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1

lA INTROODUCTWN

This document is the final report for the Regenerative Life Support Research/
Controlled Ecological Life Support System (RLSR/CELSS) Program Planning Support

(Transportation Analysis) study, Contract Number NAS2-111411. Boeing Aerospace
Company performed the study for the NASA Ames Research Center in support of the

Controlled Ecological Life Support System Program and the Advanced Life Support

Program.

1.1 Study Objectives

The study objectives are:

a. To identify future NASA missions that will require CELSS technology based on

specific mission models.

b. To develop rationale and justification, and to identify potential cost savings for

controlled ecological life support system: based on mission model analysis.

9ackgrourid

Certain basic physiological needs (fig. 1-1) must be satisf led in order to sustain man.

In the terrestrial environment, these needs are met through the evolution of life forms

that effectively use man's waste products in conjunction with energy received from the

sun, to produce fresh supplies of food, oxygen, and clean water. Likewise, in the artificial
environment of a spacecrafts oxygen, water, and food must be provided, and the waste

products that man generates must be removed. The spacecraft environment,, however,

does not have the capabilities or resources that are supplied by the Earth biosphere to

carry out these life-sustaining processes. Artificial methods must be utilized to supply

man's needs.

To date, manned spaceflight has used the relatively simple technique of bringing all

the necessary sustenance for the duration of the mission and collecting and storing waste
products for return to Earth. This is referred to as an open system. It was recognized

early, as manned missions became longer and crew size increased, that the weight,

volume, and transportation penalties of storing or routinely resupplying consumablerss
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would at some point become expensive, and that eventually the cost would become
prohibitive (refs. 7, la, 13, 19, 21, 22, 23, 32, 34, 43 9 469 66, and 71). Since the early

19601s, regenerative life support technology has been under development, and there now
exists a foundation In both systems definition and subsystem technology to support long-
duration manned missions. In many cases this development has reached the engineering
prototype stage for many of the physiochemical systems.

The NASA CELSS program was Initiated as a long term research and development
effort to fulfill future needs for recycling and regenerating materials for human
consumption during extended NASA apace missions. This material recycling Is referred to
as a closed system. The CELSS program has been primarily directed toward biological and
synthetic systems for food production and environmental control mechanisms (refs. 3, 26,

28, 30 9 33, 37, 389 40, 43, 43, 47, 49, 34 9 609 66, 67 9 70, and 73).

It was the Intent of the RLSR /CELSS Program Planning (Transportation Analysis)
study to use a systems analysis approach to determine which generic missions would
benefit from CELSS technology. The study focused on marred missions selected from
NASA planning forecasts covering the next half century. Comparison of various life
support scenarios for the selected missions tend characteristics of projected transportation
systems provided data for cost evaluations. This approach identified missions that derived
benefits from' a CELSS, showed the magnitude of potential cost savings, and indicated
which system or com bination of systems would apply. This report outlines the analytical
approach used in the evaluation, describes the missions and systems considered, and sets
forth the benefits derived from CELSS when applicable.

k
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The overall 4pproach was to conduct a detailed transportation analysis using an
extensive data base from previous programs to evaluate six missions selected for study.
The transportation analysis, 0 conjunction with data derived for mass and volume
requirements for several environmental control/Hie support systems closure scenarios,
was used to determine breakeven time and cost for mission closure scenario comparisons,
The development of transportation costs as a function of EG /LSS closure gives an
estimate of cost savings and proyldes justification for his support technology advance-
meqt. Figure 2-1 shows +he interrelationships and tasks used to conduct this study.

2.2 wit Assumpt1ionp

The assumptions and groundrules employed during the study are listed below.

a. Advanced transportation technology projections were used, in conjunction with the
specific mission location and mission era, to determine the corresporsOing coat$.

b. Development and operating (labor, etc.) costs for transportation systems or EC/LS
systems were not considered.

co Full payload manifesting on transportation vehicles was used to determine cost as
opposed to providing fractional credits for partial loads. This is similar to airline
Industry practices, whereby Individual tickets cost the same regardless of the
number of passengers or amount of cargo on a particular flight.

d. The current data base was used when available to dete rmine EC/LSS and •CELSS
M853, volume, and power requirements= otherwise, engineering estimates were
made.

e. EC/LSS consumables attributed to vehicle leakage and extravehicular activity were
not considered.

4
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i.	 The EC/LSS volume, including plant growth area, waa assumed to have the same
radiation protection as required for human habitation.

g.	 Only commonly used higher plants were considered for food production.
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Potential manned missions have been identified using information from NASA long

range planning documents and from discussions with Air Force Space Division personnel.

These missions are categorized by function, and are disolayed in figure 3-1. Potential

mission locations are diagrammed in figures 3-2 through 3-4. Figure 3-2 shows the

potential locations for a CELSS-equipped habitat. Figures 3-3 and 3-4 are pictorial

displays of these potential locations. Ceres and Vesta are two of the largest asteroids,

with the orbit of Ceres near the outer boundary of the majority of bodies in the asteroid

belt. Generic mission descriptions from the mission matrix have been noted under the

various mission locations in figure 3-5. The last figure shows the variety o.` mission

locations available for selection of transportation scenarios.

3.2 Selection Procedure

The missions to be studied were selected in the manner shown in figure 3-6. The

first level rejects all missions for which CELSS is obviously unlikely—such as unmanned

missions, or Apollo-type short duration sorties. Those missions that passed the initial

screening process were subjected to the selection ra-donale to identify a number of

realistic missions that are diverse both in function and location. This desire for diversity

motivated the inclusion of an additional mission, the long-duration sortie. This variety of

mission function and location covers a wide range of transportation scenarios, and

provides a broader perspective on the indication of cost breakeven for CELSS.

3.3 Selected Study Missions

The six missions chosen include four in the earth-moon system, and two farther out

in the solar system. The local environment—radiation, solar flux, usable materials— of

each mission varies greatly because each mission has a distinct location. The mission

location has a significant impact on the final design of the space base as well as on the

transportation methods designed to get to that base. For example, low earth orbit

stations that fly beneath the Van Allen belts do not require the large amounts of radiation

shielding necessary in other missions, although heavy Ni-H 2 batteries are needed to store
solar energy (for use when flying in the earth's shadow 16 times per day). The values for

7
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Figure 3-2 Potential Habitat Locations
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Figure 3-4 Earth-Moon System
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MISSION MATRIX
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1
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Figure 3-6 Mission Selection Schematic
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radiation shielding and power mass factor are given for each mission In table 3-1 ( ;efs. 63

and 90.)

