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SUMMARY

A fluid-filled Journal bearing is viewed as a powerful pump circulating fluid

around the annular space between the Journal and the bearing. A small whirling

motion of the journal generates a wave of thickness variation progressing around the

channel. The hypothesis that the fluid flow drives the whirl whenever the mean of

the pumped fluid velocity is greater than the peripheral speed of the thickness-

variation wave is discussed and compared with other simple explanations of journal-

bearing instability. It is shown that for non-cavitating long bearings the

hypothesis predicts instability onset correctly for unloaded bearings but gradually

overpredicts the onset speed as the load is increased.

INTRODUCTION

One of the important causes for high speed rotor instability is the oil whip

phenomenon in hydrodynamically lubricated journal bearings. It was first reported

in 1925 by Newkirk and Taylor (ref. i) who described several experiments and gave

a simple explanation of why a lightly loaded journal whirls at half the frequency of

rotation. In the present paper Newkirk and Taylor's argument is reexamined and

compared with a heuristic hypothesis briefly suggested (ref. 2) in the first

Workshop on Rotordynamic Instability in High Performance Turbomachinery in 1980.

When compared with conventional dynamic stability analysis both arguments are

incomplete. Nevertheless, both arguments predict the instability onset speed

correctly for unloaded full circular bearings. The heuristic hypothesis can

additionally be applied to loaded bearings for which it makes useful approximate

predictions of instability onset speeds for moderate loads. For simplicity the

discussion is centered on the case of a full circular bearing with two-dimensional

non-cavitating flow. To set the stage, the classical Sommerfeld analysis (ref. 3)

for equilibrium under a constant load is reviewed. After this the problem of

whirling stability is discussed, first for an unloaded bearing, and then for a loaded

bearing.

SOMMERFELD'S ANALYSIS

The idealized case treated by Sommerfeld (ref. 3) in 1904 is sketched in Fig. i.

A journal of radius R rotates at a fixed angular rate _ within a full circular

bearing of radius R + ho where the radial clearance ho is very small in comparison

to R. The annular space between journal and bearing is filled with an incompressible

fluid lubricant with uniform viscosity _. The fluid flow is taken to be two-

dimensional; i.e., axial flow is assumed to be negligible. In addition it is assumed
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Figure I. - Equilibrium configuration of journal rotating at rate _ under

load W. Journal center J displaced distance e with respect

to bearing center B.

that cavitation does not occur. The width of the bearing normal to the plane of

the figure is b.

Sonunerfeld's principal result is that in the equilibrium position under a

vertical load W the Journal is eccentrically displaced by a distance e in the

horizontal direction. Because of the eccentricity e the film thickness h varies

with position 0 around the annular space. For ho << R the approximate relation is

h = h + e cos e = h (i + acos0) (i)
O O

where a = e/h o is the eccentricity ratio. Under the assumptions of laminar viscous

flow with no pressure variation across the thickness of the film, the only possible

flow patterns that satisfy the requirements of fluid mechanics in a uniform channel

of thickness h are combinations of the two basic patterns shown in Fig. 2. Here x

is distance along the channel and y is distance across the channel with 0 < y < h.

The fluid velocity (in the x-direction at position y) is denoted by u. The volume

flow rate across a section of the channel of width b normal to the plane of the

figure is denoted by Q and _p/_x is the pressure gradient along the channel. For

the linear profile at the left of Fig. 2 the pattern depends on the parameter U

which is the velocity of the upper channel wall (the velocity of the lower channel

wall is taken to be zero). For the parabolic profile at the right of Fig. 2 the

pattern depends on the parameter A which is a velocity whose magnitude is four

times the peak velocity in the profile or six times the average velocity. While the
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Figure 2. Component laminar flows in narrow channel with uniform pressure

across channel. Either linear or parabolic velocity profiles.

relations in Fig. 2 are strictly correct only for steady state flows with constant

values of the parameters h, U, and A, the Reynold's theory of lubrication extends

them to apply to slow variations, both in time t and space x, of these parameters.

