~ 19	160 276	5.5 5.6	6.4 11.3		6.5 11.4	13.5 12.8
ALL		14 19 BOTH		5.4 4.4 4.9	9.6 7.6 9.7	12.0 11.8 11.9	9.9 10.6 10.4	13.0 12.1 12.5
(1)	NUM	BER OF "30"	" SECOND COUNTS	S OBTAINED SIMULT	THAN 10 OF	IY ALL INSTRU	MENTS AND Val	

IT THATE DONE IL 2 2 USED IN COLUMNIC.

WEIGHTED MEAN OF RANGE RATE INTERSTATION NOISE FOR EACH 30-SECOND INTERVAL.(CM). (2)

WEIGHTED MEAN OF RESIDUALS (NOISE) FOR EACH 30-SECOND INTERVAL (CM). (3)

ORIGINAL PAGE IS OF POOR QUALITY

and rather than change the value for each setup/satellite (perhaps based on too few observations), the GECEOP default of 5.0 cm/30 seconds was then used for all subsequent processing.

Secondly, the estimated receiver range rate standard deviations were computed for each setup and satellite, using the weighted mean of the diagonal elements of the estimated variance-covariance matrix of the residuals. The results for all three instrument types are shown in the last four columns of table 3. These values were obtained from GEODOP single station precise ephemeris sclutions, in which the observations were approximately (the rejections due to statistical testing cause some exceptions) simultanecus. Although some of the individual solutions did not have enough data to be considered significant, using at least 600 observations in each case (but only 350 for the JME-1A #1), the estimated range rate standard deviations were found to be 9.7, 11.9, 10.4, and 12.5 cm/30 seconds for the CMA-751, JHL #1, JMR-#2, and the MX1502 respectively, over the entire period of the test. The variatious shown during the test may be partially instrument related, but they are probably due mostly to the satellite noise just discussed. The relative precision of the three instruments continuously observing also stays approximately the same for all time periods and satellites, which also indicates that the variations are non-receiver related. It is also significant that the variation between instruments is usually less than 3 cm/30 seconds, showing that these instrugents are generally very similar, and that the variation in the cormon station noise is The conclusion can therefore generally greater than this. be drawn that the variation of the measurement precision between these instruments is not significant. The even more important conclusion which can be drawn is that the range rate accuracy obtainable depends in many cases more on the time and the satellite than it does on the receiver itself.

Lastly, to obtain the best possible estimates of the final variance-covariance matrices in GEODOF, the GEODOF option was used to allow an internal estimate of the range rate standard deviation and adjacent observation correlation for each pass to be made, with the previously estimated range rate standard deviation value (given in the last paragraph) used as an input appoximate value. Although increasing the computational time by over 50% (all of the passes are processed twice), this method takes into account the variation of the satellite noise and possible variations in the receiver noise during the period under consideration. It is felt that this procedure, in conjunction with the
first two above would result in the wost rigorus processing of the data, to provide the best solutions.

ľ

Frequency Drift Results

The frequency drift of an instrument's oscillator is an important quantity which can be determined to fairly high accuracy during data reduction. In general, the more stable an oscillator (over the period of a satellite pass) the better the timing and Doppler count measurements can be made. If a drift is occurring, and remains fairly constant in time, it can be taken into account in the adjustment of the data (as in GEODOF), although it must still be assumed to be linear over a pass, and should not be very large in magni-If the drift is erratic, either changing during a tude. pass or over just a few passes, the data will be very noisy due to these unmodeled changes in the oscillator. It is therefore important to check the frequency drift variations of these instruments. Ideally, one would like to check the short term drift which corresponds to the length of a satellite pass (over 100 seconds to about 15 minutes), but this is generally not possible unless an atomic standard is available for comparison. Instead, the long term drift of these instruments can be checked for variations (which may provide an indication of the short term stability), or at least checked against the manufacturer's specifications.

In the case of the data collected here, the frequency drift for each instrument for each setup and precise ephemeris satellite has been determined. The values have been obtained from the difference letween the first and last (reasonable) frequency offsets computed for each instrument during a setup. The frequency offsets were determined from two satellite (one satellite at a time) precise epheneiis, single station solutions, and the antenna setup periods which ranged from about five to fifteen days in length. Note that to optain the per day values given here, the assumption has been made that the frequency drift is constant during each setup. Examination of the GBCCOF frequency plots supports this assumption.

The results for frequency drift are shown in rable 4, and have been graphed in figure 1. They can be summarized as follows:

a) The CMA-751 had a fairly uniform value for frequency drift, using either satellite, and masily met its spe-

1

SETUP NO.	SATELLITE	CMA-751	JMR-1A #1	JMR-1A #2	MX-1502
1	14 19	0.45	1.65 1.78	3.15 3,22	$0,41 \frac{2}{2}$ 0,11 2
2	14 19	0.14 -0.32		$\begin{array}{r} 2.50 \\ 2.66 \end{array}$	3 3
3	14 19	0,50 0,33		$2.57 \frac{2}{2}$ 2.87 $\frac{2}{2}$	-2.88 -2.72 ²
4	14 19	0,39 0,10		2,27 ² 2,68 ²	0.47 1.11
5	14 19	0.27 0.50		2.06 2.47	0.78 ² 0.74 ²
SPECIF	ICATION:				
	/DAY	±1.00	±0,50	±0,50	?
	/100 s	±0,01	±0.05	±0.05	±0,08

TABLE 4 LONG-TERM OSCILLATOR FREQUENCY DRIFT 1

¹ 10⁻¹⁰ PARTS PER DAY. DETERMINED FROM FREQUENCY OFFSET OF FIRST AND LAST PASS OF SINGLE STATION, PRECISE EPHEMERIS SOLUTION.