In this regenerative life support system analysis, each level of closure will have

different power and volume requirements. Table 3-1 provides the mass penalties that

must be assessed to a mission for eacn closure level. In the final analysis, the total

System mass (and resupply mass) will determine the optimal closure level for each

mission. The following paragraphs provide a description of each mission, and give the

rationale for the power and shielding values presented its table 3-1.

a. LEO—Low I.-clination. This mission is a permanently manned operations center In

low earth orbit at an Inclination of 28.3 deg. The four- to twelve-person center

would be responsible for a.`sembly and construction of complex spacecraft, service

and basing of upper stages, and service of free-flying satellites.

This mission is likely to be implemented before the year 2000, with technology and

manufacturing constraints placing initial operating capability after 1989.

The operations center orbits the earth beneath the Van Allen belts to minimize solar

array degradation and radiation shielding requirements. However, the power system

is still quite massive due to the fact that one third of the 90 minute orbit period is

in darkness.

b. LEO—High Inclination. This scientific station will be located in a sun-synchronous

low earth ot bit at an inclination of approximately 97 deg. The four-person station

will be concerned with scientific investigation of various aspects of the earth and

sun. This mission was selected because the location of a high inclination orbit will

necessitate an additional LEO transportation scenario. The technology and manu-

facturing constraints are essentially the same as the operations center, but the

scientific rather than commercial thrust of the mission places initial operation after

1995.

The high inclination of the orbit may expose the station to a greater amount of solar

proton flux, although it was determined that no additional shielding was required to

protect station personnel. The sun-synchronous orbit of this station ensures that the

14
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Table 3-1  Minion Dependent Mum

SOLAR ARRAY NUCLEM SOLAR ARRAY

LEO LOW
INCL

LEO HIGH
MCL

ax a0 LUNAPI
BASEN

MMB 9
TRANBIT

ASTEROID
SOLAR 

ELECTRICAL POWER on KO ON m 1.N♦ 1.2N 1.400 4.700
ARRAV/IIEACTOR

SHIELDING 2N 2E0

POWER 700 700 700 400 700 700 700

CONDITIONING

NI N7 BATTERIES 1,M1 -O- -0- -0- -d- -0-- -O-

NI N7 EME r1GENCV SO SO W 100 100 100 t0

BATTERIES
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WIVE HAIINENE9 E00 too i00 1.000 NO t00 1,000

Bu"S 700 200 700 400 700 700 S00

OT1/tR 700 200 700 too 2E0 700 700

TOTAL MASS KO 1.N9 I.9N 4.520 2,M0 2,pS B,E00

AVtRAGE POWER 2E KW 4" KW a KIM too KW 76 KW 70 KW 70 KW
LOAD

FOWER MAN 117 KG/ 22 KO/ 25 KG/ 4L7 KG/ 4LS KG/ 77 KO/ 94.2 KG/
FACTOR KIM KW KW KW KW KW KW

IIAOIATION NOT PROBABLY lQyfflA2 NOT NOT N/A 29/CM2
SHIELDING 11!0'0 NOT REO'O REWO 11110O (NO

ILUNM „43 WOE PLANT
BDIu i 60lu GROWTH$

INCLUDES SHADOWING EPPECTE (BATTERY CHARGING LOADS) AND DEGRADATION RATES -
D4BION20 FOR ENO OF LIFE POWER AVAILABILITY
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solar arrays will be ir. continuous sunlight, therefore batteries for energy storage are

not requit ed.

C. 6 X GEO. A military command post will to modeled in a typical 6 X GEO circular

orbit. The station will support 4 to 24 men with infrequent resupply. This mission

was selected because of the unique military aspects involved, in addition to the high

earth orbit lortation. These military aspects motivated the 1995 initial operation

date.

r ► ie high earth orbit location causes the solar array to be exposed to sunlight at all

times; no energy storage system is necessary. However, the increased orbit altitude

places the station above the Van Allen belts, and exposes it to direct proton flux

radiation. This severe radiation environment causes greater array degradation and

increased module shielding weights. A nuclear reactor was examined as a potential

energy source, but was rejected because of operational uncertainties and reactor

shielding weight penalties.

d. Ltmar Base. A habitat will be located on the lunar surface to support 12 to 48

personnel who are primarily concerned with transporting lunar soil to lunar orbit for

use in construction and manufacturing missions. The lunar location of this mission

and potential economic return motivated its selection.

The need for lunar material for space constr • -tion projects is not anticipated before

the end of this century. The mission model indicates this requirement, and the

necessary technology, in the year 2010.

The long lunar night precluded the use of a solar array for energy production. A

SPAR - type nuclear reactor was determined to be the most mass efficient energy

producing system for this mission. Both the nuclear reactor and the manned

habitats use lunar soil for shielding.

e. Asteroid Base. A mining mission to extract minerals from an asteroid in the

asteroid belt will be modeled at a manning level of 5000 personnel. The asteroid

mission was chosen because it is the only mission outside of the earth-moon system

with potential economic return. This mission is projected 70 years in the future, and



anticipates development of advanced technology such as fusion-drive propulsion

systems and heavy-lift launch vehicles.

The habitat power is derived from solar arrays that assume 1990 technology. In this

case the power mass factor is seen to be necessarily conservative, as projecting

solar cell performance 70 years into the future is speculative at best. Habitat

radiation shielding is accomplished using asteroidal materials.

f. Mars Surface Exploration. This long-duration sortie mission will involve extensive

travel time (approximately 1000 days) and a manning commitment of 8 personnel.

The Mars mission was included as the most realistic long duration sortie. The

technology for this mission ii available today, although the need has not yet been

identified, nor have all the necessary support systems been designed. The

designated use of a shuttle-derived laur,,-h vehicle, and a unique Earth-Mars

transportation system compelled a 2010 mission date. Transportation vehicles

necessary for the various missions will be described in the following section.

Mission design involves two power systems; a solar array for the transit and orbiting

period of the mission, and a small nuclear reactor for Mars surface exploration. An

advanced solar array with a regenerative fuel cell energy storage system was

examined for use upon the surface, however using Martian soil for the reactor

radiation shielding provided a lower power-to-weight penalty for the nuclear system.