In application to the bearing of Fig. i, the component flows of Fig. 2 are

superposed, with x = R0 and U = P_Q, with h given by (I), and the undetermined

parameter A to be fixed by the requirements of continuity [_Q/_O =0] and uniqueness of

pressure [p(0) = p(0 + 2_)]. The value of A so determined is

2 + a2 I + a cos 0
(2)

and the total volume flow rate is

2
1 - a

QI = P_Qbh 2 (3)
° 2+ a

The pressure gradients of the component flows in Fig. 2 are superposed and integrated

to obtain the pressure distribution p(0) acting on the journal. The resultant of the

pressures acting on width b of the journal is a force, acting vertically upwards

through the journal center J, of magnitude

12_bR3_ a

Wl - h 2 (2 + a2)(l - a2) ½ (4)
o
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The viscous shearing stresses acting on the boundary of the Journal also produce a
resultant force on the journal but its magnitude is smaller than the pressure
resultant (4) by a factor of order ho/R, and thus maybe neglected. The force (4)
must then be equal and opposite to the applied load W for the journal to be in
equilibrium,

The remarkable property of the Sommerfeldbearing model is that the equilibrium
displacement is at right angles to the applied load. This characteristic implies
that an unloaded bearing is unstable with respect to slow forward whirling motions
of the journal. To see this, imagine that an external agent moves thecenter of
the journal J of Fig, i in a circular path of radius e in the counterclockwise sense
about the bearing center B. Whenthe journal passes through the position shownin
Fig. i if the motion is slow enough the lubricant flow and pressure distribution will
be very nearly the sameas for the equilibrium configuration shownthere, which means
that the fluid will be exerting a force very nearly equal and opposite to Won the
journal. This force, in the samedirection as the velocity of the journal center J
in its circular path does positive work on the whirling motion. The Son_nerfeld
bearing thus promotes whirling instability for very slow forward whirling rates. To
consider more rapid whirling rates it is necessary to extend the Sommerfeldanalysis
to include motion of the Journal center J.

WHIRLINGSTABILITYOFUNLOADEDBEARING

According to (4) the equilibrium position for an unloaded bearing (W= 0) has
zero eccentricity (a = 0, e = 0). In this configuration the parameter A1 of
Eq. (2) vanishes and the lubricant flow pattern is simply the linear profile shown
on the left of Fig. 2. The stability of this configuration is discussed, first by
describing Newkirk and Taylor's explanation of half-speed whirl (ref. i) and the

e

Figure 3. - Traveling wave of |ubricant film thickness variation circling

channel when center of rotating journal J whirls at frequency _ around
circle of radius _.
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new heuristic hypothesis (ref. 2), and then by performing a conventional whirling
stability analysis which sheds light on the preceding arguments. The bearing
kinematics are displayed in Fig. 3 for the case where the journal center J whirls
at the steady angular rate _ in a circle of radius g about the equilibrium position
in which J and B coincide. Note that the diametrally opposite sections of maximum
and minimumfilm thickness advance around the bearing at the rate w. At the location
@the film thickness is

h(@,t) = h + £cos (@- 0_t) (5)o

Note that the dependenceof h on space 8 and time t is that of a progressive

wave circling the annular channel with an angular phase velocity of w or a linear

phase velocity of R00.

The Newkirk and Taylor explanation (ref. i) is based on an application of the

continuity requirement to the flow in a channel whose thickness varies according to

(5). The continuity requirement applied to a differential arc of length Rd@ is

_-_-+ b 3h
RaO -_= 0 (6)

Newkirk and Taylor assumed that the lubricant flow retains the linear profile of

Fig. 2 so that Q = R_bh/2 which reduces (6) to

3h + 3h
To- = o (7)

When h(O,t) from (5) is substituted in (7) the result is that continuity cannot be

satisfied unless

= - (8)
2

Newkirk and Taylor took this to provide analytical verification of the half-

frequency whirl phenomenon which they observed in a vertical shaft running in a

bearing with plentiful oil supply. It also appeared to explain the "Oil Resonance"

peak in response when the rotation rate was twice the natural frequency of the system.

The simple result (8) was less satisfactory in explaining the oil-whip phenonenon

where the whirling frequency remains at the natural frequency as the rotation rate

is increased, although it was noted that the onset of whipping always occured at

speeds equal to or greater than twice the natural frequency.

In the heuristic hypothesis (ref. 2) the rotating journal is considered to be

a pump impeller which maintains the lubricant flow pattern with linear profile when

the journal is unloaded and centered. The fluid velocity varies linearly from u = 0

at the bearing to u = R_ at the journal. This flow can be decomposed into a mean

flow with uniform velocity u = P_/2 and no vorticity plus a residual flow with zero

mean velocity and large vorticity. It is assumed that the mean flow is available to

encourage (or discourage) small whirling perturbations of the centered configuration.

If a whirl involving a thickness variation wave of the form (5) is imposed the

heuristic hypothesis (ref. 2) postulates that energy will be pumped into the whirl

if the mean flow velocity R_/2 is greater than the phase velocity R_ of the whirl

around the periphery of oil film. Conversely energy will be removed from the whirl

if the phase velocity of the whirl is greater than the mean velocity of the lubricant.

