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1.0 INTRODUCTION

This document is the final report for the Regenerative Life Support Research/
Controlled Ecological Life Support System (RLSR/CELSS) Program Planning Support
(Transportation Analysis) study, Contract Number NAS2-11148. Boeing Aerospace
Company performed the study for the NASA Ames Research Center in support of the
Controlled Ecological Life Support System Program and the Advanced Life Support
Program.

1.1 Study Objectivas

The study objectives are:

a. To identify future NASA missions tihat will require CELSS technology based on
specific mission models.

b. To develop rationale and justification, and to identify potential cost savings for
controlled ecological life support systems based on mission model analysis.

1.2 Background

Certain basic physiological needs (fig. 1-1) must be satisfied in order to sustain man.
In the terrestrial environment, these needs are met through the evolution of life forms
that effectively use man's waste products in conjunction with energy received from the
sun, to produce fresh supplies of food, oxygen, and clean water. Likewise, in the artificial
environment of a spacecraft; oxygen, water, and food must be provided, and the waste
products that man generates must be removed. The spacecraft environment, however,
does not have the capabilities or resources that are supplied by the Earth biosphere to
carry out these life-sustaining processes. Artificial methods must be utilized to supply
man's needs.

To date, manned spaceflight has used the relatively simple technique of bringing all
the necessary sustenance for the duration of the mission and collecting and storing waste
products for return to Earth. This is referred to as an open system. It was recognized
early, as manned missions became longer and crew size increased, that the weight,
volume, and transportation penalties of storing or routinely resupplying consumables
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would at some point become expensive, and that eventually the cost would become
prohibitive (refs. 7, 12, 13, 19, 21, 22, 23, 32, 34, 43, 46, 66, and 71). Since the early
1960's, regenerative lite support technology has been under development, and there now
exists a foundation in both systems definition and subsystem technology to support long-
duration manned missions. In many cases this developmant has reached the engineering
prototype stage for many of the physiochemical systems.

The NASA CELSS program was Initiated as a long term research and development
effort to fulfill future needs for recycling and regenerating monterials for human
consumption during extended NASA space missions. This material recycling is referred to
as a closed system. The CELSS program has been primarily directed toward biological and
synthetic systems for food production and environmental control mechanisms (refs. 3, 26,
28, 30, 33, 37, 38, 40, 43, 45, 47, 49, 54, 60, 66, 67, 70, and 73).

It was the intent of the RLSR/CELSS Program Planning (Transportation Analysis)
study to use a systems analysis approach to determine which generic missions would
benefit from CELSS technology. The study focused on marned missions selected from
NASA planning forecasts covering the next half century. Comparison of various life
support scenarios for the selected missions and characteristics of projected transportation
systems provided data for cost evaluations. This approach identified missions that derived
benefits from a CELSS, showed the magnitude of potential cost savings, and indicated
which system or comnvination of systems would apply. This seport outlines the analytical
approach used in the evaluation, describes the missions and systems considered, and sets
forth the benefits derived from CELSS when applicable.
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29 APPROACH AND ASSUMPTIONS

21 Ovarall Study Approach

The overall spproach was to conduct a dstalled transportation anajysis using cn

extensive data base from previous programs to evaiuate six missions selected for study.
The transportation analysis, jn conjunction with data derived for mass and velume
requirements for several environmental control/life support systems closure scenarios,
was used to determine breakeven time and cost for mission closure scenario comparisons,
The development of transportation costs as a function of EC/LSS closyre gives an
estimate of cost savings and proyides justification for life support technology advance-
ment. Flgure 2-1 shows ihe interrelationships and tasks used to conduct this study.

2.2 Gensral Assumptions

a.

b.

c.

d.

The assumptions and groundrules employed during the study are listed below.

Advanced transportation tochnology projections were used, in conjunction with the
specific mission location and mission era, to determine the corresponding costs,

Development cnd operating (labor, etc.) costs for transportgtion systems or EC/LS
systems were not considered.

Full payload manifesting on transportation vehicles was used to determine cost as
opposed to providing fractional credits for partial loads. This is similar to airline
industry practices, whereby individual tickets cost the same regardless of the
number of passengers or amount of cargo on a particular fligl-t.

The ~urrent data base was used when available to detegmine EC/LSS and -CELSS
mass, volume, and power requirements; otherwise, engineering estimates were
made.

EC/LSS consumables attributed to vehicle leakage and extravehicular activity were
not considered. '




ORIGINAL PACE IS

OF POOR QUALITY

Mmoj4 %3607 ApmiS |-Z aunbyy

SLISAS
YR ANEEN G000 RS
SOWMVIRS MWsVIve
e 1 swevs
[ -1 - SNE0
NOILVZINIALIOVHYHD SS1/93
!J‘Cb’
nve
.m..U‘
_u...“..s“ ..iim...... ) am O S
| sty ]
AVCIONVYEL AONIS LW
L ] o—— NWYIVAVE
AR L. [: ]

SISATYNY WIALSAS NOILVALYOJSNYYL 30VdS

NOILDI13S NOISSIN




f. The. EF/LSS volume, including plant growth area, was assumed to have the same
radiation protection as required for human habitation.

g8  Only commonly used higher plants were considered for food production.
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3.0 MISSION DEFINITION
3.1 ldentify Potential Missions

Potential manned missions have been identified using information from NASA long
range planning documents and from discussions with Air Force Space Division personnel.
These missions are categorized by function, and are disnlayed in figure 3-1. Potential
mission locations are diagrammed in figures 3-2 through 3-4. Figure 3-2 shows the
potential locations for a CELSS-equipped habitat. Figures 3-3 and 3-4 are pictorial
displays of these potential locations. Ceres and Vesta are two of the largest asteroids,
with the orbit of Ceres near the outer boundary of the majority of bodies in the asteroid
belt. Generic mission descriptions from the mission matrix have been noted under the
various mission locations in figure 3-5. The last figure shows the variety o' mission
locations available for selection of transportation scenarios.

3.2 Selection Procedure

The missions to be studied were selected in the manner shown in figure 3-6. The
first level rejects all missions for which CELSS is obviously unlikely—such as unmanned
missions, or Apollo-type short duration sorties. Those missions that passed the initial
screening process were subjected to the selection rationale to identify a number of
realistic missions that are diverse both in function and location. This desire for diversity
motivated the inclusion of an additional mission, the long-duration sortie. This variety of
mission function and location covers a wide range of transportation scenarios, and
provides a broader perspective on the indication of cost breakeven for CELSS.

3.3 Selected Study Missions

The six missions chosen include four in the earth-moon system, and two farther out
in the solar system. The local environment—radiation, solar flux, usable materials— of
each mission varies greatly because each mission has a distinct location. The mission
location has a significant impact on the final design of the space base as well as on the
transportation methods designed to get to that base. For example, low earth orbit
stations that fly beneath the Van Allen belts do not require the large amounts of radiation
shielding necessary in other missions, although heavy Ni-H2 batteries are needed to store
solar energy (for use when tlying in the earth's shadow 16 times per day). The values for
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® LEO = LOW EARTH ORB: !’ < 1000 KM
*® HEO = HIGH EARTH ORBIT > 6000 KM

Figure 3-2 Potential Habitat Locations
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radiation shielding and power mass factor are given for each mission in table 3-1 (;efs. 63
and 90.)

In this regenerative life support system analysis, each level of closure will have
different power and volume requirements. Table 3-1 provides the mass penalties that
must be assessed to a mission for eacn closure level. In the final analysis, the total
system mass (and resupply mass) will determine the optimal closure level for each
mission. The following paragraphs provide a description of each mission, and give the
rationale for the power and shielding values presented in table 3-1.

a. LEO-Low inclination. This mission is a parmanently manned operations center in
low earth orbit at an inclination of 28.5 deg. The four- to twelve-person center
would be responsible for assembly and construction of conmplex spacecraft, servica
and basing of upper stages, and service of free-flying satellites.

This mission is likely to be implemented before the year 2000, with technology and
manufacturing constraints placing initial operating capability after 1989,

The operations center orbits the earth beneath the Van Allen belts to minimize solar
array degradation and radiation shielding requirements. However, the power system
is still quite massive due to the fact that one third of the 90 minute orbit period is

in darkness.

b. LEO-High Inclination. This scientific station will be located in a sun-synchronous
low earth otbit at an inclination of approximately 97 deg. The four-person station
will be concerned with scientific investigation of various aspects of the earth and
sun. This mission was selected because the location of a high inclination orbit will
necessitate an additional LEO transportation scenario. The technology and manu-
facturing constraints are esscntially the same as the operations center, but the
scientific rather than commercial thrust of the mission places initial operation after
1995.

The high inclination of the orbit may expose the station to a greater amount of solar
proton flux, although it was determined that no additional shielding was required to
protect station personnel. The sun-synchronous orbit of this station ensures that the
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Tab2ie 3-1 Mission Dependent Masses

SOLAR ARRAY NUCLEAR SOLAR ARRAY
woow | Woman | oraso | Luman uang SR | agrencio

IncL incL aass | sunrace | ansy | souan
LECTAICAL POWER| 630 kG | %0 0 1.308 1.200 .00 4200
ARRAY/REACTOR
sueLoING 0 0
rowsn 00 00 20 @ 0 20 0
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solar arrays will be ir continuous sunlight, therefore batteries for energy storage are

not requited.

6 X GEO. A military command post will be modeled in a typical 6 X GEO circular
orbit. The station will support 4 to 24 inen with infrequent resupply. This mission
was selected because of the unique military aspects involved, in addition to the high
earth orbit lotation. These military aspects motivated the 1995 initial operation
date.

(e high earth orbit location causes the solar array to be exposed to sunlight at all
umes; no energy storage system is necessary. However, the increased orbit altitude
places the station above the Van Allen beits, and exposes it to direct proton flux
radiation. This severe radiation environment causes greater array degradation and
increased module shielding weights. A nuclear reactor was examined as a potential
energy source, but was rejected because of operational uncertainties and reactor

shielding weight penalties.

Lunar Base. A habitat will be located on the lunar surface to support 12 to 48
personne! who are prirnarily concerned with transporting lunar soil to lunar orbit for
use in construction and manufacturing missions. The lunar location of this mission
and potential economic return motivated its selection.

The need for lunar material for space constr' ~tion projects is not anticipated before
the end of this century. The mission model indicates this requirement, and the
necessary technology, in the year 2010.

The long lunar night precluded the use of a solar array for energy production. A
SPAR-type nuclear reactor was determined to be the most mass efficient energy
producing system for this mission. Both the nuclear reactor and the manned
habitats use lunar soil for shielding.

Asteroid Base. A mining mission to extract minerals from an asteroid in the
asteroid belt will be modeled at a manning level of 5000 personnel. The asteroid
mission was chosen because it is the only mission outside of the earth-moon :ystem
with potential economic return. This mission is projected 70 years in the future, and
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anticipates development of advanced technology such as fusion-drive propulsion
systems and heavy-lift launch vehicles.

The habitat power is derived from solar arrays that assume 1990 technology. In this
case the power mass factor is seen to be necessarily conservative, as projecting
solar cell performance 70 years into the future is speculative at best. Habitat
radiation shielding is accomplished using asteroidal materials.

f.  Mars Surface Exploration. This long-duration sortie mission will involve extensive
travel time (approximately 1000 days) and a manning commitment of 8 perscnnel.
The Mars mission was included as the most realistic long duration sortie. The
technology for this mission i$ available today, although the need has not yet been
identified, nor have all the necessary support systems been designed. The
designated use of a shuttle-derived laurch venicle, and a unique Earth-Mars
transportation system compelled a 2010 mission date. Transportation vehicles
necessary for the various missions will be described in the following section.

Mission design involves two power systems; a solar array for the transit and orbiting
period of the mission, and a small nuclear reactor for Mars surface exploration. An
advanced solar array with a regenerative fuel cell energy storage system was
examined for use upon the surface, however using Martian soil for the reactor

radiation shielding provided a lower power-to-weight penalty for the nuclear system.
3.4 Crew Size Definition

The crew size, crew rotation period, and the base resupply period have been
determined for each mission (table 3-2). The values for crew size are particularly
sensitive to the selected mission description; for example, the lunar mining base is
modeled at a level of 12 to 48 personnel because a lunar mining operation need not require
more personnel. The crew size numbers may be extrapolated, with the understanding that
the mission definition will change-and with it the transportation analysis, vehicles, and
cost.
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Table 3-2 Crew Size and Rotstion

CREW ROTATION

MlSSl(?N CREV. SIZE RANGE PERIOD RESUPPLY PERIOD

DAYS DAYS

OPERATIONS CENTER 4-12 80 80

MONITORING BASE 4 90 90

DEEP MILITARY BASE 4-24 180 180

LUNAR BASE 12- 48 180 90

ASTEROID MISSION 5000 18568 928

MARS SORTIE 8 944 NONE
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4. TRANSPORTATION ANALYSIS

Analyzing the methods and vehicles used to transport personnel and materials from
the earth's surface to the mission location wiil provide the study with a sound
transportation cost for each mission. These mission-dependent transportation costs will
be used to determine the cost savings (or penalties) incurred by each level of closure.

