
_IC STIFFNESS OF ANUNBOUND_ICWHIRLING_IF_

IMPF]_LERWIq_-IAN INFINITE NLIVBEROF BLADES

Paul E. Allaire

Department of Mechanical and Aerospace Engineering

University of Virginia

C_narlottesville, Virginia 22901

Lyle A. Branagan
Pacific Gas and Electric

San Ramon, California 94583

John A. Kocur

Department of Mechanical and Aerospace Engineering

University of Virginia

Charlottesville, Virginia 22901

ABSTRACT

This paper considers an unbounded eccentric centrifugal impeller with an

infinite number of log spiral blades undergoing synchronous whirling in an incom-

pressible fluid. The forces acting on it due to coriolis forces, centripetal

forces, changes in linear momentum, changes in pressure due to rotating and

changes in pressure due to changes in linear momentum are evaluated.
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i. INTRODUCTION

The analysis of turbomachinery requires a combination of solid mechanics and

fluid dynamics. Vibrations of a centrifugal pump or compressor are controlled by

the bearings, by the shaft geometry, by fluid forces on the impeller, by seals,

and other factors. Often the nature and magnitude of the forces and stiffnesses

generated by bearings and shaft geometry are fairly well understood and can, in

general, be accurately modeled. Those forces acting on the impeller can rarely

be adequately determined as yet. These forces arise from the interaction of the

impeller with the driven fluid, and are often called "aerodynamic forces," "aero-

dynamic stiffnesses" or "aerodynamic cross-coupling".

Much of the large body of work on incompressible flows in impellers assumes a

centered impeller with varying degrees of complexity. A few examples include one-

dimensional velocity vectors [i], two-dimensional considerations [2,3], and full

three-dimensional analysis [4,5,6]. These are not discussed further.

Calculation of aerodynamic forces was first reported by Alford [7], considering

circumferential variations of static pressure and efficiency in axial compressors.
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Work by Black [8], Barrett and Gunter [9], Lun4 [10], and Gunter, et el. [ii], have

demonstrated the importance of aerodynamic forces to the safe operation of turbo-

machinery, but have not, in general, addressed the calculation of these forces, or

their associated stiffnesses. Further, in the work by Barrett [9] and Gunter [ii],

these forces are modeled by their cross-coupled stiffness only; consideration is not

given to the principal stiffness of the fluid-impeller interaction.

Several recent papers have sought to more accurately quantify these forces.

Colding-Jorgensen [12] used a simple source and vortex flow model for the impeller

along with a series of vortex sheets representing the pump volute. He then super-

imposed a uniform flow over this model, without clear physical explanation, to deter-

mine the forces on the volute, as a function of the volute spiral angle. The flow

field emerging from the impeller is assumed to correspond with the typical one-dimen-

sional analysis, except that its location is perturbed. The force calculated by this

method is the total force acting on the entire impeller/volute model for uniform flow

- not the force on the impeller.

The work by Shoji and Ohashi [13] considers an ideal impeller whirling about

its geometric center. Blades are modeled by vortex sheets using unsteady potential

theory with shockless entry to predict the flow field within the impeller. Forces on

the blades are summed from the pressures calculated by an unsteady Bernoulli equation.

The calculation is two-dimensional without volute or vaned diffuser effects but does

allow for a whirl frequency other than the rotational speed.

The papers by Thompsen [14,15] outline the assumptions and general theory con-

tained in a proprietary program. The technique uses unsteady flow theory and deter-

mines the stability of the rotor stage based on nonsynchronous fluid excitations.

The proprietary nature of the program limits the discussion of the details of the

procedure. An actuator disc method for calculating forces is currently being used by

Chamieh et al. [16]; however, the work is incomplete and detailed results are lacking.

A paper by Jenny and Wyssmann [17] suggests the aerodynamic excitation is

approximately two orders of magnitude smaller than other destabilizing mechanisms.