Neutral stability occurs when these velocities are equal; i.e., when _ = _/2. This
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hypothesis thus "explains" half-frequency whirls and oil whip for a system which has

an unloaded bearing with plentiful oil supply. If the system provides little

restraint on the journal its motion will be primarily determined by the fluid film

forces acting on it. When a low frequency whirl (_ < _/2) is accidently started

energy will be pumped into the whirl, accelerating the whirl until m gets

sufficiently close to _/2 that the energy pumped into the whirl just balances the

system energy losses in a steady "half-frequency" whirl. If the system provides

considerable restraint on the Journal and only permits appreciable whirling motion

at a natural frequency the fluid film in the bearing will remove energy from

accidental whirls at a natural frequency _ whenever _ < 2_. However, when _ > 2w

the fluid film will pump energy into any such whirl. Whether or not oil whip

occurs depends on whether the energy supplied by the fluid film is sufficient to

overcome the system losses.

Both of the previous explanations are incomplete in the sense that they do not

make use of all the physical requirements involved. Both arguments use the flow

pattern of the underlying steady centered flow and both use the kinematics of a

small whirling perturbation, The Newkirk and Taylor argument also makes explicit

use of the continuity requirement for the perturbation but neither explanation

explicitly invokes any consideration of the pressures developed in the oil film.

Historically, the first complete dynamic analysis of the whirling stability of

an unloaded bearing was given by Robertson in 1933 (ref. 4). The development which

follows is essentially just a linearized version of Robertson's analysis. We

consider the whirl defined by the eccentricity a (g << ho) and the frequency _ to be

a Small perturbation on the underlying centered rotation in which the flow

distribution is simply

u = R_ y/h o, 0 < y < ho (9)

When the journal is whirling the flow pattern will be a superposition of the two

profiles of Fig. 2. To fit the conditions of Fig. 3 we take

u = P_Q y/h + A(y/h - y2/h2) (i0)

where h(e,t) is given by (5) and A is to be determined from the continuity require-

ment (6) and the requirement of single-valued pressure [p(@) = p(e + 2_)]. Using

a linear perturbation analysis we neglect terms of order (e/ho)2 in comparison

with terms of order g/h o and find

A = -6R_-- (_- m) cos(0 - _t)
o

(Ii)

The corresponding total volume flow rate for the lubricant film is

o

Q = Pd2bh/2 - gR(_ - _)b cos(e - _t)

(12)
= R_bh /2 + eRb_cos(e - _t)

o

The pressure distribution is obtained by integrating the pressure gradient given in

Fig. 2. To first order in g/h o
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E

p(@,t) -Po = 12_R2 _ (2- _)sin(O - _t)

O

(13)

The resultant force acting on the journal due to these pressures is directed at

right angles to the Journal displacement e and has the magnitude

R 3

F = 12_b 7 (_ - _) (14)
o

The sense is such that when _/2 > _, F has the same direction as the instantaneous

velocity Vj of the journal center. The rate at which the fluid film forces do work

on the journal (i.e., the power flow into the whirl) is

R 3 2

FVj = 12_b _ g _(_ - w) (15)
O

This analysis shows that the amplitude A of the component flow with parabolic profile,

the pressure in the fluid film, the resultant force on the journal, and the power

flow into the whirl all are proportional to the factor (_/2 - _). Low speed whirls

are encouraged and high speed whirls are discouraged. The whirling frequency of

neutral stability is _ = _/2.

These results can be compared with the two simplified arguments considered

previously. The assumption in the Newkirk and Taylor argument that the velocity

profile remains linear is equivalent to assuming that the parameter A in Fig. 2

vanishes, which according to (ii) implies that _ must equal _/2. Furthermore

the vanishing of A implies an absence of pressure gradient and consequently an

absence of resulting force so that at the particular whirl frequency m = _/2 the

fluid film neither retards or advances the whirl. This is the neutral stability

condition. The heuristic hypothesis (based simply on the flow pattern of the

underlying centered configuration and the kinematics of the whirl perturbation)

that the mean flow drives the whirl whenever the mean fluid velocity is greater

than the phase velocity of the whirl is essentially a qualitative statement

equivalent to the quantitative statement represented by eqn. (15). It happens

that for an unloaded bearing the frequency of neutral whirl is given correctly by

the heuristic hypothesis. For loaded bearings it is difficult to see how the

Newkirk and Taylor argument can be extended to predict any other frequency of

neutral whirl than _ = _/2. The heuristic hypothesis is however easily extended.

It no longer predicts the exact frequency of neutral whirl but it provides useful

approximations for moderate loads.