² SOLUTION SHOWS FREQUENCY JUMP AFTER FIRST OR SECOND PASS.

³ TOO FEW PASSES IN SOLUTION, WITH TWO FREQUENCY JUMPS (OSCILLATOR DISTURBED DUE TO MAINTENANCE)

ì

I

Fig. 4 Oscillator frequency drift versus time.

cified 10-10 parts/day precision. The frequency drift was usually from one half to one tenth of that value, and even approached its 100 second specification.

Y

- b) The JMR-1A #2 also had a fairly uniform value for frequency drift, using either satellite. However, both it and the JMR-1A #1 failed to meet their 0.5 x 10-10 parts/day specified precision. (Note that this specification is actually for the JMR-1. It is assumed that the JMR-1A would have the same or a ketter specification.)
- c) The MX1502 did not have a consistent value for its frequency drift, which shows escillations during the second through fourth setups. Since the values for the first, fourth and last setups are at least similar, one would suspect that the frequency drift changes are mostly due to the various times that the instrument was opened (and its oscillator turned off) for repairs. No specification for the MX1502 drift per day is available for comparison purposes.

FINAL_CCMMENTS

The results presented here should be considered as the final ones of this comparison, although if time permits, some additional material will possibly be added to the report version of [Archinal, 1982] and the final version of [Archinal and Mueller, 1982]. Work is also continuing on the documentation and further testing of the IEM version of the GECDCP Program System.

As to the further use of the data optained, the recommendation is made here that the data from both this corparison and the Ottawa comparison be finally processed together in multi-station solutions, to provide a comparison of how well the various possible instrument pairs can measure the long Columbus-Ottawa baselines involved. Further, it is also suggested that a similar reduction be made (if the data can be obtained) using the "Quebec" data described in [Moreau, 1981], which was also obtained during the operational phase of this comparison.

Other investigations are also possible, including extending the results given above by making further comparisons of the chords, comparing the vertical and horizontal positions

of the stations through their coordinates, and comparing the computed coordinates with the available control coordinates. These items were not done in this study mainly because they are considered to be of lesser importance than the other casults presented, and due to a general lack of time for these lengthy investigations. Other work concerning program options or comparisons of programs could also be done with this data.

ĩ

REFERENCES

- Archinal, Brent A. (1982) <u>A Comparison of Geodetic Doppler Satellite</u> <u>Receivers</u>, MS thesis, Ohio State University, Dept. of Geodetic Science and Surveying (report of the Dept. of Geodetic Science and Surveying in preparation).
- Archinal, Brent A. and Ivan I. Mueller (1982) "Results of a Comparison of Geodetic Doppler Satellite Receivers," Third International Symp. on the Use of Artificial Satellites for Geodesy and Geodynamics, Ermioni, Greece, Sept. 20-25 (National Technical University of Athens).
- Moreau, Richard (1981) "Integrated Densification by Doppler," <u>ACSM</u> <u>Fall Technical Meeting</u>, American Congress on Surveying and Mapping, Falls Church, VA 22046, pp. 272-281.

2.3 Earth Deformation Considerations for the Maintenance of a Conventional Terrestrial Reference System

The role of deformation analysis in the maintenance of a new Conventional Terrestrial Reference Frame has been outlined in previous semiannual reports and in [Bock and Zhu, 1982]. Basically, a set of fundamental coordinates x_0 of a global network of stations adopted at an initial epoch define the reference frame. The initial size and shape of this network is defined by the corresponding baseline lengths, D_0 . By comparing the estimated baseline lengths at a later epoch to D_0 , the deformations of the network can be estimated. This information is then used to improve the global estimates of variations in polar motion and earth rotation, with respect to the conventional axes defined by X_0 .

ĩ

Mathematical Model and Preliminary Estimation Model

The mathematical model for the deformation analysis is simply the chord length of baseline i-j

$$D_{ij} = [(x_j - x_i)^2 + (y_j - y_i)^2 + (z_j - z_i)^2]^{\frac{1}{2}}$$

This model is linearized about X_0 to yield

$$L = AX + V$$

where the observation vector L for the kth baseline is

$$L_{k} = (D_{ij} - D_{ij_{0}})_{k}$$

and the parameter vector X represents the deformations, i.e., the change in coordinates between the initial epoch and a later one. V denotes the noise vector.

Since the design matrix A is rank deficient by 6_{\circ} we are restricted to a Generalized Gauss-Markoff (GGM) model (L, AX, $\sigma_0{}^2P^{-1}$) where

$$E(L) = AX$$
$$D(L) = \sigma_0^2 P^{-1}$$

If there is no a priori information for the deformations, the minimum bias P-least squares estimate for X is given by

$$\hat{X} = N^+ U = A_{PI}^+ L$$
; $N = A^T P A$, $U = A^T P L$

William and the second

using the notation of [Rao and Mitra, 1971], where P is the weight matrix of the observations. This estimate can be shown to be equivalent to that obtained from augmenting the normal matrix N by a set of constraints C such that [Blaha, 1971]

0 0

and

 $\hat{X} = (N + C^{T}C)^{-1} - C^{T}(CC^{T}CC^{T})^{-1} C$

This means that we constrain the origin and orientation defined by the coordinates at some later epoch t to be equivalent to that defined by X_0 .

Extended Models for A Priori Deformation Information

In the case of the availability of a priori information on the deformations of the network, e.g., as provided by absolute plate motion models, four possible estimators have been outlined and analyzed in [Bock, in preparation]. We briefly outline here the corresponding estimates and their respective properties.