3.4 Crew Size Definition

The crew size, crew rotation period, and the base resupply period have been

determined for each mission (table 3-2). The values for crew size are particularly

sensitive to the selected mission description; for example, the lunar mining base is

modeled at a level of 12 to 48 personnel because a lunar mining operation need not require

more personnel. The crew size numbers may be extrapolated, with the understanding that

the mission definition will change—and with it the transportation analysis, vehicles, and

cost.
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Table 3-2 Crow Sire and Rotation

MISSION CREW; SIZE RANGE
CREW ROTATION

PERIOD
RESUPPLY PERIOD

DAYS DAYS

OPE RATIONS CENTE R 4.12 90 90
MONITORING BASE 4 90 90
DEEP MILITARY BASE 4.24 180 180
LUNAR BASE 12.48 180 90
ASTEROID MISSION 5000 1856 928
MARS SORTIE 8 944 NONE

18



4.0 TRANSPORTATION ANALYSIS

Analyzing the methods and vehicles used to transport personnel and materials from

the earth's surface to the mission location wiil provide the study with a sound

transportation cost for each mission. These mission-dependent transportation costs will

be used to determine the cost savings (or penalties) incurred by each level of closure.

The transportation analysis comprises two parts; a trajectory analysis to determine

the route of travel, and a vehicle analysis to determine what rocket or combination of

rockets can accomplish the mission most efficiently. The following paragraphs describe

the trajectory analysis and vehicle analysis for each mission. The trajectory 'inalysis was

accomplished using the standard o;-bital mechanics relationships, which determine time-

line and velocity change data and a descriptive illustration for each mission. The

illustration has been included with each transportation description. The vehicle analysis

was performed using the vehicle data base compiled by Boeing. Inputs to this analysis

were mission trajectory analysis data, mission-technology era, and approximate payload

mass estimates. The analysis determined optimum types of vehicles necessary, their

sizes, and approximate cost per kg to transport personnel and material from earth to the

space base.

4.1 LEO—Low hiclination

This mission has the most straightforward transportation analysis, in addition to

being the most specifically defined mission studied. The LEO operations center is located

at a circular earth orbit altitude of 370 km, with an inclination of 28.5 deg. The center is

serviced directly by the shuttle orbiter from an eastern test range (Cape Kennedy) launch.

In 1990, an unmodified shuttle launched to the operations center can carry approximately

65,000 lb (29,480 kg). Figure 4-1 illustrates the shuttle trajectory from Cape Kennedy to

the LEO operations center.

4.2 LEO—High Inclination

The monitoring station mission is very much like the LEO operations base, in that it

may be directly serviced by the shuttle orbiter. The station is located in low earth orbit

at an altitude of 450 km, and a sun-synchronous inclination of 97.5 deg. Because of the

high orbit inclination, this mission requires a launch from the western test range at
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Figure ¢1 LEO — Low Inclination Mission Trajectory

20



Vandenburg AFB, California. The higher altitude requires that some of the orbiter

payload bay area is used for fuel tanks, which are needed to extend the shuttle range. The

high inclination and altitude of the station lower the payload capacity of the shuttle to

40,000 lb (18,144 kg). The shuttle trajectory from Vandenberg AFB to the space station is

illustrated in figure 4-2.

4.3 6 X GEO

The trajectory illustrated in figure 4-3 is used to establish resupply and crew

rotation for a military command post in a circular orbit of six times geosynchronous orbit.

Since the command post is not directly accessible by the shuttle orbiter, a payload

must first be brought to a LEO operations base by a shuttle orbiter. Once at the base,

the payload is mated to an orbital transfer vchicle (OTV) that flies to and from the

command post. A conceptual drawing of the OTV can be seen in figure 4-4. The mission

sequence is straightforward, with a single revolution in phasing orbit establishing the

correct longitude for moving into the command post orbit, followed by propulsion into

transfer orbit and coast to altitude. Circularization and plane change is followed by

rendezvous with the command post. After the transfer operations are completed at the

command post, the manned OTV executes a plane change burn and moves into the transfer

ellipse. The braking ballute is inflated several minutes before perigee passage through the

Earth's upper atmosphere. The ballute provides controlled aerodynamic drag to

decelerate the vehicle for moving into phasing orbit. The ballute is jettisoned at the

apogee of the phasing orbit, followed by propulsion of the OTV into a 160-nmi orbit for

rendezvous and recovery by the orbiter.

The Boeing performance and mass sequencer calculator (PMSC) computer code was

used to determine the payload capacity of the reusable, aerobraked OTV, which is a

projected system with a significant parametric data base (refs. 85 and 87). Figure 4-5

shows the final output from the PMSC program, and lists the vehicle resupply payload

capacity at 18,290 lb (8,300 kg).

4.4 Lunar Base

The lunar base resupply trajectory is illustrated in figure 4-6. The low Earth orbit

operations are essentially identical to the command post trajectory analysis. The position
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Figure 42 LEO — High Inclination Mission Trajectory
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OTV MANNED 6 X GEO RESUPPLY MISSION

USABLE MAIN PROP. MASS
NOMINAL BURNOUT MASS
START MISSION MASS
ROUNDTRIP PAYLOAD MASS
RESUPPLY MASS

Ib	 ,
73700
9828

113530
11000
18290

MAIN ENG. ISP = 435

AUX. PROP. ISP = 220

EVENT DELTA V(it/s) PROP USAGE (lb) LOSSES (lb) MASS (Ib)

STARTBURN --- --- --- 115530
SEPARATE 10 163 6 115361
PHASE 0 0 5 115356
PHASE INJECT 4494 28866 92 86398
COAST 0 0 5 86393
TRANS. INJECT 5530 25779 37 60577
COAST 50 220 139 60218
6XGEO ORB C1R 3317 11531 37 48649
TRIM 30 106 40 48503
REND. & DOCK 70 477 157 29579
PHASE 0 0 16 29562
TRANS. INJECT 3333 5686 37 23840
COAST 65 112 139 23588
AEROMANEUVER 0 0 311 23277
COAST 0 0 695 22582
RAISE PERIGEE 145 209 37 22336
COAST 0 0 1 22335
LEO C1RC. 407 575 37 21713
REND. & DOCK 60 183 10 21529
RESERVES 450 612 0 20835
UNLOAD P/L --- --- 11000 9835

lb
NOMINAL MAIN PROPELLANT 	 73084
RESERVE MAIN PROPELLANT

	
612

NOMINAL AUX. PROPELLANT
	

824
RESERVE AUX. PROPELLANT

	
82

TOTAL LOSSES
	

1109

Figure 45 Performance Code Output
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numbers on the trajectory illustrated in figure 4-6 correspond to important events in the

timeline and velocity change data listed in figure 4-7.