Their simplified analysis, however, considers only the variation in radial clearance,

while neglecting the change in momentum of the fluid. In a radial flow machine, the

change in force due to clearance variations should be negligible compared to changes

in force due to momentum variations since the former are perpendicular to the main

flow path.

A paper by Washel and von Nimitz [18] gives an empirical formula for aerodynamic

cross coupling forces in compressor impellers. It is used for comparison to the

theory developed in this work.

The purpose of this paper [19] is to consider the nature and magnitude of aero-

dynamic cross-coupling forces and stiffnesses as generated by the change in fluid

momentum in an eccentric impeller. The approach is to perform a control volume

analysis on a perturbed, infinite bladed impeller undergoing a steady orbit at the

rotational speed of the shaft. This assumes incompressible, ideal flow without

volute or diffuser effects. It further assumes that the impeller consists of an

infinite number of infinitely thin blades of simple geometry; the use of which allows

an analytic expression for the aerodynamic forces to be obtained. Boundary layer

development separation, and secondary flows, however, are not considered. The

forces calculated are generated by a perturbation of the impeller about the flow

center and thus are related to principal and cross-coupled stiffness terms. A
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separate analysis using a perturbation velocity would have to be performed in order
tc determine principal damping terms for the impeller.

2. VELOCITIESIN ANECCENTRICII-_ELLER

Figure i shows a perturbed centrifugal impeller where 0" is the geometric center
of the impeller and 0 is the center of the steady flow field. It is a_sumedthat the
flow enters through an inlet pipe centered at 0 and the radial velocity varies in-
versely with radius away from this point. The eccentricity a is small such that the
dimensionless eccentricity

a

R1

is much less than unity. For this analysis terms of order E2 and higher will be

neglected. The impeller consists of an infinite number of infinitely thin logarithm-

ic spiral blades with angle 8. The blades are backward curved with a blade an_le

_b' an inner radius RI, and outer radius R 2.

The analysis is to be performed in a coordinate system rotatin 9 at rotor speed

about the center of the impeller. Only synchronous whirling about the flow center

0 will be considered. The fluid is assumed to follow the shape of the blades through

the impeller passage and to exit parallel to the blades. The particle path in the

absolute reference frame is shown in Figure 2. The impeller is purely t_o-dimen-

siunal and ideal, incompressible flow is assumed.

The radial inflow to a centered impeller in the fixed (non-rotating) co(_rdinnte

system centered at 0 is

R-z (i)
u = URI r

where the average inlet velocity is

1 fO 2_URI = 2-_ u(Ri,0i)dO I

Here 81 is the angle of a fluid particle measured along r = R!.

rotates with angular velocity _. The blade angle is given by

URI
tan B =

WRl

The impeller

From Fig. i, the length R B is

RB = R 1 + a cos@ i

Thus, along an eccentric impeller centered at 0, the inlet velocity is

URIRI i .

u = (RI + a cos01) = URI i + E cos@ 1
(2)
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From the binomial approximation

1

1 + E cos01
= i - E cos01

which leads to

u = UB = UR1 (1 - ecos01) (3)

This is the assumed form of the flow entering the eccentric Impeller at a point B

aroundthe impeller.

From the geometry of the eccentric impeller, this velocity can be resolved into

components normal to and tangential to the impeller (shown in Fig. 3)

UBN = UB cos6 = URI(I - g cos0 I)

UBT = -U B sln6 = -URI (i -e cos0 i) E sin0 1 = -URIc sinO 1

for 6 < < i. The relative velocity of the rotating impeller is

VB = _R B = _RI(I + e cos01)

along the inner radius of the impeller. Resolving this velocity into normal and

tangential components gives

VBN = VB sin6 = _R I g sin01 = _ a sin0 1

VBT = VB cos6 = _R 1 (i + E cos01)

In the rotating coordinate system, the velocity of point B is WB = U B - VB or in

components

WBN = URI(I - e cos01 -ecot B sin01") (4)

WBT = -mRl (i + c cos01 + e tan B sin0 l) (5)

Since the tangential velocity does not enter the control volume, it will be

neglected in this analysis.