Consider an expanded GGM model (L, AX, Q_V , $Q_{\overline{Y}}$) where

$$E(L) = AX$$

$$D(L) = Q_{V} = E\{VV^{T}\} = \sigma_{0}^{2}P^{-1}$$

$$E(\overline{X} \ \overline{X}^{T}) = Q_{\overline{X}}$$

$$= \Sigma_{\overline{X}} + \mu_{\overline{X}} \mu_{\overline{X}}^{T} \qquad (\mu_{\overline{X}} = E\{\overline{X}\} = X)$$

where \overline{X} is an independent estimate of the parameter vector. The resulting minimum M-norm P-least squares minimum variance estimate for X

$$\hat{X}_{1} = Q_{X} N (N Q_{X} N)^{+} U$$

= M⁻¹ N (NM⁻¹ N)⁺ U

where $M = Q_X^{-1}$ (positive definite). \hat{X}_1 has the property of minimum bias. Therefore, this estimate is termed the BLIMBE (Best Linear Minimum Bias Estimate). In this case, it can be shown that this estimate is equivalent to that obtained from augmenting the normal equations by CM such that

$$AC^{T} = 0$$

 $CM\hat{X}_{1} = 0$

and a second second second second

and

 $\hat{X}_{1} = [(N + MC^{T}CM)^{-1} - C^{T}(CMC^{T} CMC^{T})^{-1} C]^{-1} U$

Therefore, we can say that the reference frame is maintained in a minimum M-norm P-least squares sense by a specified number of CTS stations.

For positive semidefinite ${\tt Q}_{\chi},$ which would be the case for any plate model

$$\hat{X}_1 = (N + M)^{-1} N[N(N + M)^{-1} N]^+ U$$

with $M = Q_{\chi}^{+}$. In this case, the estimate is minimum M-seminorm P-least squares but is no longer minimum bias.

For the BLIMBE we assume that the parameter vector X is deterministic and define a weighted norm in the parameter space on the basis of a priori information on X. Another possible biased estimator can be obtained by considering X as a random variable. Our estimation model is (L, $A\overline{X}$, Q_V , Q_X) where

$$E\{X\} = \overline{X}$$

$$D[X] = E\{(X-\overline{X})(X-\overline{X})^{T}\} = \Sigma_{X}$$

which gives

 $Q_{\chi} = E\{XX^T\} = \Sigma_{\chi} + \overline{X} \ \overline{X}^T$

The vector X includes the deformations computed from, say, a plate motion model and Σ_{χ} is its covariance matrix. The distribution of L is given by

$$E\{L\} = AX$$

$$D[L] = A \Sigma_{\chi} A^{T} + \sigma_{0}^{2}P^{-1}$$

from which

$$Q_{L} = E\{LL^{T}\} = A Q_{\chi} A^{T} + \sigma_{0}^{2}P^{-1}$$

In addition,

$$Q_{XL} = E\{XL^T\} = Q_X A^T$$

and we assume

$$Q_{XV} = 0$$

ал на пора и врагодна на 1983је 1997 година на селеката на деле на селекти на селекти на селекти селекти и селе На пора на селекти на селекти. Пора на селект

By the Gauss-Markoff theorem [Liebelt, 1967]

$$\hat{X}_{2} = Q_{XL} Q_{L}^{-1} L$$

= $Q_{X} A^{T} (A Q_{X} A^{T} + \sigma_{0}^{2} P^{-1})^{-1} L$

Which, for positive definite Q_{χ} ,

$$\ddot{X}_2 = (N + M)^{-1} U : M = Q_X^{-1}$$

This estimate has been referred to as the Best (or Bayes) Linear Estimate or BLE for short [Rao, 1973, 1976]. While the BLIMBE has the minimum bias property, the BLE has minimum mean square error, i.e., it minimizes the sum of covariance and biased squares

$$MSE(\hat{X}) = \Sigma \hat{y} + [X - E(\hat{X})][X - E(\hat{X})]^{T}$$

in the class of biased estimators. Note that the BLE requires some knowledge of the deformations in order to compute Q_X . Furthermore, while the BLIMBE reference system is maintained through the constraints $CM\hat{X}_1 = 0$, the deformations estimated by the BLE are with respect to an underlying reference frame of the deformation model from which Q_X is computed.

The previous two estimates are drawn from the class of biased estimators. If Q_{χ} can be constructed, that is, if there exists a priori deformation information, then the origin and orientation singularities are essentially eliminated. We then are led to investigate whether an unbiased estimate exists and we find the Bayesian estimate. Consider the estimation model (L, AX, Q_{χ} , \overline{X} , $\overline{\Sigma_{\chi}}$) where X is deterministic, \overline{X} random and the set of observation equations

$$\begin{bmatrix} L \\ L_{\chi} \end{bmatrix} = \begin{bmatrix} A \\ I \end{bmatrix} \chi + \begin{bmatrix} V \\ V_{\chi} \end{bmatrix} ; \quad L_{\chi} = \overline{\chi}$$

such that

$$E{\overline{X}} = X$$

$$D[\overline{X}] = E{(\overline{X} - X)(X - X)^{T}} = \Sigma_{\overline{X}}$$

$$E{L} = AX$$

$$D[L] = A \Sigma_{\overline{X}} A^{T} + \sigma_{0}^{2}P^{-1} = \Sigma_{L}$$

The least squares solution for this model yields

$$\hat{X}_{3} = \Sigma_{\overline{X}} A^{T} (A \Sigma_{\overline{X}} A^{T} + \Sigma_{L})^{-1} L + [I - \Sigma_{\overline{X}} A^{T} (A \Sigma_{\overline{X}} A^{T} + \Sigma_{L})^{-1} A] \overline{X}$$

for $\Sigma_{\overline{X}}$ positive semidefinite. For positive definite $\Sigma_{\overline{X}}$, this reduces to

$$\hat{X}_{3} = (N+M)^{-1} U + [I - (N+M)^{-1} N]\overline{X}; \qquad M = \Sigma_{\overline{X}}^{-1}$$