The lunar base mission requires three types of transportation vehicles: (1) a shuttle

orbiter to raise payload from the Earth to a low Earth orbit operations center, (2) an

orbital transfer vehicle that takes payloads from LEO to lunar orbit and back, and (3) a

loinar transfer vehicle (fig. 4-8) that ferries payloads from lunar orbit to the lunar surface.

The shuttle orbiter must bring the payload to an operations center where it is mated

to an orbital transfer vehicle (OTV). The OTV then propels the payload, the resupply

module, into lunar orbit. After circularizing in low lunar omit, the manned OTV module

has a rendezvous with a lunar transfer vehicle (LTV) that was launched from the lunar

surface into orbit. Crew, supplies, and propellant for the LTV are exchanged in orbit,

after which the LTV descends to the lunar surface base. The manned OTV executes a

plane change burn and moves into the transfer orbit where it will coast until ballute

deployment and low earth orbit aerobrake maneuver. The phasing orbit operation and

shuttle rendezvous proceed as stated in section 4.3.

The shuttle payload to LEO has previously been given as 65,000 lb (29,480 kg), and

the OTV payload capacity is recalculated (lunar orbit trajectory is different from 6 X

GEO) at 23,210 lb (10,530 kg). The LTV has been parametrically sized and costed in a

previous study (ref. 84). The maximum LTV payload is calculated to be 40,668 lbs (18,450

kg). Because this lunar base is a mining facility, it is assumed that the OTV will bring

only liquid hydrogen propellant for the LTV. Liquid oxygen is produced from lunar soil.

4.5 Asteroid Base

The mission assumes an asteroid mining operation with a 5000 person habitat. The

complex transportation scenario for this advanced mission involves four different vehicles

and three separate space bases (refs. 86 and 91).

a. Payload and propellant are launched from the Earth's surface to a low Earth orbit

(LEO) staging base (operations center) by a heavy lift launch vehicle (fig. 4-9). This

vehicle has the capacity to lift 490,000 lb (222,222 kg) to LEO.
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LUNAR SURFACE EXPLORATION

tIF.STINATION: Lunar Surface

TRANSFER ORBIT PARAMETERS: V TLI = 3.113 km/sec

Circularize	 V LOl = .903 km/sec

Trans orbit 1/2 period: 90 hrs.

Event
No.	 Activity	 Duration

Hr s.
_.

E.T. rd End
of EventV
Hrs.^- m sec

1. STS ascent & circularize @ 160 nm. 3.06
2. Crew transfer: Erect & checkout manned OTV 4.00

3. Release OTV: Phase in 160 nm. orbit 11.00
4. Phasing burn .17

5. Coast in phasing orbit 3.00

6. Translunar insertion burn .11

7. Coast to Lunar orbit intercept, midcourse
correction 45.00

8. Lunar orbit insertion & plane change 45.00

9. LTV ascent 1.00

10. Rendezvous with, LTV transfer operations 18.06

11. LTV landing 1.20

12. Coast in orbit; plane change burn 15.00

13. Trans Earth insertion burn .06

14. Coast to aerobrake maneuver; midcourse
correction 45.00

15. Aerobraking maneuver 45.00

16. Coast to apogee .79

17. 3e ttison ba I Iti te; raise perigee to 160 nm. .06

18. Coast 1/2 REV to 160n:n. perigee .79

19. Rurn to r:irri larize at 160 n:n. for rendezvous .06

20. Orbit trim br gravity gradient stabilize 2.00

21. OTV rerovery; crew transfer 4.42

22. STS/0TV G (it-orbit N landing,

Figure 47 Timeline  and Velocity Change Data Sheet
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D. The LEO base serves as a staging area for all personnel, cargo, and propellant

enroute to the final fusion rocket assembly area in geosynchronous orbit. At the

LEO base, the cargo and propellant are loaded onto a solar electric powered transfer

vehicle (fig. 4-10) for the 174-hr trip through 'che Van Allen belts to the GEO. This

vehicle can lift a payload of 500,000 lb (226,757 kg) to geosynchronous orbit. The

personnel and any priority cargo are transported on an enlarged version of the

previously described aerobraked OTV for faster trip (6 hr) to the GEO assembly

base.

C. The GEO base serves as the final assembly area for the large fusion rocket system

used to propel payloads out to the asteroids. Cargo and propellant are unloaded

from electric-powered transfer vehicles sent up from the LEO base. The enlarged

OTV used to transfer personnel and priority cargo is designed to transport 441,000 lb

(200,000 kg) from LEO to GEO. The complex fusion propulsion system is assembled

at the base with the fusion power core, propellant tanks, large thermal radiators,

and the personnnel and priority cargo modules. The resulting vehicle, shown in

figure 4-11, can transport 1250 passengers and 150 metric tons of priority cargo to

the asteroids.

The gross start mass for the resupply mission would be 10,000 metric tons, of which

power plant comprises 2000 tons; hydrogen propellant, 4000 tons; and payload, 4000

tons (1250-person habitat plus consumables and priority cargo). "The power plant

consists of two 6 GW fusion re7,ctors utilizing the deuterium-deuterium fusion

reaction. The total power plar, provides 4.8 GW of thrust power while radiating

almost 2.8 GW of waste heat and 4.4 GW of high energy neutrons.

d.	 There are two methods the fusion rocket will use to propel vehicles to the asteroid

base: fast transfer for personnel and priority cargo, and slow transfer for

nonpriority cargo. The manned resupply mission is a fast hyperbolic transfer orbit

consisting of an 11-day thrust pe , iod to achieve hyperbolic velocity, followed by a

226-day coasting, and a 13-day deceleration to match velocity with the asteroid

base. The return inission leaves the asteroid approximately 113 days later for a

reverse of the ascent mission.