WHIRLING STABILITY OF LOADED BEARINGS

In this section a linear perturbation analysis is made to determine the

whirling stability of the equilibrium configuration of Fig. i. The heuristic

hypothesis is then applied to predict an approximate value of the whirling

frequency for neutral stability. We consider a small whirling motion of the

journal centered about the equilibrium position of Fig. i where the journal center

whirls with angular velocity _ in a counter-clockwise sense about a circle of radius
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g centered on the equilibrium position which lies a distance e to the right of the

bearing center. In the equilibrium configuration the film thickness h, the parameter

AI, the volume flow rate QI, and the load W 1 are given by eqns. (i), (2), (3), and

(4) respectively. When the whirling motion is added the film thickness becomes

h(6,t) = h + ecos 8 + ¢cos (e - cot)
O

(16)

With this value of h the velocity profile is taken to have the form of eqn. (i0) with

the parameter A to be determined anew from the continuity requirements (6) and the

requirements of single-valued pressure [p(e) = p(@ + 2F)]. Using a linear

perturbation analysis with respect to ¢/h o (but including terms of all order with

respect to a = e/ho) we find

A = A1 + g 6Rh- 1 + acos@ [_ f(e,t) + mg (e,t)] (17)
O

where

2
1 - a cos(e - _t) 6a

f(e,t) = 2 1 + a cos e a2)2 cos _t2 +a (2+

(18)

g(e,t) = cos(e -Wt) +-
3a

2 cos c:t
2+a

Note that (17) reduces to (2) when g = 0 and to (II) when a = e/h o = 0.

corresponding total volume flow rate is

- [6 cos_t - wg(e,t)]Q = Q1 ERb _ a
(2 + a2)

The

(19)

which reduces to (3) when g = 0 and to (12) when a = 0. The corresponding pressure

gradient from Fig. 2 when integrated gives the pressure distribution in the
lubricant film. The resultant force acting on the journal due to these pressures

has horizontal and vertical components given by

H = _ 12_bR 3 a _ - _ sin_t

h3(l-a2) 3/2 + a2
O (20)

[_ _ 2

= 12_bR 3 a

V W 1 + h3(l_a2)3/2 + a2
O

- _ + 3a2 a2_ + (2+a2)w

(2 + a2) 2

s cos cot

which reduce to (4) and (14) respectively when _ = 0 and when a = 0. The forces (20)

may be decomposed into three forces: the steady-state load W 1 = W, a force

proportional to [(i - a2)_/(2 + a2) - _] which whirls in phase with the velocity of

the journal center, and an oscillating vertical force whose magnitude is small when
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a is small. The total work done on the journal by these forces during one whirling
cycle; i.e., the energy per cycle bE imparted to the whirl is

12_2BbR3e 2 - 2a 2 + a _ - (4 - a2) (21)

AE = 3(2+a 2) (i_a2)3/2 a2
h° 2 +

The lubricant film forces are once more destabilizing for slow whirls and stabilizing

for rapid whirls. The neutral stability whirl frequency

= 4 - 2a 2 - a4
8 + 2a 2 -a 4 _ = 3 + (l-a2) 2 _ (22)

9 - (l-a2) 2

varies from m = _/2 at a = e/h o = 0 for an unloaded bearing to w + _/3 when the load

approaches infinity and the eccentricity ratio a approaches unity. The variation of

_/_ according to (22) is represented by the curve labeled A in Fig. 4.
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Figure 4. Frequency _ of neutral stability whirl as function of steady state

eccentricity ratio: A, according to complete stability analysis (22); B,

according to heuristic proposal (25).

Turning now to the heuristic hypothesis that the lubricant flow pumps energy

into the whirl whenever the mean flow velocity is greater than the phase velocity R_

of the thickness variation wave, we recall that in the equilibrium configuration
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of Fig. I the film thickness h is given by (i) and the volume flow rate QI is given
by (3). The mean velocity

Q1 2- R_ 1 - a
U = b--h= i + acos8 2 (23)

2 +a

varies with location around the annulus. To obtain a single velocity to compare

with the phase velocity of the thickness variation wave, we propose to take the

root-mean-square average of U. The heuristic criterion for neutral stability then
becomes

Re = U = d@ (24)
rms

-o

Evaluating the integral, we obtain

w = (i_a2)2/41 _ (25)

2+a

as the neutral stability whirl frequency according to the proposed heuristic

hypothesis. The variation of this frequency with eccentricity ratio a is

represented by the curve B in Fig. 4. The heuristic prediction (25) is not

identical to (22) obtained from the dynamic stability analysis, but it provides a

useful approximation for values of the steady state eccentricity ratio that are less
than a = 0.5.
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