= $\overline{X} + (N+M)^{-1} A^{T}P(L - A\overline{X})$
= $(N+M)^{-1} (U + M\overline{X})$

It is easiliy seen that given this estimation model, particularly $E{\overline{X}} = X$, $E{\hat{X}_3} = X$, so that X is unbiased. This estimate has the minimum mean square error property which implies minimum variance since the bias is equal to zero. Note that in the BLE, the a priori information is incorporated into the moment matrix Q_{χ} , while for \hat{X}_3 , \overline{X} is applied directly, and a residual deformation is estimated. Thus, we can consider the BLE (\hat{X}_2) as a "weak" Bayesian estimate and \hat{X}_3 a "strong" Bayesian estimate.

Assume again that some a priori deformations are available. In this case, the model may indicate that $CX=L_{\chi}$ where $L_{\chi} \neq 0$ which leads to an alternative approach to the constraints $CM\hat{X}_1=0$ of BLIMBE. Consider the following set of observation equations

$$\begin{bmatrix} L \\ L_X \end{bmatrix} = \begin{bmatrix} A \\ C \end{bmatrix} X + \begin{bmatrix} V \\ V_X \end{bmatrix}, \quad L_X = C\overline{X}$$

We assume the estimation model (L,AX | CX = C \overline{X} , $\Sigma_{\overline{X}}$, Q_V) where

$$E\{C\overline{X}\} = CX$$

$$D[C\overline{X}] = C \Sigma_{\overline{X}} C^{T}$$

$$E\{L\} = AX$$

$$D[L] = A \Sigma_{\overline{X}} A^{T} + \sigma_{0}{}^{2}P^{-}$$

For this model, the least squares estimate is

 $\hat{\mathbf{X}}_{+} = [\mathbf{N} + \mathbf{C}^{\mathsf{T}}\mathbf{P}_{\mathsf{X}} \mathbf{C}]^{-1} \mathbf{U} + \mathbf{C}^{\mathsf{T}} \mathbf{P}_{\mathsf{X}} \mathbf{C} \mathbf{X}$

where

 $\mathsf{P}_{\chi} = (\mathsf{C} \Sigma_{\overline{\chi}} \mathsf{C}^{\mathsf{T}})^{*}$

From [Chipman, 1964]

$$A_{PI}^{+} = [N + C^{T} P_{X} C]^{-1} A^{T} P$$
$$C_{P_{X}I}^{+} = [N + C^{T} P_{X} C]^{-1} C^{T} P_{X}$$

so that

$$\hat{X}_{4} = A_{PI}^{+} L + C_{P_{X}I}^{+} \overline{X}$$
$$= N^{+} U + C_{P_{X}I}^{+} \overline{X}$$

Therefore, \hat{X}_4 can be viewed as a correction term to the minimum I-norm P-least squares estimate \hat{X}_1 , or a combination of the BLIMBE and Bayesian approaches.

The properties of the four estimators are summarized in Table 1.

Addition and Temporary Deletion of CTS Stations

The reference frame is defined by a particular number of CTS stations. It is quite possible that from time to time one or more of the stations will not be able to participate in a particular deformation analysis observing session which should involve all stations. Furthermore, it must be anticipated that new stations will be added to the frame periodically. Both of these occurrences must be dealt with in order to maintain continuity and avoid ambiguity in the reference frame definition. For the addition of CTS stations we use the filtering and estimation capabilities of least squares collocation. The model becomes

$$L = AX + BS + V$$

Where X is deterministic and represents the coordinates of the new stations to be estimated. The vector S, the signal, is random and includes the

		ĺ		
Estimate Property	BLIMBE	BLE	Bayesian	BLICUE
Uniqueness	Yes	Yes	Yes	Yes
P-least squares	$\hat{v}^{T}P\hat{v} = \min$	$\hat{\boldsymbol{\vartheta}}^{T}\boldsymbol{p}\hat{\boldsymbol{\vartheta}}+\hat{\boldsymbol{X}}^{T}\boldsymbol{\varrho}_{\boldsymbol{X}}^{-1}\hat{\boldsymbol{X}}_{=\min}$	$ \hat{\tilde{y}}^{T} P \hat{y} + \hat{\hat{y}}_{X}^{T} \overline{\boldsymbol{\Sigma}_{X}}^{-1} \hat{\hat{y}}_{X} $ $= \min $	$\hat{v}^{T}p\hat{v} = min$
Minimum M-norm	In the class of P-least squares	Yes	No	No
Blasedness	Minimum bias*	Biased	Unbiaseā assuming $E(\overline{X}) = X$	Unbiased conditional on E(CX) = CX
Minimum Variance	In the class of minimum bias estimators	In the class of hiased estimators	Yes	Conditional
Minimum Mean Square Error	No	In the class of biased estimators	Yes	No
Estimates Rodel	$(L, AX, Q_V, Q_{\overline{X}})$	$(L, A\overline{X}, Q_V, Q_X)$	$(L, AX, Q_V, \overline{X}, \overline{\Sigma}_{\overline{X}})$	$(L, AX CX = C\overline{X}, \overline{\Sigma}, Q_V)$

Table 1 Properties of Deformation Estimators

*Caly ist positive definite $Q_{\overline{X}}$

١

ORIGINAL PAGE IS OF POOR QUALITY

filtered deformations. The L and V vectors are as before. From [Moritz, 1980),

$$\hat{X} = [A^{T}(BQ_{S}B^{T} + Q_{V})^{-1}A]^{+} A(BQ_{S}B^{T} + Q_{V})^{-1} L$$

 $\hat{S} = Q_{S}B^{T}(BQ_{S}B^{T} + Q_{V})^{-1} (L - A\hat{X})$

where $Q_{\rm S}$ is the same as the previous $Q_{\rm X}$.