The second method is used to accelerate unmanned cargo pods on a slow elliptical

(Hohmann) transfer orbit out to the asteroid base. Figure 4-12 illustrates the
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figure 4. 11 Fusion Propulsion System
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different trajectories. The slower trip takes 130 days longer but costs less than half

of what the fast, hyperbolic trip costs. All nonpriority cargo is brought to the

asteroid facility in this manner. Empty cargo pods are not returned to Earth, they

may be discarded or used in a variety of ways as storage modules or CUSS modules.

e. A fleet of two fusion rockets is envisioned. They each make one round trip per

asteroid orbit (synodic cycle) to the asteroid mining facility and leave a few days

apart. Because of the synodic cycle, the fusion rocket vehicles are delayed at the

asteroid base for approximately 113 days, at the GEO location they are delayed

approximately 288 days. During these delays the fusion rockets are used to

decelerate unmanned cargo pods at the asteroid base and to accelerate the pods at

GEO. Cargo pod launches are timed to arrive at the asteroid base shortly after the

manned resupply vehicles so that the fusion rockets can decelerate the cargo pods.

The rendezvous opportunity (synodic cycle) repeats itself every 928 days. This

transportation system allows half of the total crew to be rotated each cycle.

4.6 Mars Surface Exploration

The Mars mission spacecraft illustrated in figure 4-13 is first assembled at a LEO

base from individual modules brought up by the shuttle orbiter. The Mars mission vehicle

consists of one stage for Mars transfer orbit injection, one stage for Earth transfer orbit

injection, an enroute habitation module, and a Mars landing and ascent vehicle. Addi-

tionally, when the vehicle intercepts Mars it must be configured for aerobraking

maneuvers (such as disposable nose cone and correct lift-drag) in order to dump excess

velocity. The returning Earth-intercept module must also carry an aerobraking ballute.

The Mars mission sequence is shown in figure 4-14 and proceeds as follows:

a. The unassembled mission spacecraft modules are brought from Earth to a LEO

operations base using the shuttle orbiter. After the vehicle is assembled, fueled,

and supplied, the crew enters the spacecraft and begins their 950-day mission.

b. From LEO a single long burn propels the spaced aft into a heliocentric transfer

trajectory to Mars intercept. The trip from LEO to Mars takes approximately 205

days.
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Figure 4-13 Manned Mars Space Vehicle
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C. At Mars, the velocity change is accomplished by using an aerobraking maneuver into
the Mars atmosphere. The spacecraft is then established in an elliptical parking
orbit around Mars. After several days in orbit, the Mars surface landing module
separates from the propulsion ,cages and the transfer habitat module and lands on
the Martian surface. Planetary exploration is accomplished over the next year and a
half.

d. After the exploration period has been completed, the personnel and necessary cargo
fly in the ascent module up to the orbiting spacecraft. All nonessential equipment
and material must be left on the Martian surface because of the severe cost of
lifting materials into orbit. After the spacecraft rendezvous, and after personnel
and materials are transferred, the spacecraft initiates an engine burn to move into a
transfer trajectory to Earth.

e. The trip back to Earth will take approximately 200 days. An aerobraking pass
through the Earth's atmosphere accomplishes most of the velocity change necessary
to establish the spacecr. "t in a low Earth orbit. Once this obit is established, the
spacecraft and crew are recovered and returned to Earth by the space shuttle.
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3.0 LIFE SUPPORT SYSTEMS CHARACTERJZA1ON

The life support systems considered for this study are water, air revitalization
(oxygen and carbon dioxide), waste management, and food. There are three basic methods

of supplying these materials to the spacecraft crew: (1) the materials can be stored
aboard at time of launch for the entire mission with provision of storing waste products,

(2) supplies can be brought to the crew via a transportation vehicle that also returns the

waste to Earth or (3) they can be supplied by recycling the waste products into reusable

materials. The first two methods are commonly called resupply or open systems and the

last method is known as regenerative, recycle, or a closed system. It is possible to have

several open and closed system combinations using the four life support areas; for

example, a recycling water system combined with resupply of air and food, and

corresponding waste products returned to Earth. Various combinations of open and closed
systems are referred to as closure scenarios and are further defined and discussed in

section 5.5.

When a system is closed, recycling equipment must be provided in lieu of the
resupply process. Trade studies were conducted based on the total weight of each type of
system to determine the optimum combinations of supplying materials. Total weight was
determined by the sum of the weight of the following elements: required materials such

as water, 021 food; appropriate storage containers; recycling equipment; pressure vessel
to house the elements, based on a weight penalty of the volume occupied by the system
elements; and the resupply module, based on the volume of material to be resupplied.
Power requirements were also determined for each system type. Figure 5-1 shows the
logic flow used to derive the weight, volume, and power estimates. The development of
the:,e estimates are ,discussed in sections 5.1 through 5.4 for the water, oxygen, carbon
dioxide, waste, and food systems.

A four-man crew segment was used as a basic module size for estimating EC/LS
weight, volume, and power requirements. The rationale for this baseline selection was as

follows:

a.	 A four-man module fits the range identified in the mission crew size analysis, with
the exception of the asteroid mission, which was handled separately.

b.	 It provides a generic baseline for mass, volume, and power estimates.
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Figure 5. 1 Approach to Life Support Systems Characterization
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C.

	

	 It eliminates the necessity for a detailed EC/LSS design for each mission and closure

scenario, which was outside the scope of this study.

d.

	

	 The most current data base for the physiochemical systems is based on a four-man

module (Space Operations Center).

3.1 water System

The development of the weight, volume, and power requirements for supplying water

to a four-man crew in space is discussed in this section. Water loads given in table 3- l

show the average human input and output. Domestic water used in the spacecraf t

environment is estimated and is considered to be adequate for providing crew members

with a reasonable cleanliness level.

Table 5-2 lists the equipment that could be used to supply the water requirements.

Shuttle-type water storage tanks were used for the baseline. Vapor compression

distillation volume and power estimate was an example used for water purification

equipment to obtain weight, volume, and power estimates.

The operating data shown in table 5-3 is representative of minimum water loads

during degradation or failure of equipment. Man's ingested water requirements do not

decrease. This results in a requirement for making the ingested water supply system

redundant. However, if an eme-`cncy arises, domestic water can be reduced or

eliminated to relieve the system.