From continuity, the radial velocity must vary inversely with r in the

interior of the impeller. Let 0" denote the angle of the fluid particle as it

travels along the log spiral blade relative to the x axis in the rotating coordinate

system. The relative velocity of the fluid is then

R_O_I(1 -e cos0" - E cot Bsin0") (6)
WN = URI r

Let 02 denote the angle of the fluid particle at the exit of the impeller. Figure

2 shows that, in the rotating coordinate system, the fluid which enters the Impeller

at angle 01 also leaves the impeller at angle 01 - 0b. Thus
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02 = ej- 8b

The relative velocity at the exit of the impeller is, at 8 _= 92,

R I ..

WN2 = URI R-_ (i - E cos82 - Ecot 8 sine2)

For flow along a blade, the relative magnitude Is given by

WTOT = [WN2+WT2_I/2

It is assumed that the number of blades is infinite so the streamlines follow

the log spiral blade exactly.

tan B _ _ W T =

Then the magnitude becomes

WTOT = [i + (tan B)2]_2WN
(7)

where WN is obtained from Eq. (6). While an exact representation of the variation
of 0" with radius would be logarithmic, the approximation of a linear varlatlon w111

be used to facilitate the development of an analytic expression. It is

r - R 1

0 "m 0 R2 _ R1 eb

The total relative velocity vector has the angle 6 t_ken from the tangent to a

circle of radius r. Thus the x and y components of WTO T are given by

_TOT = WTOT [sin (0 + 8)_- cos (8 + B)_]

The general velocity expression becomes

TOT(r,e) = URI + (tang) J/ - ¢ cos

( r-¢ COt 8 sin 0 Rz - Rl/J[_In (e + 8)_

O r - Rt

-%

- cos (0 + 13)_1
-.3

(8)
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3. FORCEONTHE_IRLING I_ELLER

The linear momentumequation for an accelerating control volume [20] is

Fs - Jcv [_ + 2_ x _ + mx(mx + mx r]p dv

= _---fv3t _pdv +fs _ 0(_ . d_)

where

s

a

V

= angular acceleration of the moving reference frame

r = position of a particle _n the moving reference frame

For a reference fr_me rotating with constant angular velocity, this expression

reduces to

= [2_ x V + m x (_ x _)l odv + _ 0(_ d_)
Fs s "

= net surface forces acting on the control volume

= rectilinear acceleration o_ the moving reference frame with respect to

the fixed frame

= angular velocity of the moving reference frame

= velocity of a particle in the moving reference frame

(9)

The surface forces consist of two parts

Fs " + Fp

where

_SHAFT force of shaft on control volume

= pressure force acting on control volume
P

Bernoulli's equation for a rotating reference frame is

P - --P l_ x _l 2 + _ I_l 2 = CONST2

The pressure force on the control volume is given by

F = - P d_
P
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or, from Ber.oulli's equation

• S. 2

The final expression for the force exerted by the shaft (impeller) on the

fluid in the control volume is

SHAFT = 2 m x V + _x (mx dv
v

-_ 4- P -_ 2 P
+ VoV d_ + _x - -I dA

'.s " 2

The desired force here is the force exerted by the fluid on the shaft.

negative of the above expression.