The transportation analysis comprises two parts; a trajectory analysis to determine
the route of travel, and a vehicle analysis to determine what rocket or combination of
rockets can accomplish the mission most efficiently. The following paragraphs describe
the trajectory analysis and vehicle analysis for each mission. The trajectory ‘inalysis was
accomplished using the standard orbital mechanics relationships, which determine time-
line and velocity change data and a descriptive illustration for each mission. The
illustration has been included with each transportation description. The vehicle analysis
was performed using the vehicle data base compiled by Boeing. Inputs to this analysis
were mission trajectory analysis data, mission-technology era, and approximate payload
mass estimates. The analysis determined optimum types of vehicles necessary, their
sizes, and approximate cost per kg to transport personnel and material from earth to the

space base.
4.1 LEO-Low Inclination

This mission has the most straightforward transportation analysis, in addition to
being the most specifically defined mission studied. The LEO operations center is located
at a circular earth orbit altitude of 370 km, with an inclination of 28.5 deg. The center is
serviced directly by the shuttle orbiter from an eastern test range (Cape Kennedy) launch.
In 1990, an unmodified shuttle launched to the operations center can carry approximately
65,000 b (29,480 kg). Figure 4-1 illustrates the shuttle trajectory from Cape Kennedy to
the LEO operations center.

4.2 LEO-High Inclination
The monitoring station mission is very much like the LEO operations base, in that it
may be directly serviced by the shuttle orbiter. The station is located in low earth orbit

at an altitude of 450 km, and a sun-synchronous inclination of 97.5 deg. Because of the
high orbit inclination, this mission requires a launch from the western test range at
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Figure 4-1 LEO — Low Inclination Mission Trajectory
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Vandenburg AFB, California. The higher altitude requires that some of the orbiter
payload bay area is used for fuel tanks, which are needed to extend the shuttle range. The
high inclination and altitude of the station lower the payload capacity of the shuttle to
40,000 1b (18,144 kg). The shuttle trajectory from Vandenberg AFB to the space station is
illustrated in figure 4-2.

4.3 6 X GEO

The trajectory illustrated in figure 4-3 is used to establish resupply and crew
rotation for a military command post in a circular orbit of six times geosynchronous orbit.

Since the command post is not directly accessible by the shuttle orbiter, a payload
must first be brought to a LEO operations base by a shuttle orbiter. Ornce at the base,
the payload is mated to an orbital transfer vchicle (OTV) that flies to and from the
command post. A conceptual drawing of the OTV can be seen in figure 4-4. The mission
sequence is straightforward, with a single revolution in phasing orbit establishing the
correct longitude for moving into the command post orbit, followed by propulsion into
transfer orbit and coast to altitude. Circularization and plane change is followed by
rendezvous with the command post. After the transfer operations are completed at the
command post, the manned OTV executes a plane change burn and moves into the transfer
ellipse. The braking ballute is inflated several minutes before perigee passage through the
Earth's upper atmosphere. The ballute provides controlled aerodynamic drag to
decelerate the vehicle for moving into phasing orbit. The ballute is jettisoned at the
apogee of the phasing orbit, followed by propulsion of the OTV into a 160-nmi orbit for

rendezvous and recovery by the orbiter.

The Boeing performance and mass sequencer calculator (PMSC) computer code was
used to determine the payload capacity of the reusable, aerobraked OTV, which is a
projected system with a significant parametric data base (refs. 85 and 87). Figure 4-5
shows the final output from the PMSC program, and lists the vehicle resupply payload
capacity at 18,290 Ib (8,300 kg).

4.4 Lunar Base

The lunar base resupply trajectory is illustrated in figure 4-6. The low Earth orbit

operations are essentially identical to the command post trajectory analysis. The position
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Figure 4-2 LEQ — High Inclination Mission Trajectory
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OTV MANNED 6 X GEO RESUPPLY MISSION

USABRLE MAIN PROP. MASS
NOMINAL BURNOUT MASS
START MISSION MASS
ROUNDTRIP PAYLOAD MASS
RESUPPLY MASS

MAIN ENG. ISP = 485
AUX. PROP. ISP = 220

EVENT DELTA V({t/s)
STARTBURN ---
SEPARATE 10
PHASE 0
PHASE INJECT 4494
COAST 0
TRANS. INJECT 3530
COAST 50
6XGEQ ORB CIR 3317
TRIM 30
REND., & OCK 70
PHASE 0
TRANS. INJECT 3333
COAST 65
AEROMANEUVER 0
COAST 0
RAISE PERIGEE 145
COAST 0
LEO CIRC, 407
REND. & DOCK 60
RESERVES 450
UNLOAD P/L .-

NOMINAL MAIN PROPELLANT =
RESERVE MAIN PROPELLANT =
NOMINAL AUX. PROPELLANT -
RESERVE AUX. PROPELLANT -
TOTAL LOSSES =

Ih

73700
9828
115530
11000
18290

PROP USAGE (Ib)

163

0
28866
0
25779
220
11531
106
477

0
5686
112

0

0

209

0

575
183
612

b
73084
612
824

82

1109

LOSSES (Ib)

6

5
92
bl

37
139
37
40
157
16
37
139
311
695
37

1

37
10
0
11000

Figure 45 Performance Code Output
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numbers on the trajectory illustrated in figure 4-6 correspond to important events in the
timeline and velocity change data listed in figure 4-7.

The lunar base mission requires three types of transportation vehicles: (1) a shuttle
orbiter to raise payload frcm the Earth to a low Earth orbit operations center, (2) an
orbital transfer vehicle that takes payloads from LEO to lunar orbit and back, and (3) a
lunar transfer vehicle (fig. 4-8) that ferries payloads from lunar orbit to the lunar surface.

The shuttle orbiter must bring the payload to an operations center where it is mated
to an orbital transfer vehicle (OTV). The OTV then propels the payload, the resupply
module, into lunar orbit. After circularizing in low lunar ortit, the manned OTV module
has a rendezvous with a lunar transfer vehicle (LTV) that was launched from the lunar
surface into orbit. Crew, supplies, and propellant for the LTV are exchanged in orbit,
after which the LTV descends to the lunar surface base. The manned OTV executes a
plane change burn and moves into the transfer orbit where it will coast until ballute
deployment and low earth orbit aerobrake maneuver. The phasing orbit operation and

shuttle rendezvous proceed as stated in section 4.3.

The shuttle payload to LEO has previously been given as 65,000 lb (29,480 kg), and
the OTV payload capacity is recalculated (lunar orbit trajectory is different from 6 X
GEO) at 23,210 Ib (10,530 kg). The LTV has been parametrically sized and costed in a
previous study (ref. 84). The maximum LTV payload is calculated to be 40,668 lbs (18,450
kg). Because this lunar base is a mining facility, it is assumed that the OTV will bring
only liquid hydrogen propellant for the LTV. Liquid oxygen is produced from lunar soil.

4.5 Asteroid Base

The mission assumes an asteroid mining operation with a 5000 person habitat. The
complex transportation scenario for this advanced mission involves four different vehicles
and three separate space bases (refs. 86 and 91).
a. Payload and propellant are launched from the Earth's surface to a low Earth orbit

(LEO) staging base (operations center) by a heavy lift launch vehicle (fig. 4-9). This
vehicle has the capacity tc lift 490,000 1b (222,222 kg) to LEO.
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LUNAR SURFACE EXPLORATION

MESTINATION:  Lunar Surface
TRANSFER ORNDIT PARAVIETERS: V TLI = 3.113 km/sec
Circularize V LOl = .903 km/sec
Trans orbit 1/2 period: 99 hrs.

Event E.T.d End

No. Activity Duration of Event v
Hrs. “Hrs, km/sec

l.  STS ascent & circularize @ 160 nm. 3.06 3.06
2. Crew transfer: Erect & checkout manned OTV 4.00 7.06
3. Release OTV: Phase in 160 nm. orbit 11.00 18.06
4. Phasing burn .17 18.23 .400
5.  Coast in phasing orbit 3.00 21.23
6.  Translunar insertion burn . 21,3 2.713
7 Coast to Lunar orbit intercept, midcourse

correction 45.00 66.%
8. Lunar orbit insertion & plane change 45.00 101.34 .903
9, LTV ascent 1.00 102.3% 1.846
10. Rendezvous with, LTV transfer operations 18.06 120.40 .16%
11. LTV landing 1.20 121.60 2.094
12. Coast in orbit; plane change hurn 15.00 136.60 .N37
13, Trans Earth insertion burn .N6 136.66 .820
14, Coast to aerobrake maneuver; inidcourse

correction 45.00 181.66
15.  Aerobraking maneuver 45.00 226.66
16. Coast to apogee .79 227 .45
17.  Jettison ballute; raise perigee to 160 nm. .06 227.51
18. Coast 1/2 REV to 160 nin, perigee .79 228.1%0
19, Burn to circularize at 160 nin. for rendezvous N6 223.136 . 126
20, Orbit trim & gravity gradient stabilize 2.00 210. 136
2). OTV recovery; crew transfer 4.42 2,78

22. STS/OTV E deorbit & landing

Figure 4-7 Timeline and Velocity Change Data Sheet
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The LEO base serves as a staging area for all personnel, cargo, and propellant
enroute to the final fusion rocket assembly area in geosynchronous orbit. At the
LEO base, the cargo and propellant are loaded onto a solar electric powered transfer
vehicle (fig. 4-10) for the 174-hr trip through the Van Allen beits to the GEO. This
vehicle can lift a payload of 500,000 Ib (226,757 kg) to geosynchronous orbit. The
personnel and any priority cargo are transported on an enlarged version of the
previously described aerobraked OTV for faster trip (6 hr) to the GEO assembly

base.

The GEO base serves as the finai assembly area for the large fusion rocket system
used to propel payloads out to the asteroids. Cargo and propellant are unloaded
from electric-powered transfer vehicles sent up from the LEO base. The enlarged
OTYV used to transfer personnel and priority cargo is designed to transport 441,000 ib
(200,000 kg) from LEO to GEO. The complex fusion propulsion system is assembled
at the base with the fusion power core, propellant tanks, large therinal radiators,
and the personnnel and priority cargo modules. The resulting vehicle, shown in
figure 4-11, can transport 1250 passengers and 150 metric tons of priority cargo to

the asteroids.

The gross start mass for the resupply mission would be 10,000 metric tons, of which
power plant comprises 2000 tons; hydrogen propellant, 4000 tons; and payload, 4000
tons (1250-person habitat plus consumables and priority cargo). The power plant
consists of two 6 GW fusion reictors utilizing the deuterium-deuterium fusion
reaction. The total power plar. provides 4.8 GW of thrust power while radiating

almost 2.8 GW of waste heat and 4.4 GW of high energy neutrons.

There are two methods the fusion rocket will use to propel vehicles to the asteroid
base: fast transfer for personnel and priority cargo, and slow transfer for
nonpriority cargo. The manned resupply mission is a fast hyperbolic transfer orbit
consisting of an ll-day thrust period to achieve hyperbolic velocity, followed by a
226-day coasting, and a 13-day deceleration to match velocity with the asteroid
base. The return inission leaves the asteroid approximately 113 days later for a

reverse of the ascent mission.

