DEFECTS AND ANNEALING STUDIES IN 1-MeV ELECTRON IRRADIATED (AIGa)As-GaAs SOLAR CELLS*

Sheng S. Li* and W.L. Wang* University of Florida Gainesville, Florida

R.Y. Loo[†] Hughes Research Laboratories Malibu, California

W.P. Rahilly Air Force Aeropropulsion Laboratory Wright-Patterson Air Force Base, Ohio

EXTENDED ABSTRACT

The purpose of this paper is to present the results of our study on the deeplevel defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions. Deeplevel transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1) As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n⁺-GaAs substrate. Mesa structure with area of 5.86x10⁻⁴ cm² was fabricated for our DLTS and CV study. The Sn-doped n-GaAs active layer has a dopant density of 5×10^{16} cm⁻³, and the undoped n-GaAs layer has a carrier density of 1.5×10^{15} cm⁻³. Three different irradiation and annealing experiments were performed on these solar cells: (1) one-MeV electron irradiation was done at room temperature on Sn-doped (AlGa)As-GaAs solar cells for electron fluences of 10^{14} , 10^{15} , and 10^{16} cm^{-3} , and subsequently annealed at 230°C for 10, 20, 30, and 60 minutes. (2) Same type of GaAs cells was irradiated at 150°C and 200°C cell's temperature and fluence of 1015 cm^{-2} using two different flux rates (4x10¹⁰ e/cm²-s and 2x10⁹ e/cm²-s). (3) one-MeV electron irradiation was performed on the undoped GaAs solar cells at 200°C cell's temperature for fluence of 10^{14} and 10^{15} cm⁻². DLTS and C-V measurements were made on the cells described above, and the results are discussed next.

Fig. 1 and Fig. 2 show the DLTS scan of electron and hole traps in the (AlGa)As-GaAs cells irradiated with 10^{16} e/cm² electron fluence and annealed at 230°C in vacuum for 20, 30, and 60 minutes, respectively. Three electron traps with energies of E_c -0.31, 0.71, and 0.90 eV and one hole trap with energy of E_v +0.71 eV were observed in these samples. The DLTS data showed that density of each defect level was reduced as a result of the 230°C thermal annealing. Note that the "E₃" electron trap has the largest reduction in its density followed by the 230°C annealing for 60 minutes. Significant reduction in the trap density was also observed for the E_v +0.71 eV hole trap from the 230°C annealing process (see Fig. 2). A similar result for both electron and hole traps was also obtained for cells irradiated by the 10^{15} e/cm² electron fluence. Table 1 and table 2 summarize the results deduced from the DLTS and C-V measurements for the Sn-doped GaAs solar cells irradiated at room temperature