N =- p 2 _xVdv-

SHAFT k v . _ k

Coriolis Force

L +
0_X (_ x 7 ) dv

Centripital Force

It is the

k
V

Change in Linear

Hem en tum

I_ x _12 dA
2

J

Change in Pressure
Due to Rotation

+ fs I 12 dA
2

Change in Pressure Due

to Change in Linear

Momentum

where

-9- -+

= (r + a cosO)(cos8 i + sin8 j)

= mk

+ RI i + (tang) i - e cosO"

= WTO T = URI r f 3]
-ecot B sine'lisin (O + 8)i cos (0 + 8)

-I1,*
dA = (cose i + sine i) rd 8dz

RI
(_ . dX) = W N - URI -_ (I - c cose" - E cot 8 sine')
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dv = r dedr dz

Integration is taken over the control volume from R 1 to R2, and from 0 to 2_. On

the control surface, integration is performed both at r = R2 and at r = R 1 over e

from 0 to 2_. The thickness of the impeller is assumed to be the constant b.

For convenience in evaluation, the force acting on the shaft (impeller)

due to the fluid is evaluated as five parts.

_ON

SHAFT

Ocv- Qcv- Qcs -Qcs +Q cs
(ii)

After integration, they are

Coriolis Force

Q = 2n a_20 b RI __R2- RI-_ tan 8 El + (tanS)2_I/2
Ob

x ([- sin (8b + 8) .+ sin8 - cot8
COS

-p

(8b + B) + cot8 cos8]i

+ [cos (8b + 8) - cos8 - cot8 sin (eb + 8) + cote sinB]J

Centripetal Force

I
= - _ _ a a,2pb (R2 z - R12)7

Change in Linear Momentum

2 _ a_20b Rl2sin8 (ta_8) 2 [i + (tan 8) 2 ]

X

__ RL___ R__ cot8 cos (Ob + 8) + slnB
sin(0 b + 8) - R2

- cos8 + cot8 sin j
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Change in Pressure Due to Rotation

@ =11"a_2pb(R2 2 - R,2)I

Change in Pressure Due to Chan_e in Linear Momentum

G =_ a_20b R12(tanB) 2 [i + (tanB) 2]

Ri R1 cote sin @b + i
x R2 cos @b + R2

Ri Ri cote cos @b + cot+ R2 sin 0b R2

The physical significance is indicated above each term.

The five parts can be summed together yielding tlle vector force acting

on the shaft. Dividing the force into components gives F and F . A similar
XX

impeller eccentricity along the y axis would yield the forces F Y_nd F . What

is of interest here is the stiffness obtained from xy yy

_..

12
"KIj - a

The principal stiffness is

(I2)

where

i

I-_ = -2 _ (R- i) tanB [i + (tan B)2] l&

x [-sin (@b + B) + sine + cote cos (@b + E) + cote cosB]

1

=- 2 sinS (tanB) 2 [i + (tanB) 2]
!

_ i_ sin + B ix R (9b )

IZ] = - (>2 _ i)

cote cos (8b + E) + sine + cote cos_

= (tanB) 2[I+ (tans) 2]
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_ 1 9b
X _ COS

R
+ -- cots sin @b +

R

The cross-coupled stiffness is

yx

(13)

where

A 1 (R - I) tanB [i + (tanS)2] I/2

= - 20b

x [cos (8b + 8) - cot8 sin (8b + 8)]

= - 2 sin8 (tan 8)2 [i + (tanS) 2]

[1 Ix cos (Ob + E) - _ cote sin (8b + 8)]
R

: (tan 8)2 [i + (tan 8) 2]

x[- ! sin Ob -_I cote cos 8b + cotE]

Note that both principal and cross-coupled stiffnesses are obtained. In a rotor

dynamics analysis, the other stiffnesses would be given by

K =K
yy xx

m = -m

xy yx

For comparison with other works and convenience in plotting results, the

stiffnesses have been made dimensionless in the following manner

Kij = O PmZRI3 tanZ8

The resulting expressions are

b l (A +A +A +A +Zh)
Kxx :-_ RI

b i

_y_ _, _ (A +A +z_)
The dimenionless stiffnesses are functions of the ratio b/Rl, the radius ratio R,

the blade angle 8, and angular sweep of the blade 8b. The terms R, E, and eb are
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related to one another so actually only two are independent. Also the term b/R1
appears only as a multiplicative constant. Thus only the radius ratio R and the
blade angle B need be varied for these stiffnesses.