The second method is used to accelerate unmanned cargo pods on a slow elliptical

(Hohmann) transfer orbit out to the asteroid base. Figure 4-12 illustrates the
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Figure 4-11 Fusion Propulsion System
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different trajectories. The slower trip takes 130 days longer but costs less than half
of what the fast, hyperbolic trip costs. All nonpriority cargo is brought to the
asteroid facility in this manner. Empty cargo pods are not returned to Earth, they
may be discarded or used in a variety of ways as storage modules or CELSS modules.

e. A fleet of two fusion rockets is envisioned. They each make one round trip per
asteroid orbit (synodic cycle) to the asteroid mining facility and leave a few days
apart. Because of the synodic cycle, the fusion rocket vehicles are delayed at the
asteroid base for approximately 113 days, at the GEO location they are delayed
approximately 288 days. During these delays the fusion rockets are used to
decelerate unmanned cargo pods at the asteroid base and to accelerate the pods at
GEO. Cargo pod launches are timed to arrive at the asteroid base shortly after the
manned resupply vehicles so that the fusion rockets can decelerate the cargo pods.
The rendezvous opportunity (synodic cycle) repeats itself every 928 days. This

transportation system allows half of the total crew to be rotated each cycle.
4.6 Mars Surface Exploration

The Mars mission spacecraft illustrated in figure 4-13 is first assembled at a LEO
base from individual modules brought up by the shuttle orbiter. The Mars mission vehicle
consists of one stage for Mars transfer orbit injection, one stage for Earth transfer orbit
injection, an enrout2 habitation module, and a Mars landing and ascent vehicle. Addi-
tionally, when the vehicle intercepts Mars it must be configured for aerobraking
maneuvers (such as disposable nose cone and correct lift-drag) in order to dump excess

velocity. The returning Earth-intercept module must also carry an aerobraking ballute.
The Mars mission sequence is shown in figure 4-14 and proceeds as follows:

a. The unassembled mission spacecraft modules are brought from Earth to a LEO
operations base using the shuttle orbiter. After the vehicle is assembled, fueled,
and supplied, the crew enters the spacecraft and begins their 950-day mission.

b. From LEO a single long burn propels the spaceciaft into a heliocentric transfer

trajectory to Mars intercept. The trip from LEO to Mars takes approximately 205
days.
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At Mars, the velocity change is accomplished by using an aerobraking maneuver into
the Mars atmosphere. The spacecraft is then established in an elliptical parking
orbit around Mars. After several days in orbit, the Mars surface landing module
separates from the propulsion scages and the transfer habitat module and lands on
the Martian surface. Planetary exploration is accomplished over the next year and a
half.

After the exploration period has been completed, the personnel and necessary cargo
fly in the ascent module up to the orbiting spacecraft. All nonessential equipment
and material must be left on the Martian surface because of the severe cost of
lifting materials into orbit. After the spacecraft rendezvous, and after personnel
and materials are transferred, the spacecrafx initiates an engine burn to move into a
transfer trajectory to Earth.

The trip back to Earth will take approximately 200 days. An aerobraking pass
through the Earth's atmosphere accomplishes most of the velocity change necessary
to establish the spacecr. 't in a low Earth orbit. Once this orbit is established, the
spacecraft and crew are recovered and returned to Earth by the space shuttle.
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5.0 LIFE SUPPORT SYSTEMS CHARACTERIZAION

The life support systems considered for this study are water, air revitalization
(oxygen and carbon dioxide), waste management, and food. There are three basic methods
of supplying these materials to the spacecraft crew: (1) the materials can be stored
aboard at time of launch for the entire mission with provision of storing waste products,
(2) supplies can be brought to the crew via a transportation vehicle that also returns the
waste to Earth or (3) they can be supplied by recycling the waste products into reusable
materials. The first two methods are commonly called resupply or open systems and the
last method is known as regenerative, recycle, or a closed system. It is possible to have
several open and closed system combinations using the four life support areas; for
example, a recycling water system combined with resupply of air and food, and
corresponding waste products returned to Earth. Various combinations of open and closed
systems are referred to as closure scenarios and are further defined and discussed in
section 3.5.

When a system is closed, recycling equipment must be provided in lieu of the
resupply process. Trade studies were conducted based on the total weight of each type of
system to determine the optimum combinations of supplying materials. Total weight was
determined by the sum of the weight of the following elements: required materials such
as water, 02, food; appropriate storage containers; recycling equipment; pressure vesse!
to house the elements, based on a weight penalty of the volume occupied by the system
elements; and the resupply module, based on the volume of material to be resupplied.
Power requirements were also determined for each system type. Figure 5-1 shows the
logic flow used to derive the weight, volume, and power estimates. The development of
there estimates are discussed in sections 5.1 through 5.4 for the water, oxygen, carbon
dioxide, viaste, and food systems.

A four-man crew segment was used as a basic module size for estimating EC/LS
weight, volume, and power requirements. The rationale for this baseline selection was as

follows:

a. A four-man module {its the range identified in the mission crew size analysis, with
the exception of the asteroid mission, which was handled separately.

b. It provides a generic baseline for mass, volume, and power estimates.
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Figure 5-1 Approach to Life Support Systems Charscterization
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c. It eliminates the necessity for a detailed EC/LSS design for each mission and closure
scenario, which was outside the scope of this study.

d. The most current data base for the physiochemical systems is based on a four-man
module (Space Operations Center).

3.1 Water System

The development of the weight, volume, and power requirements for supplying water
to a four-man crew in space is discussed in this section. Water loads given in table 5-]
show the average humarn input and output. Domestic water used in the spacecraft
environment is estimated and is considered to be adequate for providing crew members
with a reasonable cleanliness level.

Table 5-2 lists the equipment that could be used to supply the water requirements.
Shuttle-type water storage tanks were used for the baseline. Vapor compression
distillation volume and power estimate was an example used for water purification
equipment to obtain weight, volume, and power estimates.

The operating data shown in table 5-3 is representative of minimum water loads
during degradation or failure of equipment. Man's ingested water requirements do not
decrease. This results in a requirement for making the ingested water supply system
redundant. However, if an eme-gcncy arises, domestic water can be reduced or

eliminated to relieve the system.

Tables 5-4 and 5-5 show the items used to develop weight, volume, and power
estimates for an open water system and a recycling system. These estimates are derived
for a 4-man module with a 90-day resupply cyc'e. The number of units on these tables
refer to the number of equipment items, descrihed in table 5-2, necessary to provide the
requirements and redundancy for a 4-man module. A comparison of the two water
systems presented in table 5-6, shows the advantages of the closed water system in weight
and volume saved for both initial materials and resupply. The initial weight of the open
system (12,446 kg) is an order of magnitude greater than the recycle system (1,320 kg),
and the resupply weight of 10,892 kg is 2 orders of magnitude greater than the recycle
resupply of 9% kg. The result of this trade is certainly not surprising—the closing of this
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Table 5-1 Typical Water Loads (Ref. 62 and 79)

SOURCE kg ( Ib)/ MAN-DAY

INGESTED H,0
DRINKING 1.85  (4.09)
FOOD PREPARATION 072 (1.88)
METABOLIC 0.39 (0.86)
WATER IN “00D 0.45 (1.00)

TOTAL 341 (7.53)
OUTPUT H, 0
URINE 150 (3.31)
PERSPIRATION AND 1.82 (4.02)
RESPIRATION
FECES WATER 0.09 (0.20) (NORMALLY NOT

RECOVERED)

TOTAL 34
DOMESTIC H,0
URINAL FLUSH 0.50 ( 1.09)
HAND WASH 1.81 ( 4.00)
SHOWER 3.63 ( 8.00)
CLOTHES WASH 12.48 (27.50)
DISHWASHER 1.81 ( 4.00)

TOTAL 20.23 (44.59)
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Table 5-2 Water Equipment Design Deta (Ref, 63)
OF POCR (USLITY

(UNIT DEFINITIONS)

v

EQUIPMENT DESIGN DATA
CAPACITY/TANK 73.8 KG (162 L8)
WATER STORAGE TANK DRY WEIGHT/TANK 22.9 KG (80.5 LB)
(SHUTTLE TYPE) STORAGE VOLUME/TANK 0.19 M3 (6.76 FTO
POWER CONSUMPTION/TANK 3.3 WATTS
WATER FLOW RATE " 1.88 KG (4.1 LB)/HR
EVAPORATION WATER
cum;c;mgn &Ns:;u DRY WEIGHT 188.2 KG (416 L8)
APOR COMPR
VAPOR COMPRENIO) VOLUME 1.0 M3 (37 FTI)
POWER CONSUMPTION 360 WATTS
DRY WEIGHT 27.2 KG (60 L8)
WATER QUALITY MONITOR VOLUME 0.11 M3 (3.8 FTI)
POWER CONSUMPTION 40 WATTS

Table 5-3 Water Opecating Level Data (4-Man Module, 90-Day Resupply) (Ref. 63)

kg (LB)/4-MAN — DAY
OPERATING LEVEL
INGESTED H 0 WASH H 0 TOTAL
OPERATIONAL 10.3 (22.7) 80.8 (17€; 93.2 (201)
90-DAY DEGPADED 10.3 (22.7) 40.5 (89) 50.7 (112)
21-DAY EMERGENCY 10.3 (22.7) 0 103 (22.7)

Table 54 Open Water System/Equipment Data Summary (4-Man Module, 90-Day Resupply)

NUMBER OF | TOTAL TOTAL TOTAL NOMINAL
ITEM UNITS caracity | weigHT | stomace | Powen
Ky VOLUME | CONSUMPTION
REQ|REDUND. o Crte
POTABLE WATER STORAGE 3| 13 1911 kg 5084 v 10
AN
DOMESTIC WATER STORAGE 100 7380 kg 7790 " 10
TANKS
EMERGENCY WATER STORAGE 3 721 kg %) 087 10
TANKS
PLUMBING, ETC. (18% OF 3) a3 | oo —_—
SUBTOTAL 9844 | 248 »
INITIAL CHARGE
POTABLE H,0 (26 TAKKS) 1911 - -
DOMESTIC H,0 (100 TANKS) 7380 — -
EMERGENCY H,0 (4 TANKS) m s =
TOTAL 12448 M6 2
90 DAY RESUPPLY 10894 18 -
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Table 5-5 Recycle Water System/Equipment Data Summary (4-Man Module, 90-Day Resupply)

NUMBER OF TOTAL TOTAL TOTAL NOMINAL
ITEM UNITS CAPACITY WEIGHT STORAGE | PCNER
kg VOLUME | CONSUMPTION
REQ EDUND. M’ WATTS
PRETREAT CHEM. TANK 1 73.8 kg e .19 33
DIATY M40 STORAGE TANK 2 1 220.8 kg es.? .87 10
myounou PURIFICATION 1 1 172 kg J370.4 20 720
WATER QUALITY MONITOR 1 72 an ")
POTABLE H.,0 STORAGE TANK 2 1 220.8 kg .7 0.87 10
EMERGENCY H,0 STORAGE TANK | 3 221 kg o) as? 12.2
(21 DAYS)
PLUMBING, ETC, (18%) S 0.6 -
SUBTOTAL 7309 4.64 798.8
INITIAL Ha0 CHARGE, § TANKS 818 - —
INITIAL SPARES & CONSUMABLES 742 (%] —
TOTAL 1320 458 7988
90 DAY RESUPPLY 0.6 0.20 -
Table 5-6 Water System Summary (4-Man Module, 90-Day Resupply)
NOMINAL POWER
SYSTEM TYPE MASS XG VOLUME m3
WATTS
OPEN SYSTEM 12,446 25 30
90-DAY RESUPPLY 10,892 2 —
RECYCLE SYSTEM 1,320 5 797
80-DAY RESUPPLY 94 0.2 o

43



ORIGINAL PAGE 13
D180-27135-1 OF POOR QUALlTY

system has been highlighted for some time in the advancement of water recycling
equipment.

3.2 Air Revitalization System

The air revitalization system includes oxygen generation, carbon dioxide removal,
humidity control, air contaminate removal, and odor control. Man's input and output loads
for oxygen and cerbon dioxide are given in table 3-7.

Oxygen is continuously required for metabolic processes within the body, therefore
it must be continuously replenished in the air. It can be supplied from stored oxygen in
tanks, from recycling using water electrolysis, or from photosynthesis. Carbon dioxide, as
a toxic waste product of metabolism, must be maintained below a maximum safe level by
removing and storing it, by processing and recycling it back into the system as water,
which can be fed into the water electrolysis unit or by photosynthesis. The other
elements of air revitalization are associated with removing various other contaminants,
and are required for both the open and closed systems. Table 3-8 defines the various
equipment units used for air revitalization and lists the applicable de: 1 data.

Degraded and emergency operating levels are given in table 5-9. The levels shown
are based on a nominal habitat pressure of | atmosphere, which this study used as the
baseline.

Weight, volume and power estimates for a four-man air revitalization module are
shown for the open system in table 5-10 and the recycle system in table 5-11. In the open
system, oxygen is stored in tanks and carbon dioxide is removed and stored in lithium
hydroxide canisters. In the recycling case, the two sysiems work together. Carbon
dioxide is removed using a solid amine bed that concentrates the CO2 to be later released
into a reduction process (Sabatier) that produces water. The water is then electrolyzed to
produce oxygen.

A summary of the open and recycle systems is presented in table 5-12. The
advantage of one systern over the other is not nearly as pronounced as for the water
system, although recycling has advantages in initial weight, resupply weight, and volume.
Depending on mission analysis, the power requirement is higher for recycling, though it

still remains advantageous to use recycling equipment.
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Table 5-7 Oxygen/Carbon Dioxide Typical Loads * (Ref. 63 and 79)

SOURCE kg (LB)/MAN-DAY
INPUT

OXYGEN 0.835 (1.34)
OUTPUT

CARBON DIOXIDE 1(2.20)

*ASSUMES METABOLIC RATE = 2800 kcal.