Tables 5-4 and S-S show the items used to develop weight, volume, and power

estimates for an open water system and a recycling system. 'These estimates are derived

for a 4-man module with a 90-day resupply cyc'.e. The number of units on these tables

refer to the number of equipment items, descrt'ied in table 5-2, necessary to provide the

requirements and redundancy for a 4-man module. A comparison of the two water

systems presented in table 5-6, shows the advantages of the closed wate ► system in weight

and volume saved for both initial materials and resupply. The initial weight of the open

system (12,446 kg) is an order of magnitude greater than the recycle system (1,320 kg),

and the resupply weight of 10,892 kg is 2 orders of magnitude greater than the recycle

resupply of 94 Kg. The result of this trade is certainly not surprising—the closing of this
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Tibli 6. 1 Typkel WSW Lads (Re/. 62 and 19)

SOURCE Its ( lb)/ MAN-DAY

INGESTED H20

DRINKING 1.85 (4.49)

FOOD PREPARATION 0.72 41.68)

METABOLIC 0.38 (0.88)
WATER IN 'OOO 0.45 (1.00)

TOTAL 3.41 (7.63)

OUTPUT H3 O

URINE 1.50 1131)
PERSPIRATION AND 1.82 (4.02)
RESPIRATION
FECES WATER 0.09 (0.20) (NORMALLY NOT

RECOVERED)
TOTAL 3.41

DOMESTIC H2O

URINAL FLUSH 0.50 1 1.08)
HAND WASH 1.81 ( 4.00)
SHOWER 3.63 ( 8.00)
CLOTHES WASH 12.48 (27.50)
DISHWASHER 1.81 ( 4.00)

TOTAL 20.23 (44.59)

41



Taub 5.2 Wow EQ&*mwt 082fon Door 0W. 0) ORIGIN.M. P-,0--;' a
OF POOR "2U.L.& i ; 'r

(UNIT DEFINITIONS)

EOUIPMENT DESIGN DATA

CAPACITY/TANK 73.6 KG 1182 LB)

WATER STORAGE TANK. DRY WEIGHT/TANK 22.5 KG (IMS Le)
(SHUTTLE TYPE) STORAGE VOLUMEITANK 0.111 M3 (0.76 FT31

POWER CONSUMPTION/TANK 3.3 WATTS

WATER FLOW RATE 1.06 KG (4.1 LS)/NR
EVAPORATION WATER
PURIFICATION UNIT DRY WEIGHT 188.2 KG 1415 LS)
VAPOR COMPRESSION VOLUME 1.0 M3 137 FT3)DISTILLATION (VCD)

POWER CONSUMPTION 300 WATTS

DRY WEIGHT 27.2 KG (00 LS)
WATER QUALITY MONITOR VOLUME 0.11 M3 (3.8 FT3)

POWER CONSUMPTION 40 WATTS

Tabb 5-3 Watt/ Operating Cowl Data M-Man Module, 914Day Rnup p/y) (Re% 63)

OPERATING LEVEL
k9 (LO)/4-MAN — DAY

INGESTED H2O WASH H2O TOTAL

OPERATIONAL 10.3 (22.7) 00.0 (170; 012 (201)

00-DAY DEGPADED 10.3 (227) 40.5 (80) 50.7 (112)

21-OAY EMERGENCY 10.3 (22.7) 0 10.3 (22.7)

7"able 54 Open Water System/Equipment Date Summary (4-Man Module, 90-Day Resupply)
NUMBER OF TOTAL TOTAL TOTAL NOMINAL

ITEM UNITS CAPACITY WEIGHT STORAGE POWER
Its VOLUME CONSUMPTIONREG. REDUNO.

m3 WATTS
POTABLE WATER STORAGE 13 13 loll Ito WL4 4.84 10
TANKS
DOMESTIC WATER STORAGE 100 7350 kC 2290 10 10
TANKS
EMERGENCY WATER STORAGE 3 221 Ito BL7 0.f? 10
TANKS
PLUMBING. ETC. (15% OF 31 1a3 as

SUBTOTAL 2gU 24.a 30
INITIAL CHARGE
POTABLE H2O (2B TANKS) loll — —
DOMESTIC H 2O (100 TANKS) 7310
EMERGENCY H2014 TANKS) 221 — —

TOTAL 12444 MB 30

00 DAY RESUPPLY 10994 21.E
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TabAe 5.5 Recycle Water Systvm/Equipmvnt Date Summary (4-Man Module, 9aD*y Resupply)

NUMEE110i TOTAL TOTAL TOTAL AOIMINAL
ITEM UNITE CAPACITY WEIGHT STORAGE ►GAIR

w VOLUME CONSUMPTIONIIEa EDUNO. m3 WATTS
PRETREAT CHEM TANK 1 716 kS 22.5 O,tE 3,2
DIRTY H 2O STORAGE TANK 2 1 220.E kV N.7 ail 10
EVAPORATION PUIIIFICAT10N 1 1 172 kSAW 37S.4 2.0 720UNIT
WATER DUALITY MONITOR 1 272 411 40
POTAELE M20 STORAGE TANK 2 1 210.E kS 61.7 0.67 10
EMEIIGENC` H 2O STORAGE TANK 2 221 kS Ei.7 (L57 111
(21 DAYS)
PLUMSING, ETC. 116%) 71Lj 0.83 —

SUGTOTAL 770.5 4.64 79"
INITIAL H2O CHARGE. S TANKS III — —

INITIAL SPARES A CONSUMA/LEE 741 am —

TOTAL 1270 4.M 79"

N DAY RESUPPLY I&$ a," —

Table 5-6 Water System Summary (4-Man Module, 90-Day Resupply)

SYSTEM TYPE MASS )CG VOLUME M3
NOMINAL POWER

WATTS

OPEN SYSTEM 12,446 25 30

90-DAY RESUPPLY 10,892 22 —

RECYCLE SYSTEM 1,320 5 797

90-DAY RESUPPLY 94 0.2 --
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system has been highlighted for sane time in the advancement of water recy<

equipment.

3.2 Air Revitalization System

The air revitalization system includes oxygen generation, carbon dioxide removal,

humidity control, air contaminate removal, and odor control. Man's input and output loads

for oxygen and carbon dioxide are given in table 5-7.

Oxygen is continuously required for metabolic processes within the body, therefore

it must be continuously replenished in the air. It can be supplied from stored oxygen in

tanks, from recycling using water electrolysis, or from photosynthesis. Carbon dioxide, as

a toxic waste product of metabolism, must be maintained below a maximum safe level by

removing and storing it, by processing and recycling it back into the system as water,

which can be fed into the water electrolysis unit or by photosynthesis. The other

elements of air revitalization are associated with removing various other contaminants,

and are required for both the open and closed systems. Table 5-8 defines the various

equipment units used for air revitalization and lists the applicable deztS , i data.