4. RESULTS

Figure 4 shows a plot of the dimensionless stiffnesses K and K vs. blade
vx

angle B for a radius ratio R = 1.5. For plotting purposes b/_ has been set to

unity. It shows that the blade angle has a strong influence on both the magnitude

and sign of the stiffnesses. The principal stiffness is large and positive for

low blade angles. Pumps generally have a low blade angle so they fit in this

category. The cross-coupled stiffness is negative for this level of blade angle.

The large positive principal stiffness is generally a stabilizing effect while

the negative K term is destabilizing. In the range of Dump blade angles, l0

to 20 degrees,YtXhe principal stiffness term is larger than the cross-coupled

stiffness probably leading to an overall stabilizing effect. Compressors generally

have large blade angles (as defined in this paper), perhaps in the range of 60 to

80 degrees. With a radius ratio R = 1.5, both the principal stiffness and cross-

coupled stiffness are negative indicating destabilizing effects. Field results

indicate that pumps are usually stable while compressors are sometimes unstable.

Thus the theory developed here appears to agree, at least qualitatively, with
results from actual machines.

A semi-emplrical formulation for the cross-coupled stiffness was developed in

[18] of the form

6300 HP (Mol Wt)0 o

Kyx - NDh0 s

where

HP = pump horsepower

Mol W_ = fluid molecular weight

Oo = discharge density

Ds = suction density

N = speed in RPM

D = impeller diameter

h = restrictive dimension im flowpath

While this expression was developed for compressible flow, it can be reduced to incom

pressible flow. Non-dimensionalizing this reduced expression gives

= -0.6_ (b/R) n cots R(R-I)
yx 1

where

= the number of blades

H2 - (_R)2 _ wUR, RlcotB2
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The curve for this expression was added to Figure 4 with a blade number of eight.
Another choice of number of blades will move the curve_up or down somewhatwithout
changing the overall shape of the curve. The plot of K from the theory developed
in this paper agrees fairly well with the semi-empirica_Xformula.

Figure 5 gives the results for a radius ratio R = 2.0. Again the principal
stiffness is large for small blade angles. At Larger blade angles, it decays

to zero but does not go negative as it did for R = 1.5. The cross-coupled stiff-

ness is negative and fairly large over the blade angle range of 15 to 75 degrees.

The semi-empirical formula gives a somewhat larger negative coefficient than the

theory.

One of the purposes of this study is to examine the effects of various terms

on the stiffnesses. Table 1 gives the five terms involved in the principal stiff-

ness vs. blade angle for R = 1.5. At low blade angles, the dominant effect is

the change in pressure due to rotation. This term arises in Bernoulli's equation due

to the rotating coordinate system. At larger blade angles, the dominant terms

become the linear momentum ones. Now the other term from Bernoulli's equation is

the largest but it is nearly balanced by the change in linear momentum. Table 2

shows the three terms in the cross-coupled stiffness vs. blade angle for R = 1.5.

At low blade angles, the Coriolis force produces the cross-coupled stiffness effect.

At higher blade angles, the linear momentum terms become dominant. Tables 3 and 4

give the numerical values for R = 2.0.

It is sometimes difficult to obtain a physical feel for the results of an

analysis when dimensionless parameters are used. In an effort to impart a better

idea of the numerical values developed from the theory here, some sample impellers

were chosen. The results are given in Table 5. Genera]]y small pumps will have

very small stiffnesses while large pumps such as boiler feed pumps cnn have fairly

large stiffness acting on them. The stiffness value here K = 124,000 ibf/in is
xx

the same order of magnitude expected from the seals in a pump. A small compressor.

even at high speed, produces a relatively small cross-coupling stiffness. Large

compressors have somewhat larger coefficients. Often such a compressor will have

eight or ten stages with a fairly flexible shaft. The cumulative effect can produce

an instability.