Table 5-8 Air Revitalization Equipment Design Data (Ref. 63, 72 and 80)

(UNIT DEFINITIONS)

EQUIPMENT

DESION DATA

OXYGEN STORAGE TANK

SPHERICAL TANK
GAS VOLUME
STORAGE VOLUME
TANK DAY WEIGHT
CHANGE PRESSURE
OXYGEN/TANK
POWER CONSUMPTION

A84 m (2.1 FT) DIA
0.137 mJ (4.88 FTD)
azemd m2errd
108 kg (41.4LB)
3300 PSIA

43.0 g (98.8 LE)
2WATTS

OXYGEN GENERMATOR
(WATE: ELECTROLYSIS)

0, PROOUCTION
'EIGNI’ WEIGHT
FLIGHT VOLUME
POWER CONSUMPTION

0.49 XG (1.00 LB)/HA.
170 KG (378 LB)
aremd (2@ FTI)
380 WATTS

CAR@GON DIOXIDE AEMOV AL
(UOH, 2 CAATRIOGE UNIT

CO, REMOVAL RATE/UNIT
FLGHY WEIGHT

FLIGHT VOLUME

POWER CONSUMPTION
CAATRIDGE USAGE
WEIGHT/2 CARTRIDGES
VOLUME/2 CARTRIDGES

Q16 kg (QLIB LBI/HA
90.7 kg (200 LB
aeazml 18 PT
SOWATTS
2/4-MAN-OAY

8 kg 128 L)

001 m? Qe F

OOOA CONTROL UNIT (CHARCOAL)

CAPACITY/UNIT
FLIGHT WEIGHT
FLIGHT VOLUME
CHARCOAL USAGE

&MAN-DAY

1 kg (20 LB)

e md (1 FTY)

0.08 kg (.13 LB)/MAN DAY

DEHUMIDIFIER

CAPACITY/UNIT
FLIGHT WEIGHT
FLIGHT VOLUME
POWER CONSUMPTION

&MAN-DAY
I0.2 kg (B85 LB)
alam? (BFT
1028 WAT™S

CARBON DIOXIDE REMOVAL
(SOLID AMINE)

CAPACITY/UNIT
FLIGHT WEIGHT
FLIGHT VOLUME
POWER CONSUMPTION

SMAN-OAY
8.8 kg (118 LB)
a1emd @IFTH
340 WATTS

AIR CONTAMINANT REMOVAL
ICATALYTIC OXIDIZER)

CAPACITY/UNIT
FLIGHT WEIGHT
FLIGHT VOLUME
POWER CONSUMPTION

&MAN-DAY

24.8 kg (B4 L)
alem’ (628
190.8 WATTS

CARBON DIOXIDE REDUCTION
BABATIER)

CAPACITY/UNIT
FLIGHT WEIGHT
FLIGHT VOLUME
POWER CONSUMPTION

SMAN-OAY
48.8 kg (107 LB)
QIS m? (128 F
98 WATTS

ATMOSPHERIC MONITOR
PEAKIN-ELMER-CAME UNIT)

CAPACITY/UNIT
FLIGHT WEIGHT
FLIGHT vOLUME
POWER CONSUMPTION

&MAN-DAY

72.7 kg (BO LB)
a0 md 2.8 FTH
100 WATTS

45




urtiutte
OF pOUh‘

L HEET
QuALHY

Table 5-9 Oxygen/Carbon Dioxide Operating Level Data (4-Man Module,
90-Day Resupply) (Ref. 63)

mm Hg (psle) mm Hg
OPERATING LEVEL TOTAL 0, PARTIAL | CO,PARTIAL
PRESSURE | PAESSURE PRESSURE
OPERATIONAL 760 (14.7) 160 (3.1) 18 MAX.
90-DAY DEGRADED 517-760 124-197 7.6 MAX
(10.0-14.7) (2.4-3.8)
21-DAY EMERGENCY 517-760 119202 12.0 MAX
(10.0-14.7) (2.3-3.9)

Table 5-10 Open Air Revitalization System/Equipment Data Summary (4-Man Module,
90-Day Resupply)

NUMBER OF TOTAL TOTAL TOTAL NOMINAL
ITEM UNITS CAPACITY | WEIGHT, | STORAGE | POWER
kg VOLUME, | CONSUMPTION,
REQ |REDUND. "3 ATTS
OXYGEN STORAGE
TANKS 7 7 615 kg 263.2 3.64 14
OXYGEN EMERGENCY
TANKS 2 88 kg 376 0.52 -
PLUMBING, etc.
(15% OF 3 TANKS) 2.8 0.12 -
LIOH CO, REMOVAL
SYSTEM
2 CARTRIDGE UNIT 1 0.16 kg/hr 90.7 0.42 50
DEHUMIDIFIER 1 1 78.4 0.28 205
CATALYTIC BURNER 1 1 49 0.35 381
ATMOSPHE RE 1 22.7 0.07 100
MONITOR
ODOR CONTROL 1 1 18.2 0.06 -
PLUMBING, ETC,
(15% EQUIP) 38.9 0.18 -
SUB TOTAL 601.5 5.64 750
INITIAL SPARES AMD
CONSUMABLES 1679 1.78 -
TOTAL 2280.5 7.4 750
90 DAY RESUPPLY 998 2.84 -
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Table 5-11 Recycle Air Ravitalization System/Equipment Data Summary (4-Man Module,
90-Day Resupply)

NUMBEROF | TOTAL TOTAL TOTAL NOMINAL
po— UNITS CAPACITY WEISHT, | STORAGE | POWER
g VOLUME | CONSUMPTION,
nEQ. |REOUND ) AT
OXYGEN GENERATOR » » 0.40 kg 170 are 380
STORED EMERGENCY OAYGEN 2 T e as2 =
REMOVAL-SNLIO AMINE ' ' 07 o o8
CO, REDUCTION-SABAYIER " » @’ s '™
0eAUMIDIFIER ' 1 e aze 08
CATALYTIC BURNER ' ' e as .
ATMOSPHE RE MONITOR ' ny a.07 100
OOOR CONTROL ' ' 82 0.08 =
PLUMBING ETC. (18% EQUIP.) _l a4 =
QUBTOTAL o1t e 8009
INITIAL SPARES & CONSUMABLES L .29 . S
TOTAL ™1 143 5009
90 DAY HESUPPLY . ae -

Table 5-12 Air Revitalizati~n System Summary (4-Man Module, 90-Day Resupply)

NOMINAL POWER

SYSTEM TYPE MASS kg VOLUME m? st
OFEN SYSTEM 2,281 7.4 750
90-DAY RESUPPLY 98 28 .
RECYCLE SYSTEM 796 14 5,000
90-DAY RESUPPLY 46 0.2 .
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5.3 Waste System

The waste system consists of the human fecal material and trash that includes such
items as uneaten food, packaging material, wet wipes, and tissues. The typical weight of
waste loads is shown in table 5-13.

Waste products can be collected, compacted, and stored; or they can be processed
into usabie materials. The equipment involved in waste management is given in table
5-14. To estimate weight, volume, anc power requirements, a wet oxidation unit was
assumed for the waste recycling equipment. The development of estimates for the open
anc closed systems is shown in tables 5-15 and 5-16.

Examination of the waste system summary data, table 5-17, indicates very little
difference between the open and closed systems. Closing the waste system alone, in this
content, is not cost-effective when considering oxidation equipment dev=lopment costs.
However, when the food system is closed, waste recycling becomes very important in that
minerals contained in waste products must be reclaimed and processed into usable
materials. Discarding the waste would te counterproductive to achieving a high level of

closure with minimum resupply requirements.
5.8 Food System

The nomina! weight of dry food required to sustain life i1s 1.6 Ib/man/day.
Associated with preparation of this food is residual water and packaging, which brings the
total food load to 3.6 Ib/man/day (see table 5-18). This number is used for calculating the

basic we:ight of food used in the storage and resupply sections of of this study.

The alternative to packaged food is to grow food onboard the spacecraft. Growing
food to sustain man in space involves a number of variables such as food type—plants,
animals, single-cell protein type organisms, and so forth; food quantity—how much of what
type of food is required to provide a nutritionally balanced diet; growth techniques—what
food types require different culture techniques and food type and culture techniques that
are compatible with the spacecraft environment. Since it was not possible to investigate
all possible variables during this study, the following guidelines were adopted:
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Table 5-13 Waste Typical Loads (Ref. 63 and 79)

SOURCE kg (LB)/MAN-DAY
HUMAN
FECES SOLIDS 0.11 (0.24)
FECES WATER 0.09 (0.20)
TOTAL 0.20 (0.44)
TRASH 0.82 (1.80)

Table 5-14 Waste Management Equipment Design Dsta (Ref. 6.3 ar.d 64)

(UNIT DEFINITIONS)

EQUIPMENT DESIGN DATA
WASTE COLLECTOR CAPACITY /UNIT 210 MANDAYS
(COMMODE) FLIGHT WEIGHT 40.8 kg (90 LB)
FLIGHT VOLUME 0.35m3 (12.2 FT3)
POWER CONSUMPTION 120 WATTS
EMERGENCY WASTE COLLECTION CAPACITY/UNIT 360 MAN DAYS
(BAGS) FLIGHT WEIGHT 6.8 kg (15 LB)
FLIGHT VOLUME 0.028 m3 (1 FT3)
POWER CONSUMPTION 0
e s ]
TRASH COMPACTOR CAPACITY/UNIT 360 MANDAYS
COMPACTED VOLUME 0.02 m3 (0.7 FT3)/BAG
FLIGHT WEIGHT 18.1 kg (40 LB)
FLIGHT VOLUME 0.2m3 (7 FT3)
POWER CONSUMPTION 120 WATTS

WET OXIDATION UNIT
(INCLUDES GRINDING, SLURRYING,
REACTION CHAMBER, VCD, ETC.)

CAPACITY/UNIT
FLIGHT WEIGHT
FLIGHT VOLUME

POWER CONSUMPTION

27.9 kg (61.4 LB)/DAY
93.3 kg (205.6 LB)
0.49 m3 (17.3 FT3)
285 WATTS
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Table 5-15 Open Waste Managment System/Equipment Data Summary (4-Man Module,
90-Day Resupniv

NUMBER OF TOTAL TOTAL TOTAL NOMINAL
ITEM UNITS CAPACITY WEIGHT, STORAGE | POWER
kg VOLUME, | CONSUMPTION,
REQ |REDUND m3 WATTS
WASTE COLLECTOR 2 420 MAN DAYS 81.6 0.70 240
EMERGENCY WASTE 1 0. 0
COLLECTION 3 - wel
0.02 m“/bag
TRASH COMPACTOR 1 18.1 0.2 120
SUBTOTAL 106.5 0.93 360
INITIAL SPARES & 85.3 0.76 -
CONSUMABLES
TOTAL 191.8 1.69 360
90-DAY RESUPPLY 82.7 0,75 —

e

Table 5-16 Recycle Waste Management Systern/Equipment Data Summary (4-Man Module,
90-Day Resupply)

NUMBER OF TOTAL TOTAL TOTAL NOMINAL
ITEM OF UNITS CAPACITY WEIGHT, STORAGE | POWER
hg VOLUME, CONSUMPTION,
REQ |REDUND. 3 ey
WASTE COLLECTOR 2 420 MANDAYS 81.6 0.70 240
EMERGENCY WASTE 1 6.8 0.028 0
COLLECTION
WET OXIDATION UNIT 18 0.45 52
PLUMBING, ETC. (15% 2.4 0.07 —
OF WET OXIDATION
UNIT) -
SUBTOTAL 106.8 1.26 292
INITIAL SPARES AND 26.7 0.3 -
CONSUMABLES
TOTAL 133.5 1.6 292
90 DAY RESUPPLY 18.1 0.2 —
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Table 5-17 Waste System Summary (4-Man Module, 90-Day Resupply)

SYSTEM TYPE MASS kg VOLUME m3 s
WATTS
OPEN SYSTEM 191.8 1.69 360
90-DAY RESUPPLY 82.7 0.76 —
RECYCLE SYSTEM 133.6 1.6 292
90-DAY RESUPPLY 16 0.2 I

Table 5-18 Food Requirement and Packaging Loads (Ref. 8, 79 and 63)

SOURCE KG (LB)/MAN-DAY
FOOD, DRY 0.73 (1.6)
WATER, CONTAINED IN FOOD 0.45 (1.0)
PACKAGING 0.45 (1.0)
TOTAL 1.63 (3.6)
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a. Only common, edible plants with available design data were considered. The plants
considered are not necessarily the optimum choices for the mission, but are

representative for a generic analysis.

b. Three diets were considered for analysis:

ls Salad vegetables grown to supplement a standard packaged food diet,
considered as 3% salad and 97% packaged food.

2 Plant growth to contribute 50% of the diet; the other 530% supplied as
packaged food.

3. Plant growth to contribute 97% of the diet, a vegetarian diet; the remaining
3% supplied as vitamins, such as B-12, seasonings, and other miscellaneous

condiments.