Degraded and emergency operating levels are given in table 5-9. The levels shown

are based on a nominal habitat pressure of 1 atmosphere, which this study used as the

baseline.

Weight, volume and power estimates for a four-man air revitalization module are

shown for the open system in table 5-10 and the recycle system in table 5-11. In the open

system, oxygen is stored in tanks and carbon dioxide is removed and stored in lithium

hydroxide canisters. In the recycling case, the two systems work together. Carbon

dioxide is removed using a solid amine bed that concentrates the CO 2 to be later released

into a reduction process (Sabatier) that produces water. The water is then electrolyzed to

produce oxygen.

A summary of the open and recycle systems is presented in table 5-12. The

advantage of one systern over the other is not nearly as pronounced as for the water

system, although recycling has advantages in initial weight, resupply weight, and volume.

Depending on mission analysis, the power requirement i s higher for recycling, though it

still remains advantageous to use recycling equipment.
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Table 5•7 OxY9en/Corbon Dioxlda Typksl Loads f (Rof 63 and 79)

SOURCE kS (LB)/MAN-D^Y

INPUT

OXYGEN 0836 (1.64)

OUTPUT

CARBON DIOXIDE 112.20)

ASSUMES METABOLIC RATE - 2800 kcal.

Table 5-8 Air Revitsllration Equipment Design Data (Ref. 63, 72 and 80)

(UNIT DEFINITIONS)

IOUIPUENT DESIGN OATA

OXYGEN STORAGE TANK SPHERICAL TANK O.M T 12.1 PTO DIA
GAS VOLUME 0.127 mJ 14.M F T31
STORAGE VOLUME 0.26 T3 H.36 FT3
TANK DAY WEIGHT I&S ko (41.4 LEI
CHANGE PRESSURE 3300 PSIA
OXYGEN/TANK 43.6 rE 166.E LBO
POWER CONSUMPTION 2 WATTS

OXYGEN GENERATOR O FROOUCTWN O.N KO II.= LSI/HR.
(*ATE:: ELECTROLYSIS) FIGHT WEIGHT 170 KG (375 LSO

FLIGHT VOLUME 0.74 m3 126 FT31
POWER CONSUIOWTION 2630 WATTS

CARfON DIOXIDE RAMOV^L 00 REMOVAL RATEAMIT 01.6 y I0.36 L61/HR
ILION, 2 CARTRIDGE UNIT) FLIGHT WEIGHT 98.7 k4 1200 1.91

FLIGHT VOLUME 0,42-1 MIS FT 1
POWER CONSUMPTION 60 WATTS
CARTRIDGE USAGE 2/4-MAN -OAY
WEIGHT12 CARTRIDGES LS k4 112.S LEI
VOLUMEn CAArRIDGES 0.01 .	 10.46 PT31

00011 CONTROL UNIT (CHARCOAU CAPACITY/UNIT 4-MMA/KOAY
FLIGHT WEIGHT L1 y(]0 LBO
FLIGHT VOLUME 0.03 n^	 (1 FT3)
CHARCOAL USAGE 401 y 10613 LEI/MAN DAY

OEHUMIOIPIER CAPACITY/UNIT 4-MAN-DAY
FLIGHT WEIGHT 38.2k	 ISLS 4411
FLIGHT VOLUME 0,14:. O IS FT'S
POWER CONSUMPTION 102.6 WATTS

CARBON DIOXIDE REMOVAL CAPACITY/UNIT 4•MAN-OAY
(SOLID AMINE) FLIGHT WEIGHT S2.S 1y 111f LSI

FLIGHT VOLUME (L1@ m	 18.3 FT3)
POWER CONSUMPTION 369 WATTS

AIR CONTAMINANT REMOVAL CAPACITY/UNIT "AN-0AY
(CATALYTIC OXIOIZERI FLIGHT WEIGHT 24,5 to (64 LSI

FLIGHT VOLUME 0,1• m 18.26 FT3)
POWER CONSUMPTION 160.E WATTS

CARBON OIOXIOE REDUCTION CAPACITYMNIT `MAN-DAY
ISADATIER) PLIGHT WEIGHT 48.6 1y 1107 LEI

FLIGHT VOLUME (L3	 rw	 112.1 PT3)
POWER CONSUMPTION N WATTS

ATMOSPHERIC MONITOR CAPACITY/UNIT 4.MAN-DAY
WIRKI"LMIA-CAMS UNIT) FLIGHT WEIGHT

FLIGHT VOLUME
22.7 t^150 LEI 1
407 w^	 12.6 PT1

POWER CONSUMPTION 100 WATTS
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Table 5 .9 OxypenXarbon Dioxide Operating Low) Data (4-Man Module,

90-Day Resupply) (Ref. 63)

OPERATING LEVEL
MM Ho (P618) mm H9

TOTAL O PARTIAL
RESSURE

CO2 PARTIAL
PRESSURE PRESSURE

OPERATIONAL 760 (14.7) 160 (3.1) U MAX.

90-DAY DEGRADED 517-760 124.107 7.6 MAX
(10.414.7) (2.4.18)

21-DAY EMERGENCY 517.760 119-202 12.0 MAX
(10.0. 14.7) (2.3.3.9)

Table 5-10 Open Air Revitalization System/Equipment Date Summary (4-Man Module,
90-Day Resupply)

NUMBER OF TOTAL TOTAL TOTAL NOMINAL
ITEM UNITS CAPACITY WEIGHT, STORAGE POWER

kg VOLUME, CONSUMPTION,REO REDUNO. R,3 WATTS

OXYGEN STORAGE
TANKS 7 7 615 kg 263.2 3.64 14
OXYGEN EMERGENCY
TANKS 2 88 kp 37.8 0.52 —
PLUMBING, etc.
(15% OF 3 TANKS) 2.8 0.12 —
UGH CO 2 REMOVAL
SYSTEM

2 CARTRIDGE UNIT 1 0.16 k4/hr 90.7 0.42 50
DEHUMIDIFIER 1 1 78.4 0.28 205
CATALYTIC BURNER 1 1 49 0.35 381
ATMOSPHERE 1 22.7 0.07 100