with fluences of 10^{15} and 10^{16} e/cm² and annealed at 230°C for 20, 30, and 60 minutes. Hole diffusion lengths calculated from the DLTS data were found to vary between 1.5 to 2.44 μ m for $\phi_e = 10^{15} \text{ e/cm}^2$ fluence. The effects of incident flux rate and cell's irradiation temperature on the defect parameters were studied on Sndoped GaAs cells irradiated with 10^{15} e/cm² fluence. Fig. 3 and Fig. 4 show respectively the DLTS scans of electron and hole traps for the Sn-doped GaAs solar cells irradiated by 1015 e/cm2 fluence, with flux rates of 4x1010 e/cm2-s and 2x109 e/cm2-s and irradiated at 150 and 200°C cell's temperature. The results show that the dominant electron trap is due to $E_c-0.71$ eV level, and the dominant hole trap is due to E_v +0.71 eV. The density for both traps increases with increasing flux rate and reducing cell's temperature. For cells irradiated at 4×10^{10} e/cm²-s flux rate, two additional electron traps (i.e., E3 and E5) were also detected. The defect and recombination parameters calculated from the DLTS data for these cells are summarized in table 3 and table 4. Note that the DLTS data shown in Fig. 1 through Fig. 4 are for the Sn-doped GaAs solar cells. The DLTS scans of electron and hole traps for the undoped GaAs solar cells irradiated at 200°C are shown in Fig. 5 and Fig. 6, respectively. Fig. 5 shows the DLTS scan of electron traps for cells irradiated with 10^{14} and 10^{15} e/cm² fluence, respectively; four electron traps with energies of E_c-0.13, 0.41, 0.71, and 0.90 eV were observed in these two cells. Note that E_c-0.13 eV and E_c -0.41 eV electron traps are not detected in the Sn-doped GaAs cells shown in Fig. 1. Fig. 6 shows the DLTS scan of hole traps for the same cells shown in Fig. 5; two hole traps with energies of E_v +0.29 and E_v +0.71 eV were observed for cells irradiated with 10^{15} e/cm², and only one hole trap with energy of E_v+0.71 eV was observed in 10^{14} e/cm² irradiated cells. In both figures it is noted that increasing electron fluence will increase the density of both electron and hole traps in these cells. Defect and recombination parameters deduced from the DLTS and C-V data for cells shown in Fig. 5 and Fig. 6 are summarized in table 5 and table 6. Fig. 7 shows the defect annealing rate for the "E₃" electron trap for electron fluence of 10^{16} e/cm² and for the "E₅" electron trap for electron fluence of 10^{15} e/cm², for GaAs cells shown in Fig. 1 and table 1. From the study of deep-level defects and their annealing behavior, it is concluded that (i) one-MeV electron irradiation on GaAs cells grown by the infinite solution melt LPE technique will in general produce three to four electron traps and one to two hole traps if the electron fluence is greater than 10^{14} e/cm^2 ; (ii) defect density will increase with increasing incident flux rate and fluence; (iii) increasing annealing temperature and annealing time will reduce the density of both electron and hole traps; (iv) increasing the cell's temperature during electron irradiation will effectively reduce the trap density; (v) low temperature thermal annealing is more effective in annealing out the shallower traps than the deeper traps; (vi) the recombination enhanced annealing^[1] was found to be effective for reducing the density of deep-level recombination centers; (vii) the activation energy for the "E3" electron trap was found slightly different in the undoped GaAs than that of the Sndoped GaAs solar cells (i.e., E_c -0.41 eV vs. E_c -0.31 eV), and (viii) the (E_v +0.29 eV) hole trap observed in the undoped GaAs cells was not detected in the Sn-doped GaAs solar cells under same irradiation conditions.

*Research supported by the Aeropropulsion Lab., AFWAL, subcontract through Universal Energy System Inc., Ohio.

[†]Supported by NASA Lewis Research Center.

[1] J. D. Weeks, J. C. Tully, and L. C. Kimerling, Phys. Rev. B, 12, 3286 (1975).