The individual plants included in the three diets are listed in tables 5-19, 5-20, and
5-21. Growth data available in the literature are shown in the tables with the associated
references. These data were used to estimate growing areas, harvest rates, biomass
holdup, and plant wastes, which are required to establish plant growth equipment
requirements as shown in table 5-22. In addition, table 5-22 presents the derivation ard
references of other equipment design data necessary to calculate weight, volume, and
power requirements associated with plant growth. In some cases, the data base was
insuf ficient to obtain design numbers, so engineering estimates were used. For example,
the sixth item in table 5-22 refers to the quantity of water required to supply plants with
nutrients and for transpiration. In one reference the quantity of transpiration water
recommended was an amount that, when applied on a per-growth-area basis, amounted to
a reservour depth of 5.5 in. For aeroponically grown plants, this quantity of water was
considered excessive. A water depth of 2 in was assumed to be adequate and was used for
this study. The quantity of water required for transpiration is still an open question that
has considerable impact on system weight.

Using the basic data from table 5-22, equipment estimates were calculated for each
of the three diets selected for study. These data are presented in tables 5-23, 5-24, and
5-25. The equipment is sized for four-man modules to make it comparable with the
physiochemical systems that were analyzed.
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Table 5-20 Plant Growth Data for 50% Plant Diet
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In keeping with the logic flow (fig. 5-1), the food systern equipment estimates
(tables 5-23 to 5-25) were combined with the food system operating level data (table 5-26)
to describe the open food system (table 5-27), and the food growing system for each of the
three diets (tables 5-28, 5-29, and 5-30). In table 5-28, the waste processing equipment is
stated as being included in with the EC/LS equipment. This is because the quantity of
additional waste generated by the 3% plant growth diet is a relatively insignificant
quantity, approximately 0.2 kg/day, as shown in table 5-23. The quantity of waste
generated by 50% and 97% vegetable diets is more significant, 14 kg and 70 kg
respectively. The waste processing equipment estimates to handle these increased food

system wastes in addition to the human waste and trash are shown in tables 5-29 and 5-30.

The food system summary data in table 5-31 show the comparison of the open
system and -he three plant diet systems with respect to mass, volume, and power. In
analyzing these data, one can see that the system weight, volume, and power parameters
increase as you go from the open system to increasingly more clant growth. Conversely,
the resupply mass and volume decrease with more plant growth. At first it would seem
that growing plants to close the food system would not be advantageous; however, because
the resupply requirements would decrease with increasing plant growth, eventually a point
would be reached when the resupply mass of the open system would surpass the large
recycling equipment mass and power requirements of the plant growth systems. This
subject 1s discussed in more detail in section 6.0 where the various EC/LS systems are

compared in terms of mission analysis and transportation costs.
5.5 Closure Scenarios with Associated Mass Estimates

Seven closure scena. >s were selected to enable the comparison of an entirely open
system with various physiochemical system closures, and the comparison of a closed
physiochemical system with three food-growing scenarios. Table 5-32 defines these seven
closure scenarios. Scenario codes A through G were assigned to the cases, and will be

used as i1dentifiers in this report.

Plants growth provides other advantages in addition to supplying fresh food. The
water that passes through plants in the transpiration process is purified. This phenomenon
can be used to advantage if water purification equipment can be reduced in the total
system. This study assumed that no water purification equipment would be necessary if

the daily water requirement for the crew could be met by the growing plants. It was
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Table5-26 Food System Operating Level Duta (-Man Module, 90-Day Resupply (Ref. 63)

kg (LB)/4-MAN-DAY
OPERATING LEVEL
FOOD + WATER PACKAGING TOTAL
OPERATIONAL 4.7 (10.4) 1.8 (4.0) 6.5 (14.¢)
DEGRADED 2.7 (6.9) 1.03 (2.28) 172 (8.2)

Table 527 Open Food System/Data Summary (4-Man Module, 90-Day Resupply)

NOMINAL
ew | NumseR OF umITS — — m::GL! S
sTO NSUMPTION
REQ |meounp. | CAPACITY WEIGHT G voLume w3 | NI
FOOD + PACKAGING 1 380 MAN DAYS 887.9 1.7 I
CONTINGENCY #0208 = 1 360 MAN DAYS D48 0.97 e
PACKAGING
STORAGE CONTAINER m S
(28% OF FOOD WT.)
STORAGE VOLUME 1.0 I
(860% OF FOOD VOL)
TOTAL 1184 '%) WP
900AY RESUPPLY 738 17 —_—-

ol
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Table 5-28 Food Growing System/Equipment Data Summary
Diet: 3% Plant Growth - Y7% Food Resupply (4-Man Module, 90-Day Resupply)

NOMINAL POWER
TOTAL WEIGHT, | TOTAL STORAGE

ITEM CONSUMPTION,
ke VOLUME, m? WATTS

WATER RESERVOIR 7
WATER TANKS 114
PLANT GROWTH STRUCTURE Q
PLANT GROWTH (L 'IPMENT (INCLUDES LIGHTS, 876
ANALYZER, HUMIDITY CONTROL, tTC.)

HARVESTING AND PHOCESSING EQUIPMENT 0

w PRI PIAENT (I 0
ASTE PROCESSING EQUIPMENT (INCLUDES (INCLUDED WITH EC/LS EQUIPMENT)

FOOD AND HUMAN WASTES AND TRASH) &

TOTAL PLANT GROWTH VOLUME 11.28

POWER CONSUMPTION 1,508
SUBTOTAL Tn—o T‘—; .1_59:

INITIAL FOOD SUPPLY - COMPLETE FOR 90 1,164 4.3 —_—

DAYS (PLUS CONTINGENCY)

INITIAL SPARES (10% OF EQUIPMENT) 01
TOTAL 16.68

P gl:

90-DAY RESUPPLY (87% OF DIET AND SPARES
AT 3% OF EQUIPMENT)
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Table 5-29 Food Growing System/Equipment Data Summary
Diet: 50% Plant Growth - 50% Food Resupply (4-Man N odule, 90-Day Resupply )

NOMINAL POWER
TOTAL WEIGHT, | TOTAL STORAGE
ITEM 3 | CONSUMPTION,
ke VOLUME, m
WATTS

WATER RESERVOIR 1842
WATER TANKS 1,000
PLANT GROWTH STRUCTURE “
PLANT GROWTH EQUIPMENT (INCLUDES LIGHTS, 3282
ANALYZER, HUMID:TY CONTROL, ETC.)
HARVESTING AND PROCESSING EQUIPMENT 200
WASTE PROCESSING ECUIPMENT (INCLUDES ©
FOOD AND HUMAN WAL TES AND TRASH)
TOTAL PLANT GROWTH VOLUME 108.0
POWER CONSUMPTION 14,900

SUBTOTAL a.ce8 108.0 14.900
INITIAL FOOD SUPPLY FOR 90 DAYS 738 r &) —_—
INITIAL SPARES (10% OF EQUIPMENT) 364 as N—

TOTAL 0787 1088 14,900
90-DAY RESUPPLY (60% OF FOOD AND SPARES an 16 —--
AT I% OF EQUIPMENT)
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Table 530 Food Growing System/Equipment Data Summary
Diet: 97% Plant Growth - 3% Food Resupply (4-/Man Module, 90-Day Resupply)

TOTAL WEIGHT, | TOTAL STORAGE i A
ITEM : ’ VOLUME. md CONSUMPT ION,
o o WATTS
WATER RESERVOIR 1.470
WATER TANKS 2.338
PLANT GROWTH STRUCTURE 720
PLANT GROWTH EQUIPMENT (INCLUDES LIGHTS, 6,348
ANALYZER, HUMIDITY CONTROL, ETC.)
HARVESTING AND PROCESSING EQUIPMENT 838
WASTE PROCESSING EQUIPMENT (INCLUDES 224
FOOD AND HUMAN WASTES AND TRASH)
TOTAL PLANT GROWTH VOLUME 187.6
POWER CONSUMPTION 26,600
SUBTOTAL 1€,633 187.6 26,600
INITIAL FOOD SUPPLY FOR 90 DAYS 738 27
INITIAL SPARES (10% OF EQUIPMENT), e 1.6
= = T
TOTAL 17,979 191.7 26,600
90-DAY RESUPPLY (3% OF DIcT AND SPARES 2086 1.0 -
AT 3% OF EQUIPMENT)
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Table 531 Food System Summary (4-Man Vodule, 90-Day Resupply)

3 | nominaL POwER,
SYSTEM TYPE MASS, kg VOLUME, m WATTS
OPEN SYSTEM 1,164 43 —_—
S0-DAY RESUPPLY 738 7 SIS
I% PLANT GROWTH - 97% RESUPPLY 2,302 11 %4 1.508
90-DAY RESUPPLY 73 27 ———
S0% PLANT GROWTH - 50% RESUPPLY 9,787 108.8 14,900
90-DAY RESUPPLY an .0 N
97% PLANT GRAOWTH - 3% RESUPPLY 17,979 191.7 26,600
S0-DAY RESUPPLY 208 1.0 ]
Table 5-32 EC/LSS Closure Scenarios
SCENARIO EC/LSS
CODE WATER 0,/C0O, WASTE | FOOD
A 0 0 0 0
B X 0 0 0
c 0 X 0 0
D X X 0 0
E X X 0 X (3% OF DIET
SALAD VEGETABLES)
F X X X X (50% OF DIET
ALL PLANT MATERIAL)
G X X X X (97% OF DIET
VEGETARIAN)

DENOTES RESUPPLY AND/OR STORAGE

X DENOTES RECYCLE OR ON-BOARD GENERATION
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further assumed that waste removed from the water by the plants during transpiration is
removed from the inedible plant material during waste processing. The other important
advantage offered is the removal of carbon dioxide and the generation of oxygen by the
plants. Again, this is an advantage to the total system, based on estimated quantities of
CO, removed and oxygen generated. These relationships and the percentages of crew
requirements satisfied by the three plant-growth scenarios are presented in table 5-33.

When credits for water and oxygen generation and carbon dioxide removal are
applied to the total system characterizations, the weight, volume, and pcwer system
requirements are affected. For the 3% plant growth scenario, the percentage credits are
19% for water, 6% for oxygen, and 5% for C02. Because percentages in this case are
relatively low, no credit was given for water purification or air revitalization from plant
growth. In the case of growing 50% of the required food, the water requirement is clearly
met with 180% and the oxygen and carbon dioxide credits are approximately 50%. The
equipment data summary utilizing these credits is shown in table 5-34. Credits given for
the 97% food growth scenario were assumed to be 100% for all three materials, even
though the CO2 removal 1s shown to be only 85% of the new requirement. It was assumed
that 100% CO, removal could be easily achieved by adjusting the plant species in the diet.
The number derived for COZ removal i1n this study was averaged from several plant
species; numbers for individual species vary widely. The credits given for the 97% food

growth example, are presented in table 5-35.

Other factors to be considered in estimating the total closure scenar.o weights are:
(1) A pressure vessel module to house the equipment in the space environment, and (2) a
resupply module to provide protection for transporting supplies. To determine a first-
order estimate of the weight of these modules, a density factor of module weight-to-
volume was applied. The density factors for both of these modules were derived from
Space Operations Center data (reference 63). The habitat module wes used as a baseline
to estimate the housing module for CELSS equipment. The basic elements and associated
weights are shown in table 5-36. The derived weight-to-volume factor of 44.0 kg/m3 Is
used as a volume penalty in later calculations. The derivation of the volume penalty

applied for the resupply module (27.8 kg/mj) 1s given in table 5-37.
Total system mass and power requirements were determined for each of the closure
scenarios. The development of these data are presented in tables 5-33 through 5-44 for

closure scenarios A through G. The equipment and supplies data for initial total mass and
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Table 5-33 Water Purification and Air Revitalization Credits from Plant Growth
(4-Man Module, 90-Day Resupply)

ITEM

DERIVATION

AMOUNT, kg/DAY

% OF CREW
REQUIREMENT

NOMINAL REQUIREMENT S /4-MAN CREW
WATER
OXYGEN
CARBON DIOXIDE

3% PLANT GROWTH — 97% FOOD RESUPPLY
WATER
OXYGEN
CARBON DIOXIDE

50% PLANT GROWTH — 50% FOOD RESUPPLY
WATER
OXYGEN
CARBON DIOXIDE

97% PLANT GROWTH — 3% FOOD RESUPPLY
WATER
OXYGEN

CARBON DIOXIDE

(3,0009 H,0) (6 m?)
(38.7 0) (6 m?)

(3299 CO,) (6 m?)

(3,0009 H,0) (56 m?)
(38.79 0,) (58 m?)

(33.99 CO,) (56 m?)