If a station cannot observe, we can use the prediction capabilities of least squares collocation to precict the deformation via 1

and the second second

$$\hat{s} = Q_s B^T (BQ_t B^T + Q_v)^{-1} L$$

where

$$S = \begin{bmatrix} t \\ u \end{bmatrix},$$

t includes the deformation of the observing station, and u the predicted deformations of the missing stations.

Conclusions

In order to test the properties of the four estimators and their suitability in estimating deformations, a series of simulations were run as described in [Bock, in preparation]. A 20-station, 8-plate network was chosen for the simulations as depicted in Fig. 1 and Table 2. The AM1-2 absolute plate motion model of [Minster and Jordan, 1978] was "adopted" (see Table 3).

The following conclusions were arrived at based on the simulations. Assuming that the absolute motion models available today are good to within their stated noise levels (this is reasonable considering that [Bender, 1981] indicates that their predicted deformations differ at the centimeter level), it is found that it is advisable to adopt a deformation model than not at all. This was seen from comparing the deformation estimates obtained with a deformation model and those obtained when M = I (no model) is assumed. If a model is adopted, then the BLE appears to be the best candidate for deformation analysis. This conclusion follows from several considerations.

and a state of the state of the

· 82

Fig. 1

No.	Station	Latitude D N	Lonyitude D M	Plate	Velocity (cm/yr) X Z
12345678901234567890	Johannesberg* Cairo Lagos Onsala* Jodrell Bank Shanghai Fairbauks Ft. Davis* Nestford Maui* Tahiti Marshall Isles Sao Paulo* Buenos Aires Caracas Orroral* Yaragadee Bombay Easter Isle* Arabia*	-29 10 30 27 57 0 530 45 64 50 30 36 42 30 -17 30 -23 337 -34 355 -29 55 -24 39 Plate Netw	28 02 31 15 32 0 358 0 1212 10 256 30 200 345 200 30 167 21 3093 45 216 30 2167 21 3093 45 216 30 216 30 216 30 216 30 216 46 115 46 251 46 46 0 1k	AFFRCAA AAFFRCAA EUURAAA EUURAAM NOOACFFCAAM SONDDI SOOADI INAZA B INAZA	$\begin{array}{c} 0.03 & 0.999 & 1.00 \\ -0.499 & -0.31 & 1.01 \\ -0.099 & 0.34 & 0.62 \\ -0.149 & -0.32 & 0.14 \\ -0.139 & -0.31 & 0.099 \\ -0.259 & -0.259 & -1.511 \\ -2.277 & -1.299 & -0.511 \\ -2.277 & -1.299 & -0.554 \\ -2.277 & -1.299 & 4.763 \\ -2.277 & -1.294 & -0.225 \\ -2.277 & -1.294 & -0.225 \\ -2.277 & -1.2794 & -0.2794 \\ -2.277 & -1.2794 & -0.2$

Table 220-Station, 8-Plate Simulation Network and
AM1-2 Velocities

ľ

Table 3AM1-2 Absolute Motion Plate Model (Adapted from
[Minster and Jordan, 1981], Table 7)

		Absolute Rotation Vector						
	Plate	Deg	(N)	Deg (E)		Deg/M.Y.*		
123456789011 111	African Eurasian North American Pacific South American Indian-Australian Nazca Arabian Antarctic** Carribean** Cocos**	$ \begin{array}{r} 18.76\\ 0.70\\ -58.31\\ -61.66\\ -82.23\\ 19.239\\ 47.929\\ 21.89\\ -42.80\\ 21.89\end{array} $	33.93 124.35 16.21 5.11 19.27 6.96 92.36 121.81 39.20 3.08	338.24 336.81 319.33 97.19 75.64 266.06 3566.05 66.55 66.75 244.29	42.20 146.67 39.62 7.71 85.88 6.57 8.14 18.22 63.20 40.98 2.81	0.139 0.038 0.247 0.967 0.285 0.785 0.785 0.588 0.054 0.129 1.422	0.055 0.057 0.080 0.085 0.084 0.076 0.077 0.067 0.097 0.097 0.091 0.404 0.119	
	<pre>* Million Years ** Not used in the</pre>	Simula	tions			•		

First, the BLE provides the best estimates (in the sense of minimizing the root mean square error between true and estimated deformations) at the same level as the Bayesian estimate, in the case when the deformation model is correct (and then the deformation is just being filtered from the baseline noise). Second, and most important, it is markedly less sensitive to errors in the adopted deformation model. This is particularly apparent in the case that in reality there is no deformation but we assume some deformation model. These results are due to the minimum mean square error and minimum norm properties of the BLE and its "weak" Bayesian interpretation.

ì

Finally, we should stress that the reference system is dependent on the choice of estimation models including the choice of M (as well as P, but to a lesser extent). This leads to the need for investigations concerning how sensitive the reference system is to changes in M and P. For example, what measures should be taken as M and P improve_with time.

The algorithms presented here are general enough to incorporate geophysical as well as geodetic evidence of deformations. In [Bock, in preparation] only models for deformations of interplate type have been considered, to be monitored by periodic re-observations of the baseline lengths. Other aspects to be considered include intraplate and local motions (the site stability problem). Local effects can possibly be modeled on the basis of on-site observations such as by tidal gravimeters and local geodetic nets. It is necessary to investigate how to incorporate these and other types of observations (and their corresponding reference frames) into CTS operations.