5. CONCLUSIONS

The theoretical solution for a simple impeller model shows the principal and

cross-coupled stiffnesses to be of about the same order of magnitude. For blade

angles (B) less than thirty degrees, common for water pumps, the flow seems to

provide tabilization for the shaft, while for the larger blade angles, common

for compressors, the impeller is generally destabilizing. Since the magnitude of

Kxx and Ky x are nearly the same, it would be important to include both terms in
any rotor dynamics analysis of the shaft, rather than incorporating just the cross-

coupling terms.

Though this work does not fully resolve the nature of aerodynamic forces on

centrifugal machines, it does offer more understanding of these forces. An important

element of any future work, however, is the availability of experimental data for

verification. As of the present, no such data exists, although efforts are being

perused in this area.
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TABLE ]. - EFFECT OF VARIOUS TERMS ON PRINCIPAL STIFFNESS FOR R = ].5

Blade

Angle

B

10. O0

15. O0

20. O0

25. O0

30. O0

35. O0

40. O0
45.00

50. O0

55. O0
60. O0

65. O0

70. O0

75. O0

80. O0

Coriolie

Force

i

[]

Centripetal

Force

[]

Change In

Linear

Momentum

[]

Change In

Pressure Due

To Rotation

Change In

Pressure Due

To Change In

Linear Momentum

[]

-,75

-.67

-.57

-.50

-.45

-.42

-.40

-.40

-.41

-.43

-.47

-. 53

- .63

-.81

-1.18

.63

.63

.63

.63

.63

.63

.63

.63

.63

.63

.63

.63

.63

.63

.63

-.09

-.15

-.21

-.30

-.44

-.65

-.98

-1.55

-2.55

-4.46

-8.44

-17.78

-43.96

-140,25

-?14.71

-1.25

-1.25

-1.25

-1.25

-1.25

-1.25

-1.25

-1.25

-1.25

-1.25

-1.25

-1.25

-1.25

-1.25

-1.25

.03

.08

.15

.26

.44

.73

1.20

2,00

3.44

6.20

12.00

25-75

64.53

207.92

1066.62

Principal

Stiffness

xx

144.75

59.6}

29.76

16.74

10,05

6.15

3.62

1.80
.33

-1.05

-2.59

-4.66

-8.04

-14.94

-34.20

TABLE 2. - EFFECT OF VARIOUS TERMS ON CROSS-COUPLED STIFFNESS FOR R = 1.5

Blade

Anglm

Corlolle

Force

Change In

Linear

Momentum

Change In
Pressure Due

To Change In

Linear Momentum

Cross-

Coupled

Stiffness

Crose-

Coupled
Stiffness

Ak A_ _% R Wach,lUSl
xy

i0.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00
80.00

.O6

.O9

.12

.15

.18

.19

.19

.ll

-.ii

-.70

-2.31

-6.93

-22.29

-87.79

-533.98

.33

.71

_91

1.07

1.23

1.41

1.64

1,95

2.37
3.00

3.96

5.57

8.52

14.90

33.13

-42.96

-39.32

-28.73

-21.52

-16.84

-13.69

-11.46

-9.78
-8.40

-7.10

-5.62

-3.47

.47

9.66

39.00

.03

.i0

.18

.27

.38

.53

.74

1.05

1.53

2.32

3.71

6.45

12.65

30.06

101.59

-64.14

-42.21

-31.07

-24.25

-19.59

-16.15

-13.48

-11,31

-9.49

-7.92

-6.53

-5.27

-4.12

-3.03

-1.99
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TABLE3. EFFECT OF VARIOUS TERMS ON PRINCIPAL STIFFNESS FOR R - 2.0

Blade Corlolls

Angle Force

B []