(3.0009 H,0) (100 m?)
(38.79 05) (100 m?)

(33.99 CO,) (100 m?)

33

4.0

0.21

0.20

2.0

1.9

e

34

19%

5%

180%

61%

48%

22%

85%
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Table 5-34 Water, O, /CO, and Waste System Equipment Data Summary Utilizing Capabilities
of the 50% Plant Growth Scenario (4-Man Module, 90-Day Resupply)

NUMBER OF UNITS | yorar | TOTAL | TOTAL | NOMINAL

STORAGE POWER
e WEIGHT, S
REQ REOUND CAPACITY! Ny VOL:“(. ICO ww'nonﬁ

WATTS

WATER (ASSUME 100% WATER
PURIFICATION 8Y PLANTS)

EMERGENCY WATER STORAGE 3 21kg H,0 209 as?7 —_—
WATER QUALITY MONITOR 1 n an 40
SUBSTOTAL e a.6s 40

Oy'COz (ASSUME 50% AIR
REVITALIZATION BY PLANTS)

RECYCLING SYSTEM 12 398 .7 2,508
SUBTOTAL 398 .72 2.508
WASTE (INCLUDED WITH PLANT == - ==
GROWTH EQUIPMENT)
= == ==
TOTAL IAL) 24 2,548
90-0AY RESUPPLY 246 0.09 —
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Table 5-35 Water, 02 / 002 and Waste System Equipment Data Summary Utilizing Capabilities
of the 97% Plant Growth Scenario (4-Man Module, 90-Day Resupply)

TOTAL | NOMINAL
NUMBER OF UNITS | rora, | TOTAL | JO T I MO n

ITEM WEIGHT. | yoLyUME, [CONSUMPTION
REQ | REDUND |[CAPACITY] g ,,,"5 I warrs

WATER (ASSUME 100% WATER
PUAIFICATION BY PLANTS)

EMERGENCY WATER STORAGE 3 221 hg NzOl 200 0.67 -
WATER QUALITY MONITOR 1 kY an 40
SUBTOTAL e 0.8 40

021002 (ASSUME 100% AIR
REVITALIZATION BY PLANTS)

EMERGENCY O STORAGE 1 88 k9 O, 128.6 0.862 —_
EMERGENCY CO5 REMOVAL 1 84.0 .19 —_—
A;MOS’HERE MONITOR 1 n7 .07 100

SUBTOTAL ;-J ;; ;

WASTE (INCLUDEN WITH PLANT —_— —_— ===
GROWTH EQUIPMENT)

TOTAL 183 1.48 140

90-DAY RESUPPLY 4.4 Q.01 —

69



ORIGINAL FATT 13
OF POOR QUALITY

Table 5-36 Mass Estimate for CELSS Module (Based on Space Operations Center Habitat
Module, Ref. 63)

ELEMENT DESCRIPTION MASS, kg

Mabrtat Module Sze and Volume 4267 mdiex 9.82m = 1408 m?d

Module Mam Estimaetes

® Srucwre nchudes 2.2 mm sluminum pressure skin ring frames, ma2
dame ring frames, Mem suEPort rings, apport longerons,
Tunnion, e
® Mechaniems Berthing Port [
® Thermal Conuol nchudes radistor skin, tubes and pedestah, freon 2792
coolant, multileyer insuistion, cold plates, ste.
® Mmuc Electncal Equipment Inchudes bussing harnessss, Boxes, connector, switches, 01s
ntenor ighting, etc. —
Totsl Mam Estimate 6187
Wesght 10 Volume Ratio 6187 kg/140.5 m? 440 kg/mI

Table 5-37 Mass Estimate for Resupply Module (Based on Space Operations Center
Logistics Module, Ref, 63)

ELEMENT DESCRIPTION MASS kg

Logsstics Module Size and Volume 447mdiex660me = 1036 m?
Module Mass Estimates

® Structure Includes 2.2 mm sluminum skin. wpPort rings, longerons 2001
and tTUNNIONs . STOrege WUPPUrt SITUCTUre; entry hatch, etc.

® Mechanems Berthing Port 68
® Thermel Conuol Radiator penel, muitileyer insulation snd miscellaneous 8%
components
® Misc. Flectrcsl Equipment Hermesses, interior lighting, miscellaneous equ ipment 148
® Sorege Cabinets, Freezer, etc. 581
Totali Mass Estimare ;
Weight 1o Volume Rato 2880 kg/103.8 m? 27 8 kg/m?
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Table 5-38 Mass and Power Estimates for Closure Scenario A (4-Man Module, 90-Day Resupply)

ESTIMATE FOR CLOSURE
SCENARIO

INITIAL INITIAL S0-0AY 800AY NOMINAL
EC/LS SYSTEM TOTAL TOTAL resurrLy | mesuerLy POWER,
MASS kg | voLume. m? | mMass kg | vOLUME, m? WATTS
EQUIPMENT AND SUPPLIES
WATER (OPEN WITH 14,448 24.0 10,894 ns 3
RESUPPLY)
0,/CO., (OPEN WITH 2,281 74 %08 28 780
AtsurbLY/STORAGE)
WASTE (OPEN WITH 192 17 & ¢8 380
STORAGE)
ADO 10% PACKAGING 24 28
VOL FOR ABOVE
FOOD (OPEN WITH 1,184 .3 78 27 —
RESUPPLY)
SUBTOTAL 16,073 " 12.710 2.3 1,140
PRESSURE MOOULE
ESTIMATES
CELSS MODUL E (44.0 kg/m?) 1,872
RESUPPLY MOOULE 842
(27 8 kg/m¥)
TOTAL MASS AND POWER 12,096 13,862 1,140
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Table 5-39 Mass and Power Estimates for Closure Scenerio 8 (4-Man Module, 90-Day Resupply)

INITIAL INITIAL 90-0AY 90.0AY NOMINAL
EC/LS SYSTEM TOTAL TOTAL RESUPHLY RESUPPLY POWER,
MASS. kg | voLume m? | wmass kg | vOoLumE, m? WATTS

EQUIPMENT AND SUPPLIES

WATER (RECYCLE) 1,320 . ) 0.2 ™

ol/co (OPEN WITH 220 74 908 28 780

alsurbLY/STORAGE)

WASTE (OPEN WITH 192 2 ® 08 300

STORAGE)

ADO 10% PACKAGING 14 0.
VOL FOR ABOVE
FOOOD (OPEN WITH 1,164 4) 13 2.7 ——
RESUPPLY)
SUBTOTAL 947 19.7 1.910 'Y 1.807

PRESSURE MODULE
ESTIMATES

CELSS MOOULE (44.0 kg/m?) Y

RESUPPLY MOOUL E 192

(27 8 kg/mY)
TOTAL MASS AND POWER 8014 2,102 1,907
ESTIMATE FOR CLOSURE
SCENARIO
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Table 5-40 Mass and Power Estimates for Closure Scenario C (4-Man Module, 90-Day Resupply)

ORIGH

|AL PAGE 1S

INITIAL INITIAL $0-0AY 90-0AY NOMINAL
EC/LS SYSTEM (OTAL TOTAL RESUPPLY | RESUPPLY POWER,
MASS, kg | VOLUME, m? | wmaAsS kg | vOLUME, m? WATTS

EQUIPMENT AND SUPPLIES

WATER (OPEN WITH 12,440 40 10,804 218 2

RESUPPLY)

0,/CO, (RECYCLE) 9 34 . 0.2 8.000

WASTE (OPEN WITH 192 17 o os 360

STORAGE)

ADO 10% PACXAGING 20 23
VOL. FOR ABOVE
FOOD (OPER WITH 1,184 43 78 2.7 —
RESUPPLY)
SUBTOTAL 14,588 0 11,788 78 8.390

PRESSURE MODULE
ESTIMATES

CELSS MUDULE (4.0 kg/m®) 1,628

RESUPPLY MODULE 708

(27.8 kg/m?)
TOTAL MASS ANO POWER 10,210 12,523 5,290
ESTIMATE FOR CLOSURE
SCENARIO
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Table 5-41 Mass and Power Estimates for Closure Scenario D (Man Module, 90-Day Resupply)

ORICIM

AL FACE IS

OF POOR QUALITY

INITIAL INITIAL 90-0AY 90.DAY NOMINAL
EC/LS SYSTEM TOTALMASS, |  TOTAL RESUPPLY | RESUPPLY POWER,
™ VOLUME, m3 | wAsS kg | vOLUME, m? WATTS

EQUIPMENT AND SUPPLIES

WATER (RECYCLE) 1.320 .9 W 0.2 97

0,/CO, (RECYCLE) 796 34 . 0.2 5,000

WASTE (OPEN WITH 192 7 ) 08 3ec

STORAGE

ADD 10% PACKAGING 10 (X}
VOL. FOR ABOVE
FOOD (OPEN WITH 1,184 %) 738 27 S—
RESUPPLY)
SUBTOTAL 3462 18.3 958 40 e.168

PRESSURE MODULE
ESTIMATES

CELSS MODULE (44.0 kg/m3) (V%)

RESUPPLY MODULE m

(27.8 kg/m?)
TOTAL MASS AND POWER 4138 1,080 6,108
ESTIMATE FOR CLOSU ‘i€
SCENARIO
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Table 5-42 Mass and Power Estimates for Closure Scenario E (4-Man Module, 90-Day Resupply)

EC/LS SYSTEM

INITIAL
TOTAL MASS,

g

INITIAL
TOTAL
VOLUME, m?

90-0AY
RESUPPLY
MASS, kg

80.0AY
RESUPPLY
VOLUME, m3

NOMINAL
FOWER,
WATTS

EQUIPMENT AND SUPPLIES

WATER (RECYCLE WITH
NO CREDIT FOR PLANT
GROWTH)

0,/CO, (RECYCLE WITH
~5 CRZDlT FOR PLANT
GROWTH)

WASTE (OPEN WITH
STORAGE)

ADD 10% PACKAGING
VOL FOR ABOVE

FOOD (3% PLANT GROWTH-
97% RESUPPLY)

SUBTOTAL

1,320

798

2,302

4610

4.9

34

.7

0.2

0.2

o1

27

197

1.596

1.782

PRESSURE MODULE

ESTIMATES
CELSS MODULE (44.0 kg/m3)

RESUPPLY MOOULE
(27.8 ke/md)

1178

TOTAL MASS AND POWER
ESTIMATE FOR CLOSURE
SCENARIO

8,788

1,762
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Table 543 Mass and Power Estimates for Closure Scenario F (4-/Man /Module, 90-Day Resupply)

Ok
v\‘

EC/LS SYSTEM

INITIAL
TOTAL MASS,
('

INITIAL
TOTAL
VOLUME, m?

80-DAY
RESLPPLY
MASS, kg

RESUPPLY
VOLUME, m?

NOMINAL
POWER,
WATTS

EQUIPMENT AND SUPPLIES

WATER (RECYCLE WITH
CREDIT FOR PLANT
GROWTH)

(o) 2 (RECYCLE WITH
CREDIT FOR PLANT
GROWTH!

WASTE (RECYCLE -
INCLUDED IN PLANT
GROWTH EQUIPMENT)

ADD 10% PACKAGING
VOL FOR ABOVE

FOOD (80% PLANT
GROWTH - 50% RESUPPLY)

SUBTOTAL

31

9,787

o.es

72

a2

"

o

5l

0.00

0.009

16

1.7

14,900

17,246

PRESSURE MOOULE
ESTIMATES

CELSS MODULE (44.0 kg/m?)

RESUPPLY MOOULE
(27 8 kg/md)

4,888

47

TOTA. MASS AND POWER
ESTIMATE FOR CLOSURE
SCENARIO

17,446
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Table 5-44 Mass and Power Estimates for Clusure Scenario G (4-Man Module, 90-Oay Resupply)

EC/LS SYSTEM

INITIAL
TOTAL MASS,
L]

INITIAL
TOTAL
VOLUME, m?

90-0AY
RESUPPLY
MASS, kg

90 DAY
RESUPPLY
VOLUME, m?

NOMINAL
POWER,
WATTS

EQUIPMENT AND SUPPLIES

‘WATER (RECYCLE WITH
CREDIT FOR PLANT
GROWTH)

OIICO (RECYCLE WITH
C EDI; FOR PLANT
GROWTH)

WASTE (RECYCLE
INCLUDOED 1N PLANT
GROWTH EQUIPMENT)

ADD 0% PACKAGING
vOL FOR ABOVE

FOOOD (97% PLANT
GROWTH J% RESUPPLY)

SUBTOTAL

179719

18.497

on

as

1017

———

193]

44

0.01

0.u0*

101

100

28 GO0

PRESSURE MODULE
CATIMATES

CELSS MODULE (44.0 kg/m?)