This investigation is now being completed, and the final report is in preparation by Y. Bock, to appear in the report series of the Department of Geodetic Science and Surveying, The Ohio State University.

References

- Bender, P.L. (1981) "Establishment of Terrestrial Reference Frames by New Observation Techniques (review)," <u>Reference Coordinate Systems for</u> <u>Earth Dynamics</u>, E.M. Gaposchkin and B. Kołaczek, eds., Reidel, 23-36.
- Blaha, G. (1971) "Inner Adjustment Constraints with Emphasis on Range Observations," Dept. of Geodetic Science Rep. 148, Ohio State Univ., Columbus.
- Bock, Y. (in preparation) "Estimation of Earth Deformations for the Maintenance of a New Conventional Terrestrial Reference System," PhD dissertation, Dep. of Geodetic Science and Surveying Rep., Ohio State Univ., Columbus.
- Bock, Y. and S.Y. Zhu (1982) "On the Establishment and Maintenance of a Modern Conventional Terrestrial Reference System," pres. at General Meeting of IAG, Tokyo, Japan, to be publ. as NOAA Technical Memorandum.
- Chipman, J.S. (1964) "On Least Squares with Insufficient Observations," J. Amer. Statist. Assoc., 59, 1078-1111.
- Liebelt, P.O. (1967) An Introduction to Optimal Estimation, Addison-Wesley, Reading, Massachusetts.
- Minster, J.B. and T.H. Jordan (1978) "Present Day Plate Motions," J. Geophys. Res., 83(B11), 5331-5354.
- Moritz, H. (1980) <u>Advanced Physical Geodesy</u>, H. Wichmann, Karlsruhe, and Abacus Press, Turnbridge Wells, Kent, U.K.
- Rao, C.R. (1973) Linear Statistical Inference and Its Applications, Wiley, New York.
- Rao, C.R. and S.K. Mitra (1971) <u>Generalized Inverse of Matrices and Its</u> <u>Applications</u>, Wiley, New York.
- Rao, C.R. (1976) "Estimation of Parameters in Linear Models," <u>Annals of</u> <u>Statistics</u>, <u>4</u>, 6, 1023-1037.

2.4 Development of Models for Studying Ice Sheet and Crustal Deformations

The observed locations of survey markers change with time. When random and systematic errors are accounted for, what remains is actual movement. The movements of a network of stations can be described as the translation and rotation of the stations as a group and the deformation occurring within the network. Thus when a network of stations is resurveyed, it should be possible to obtain the geophysical parameters of velocity, rotation rate and strain rate [Dermanis, 1981; Livieratos, 1980; Reilly, 1979]. If the same network is resurveyed more than once, either the derivatives of these quantities or averaged values may be calculated.

١

· • • •

As most stations are on the surface of the earth, it is natural to assume that all movements and deformations are two-dimensional. This may be adequate in many cases. However, vertical movement and deformation may occur because of irregularities in the surface, faulting, or from being buried under new material. Also, for networks covering relatively large areas, the surface of the earth cannot be well approximated by a plane. In this case, it may be better to determine the movements in an arbitrary (earth-centered) coordinate system and then transform these results to a latitude, longitude and elevation coordinate system.

A model is being developed to determine these geophysical parameters from the coordinates of a network that has been resurveyed at least once. Several methods have been proposed for obtaining sufficiently accurate coordinates [Brunner et al., 1981, Niemeier, 1979]. One technique that has been proposed for studying tectonic deformation is to use positions determined by Doppler satellite receivers [Malyevac and Anderle, 1979]. The precision of the receivers used individually (point positioning) is meters to tens of meters. But by using translocation between two or more receivers, the relative positions can be determined to within decimeters [Brown, 1976]. However, the movements and deformations of the crust are slow even in tectonically active areas [Savage, 1978; Minster and Jordan, 1978]; thus the time span between resurveying must be of the order of decades. Because the time period between reobservations is so long, it may be difficult to guarantee that the coordinate systems are identical.

For example, the coordinate system defining the broadcast ephemeris of the Navy Navigational Satellite System slowly varies with time. This problem could be overcome by using relative rather than absolute coordinates. Thus the velocities and rotation rates would be relative to some "fixed" stations. However, the deformation within the network can still be obtained by calculating the strains from the changes in the chord lengths between the stations. The only assumption needed for this is that the scale of the coordinate system has not changed. Because the strains obtained this way are theoretically identical to the strains obtained from coordinate differences, any differences can be attributed to rotations and/or translations of the coordinate system.

For the purposes of testing the model, the data set being used is from survey stations placed on the Greenland ice sheet. Seven Magnavox 1502 satellite receivers were used during the summers of 1980 and 1981 to obtain the movement of 22 stations on the ice sheet of Greenland. Using the data reduction program GEODOP [Kouba and Boal, 1976], the coordinates of the stations have been obtained relative to the positions of two stationary stations (which were located on the west coast of Greenland). The formal accuracy of the coordinates is under 20 cm. These stations are moving at velocities of up to 45 m per year, and the magnitude of the maximum strain rates are over 100 ppm.

References

Archinal, B. and I.I. Mueller (1981) "A Comparison of Geodetic Doppler Satellite Receivers," <u>Proc. 3rd International Geodetic Symp. on Satellite</u> <u>Doppler Positioning</u>, Physical Sciences Lab., New Mexico State Univ., Las Cruces, N.M. 88003.

Brown, Duance C. (1976) "Doppler Positioning by the Short Arc Method," <u>Proc.</u> <u>International Symp. on Satellite Doppler Positioning</u>, Physical Sciences Lab., New Mexico State Univ., Las Cruces, N.M. 88003, pp. 97-140.