.2

Annealing time & Temperature		φ _e =	10 ¹⁵ e/cm ²					
	E _T (eV)	N _T (cm ⁻³)	σ _n (cm ²)	τ _n (s)	E _T (eV)	N _T (cm ⁻³)	σ _n (cm²)	τ _n (s)
Unannealed	$E_2 = E_c - 0.20$ $E_3 = E_c - 0.31$ $E_4 = E_c - 0.71$ $E_5 = E_c - 0.90$	9x10 ¹² 2.9x10 ¹⁴ 3.2x10 ¹⁴ 3.4x10 ¹⁴	1x10 ⁻¹⁶ 1.8x10 ⁻¹⁴ 5.1x10 ⁻¹⁴ 5.8x10 ⁻¹⁴	2.77×10 ⁻⁵ 4.26×10 ⁻⁹ 1.25×10 ⁻⁹ 1.04×10 ⁻⁹	230 [°] C ^E 2 ,10 ^{E3} min.) ^{E4} E5	7.9x10 ¹² - 5.7x10 ¹³ 1.1x10 ¹⁴	1×10^{-16} 5.1×10 ⁻¹⁴ 5.8×10 ⁻¹⁴	- 7.64x10 ⁻⁹ 3.2x10 ⁻⁹
230°C for 20 min.	E3 E4 E5	1.4x10 ¹⁴ 9.5x10 ¹³ 1.2x10 ¹⁴	1.8x10 ⁻¹⁴ 5.1x10 ⁻¹⁴ 5.8x10 ⁻¹⁴	9.92x10 ⁻⁹ 4.39x10 ⁻⁹ 2.93x10 ⁻⁹	E3 E4 E5	2.6x10 ¹³ 5.4x10 ¹³ 6.1x10 ¹³	1.8x10 ⁻¹⁴ 5.1x10 ⁻¹⁴ 5.8x10 ⁻¹⁴	4.75x10 ⁻⁸ 8.07x10 ⁻⁹ 5.77x10 ⁻⁹
230°C for 30 min.	E3 E4 E5	1.2x10 ¹⁴ 7.7x10 ¹³ 6.2x10 ¹³	1.8x10 ⁻¹⁴ 5.1x10 ⁻¹⁴ 5.8x10 ⁻¹⁴	1.01x10 ⁻⁸ 5.41x10 ⁻⁹ 5.68x10 ⁻⁹	E3 E4 E5	2.4x10 ¹³ 2.5x10 ¹³ 3.1x10 ¹³	1.8x10 ⁻¹⁴ 5.1x10 ⁻¹⁴ 5.8x10 ⁻¹⁴	5.1x10 ⁻⁸ 1.6x10 ⁻⁸ 1.14x10 ⁻⁸
230°C for 60 min.	E3 E4 E5	2.7x10 ¹³ 6.2x10 ¹³ 1.6x10 ¹⁴	1.8x10 ⁻¹⁴ 5.1x10 ⁻¹⁴ 5.8x10 ⁻¹⁴	4.57x10 ⁻⁸ 6.45x10 ⁻⁹ 2.19x10 ⁻⁹	E3 E4 E5	7.2x10 ¹² 1.8x10 ¹³ 2.2x10 ¹³	1.8x10 ⁻¹⁴ 5.1x10 ⁻¹⁴ 5.8x10 ⁻¹⁴	5.6x10 ⁻⁷ 2.22x10 ⁻⁸ 1.6x10 ⁻⁸

Ţ

Table. 1 Electron trap parameters in one-MeV electron irradiated (AlGa)As-GaAs solar cells annealed at 230 °C for 10,20,30, and 60 min. N $_{\rm D}$ = 5x10¹⁶ cm⁻³ (Sn-doped n-GaAs)

Table.2	Defect parameters of Hole Traps in one-MeV Electron Irradiated
	(AlGa)As-GaAs Solar Cells vs. Annealing Time

2	N _D (cm ⁻³)	Appealing Time	Hole Trap					
Fluence (e/cm ²)		& Temp.	E _T (eV)	$N_{\rm T}$ (cm ⁻³)	$\sigma_{\rm p}$ (cm ²)	τ _p (ns)	L (um)	
10 ¹⁵	5.5x10 ¹⁶	20 min. at 230°C	E _v +0.71	9x10 ¹³	4.01×10^{-13}	2.25	1.50	
		30 " " .	'n	6.8×10^{13}		2.65	1.72	
		60 " "	H	3.4×10^{13}	11 -	5.30	2.44	
10 ¹⁶	3.5x10 ¹⁶	20min.at230°C	E_+0.71	9×10^{14}	4.01×10^{-13}	0.20	0.47	
	-	30 " "		6.2×10^{14}		0.29	0.57	
		60 " "	. 11	1.1×10^{14}	41	1.64	1.35	

Table.3 Electron Trap Parameters vs. Flux Rate in one-MeV Electron Irradiated (AlGa)As-GaAs Solar Cells for $\phi_e = 10^{15} \text{ e}/\text{cm}^2$