RESUPPLY MOOULE
278 u./mJ)

TOTAL MASS AND POWER
ESTIMATE FOR CLOSURE
SCENARIO

17.002

be )

28./40
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volume, 90-day resupply mass and volume, and power requirements were taken from the
summary tables 5-6, 5-12, 5-17, and 5-31. The pressure module mass estimates were
derived by multiplying the initial total volume times the CELSS module factor of 44.0
kg/mJ, and the 90-day resupply volume by the resupply module factor of 27.8 kg/m3.
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6.0 STUDY RESULTS

The total mass and power estimates developed for each of the closure scenarios,
shown prreviously in tables 5-38 through 5-44, are used to generate twc sets of
comparirons. The first set compares the mass data f-om the open system, closure
scenario A, with each of the physiochemical system closures, scenarios B, C, and D. See
table 5-32 for these scenario codes. The second set compares the closed physiochemical
system, D, with each of the food closure scenarios, E, F, and G. These two sets of
comparisons, discussed in section 6.1, are based strictly on the mass and powcr estimates
that were developed in section 5 for each of the closure scenarios and do not include any
transportation considerations. The transportation analysis, section &4, is used in combina-
tion with the closure mass estimates to derive potential cost savings that may be
available by closing the food system. These cost data are discussed in section 6.2.

Section 6.3 presents the conclusions and recommendations based on these study results.

6.1 Mass Comparisons

The mass comparisons for each closure scenario must be worl.ed separately for each
mission, since the factors for converting power to mass and the radiation shielding factors
are different for each mission. These power conversion and radiation shielding factors
were discussed previously in section 3 and listed in table 3-1. The comparisons for each

mission are discussed in the paragtaphs below.

In the comparisons that follow, closure scenario E (3% food closure, salad plants) is
not considered. Due to the smail amount of oxygen generated and carbon dioxide removed
by the plants, see table 5-33, the physiochemical systens must be used to the full extent
to satislfy the requirements, therefore no savings would be realized. Scenario E could
provide psychological advantages but it is not considered significant from a life support

system viewpoint.

6.1.1 LEO-Low Inclination Mission

Mass estimate cata used for comparing the open EC/LS system versus the
physiochemical system closures are summarized in table 6-1 for the LEO low inclination
mission. Missioi.-dependent mass penalties for power and radiation shielding are added

onto initial launch mass numbers. For this mission the power penalty factor is 113 kg/kW
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Table 6-1 Physiochemical Mass Estimate Comparisons Mission: LEO — Low Inclination

(4 Men)

cLosunre | ecnss inimaL |rowen PenaLTy, | RaDiATION TOTAL MiTAIL |  S00AY 1-YEAR
SCENARIO | 1 AUNCH MASS, | KG AT 113 KG/ SMIELDING, LAUNCH MASS, | mesuseLY RESUPPLY
cooe Pe) xw kg aTogom? | ka MASS, XG MASS, KG

A 17,008 129 NOT REQD 18,024 13,882 $4.208

e s.014 218 NOT REQD 6.0 2,102 8.0

c 10.218 00 NOT REQD 1082 1280 80,002

o] 4,138 [ NOT REQD 4832 1,000 4278
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and includes the weight of the solar array and batteries necessary for power in the near
Earth orbit. Radiation shielding is not required for this mission, since the orbit is below
the Van Allen radiation belt and the pressure vessel wall of the module provides adequate

protection.

The curves drawn in figure 6-1, from the data in table 6-1, show the weight
advantages of closing the physiochemical systems. All closures show an immediate
advantage over the open system, although the combined water and air systems closure
provide the greatest weight savings. The physiochemical system closure comparisons
follow this pattern for other missions as well. Also, because of the tremendous weight
saving from closing the water and air systems, it does not appear reasonable to consider
open water and air systems for long-term missions, especially those beyond the Earth-
Moon system. For these recsons, the other five mission comparisons for physiochemical
systems have not been iaclude. .1 this report.

Mass estimate data used for comparing food system closures, scenarios F and G,
with the closed physiochemical system, scenario D, are shown in table 6-2. The mass
penalties for power and radiation shielding are the same as discussed previcusly for this

mission.

These data were used to draw the lines in figure 6-2. Breakeven times for the
LEO—-Low Inclination mission are shown at the intersecting points of the curves for
scenarios F and G and the curve of scenario D. Breakeven times for the mission are
approximately 5.9 and 7.5 years for closure scenarios F and G respectively. These
numbers indicate that at least some growing plants could be beneficial, especially if

mission life is 10 or more years.

6.1.2 LEO-High Inclination Mission

Mass estimate data for the LEO—High Inclination mission given in table 6-2, show a
relatively low power penalty factor of 32 kg/kW with no shielding required. The power
factor is low because the solar arrays are exposed to the sun during the entire orbit, which
reduces the heavy battery requirement. The curves for this mission are shown in figure
6-3. In response to the low power penalty, breakeven times occur slightly earlier than for

the low inclination mission, at 5.6 and 7.1 years for food closures F and G respectively.
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SCENARIO A (OPEN SYSTEM)

SCENARIO C (AIR CLOSED!

IASS, KG X 107

SCENARIO 8 (WATER CLOSED)

\
IR,

SCENARIO D WATER AND

AIR CLOSED)
L 1 L 1 1 1 L
INITIAL 2 4 [} ] 10 12 14

LAUNCH
PASSION TIME, YEARS

Figure 6-1 Mass Comparison of Physiochemical Systems Mission: [LEQ - Low Inclination (4 Men)
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40 >
SCENARIO G
97% FOOD CLOSURE)
' -
SCENARIO F
0 S0% FOOD CLOSURE)
a =
m -
SCENARIO D _
(WATER AND AIR CLOSED)
15}
10}
[
I il I A a A
INITIAL 2 4 (] s 10 12
LAUNCH
MISSION TIME, YEARS

Figure 62 Estimeted Breskeven Tims. Mission: LEO — Low Inclination (4 'den)
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Table 6-2 Mass Estimete Comperions Mission: LEO - Low Inclinetion (4 Men)

a.oeuns LA WUTIAL '.-““I RAGIATION TOUAL BUTIAL | SDOAY WveAn

a0 | Laumeemass, | ne AT 10 naney] Sesieme, LAmoe wagh, | nenswy | nesweLy

cooe xa maregns | we wagn, w8 | masa ne
o am - 0T Rero o we ame
’ nae L ) .3 ™~ A
e e FY= »OT neCrD |mane 7 -

Table 6-3 Mass Estimete Comperisons Mission: LEOQ - High Inclinetion (4 Men)

cLosune SC/LES INITIAL | POWER PENALTY, | RADIATION TOTAL WAL | ssoaY -VEAR
SCENLAI0 LAUNGH MASS, | KG AT 32 xGAOY | SHSLDMNG, LAUNCH MASS, | nesureLy | mesureLy
cooe e xsaTogc® | s mage k8 | mass xo
° a1 " PROBASLY am 1000 uam
NOY ASOO
» 19,200 [ PROSABLY "o [ 208
NOY RSQO
e n.en = PROBASLY 77 s m wen
NOT REO'D
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nr SCENARIO G
(97% FOOD CLOSURE)

SCENARIO F
(60% FOOD CLOSURE)

D
- 28
x
2
20
SCENARIO D
(WATER AND AIR CLOSED)
18
10
5
2 N | 1 | 4 1
INITIAL 2 4 (] 8 10 12 14
LAUNCH

MISSION TIME, YEARS

Figure 6-3 Estimated Brezkeven Time. Mission: LEO - High Inclination (4 Men)
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6.1.3 6 x GEO Mission

Table 6-4 summarizes the closures scenario data for the 6 x GEO mission. This
mission has a relatively low power penalty because of the orbit. However, the radiation

2 because the orbit is above the

shielding becomes a significant weight factor at 10 g/cm
Van Allen radiation belt. The increased burden for radiation shielding is evident in the
breakeven time (shown by the curves plotted in figure 6-4) cf 10.5 years for closure

scenario F, and 12.9 years for scenario G.
6.1.4 Lunar Base Mission

The Lunar Base Mission mass estimates are shown in table 6-5. This mission was
selected as a l2-man permanent base on the lunar surface. The increased crew size
increases the overall mass estimates. Nuclear power was selected for this mission
because of the long day-to-night cycle that requires artificial Light during the night cvele
to aid plant photosynthesis. lLunar soil can be used to shield the nuclear power generator
and to protect the base from solar radiation. The curves in figure 6-5 show the breakeven
t:mes of 5.7 years and 7.2 years for scenarios F and G respectively, This ..ssion could

have 4 long mission life, making closure of the food cycle very desirable.
6.1.5 Asteroid Mission

Since the Asteroid mission was defined for 5,000 people, the ‘nass estimates used in
the previous scenarios had to be adgjusted. Figure 6-6 shows the adjustiments made for
equipment, resupply, and power requirements. The mass estimates were reduced by 25%
to allow for economic and technological advancement, since the mission is programimed
for the 2050 era.

A second consideration for this mission was to use the unmanned cargo pods, defined
in the transportation analysis, as CELSS moduies. Since these cargo pods are not reused
for transportation, they are available and adejuate for use as CELSS modules. Each

module would be approximately 3000m3

, and 43 modules would be required each supply
period (928 days) to transfer cargo. The first 43 would supply encugh space to house the
CELSS equipment associated with scenario F, and in 928 days the second 43 modules

would add sufficient space for scenario G.
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SCENARIO G
(97% FOOD CLOSURE)

50
SCENARIO F
(60% FOON CLOSURE)
40
30
SCENARIO D
(WATER AND AIR CLOSED)
20
10
4 L 'l ) 1
INITIAL 2 4 6 8 10 12 14
LAUNCH

MISSION TIME, YEARS

Figure 6-4 Estimated Breakever Time. Mission: 6X GEO (4 Men)
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Table 6-4 Mass Estimate Comparisons Mission. 6X GEO (4 Men)

CLOSURE BC/LSS INITIAL | POWER PEN2LTY, | RADIATION TOTAL INITIAL | 180-0AY 1-YEAR 7]
STENARIO LAUNCH MASS, KG AT 36 XG/KW | SHIELDING, LAUNCH MASS, RESUPPLY RESUPPLY
cone xa xa AT 10¢/cu? | xa MASS G | MASS. kG
) 8.204 m 1.709 7.198 2138 a8
4 18,908 [ -] 12843 », 400 1,008 2198
G e s .38 90,847 o s
Table 6-5 Mass Estimate Comparisons Mission: Lunar Base (12 Men)
CLOSUAE EC/LSS INITIAL | POWER PENALTY, RADIATION TOTAL INITIAL 90-0AY 1-YEAR
SCENARIO LAUNCH MASS, | KG AT 48.3KG/KW SHIELDING, LAUNCH MASS, RESUPPLY RESUPPLY
COOE L{] KG AT O ¢/ L] MiSS XG MASS, xG
[+] 12,408 [~ NOT REQ'D 13243 3.207 12528
(USE LUNAR
)
’ 107 2 NOT REQ'D s 1.647 ».c08
(USE LUNAR
)
G 81,008 1,634 NOT REQ'D 84,840 m 1.844
(USE LUNAR
s

88



MASS, kg X 104

18 ORIGINAL PAGE IS
OF POOR QUALITY
16
SCENARIO D
(WATER AND AIR CLOSED)
14
12
SCENARIO G
(97% FOOD CLOSURE)
10
SCENARIO F
(60% FOOD CLOSURE)
e
8
4
2
INITIAL 2 4 ] 8 10 12 14
LAUNCH

MISSION TIME, YEARS

Figure 6-5 Estimated Breakeven Time., Mission: Lunar Base (12 Men)
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SCENARIO D
RECYCLE EQUIPMENT
577 KG/PERSON X 0.78
FOOD GROWTH EQUIPMENT
NONE
EQUIPMENT RESUPPLY
0.62 KG/PERSON/DAY X 0.75
FOOD RESUPPLY
2.04 KG/PERSON/DAY
POWER REQUIREMENT
1641.5 WATTS/PERSON X 0.75 X 94.3 X 103
TOTAL EQUIPMENT AND POWER
TOTAL RESUPPLY

SCENARIO F
RECYCLE EQUIPMENT
178.% KG/PERSON X 0.76
FOOD GROWTH EQUIPMENT
2172 KG/PERSON X 0.76
EQUIPMENT RESUPPLY
0.37 KG/PERSON/DAY X 0.76
FOOD RESUPPLY
1.02 KG/PERSON/DAY
POWER REQUIREMENT
4361.25 WATTS/PERSON X 0.75 X 94.3 X 10°3
TOTAL EQUIPMENT AND POWER
TOTAL RESUPPLY

SCENARIO G
RECYCLE EQUIPMENT
129.6 KG/PERSON X 0.75
FOOD GROWTH EQUIPMENT
4168.25 KG/PERSON X 0.75
EQUIPMENT RESUPPLY
0.52 KG/PERSON/DAY X 0.76
FOOD RESUPPLY
0.08 KG/PERSON/DAY
POWER REQUIREMENT
6685 WATTS/PERSON X 0.75 X 94.3 X 10°3
TOTAL EQUIPMENT AND POWER
TOTAL KESUPPLY

Figure 6-6 Mass Adjustments for Asteroid Mission

90

433 KG/PERSON

0.48 KG/PERSON/DAY

2.04 KG/PERSON/DAY

100 KG/PEASTN

542 KG/PERSON
2.5 KG/PERSON/DAY

133.9 KG/PERSON

1629 KG/PERSON

0.28 KG/PERSON/DAY

1.02 KG/PERSON/DAY

308 KG/PERSON

2071 KG/PERSON
1.3 KG/PERSON/DAY

97 KG/PERSON

3119 KG/PERSON

0.39 KG/PERSON/DAY

0.08 KG/PERSON/DAY

473 KG/PERSON

3689 KG/PERSON
0.45 KG/PERSON/DAY




The mass estimate data g.ven in table 6-6 includes only the modules and equipment
used at the asteroid base for each closure scenario. The modules and EC/LS equipment,
scenario D, used to transfer the crew and the priority cargo between the low Earth orbit
staging area and the asteroid base are not included in the mass estimate data for this
mission. (See section 4.5 for a discussion of the transportation analysis for this mission.)
The data are not included because the mass would remain the same for this portion of the
mission regardless of the closure scenario being considered at the base, and therefore
these data would have no direct effect on the mission mass comparisons.