Brunner, F.K., R. Coleman and B. Hirsch (1981) "A Comparison of Computation Methods for Crustal Strains from Geodetic Measurements," <u>Tectonophysics</u>, <u>71</u>, 281-298.

Dermanis, A. (1981) "Geodetic Estimability of Crustal Deformation Parameters," Quaterniones Geodaesiae, 2, 2, 159-169.

Kouba, J. and J.D. Boal (1976) <u>Program GEODOP</u>, Dept. of Energy, Mines and Resources, Ottawa, Ontario, Canada.

- Livieratos, E. (1980) "Crustal Strains Using Geodetic Methods," <u>Quaterniones</u> <u>Geodaesiae</u>, <u>1</u>, 3, 191-211.
- Malyevac, C.A. and R.J. Anderle (1979) "Determination of Plate Tectonic Motion from Doppler Observations of Navy Navigation Satellites," <u>Proc.</u> <u>2nd International Geodetic Symp. on Satellite Doppler Positioning</u>, Univ. of Texas, Austin.
- Minster, J.B. and J.H. Jordan (1978) "Present Day Plate Motions," <u>J. Geo-physical Res.</u>, <u>83</u>(B11), 5331-5354.
- Niemeier, W. (1979) "Statistical Tests for Detecting Movements in Repeated Measured Geodetic Networks," XVII General Assembly of the IUGG, Canberra, Australia.
- Reilly, W.I. (1979) "Complete Determination of Local Crustal Deformation from Geodetic Observations," XVII General Assembly of the IUGG, Canberra, Australia.
- Savage, J.C. (1978) "Strain Patterns and Strain Accumulations Along Plate Margins," <u>Applications of Geodesy to Geodynamics</u>, I.I. Mueller, ed., Dept. of Geodetic Science Rep. 280, Ohio State Univ., Columbus.

3. PERSONNEL

Ivan I. Mueller, Project Supervisor, part time Brent Archinal, Graduate Research Associate, part time Yehuda Bock, Graduate Research Associate, part time George Dedes, Graduate Research Associate, part time Alice J. Drew, Graduate Research Associate, part time Erricos C. Pavlis, Graduate Research Associate, part time Irene B. Tesfai, Secretary, part time from 6/1/82 Zhu Sheng-Yuan, Visiting Scholar, part time through 8/31/82

4. TRAVEL

Ivan I. Mueller

Patras, Greece August 17-20, 1982 Attended XVIII General Assembly of the International Astronomical Union. Presented the paper which appears on pp. 2-18 and a report on progress in planning for the new Conventional Terrestrial Reference System to Commissions 4, 19 and 31. Chaired meetings of the IAG/IAU Working Group COTES.

Budapest, Hungary Attended 3rd Symposium on the Study of Movements in Engineering Surveys. Presented a paper on the Greenland Ice Movement Study (see p. 87).

5. REPORTS PUBLISHED TO DATE

AND A THE AND AND A STATE OF A DECIMAL AND A

OSU Department of Geodetic Science Reports published under Grant No. NSG 5265:

- 262 The Observability of the Celestial Pole and Its Nutations by Alfred Leick June, 1978
- 263 Earth Orientation from Lunar Laser Range-Differencing by Alfred Leick June, 1978
- 284 Estimability and Simple Dynamical Analyses of Range (Range-Rate and Range-Difference) Observations to Artificial Satellites by Boudewijn H.W. van Gelder December, 1978
- 289 Investigations on the Hierarchy of Reference Frames in Geodesy and Geodynamics by Erik W. Grafarend, Ivan I. Mueller, Haim B. Papo, Burghard Richter August, 1979
- 290 Error Analysis for a Spaceborne Laser Ranging System by Erricos C. Pavlis September, 1979
- 298 A VLBI Variance-Covariance Analysis Interactive Computer Program by Yehuda Bock May, 1980
- 299 Geodetic Positioning Using a Global Positioning System of Satellites by Patrick J. Fell June, 1980
- 302 Reference Coordinate Systems for Earth Dynamics: A Preview by Ivan I. Mueller August, 1980
- 320 Prediction of Earth Rotation and Polar Motion by Sheng-Yuan Zhu September, 1981
- 329 Reference Frame Requirements and the MERIT Campaign by Ivan I. Mueller, Sheng-Yuan Zhu and Yehuda Bock June, 1982

Estimation of Earth Deformations for the Maintenance of a New Conventional Terrestrial Reference System by Yehuda Bock November, 1982 (in preparation) On the Geodetic Applications of Simultaneous Range-Differencing to LAGEOS by Erricos C. Pavlis December, 1982 (in preparation)

\$

The following papers were presented at various professional meetings and/or published:

"Concept for Reference Frames in Geodesy and Geodynamics" AGU Spring Meeting, Miami Beach, Florida, April 17-21, 1978 IAU Symposium No. 82, Cadiz, Spain, May 8-12, 1978 7th Symposium on Mathematical Geodesy, Assisi, Italy, June 8-10, 1978 "Concepts for Reference Frames in Geodesy and Geodynamics: The Reference Directions," Bulletin Geodesique, 53 (1979), No. 3, pp. 195-213.

"What Have We Learned from Satellite Geodesy? 2nd International Symposium on Use of Artificial Satellites for Geodesy and Geodynamics, Lagonissi, Greece, May 30 - June 3, 1978

"Parameter Estimation from VLBI and Laser Ranging" IAG Special Study Group 4.45 Meeting on Structure of the Gravity Field Lagonissi, Greece, June 5-6, 1978

"Estimable Parameters from Spaceborne Laser Ranging" SGRS Workshop, Austin, Texas, July 18-23, 1978

"Defining the Celestial Pole," <u>manuscripta geodaetica</u>, <u>4</u> (1979), No. 2 pp. 149-183.