Samples	N _D (cm ⁻³)	Flux Rate (^e /cm ² -s)	Annealing Temp. (°C)	Electron Traps				
				E _T (eV)	$N_{\rm T}$ (cm ⁻³)	σ _n (cm ²)	τ _n (s)*	
1	5.35x10 ¹⁶	4x10 ¹⁰	200	$E_3 = E_c - 0.31$ $E_4 = E_c - 0.71$ $E_5 = E_c - 0.90$	$1.24 \times 10^{13} \\ 5.84 \times 10^{13} \\ 1.35 \times 10^{13}$	$\frac{1.8 \times 10^{-14}}{5.1 \times 10^{-14}}$ 5.8 \times 10^{-14}	$\frac{1 \times 10^{-7}}{6.85 \times 10^{-9}}$ 2.6 \times 10^{-8}	
2	5.56x10 ¹⁶	2x10 ⁹	150	E4	4.85x10 ¹³	5.1x10 ⁻¹⁴	8.25x10 ⁻⁹	
3	5.69x10 ¹⁶	2x10 ⁹	200	E4	3.61x10 ¹³	5.1x10 ⁻¹⁴	1.11x10 ⁻⁸	

Samples	N _D (cm ⁻³)	Flux Rate (^e /cm ² -s)	Annealing Temp. (°C)	Hole Traps					
				E _T (eV)	N _T (cm ⁻³)	σ _p (cm ²)	τ _p (s)*	L _p (um)	
1	5.35x10 ¹⁶	4x10 ¹⁰	200	EB=E_+0.71	4.94x10 ¹³	4.0x10 ⁻¹³	3.6x10 ⁻⁹	2.01	
2	5.56x10 ¹⁶	2x10 ⁹	150	E _v +0.71	4.02x10 ¹³	4.0x10 ⁻¹³	4.46x10 ⁻⁹	2.23	
3	5.69x10 ¹⁶	2x10 ⁹	200	E _v +0.71	3.06x10 ¹³	4.0x10 ⁻¹³	5.84x10 ⁻⁹	2.58	
	ļ	L		· · · · · · · · · · · · · · · · · · ·	t.	3	••••••••••••••••••••••••••••••••••••••		

Table.⁴ Hole Trap Parameters vs. Flux Rate in one-NeV Electron Irradiated (AlGa)As-GaAs Solar Cells for $\phi_e = 10^{15} \text{ e}/\text{cm}^2$

£

 $*\tau_{p} = (N_{T}\sigma_{p}V_{th})^{-1}, L_{p} = (\tau_{p}D_{p})^{l_{2}}; D_{p} = 11.2 \text{ cm}^{2}/\text{s}.$

Table. 5 Electron and Hole Traps in one-MeV Electron * Irradiated (at 200°C) (AlGa)As-GaAs Solar Cells.

Electron	*3	Electro	on Traps	Hole Traps		
Fluence (cm ⁻³)	D ^(Cm)	E _T (ev)	N _T (cm ⁻³)	E _T (eV)	N _T (cm ⁻³)	
Ò	1.5x10 ¹⁵	-	-	-	-	
10 ¹⁴	1.45x10 ¹⁵	$E_{c} = 0.13$ $E_{c} = 0.41$ $E_{c} = 0.71$ $E_{c} = 0.90$	3.2×10^{13} 1.3×10^{13} 1.2×10^{12} 1.6×10^{12}	E _v +0.29 - E _v +0.71 -	0 - 6.4x10 ¹² -	
10 ¹⁵	1.05x10 ¹⁵	$E_{c}^{-0.13}$ $E_{c}^{-0.41}$ $E_{c}^{-0.71}$ $E_{c}^{-0.90}$	2.2x10 ¹⁴ 1.3x10 ¹³ 7.8x10 ¹² 9.5x10 ¹²	E _v +0.29 - E _v +0.71 -	6.9x10 ¹² - 2.0x10 ¹³ -	

*Carrier removal rate = $\Delta n/\phi_e = 0.5 \text{ cm}^{-1}$. undoped n-GaAs LPE layer.

ť

Fig. 3 DLTS scan of electron traps in one-MeV electron irradiated (AlGa)As-GaAs solar cells vs incident flux rate and annealing temperature.

Fig. 4 DLTS scan of hole traps in one-MeV electron irradiated (AlGa)As-GaAs solar cells vs incident electron flux rate and annealing temperature.

5

ţ

Fig.5 DLTS scan of electron traps in one-MeV electron irradiated (at 200 °C) (AlGa)As-GaAssolar cells as a function of electron fluence.

£