The closure scenario mass data are plotted in figure 6-7. The breakeven times for
closing the food system occur very early in this mission, approximately | year for closure
scenario F, and 1.8 years for scenario G. With these early breakeven points it would be
cost effective to close the food system at the beginning of the mission, or to build up to
full closure as the necessary cargo pods arrive at the base.

6.1.6 Mars Surface Exploration Mission
The Mars mission considered for this study is a sortie type requiring equipment and
supplies to be loaded onboard initially, as no resupply is available during the mission. A
summary of the mission, taken from section 4.6, follows:
a. Modules of a vehicle are transported and assembled in LEO and with a crew aboard
travels to Mars and is established into a Mars orbit (trip requires approximately 205

days.

b. The crew and required equip.nent are transferred to a landing module that lands on
Mars.

(o The crew remains on the surface to conduct scientific exploration (200- and 543-dayv
staytimes were considered for this study).

d. The crew returns to the orbiting vehicle.

e. The crew then returns to Earth, requiring approximately 200 days for travel.
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Table 6-6 Mass Estimate Comparisons Mission: Asteroid Base (5,000 Men -
928-Day Resupply Cycle)

INITIAL EQUIPMENT, | AND RESUPPLY FOR
194 CYCLES)

SCENARIO | POWER MASS, MT | MASS MT CYCLE MASS, MT
MASS, MT

o 270 11,000 14310 0,014

r 10,388 6.032 10,987 0,183

G 18,448 2,088 20,833 2,700
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70 F

SCENARIO D
(WATER AND AIR CLOSED)

w0}

3 A

SCENARIO F
(50% FOOD CLOSURE)

SCENARIO G
(97% FOOD CLOSURE)

INITIAL 2 4 6 s
LAUNCH MISSION TIME, YEARS

10 12

Figure 6-7 Estimated Breakeven Time. Mission: Asteroid Base (5,000 Men)

93

14



ORlGh\'.\L 1 : Vi‘
OF POOR QUALITY

A unique feature of this mission is that any modules, power sources, or equipment
that are not required to return the crew to Mars orbit, would be left on Mars. The

propellant penalty for lifting noncritical material off the surface of Mars is pronibitive.

Table 6-7 shows the mass data and closure scenarios used for this study. The
resupply equivalent data given in column 3 of this table were used only to calculate the
additional mass of equipment and supplies required in excess of the initial mass for the

total mission.

For this mission, three closure scenarios and two surface exploration periods (200
and 543 days) were analyzed. As shown in figure 6-8, the breakeven times do not occur
within the time frame of this mission. Based on these data, it does not appear that CELSS

would benefit this mission.

6.2 Cost Estimates

Each mission incorporates a different transportation sce :ario, and therefore each
mission 1s assessed a different transportation cost. The costs presented in table 6-8 are
specific costs for vehicles to be used in near term, Earth-Moon missions. Table 6-9
presents the total transportation costs for all six selected missions. The transportation
costs for the Mars and Asteroid mussions reflect additiona. space operations work such as

in-space vehicle assembly tasks.

These tables preser.t both real (shuttle) and projected operating costs. The numbers
are felt to be conservative projections of future costs, for examrple; the present
difference in shuttle launch costs between Kennedy Space Center and Vandenburg Air
Force Base may no longer exist in 1995 for the i.EO monitoring base; however, the
conservative projections used in this study maintain that differential. Projections for the
asteroid mission (70 years into the future) necessarily include significant technical

advancement and the corresponding cost decrease.

The transportation costs for each mission were applied to the mass summaries (sec.
6.1) for the various scenarios from which cumulative cost curves were constructed.
Figure 6-9 illustrates the cost comparison of the physiochemical system closures for the
low inclination LEQ base. From the figure it is evident that scenario D is the optimum

system for the physiochemical considerations. As stated in the previous section, the
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Table 6-8 Vehicle Transportation Costs

SHUTTLE ORBITER (1882 ERA) MANNED OTV (1988 ERA) LTV (2010 ERA)

KSC VAFS eX GO LUNAR ORBIT |LUNAR SURFACE
COST: $80 MIL/FLIGHT | $118 MIL/FLIGHT | $28 MIL/PLIGHT | $26 MIL/FLIGHT | 88.8 MIL/PLIGHT
PAYLOAD: 68,000 LBS 28,000 L8S 18.200 LBS 73,210 LBS 40,870 LBS
SPECIFIC 1220 A8 4600 81 8 1422 A8 1120 S8 41818
COST: (2713 W/XG) ! 10,141 $/XG) 1313¢ &/XG) (2470 $/XG) (832 $/XG)

Table 6-9 Mission Transportation Costs
LEOLOW | LEOMIGH | ex GEO LUNAR ASTEROID MARS

SPECIFIC COST (&/KG): 2,713 10,141 5,847 8714 482 .17
TIME FRAME 1980 1908 1998 2010 2080 2010
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Figure 6-9 Cost Comparison of Physiochemical Systems
Miwion: LEQO - Low Inclination (4 Men)
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comparison ‘or the LEO—low incliration mission is representative of the other missions;
therefore no other physiochemical cost comparisons are presented.

Figure 6-10 projects the cumulative cost data for comparing food system clu .ces
for a four-person, LEO operations base in a low inclination orbit. For the first 6 years of
operation, physiochemical scenario D is the least expensive system. If station life is
expected to be between 6 and 10 years, scenario F, the 50% food closure, is the minimum
cost system. For expected station life greater than 10 years, 979% CELSS closure i; the
most cost-effective system. After |5 years of operation, a 97% CELLS closure would
save approximately o8 million dollars wher compared with a physiochemical system—or
almost one-half of the cumulative transportation cost of the system.

All of the missions within the Earth-Moon system show similar results (see {igures
6-9 and 6-11) except for the Military Command Post in 6 X GEO; figure 6-12. In this
mission CELSS must pay a large mass penalty for shielding the plant-growing module from
the severe radiation environment. Even with this penalty, the 509% CELSS closure is cost
effective around year 10, and the 97% CELSS closure is cost effective at year 17. At 15

the potential cost savings for 50% CELSS closure amounts to 30 million dollars. For
the LEO high inclination base, figure 6-11 gives the optimum system breakeven points at
5% years for 50% CELSS closure, and 11 years for 97% CELSS closure. The lunar base
times shown in figure 6-13 are 5% years for 50% CELSS closure and 9% years for 97%
CELSS closure.

The available use of discarded cargo modules, and the advancement of technology
enzbled CELSS to show an economic breakeven on the Asteroid mission at the time of the
first resupply and rotation cycle. Figure 6-14 shows this 2% year cost optimization point
and also demonstrates that the potential savings of a 97% CELSS closure mission is
greater than the initial cost of the system.

The Mars exploration mission cumulative transportation costs, diagrammed in figure
6-15, clearly demonstrate that this mission is not suitable for CELSS. The optimization
point for a 50% CELSS closure is calculated to be for a surface stay of 1948 days (5
years), and for 97% CELSS closure the surface stay would be 3357 days (9 year .. These
extended surface stays are outside the scope of a sortie mission.



COST ($ X 109

s |
ORicy
200 | OF Poo
178 | 68 MILLION
DOLLAR
SCENARIO D SAVINGS BY
(WATER AND AIR CLOSED) YEAR 186
150 |
SCENARIO F
(0% FOOD
CLOSURE)
126 +

- SCENARIO G

_— (97% FOOD CLOSURE)

100

% F

50 }
~Lﬂ‘ Lol A A | I 4
=
6 8 10 12 14 16 18

MISSION TIME, YEARS
\

Figure 6-10 Cumulative Cost Savings with CELSS Mission: |.EO — Low Inclination

100



COST ($ X 108

Figure 6-11 Cumulative Cost Savings with CELSS Mission: LEO — High Inclination

ORIGINAL PAGE 18
OF POOR QUALITY

SCENARIO D
(WATER AND AIR CLOSED)

SCENARIO F

'S 4 A

(0% FOOD
cmw

(97% FOOD CLOSURE)

SCENARIO G

'

260 MILLION
DOLLAR

SAVINGS BY
YEAR 18

6 8 10 12

MISSION TIME, YEARS

101

14

16



COST ($ X 105

450

ORIG!IAL PATL 1Y
OF PCOR QUALITY

-
i 30
SCENARIO D MILLION
(WATER AND AIR CLOSED) DOLLAR
-
SCENARIO G
(97% FOOD CLOSURE)
-
SCENARIO F
(50% FOOD CLOSURE)
=
4
Lﬁ' s - A s T I

12 14 16 18

MISSION TIME, YEARS

Figure 6-12 Cumulative Cost Savings with CELSS Mission: 6 X GEO

102



COST ($ X 105

1300

1200

1100

1000

700

ORIGINAL PAGE IS
OF POOR QUALITY

468

MILLION
DOLLAR
SAVINGS BY]
YEAR 16

SCENARIO D
(WATER AND AIR CLOSED)

SCENARIO F
(50% FOOD
CLOSURE)

SCENARIO G
(87% FOOD CI.OSURE)

e 4 s ' 4 1

10 12 14 16 18
MISSION TIME, YEARS

Figure 6-13 Cumulative Cost Savings with CELSS Mission: Lunar Base (12 Men)

103



COST (3 x 10%

18

ORiCiAL Wil 5}

OF POOR QU ALITY

SCENARIO D
(WATER AND AIR C1.OSED)

25.5 BILLION DOLLAR
SAVINGS BY YEAR 18

A s 1 " ) . ‘

2 P e : - - . J

MISSION TIME, YEARS

Figure 6-14 Cumulative Cost Savings with CELSS Mission: Astercid Base

104



226 - SCENARIO G —‘/

(97% FOOD CLOSURE)

ORIGINAL PAGE IS
OF POOR QUALITY

200 |-
178 |
E SCENARIO F
e %0 (80% FOOD CLOSURE)
g
126 |
| 100 |

SCENARIO D
(WATER AND AIR CLOSED)

75 |-

850 -
)
‘“ 2 'l 1 il - 'l
100 200 300 400 500 600

MARS SURFACE STAY (DAYS)

Figure 6-15 Cumulative Cost of CELSS Mission: Mars Surface Exploration

105



ORIGINAL PAGE 14
OF POOR QUALITY

6.3 Conclusions and Recommendations

3.

The conclusions from this study are summarized below.

Small, manned space stations orbiting within the Earth-Moon system could benefit
from CELSS.

Large, manned bases beyond the Earth-Moon system will probably require CELSS.

Short duration, nonpermanent type missions, such as the Mars "sortie" mission
analyzed in this study, will probably not benefit from CELSS.

CELSS component weight and volume data that were available in the literature or
estimated for this study are considered to be conservative. Therefore, as additional
data become availabie and the existing data are further refined, support for CELSS
could become even maore favorable than shown by this study.

The following recommendations are submitted for consideration.

A need exists for CELSS concept configuration analysis. One approach to this
analysis is to use preliminary design methods to configure various layouts and to
perform weight and volume trades. This technique will facilitate system

characterization.

Sensitivity analyses need to be conducted on the various elements of CELSS, e.g.,
diet, nutrition, plant yield, plant O2 production, water volume requirements, etc.
These analyses are in order to determine which elements have the greatest effect on

the total system. These elements then become the highest priority items for study.
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