"Three-Dimensional Geodetic Techniques" Technology Exchange Week, Inter-American Geodetic Survey Fort Clayton, Canal Zone, May 14-19, 1979 published in Spanish as "Tecnicas Geodesicas Tridimensionales," <u>Memoria de la</u> Semana de Intercambio Tecnologico, Panama, Rep. de Panama, pp. 400-426.

"On the VLBI-Satellite Laser Ranging 'Iron Triangle' Intercomparison Experiment," Meeting on Radio Interferometry Techniques for Geodesy, Massachusetts Institute of Technology, Cambridge, June 19-21, 1979

"Space Geodesy for Geodynamics, A Research Plan for the Next Decade" Sonderforschungsbereich - Satellitengeodäsie - SFB 78 Colloquium in Viechtach, FRG, October 23-24, 1979

"Concept of Reference Frames for Geodesy and Geophysics" seminar given at University of Stuttgart, West Germany, June 19, 1980

"Space Geodesy and Geodynamics," seminar given at University of Stuttgart, West Germany, June 26, 1980

"Geodetic Applications of the Global Positioning System of Satellites and Radio Interferometry," seminar given at University of Stuttgart, West Germany, July 3, 1980

"Reference Coordinate Systems for Earth Dynamics: A Preview," Proc. of IAU Colloquium 56 on Reference Coordinate Systems for Earth Dynamics," September 8-12, 1980, Warsaw, Poland, E.M. Gaposchkin and B. KoJaczek, eds., D. Reidel. Presented atAGU, San Francisco, December, 1980.

6-2

"Comments on Conventional Terrestrial and Quasi-inertial Reference Systems," with J. Kovalevsky, Proc. of IAU Colloquium 56 on Reference Coordinate Systems for Earth Dynamics, September 8-12, 1980, Warsaw, Poland, E.M. Gaposchkin and B. Kojaczek, eds., D. Reidel.

"Precise Positioning with GPS" seminar given at Deutsche Geoddtische Forschungsinstitut, Munich, West Germany, September 18, 1980

"Tecnicas Geodesicas Tridimensionales" (translated from English by IAGS), <u>ASIA Journal</u> (Asociacion Salvadorena de Ingenieros y Arquitectos) San Salvador, No. 61, Oct. 80, pp. 40-51; cont'd in No. 62, Dec. 80, pp. 31-39.

"Space Geodetic Techniques and Geodynamics" Proc. 1st International Symposium on Crustal Movements in Africa Addis Ababa, Ethiopia, May 5-16, 1981

"Comparison of Polar Motion Data from the 1980 Project MERIT Short Campaign" Proc. of IAU Colloquium 63 on "High Precision Earth Rotation and Earth-Moon Dynamics: Lunar Distances and Related Observations," May 22-27, 1981, Grasse France, D. Reidel (I.I. Mueller, B.S. Rajal and S.Y. Zhu)

"Geodesy and the Global Positioning System" Proc. of IAG Symposium on Geodetic Networks and Computations, Aug. 31-Sept. 5, 1981, Munich (I.I. Mueller and B. Archinal)

"The African Doppler Project," Commission for Geodesy in African and Commission on the International Coordination of Space Techniques for Geodesy and Geodynamics, presented at 2nd Symp. on Geodesy in Africa, Nairobi, Kenya, November 9-20, 1981. Also at 3rd International Geodetic Symp. on Satellite Doppler Positioning, Las Cruces, New Mexico, Feb. 8-12, 1982.

"The Future of Space Techniques in Geodesy and Geodynamics," 2nd Symp. on Geodesy in Africa, Nairobi, November 9-20, 1982

"Use of Simultaneous Doppler-Derived Ranges in the Geometric Mode," Proc. of 3rd International Geodetic Symp. on Satellite Doppler Positioning, Las Cruces, New Mexico, Feb. 8-12, 1982 (R. Schneeberger, D. Pavlis and I.I. Mueller.

"A Comparison of Geodetic Doppler Satellite Receivers," Proc. of 3rd International Geodetic Symp. on Satellite Doppler Positioning, Las Cruces, New Mexico, Feb. 8-12, 1982 (B. Archinal and I.I. Mueller)

"Effects of Adopting New Precession, Nutation and Equinox Corrections on the Terrestrial Reference Frame," XVII General Assembly of the International Astronomical Union, Patras, Greece, August 17-26, 1982. Also <u>Bulletin</u> <u>Geodesique</u>, in press (S.Y. Zhu and I.I. Mueller) "Glacial Movement Measurements in Greenland by Satellite Doppler Geodetic Receivers," Third Symp. on the Study of Movements in Engineering Surveys, August 25-27, 1982, Budapest, Hungary (Alice Drew, Ivan I. Mueller and Ian Whillans)

"On the Establishment and Maintenance of a Modern Conventional Terrestrial Reference System," Proc. IAG General Meeting, Tokyo, May, 1982, Symp. 5 (Y. Bock and S.Y. Zhu)

"A Comparison of Geodetic Doppler Satellite Receiver, II," Third International Symp. on the Use of Artificial Satellites for Geodesy and Geodynamics, Porto Hydra, Greece, Sept. 20-25, 1982 (B. Archinal and I.I. Mueller) ľ

"Geometric Adjustment of Simultaneous Doppler-Derived Range Differences," Third International Symp. on the Use of Artificial Satellites for Geodesy and Geodynamics, Porto Hydra, Greece, Seot. 20-25, 1982 (C. Zhang and I.I. Mueller)