10. O0 -. 89

15. O0 -1.53

20. O0 -1.58

25. O0 -1.50

30. O0 -1,42

35.00 -1.36

40. O0 -1.33

45.00 -1, 33

50. O0 -i. 37

55.00 -1.45

60.00 -1.58

65. O0 -1.79

70.00 -2.15

75. O0 -2.76

80. O0 -4.05

Centripetal
Force

[]

I. 50

I. 50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

i, 50

1.50

1.50

1.50

Change In

Linear

Momentum

[]

-.09

-.22

-.35

-.51

-.73

-1.06

-1.59

-2.46

-4.00

-6.92

-12.95

-27.08

-66.57

-211.50

-1074.58

Change In

Pressure Due

To Rotating

[]

-3. O0

-3. O0

, -3.00
-3.00

-3.00

-3. O0
-3. O0

-3.00

- 3. O0

-3. O0

-3. O0

-3.00

-3.00

t -3.00
1 -3.oo

Change In

Pressure Due

To Change in

Linear Momentum

[]

.03

.08

.15

.26
.44

.73

1.20

2.00

3.44

6.20

12.00

25.75

64.53

207.92

1066:62

Principal
Stiffness

xx

247.42

138.95

77.74

46.85

30.17

20.43

14.35

10.35

7.60

5.64

4.22

3.16

2.37
1.77

1.32

TABLE 4. - EFFECT OF VARIOUS TERMS ON CROSS-COUPLED STIFFNESS FOR "R = 2.0

I0.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

Blade

Angle

Cortolis

Force

-.37

.44

1.12

1.63

2.07

2.52

3.03

3.69

4.57

5.84

7.79

11.00

16.92

29.68

66.16

Change in

Linear

Momentum

-.02

.04

.14

.26

.41

.61

.88
1.28

1.89

2.89
4.68

8.18

16.11

38.40

130.04

Change In

Pressure Due

To Change In

Linear Momentum

.09

.14

.19

.2S

.33

.41

.50

.59

.64

• 56

. O0

-2.20

-10.85

- 51.91

-353.46

Cross-

Coupled

Stiffness

xy

30.89

-26.93

-34.58

-31.07

-26.49

-22.65

-19.69
-17.44

-15.71

-14.31

-13.05

-11.60

-9.23

-3.65

15.36

Crose-

Coupled
Stiffness

Wachel (lg]

-171.04

-112.56

-82.86

-64,58

-52.24

-43.07

-35.94

-30.16

-25.31

-21.12

-17.41

-14.06

-10.98

-8.08

-5.32
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TABLE 5. - NUMERICAL EXAMPLES FOR PUMP AND COMPRESSOR IMPELLERS

Xmpeller

Small Pump

Large Pump

S_s£1 Compressor

Large Compressor

1.94

1.94

7.5 x 10 -3

7.5 x 10 -I

w

rpm

6O0

i0,000

30,000

I0,000

g
._k
in

3.0

9.0

3.0

12.0

b
in

0.5

1.5

0.5

0.5

degree8

15

15

60

60

K
xx

16.5

124,000

205

720

K

Ib f / in

-3

-24,000

-702

-2,200

R2

Figure 1. - Geometry of perturbed impe]ier,
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8b

Figure 2. - Fluid path through impeller over passage time (T). Fixed coordinate

frame [Bp = mT - eb]-

m

0

, Y///-"'" Ua

_UB// _ _. ECCENTRIC

f

'"//"' '- \--- ,_2,%

(a). Absolute velocity components at point B.

Figure 3. Velocity components at impeller inlet.
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V B

I  ELLE
I / / r(1 , \ CENTERED

(b). Relative velocity between fluid and impeller.

BLADE /

(c). Relative velocity components in rotating coordinate system.

Figure 3. - Concluded.
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Figure 4. Dimensionless stiffness

versus blade angle for R = 1.5.

Figure 5. Dimensionless stiffness

versus blade angle for R = 2.0.
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