MONITOR
ODOR CONTROL 1 1 18.2 0.06 —
PLUMBING, ETC,

(15% EQUIP) 38.9 0.18
SUB TOTAL 801.5 5.64 750

INITIAL SPARES AND
CONSUMA13LES 1679 1.78 —

TOTAL 2280.5 7.4 750

90 DAY RESUPPLY 998 284 —
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Table 5-11 Recycle Air Revitalization Systlrm/Equipment Dsta Summery (4-Men Module,
90-0ay Resupply)

NUMBER OF TOTAL TOTAL TOTAL NOMINAL
ITEM UNITI

It

CAPACITY W113HT. STORAGE POWER
LE VOLUME CONSUMPTION,REa REOUN'J

1 n►3 WATT

OXYGENGENERATOR 14 % 0,40ksow 1T0 474 x,^
STORED EMERGENCY OAYGEN 7 • ho 17.E 0.t?
CO? REMOVAL- SOLID ^MIN& 1 1 107 6.211 E>âE
002 REOU('TIOP4 . &ASAVIER % 11 4LE 012i EE
OERUMIDIFIER 1 1 7E.4 0.2E :0E
CATALYTIC EURNER 1 1 40 a35 391
ATMOSP►IERI MONITOR t ZL7 0.07 t00
DOOR CONTROL 1 1 IL2 0.0E
PLUMBING ETC 1169, EOUIP.; _21L ALL —

•aiETOTAL 411.1 3.14 500E
INITIAL SPARES & CONSUMA/LES IN 0.211

TOTAL I I 711L1	 1 L43 SOUS

•0 DAY NESUPILV N O.tt —	 1

Table 5-1? Air Revitalizati •n System Summary (4-4fan Module, 94Day Resupply)

SYSTEM TYPE MASS kE VOLUME m3
NOMINAL POWER

WATTS

Or EN SYSTEM 2.281 7.4 750

90-DAY RESUPPLY 998 2.8 --

RECYCLE SYSTEM 796 14 6,000

90. OAY RESUPPLY 46 0.2 --_
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5.3 Waste System

The waste system consists of the human fecal material and trash that includes such

items as uneaten food, packaging material, wet Wires, and tissues. The typical weight of

waste loads is shown in table 5-13.

Waste products can be collected, compacted, ,ind stored; or they can be processed

into usable materials. The equipment involved in waste management is given in table

5-14. To estimate weight. volume, anc power requirements, a wet oxidation unit was

assumed for the waste recycling equipment. The development of estimates for the open

and closed systems is shown in tables 5-15 and 5-16.

Examination of the waste system summary data, table 5-17. indicates very little

difference between the open and closes systems. Closing the waste system alone, in this

content, is not cost-effective when considering oxidation equipment devMopment costs.

However, when the food system is closed, waste recycling becomes very important in that

minerals contained in waste products must be reclaimed and proc-ssed into usable

materials. Discarding the waste would Le counterproductive to achieving a high level of

closure with minimum resupply requirements.

5.4 Food System

The nomina l weight of dry food required to sustain life is 1.6 lb/man/day.

Associated with preparation of this food is residual water and packaging, which brings the

total .food load to 3.6 lb/man/day (see table 5-18). This number is used for calculating the

basic weight of food used in the storage and resupply sections of of this study.

The alternative to packaged food is to grow food onboard the spacecraft. Growing

food :o sustain man in space involves a number of variables such as food type—plants,

animals, single-cell protein type organisms, and so forth; food quantity—how much of what

type of food is required to provide a nutritionally balanced diet; growth techniques—what

food types require different culture techniques and food type and culture techniques that

are compatible with the spacecraft environment. Since it was not possible to investigate

all possible variables during this study, the following guidelines were adopted:
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Table 5-13 Wan Typical Loads ( Ref. 63 and 79)

SOURCE k9 (LB)IMAN-DAY

HUMAN SOLIDS OUTPUT
FECES SOLIDS 0.11 (0.24)
FECES WATER 0.09 (0.20)

TOTAL 0.20 (0.44)

TRASH M82 0.80)

Table 5. 14 Waste Management Equipment Design Dcti (Ref. 63 N, d 64)

(UNIT DEFINITIONS)

EOUIPMENT DESIGN DATA

WASTE COLLECTOR CA.PACITN/UNIT 210 MAN DAYS
(COMMODE) FLIGHT WEIGHT 40.8 k9 (90 LB)

FLIGHT VOLUME 0.35 m3 (12.2 FT3)
POWER CONSUMPTION 120 WATTS

EMERGENCY WASTE COLLECTION CAPACITYNNIT 360 MAN DAYS
(BAGS) FLIGHT WEIGHT 6.8 k9 (15 LB)

FLIGHT VOLUME 0.028 m 3 (1 FT3)
POWER CONSUMPTION 0

TRASH COMPACTOR CAPACITY/UNIT 360 MANDAYS
COMPACTED VOLUME 0.02 m 3 (0.7 FT3)/BAG
FLIGHT WEIGHT 18.1 k	 (40 LB)
FLIGHT VOLUME 0.2 ml (7 FT3)
POWER CONSUMPTION 120 WATTS

WET OXIDATION UNIT CAPACITY/UNIT 27.9 k9 (61.4 LBVDAY
(INCLUDES GRINDING, SLURRYING, FLIGHT WEIGHT 93.3 k9 (205`6 LB)
REACTION CHAMBER, VCD, ETC.) FLIGHT VOLUME 0.49 m3 (17.3 FT3)

POWER CONSUMPTION 285 WATTS
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Table 5-15 Open Wa•h Mstww ent System/Equipment Lbta Summary ("an Module,
906Day Resgpp/v

NUMBER OF TOTAL TOTAL TOTAL NOMINAL

ITEM UNITS CAPACITY WEIGHT, STORAGE POWER

REO REDUND kq VOLUME, CONSUMPTION,
m3 WATTS

WASTE COLLECTOR 2 420 MAN DAYS 81.6 0.70 240

EMERGENCY WASTE 1 6.8 0.028 0
COLLECTION

0.02 m3lbig
TRASH COMPACTOR 1 18.1 0.2 120

SUBTOTAL 106.5 0.93 360

INITIAL SPARES & 85.3 0.76 —
CONSUMABLES

TOTAL 191.8 1.69 360

904 DAY RESUPPLY 817 0.75 —

Table 5-16 Recycle Waste Management System/Equipment Data Summary (4-Man Module,
90-Day Resupply)

NUMBER OF TOTAL TOTAL TOTAL NOMINAL

ITEM OF UNITS CAPACITY WEIGHT, STORAGE POWER

REO REDUND. kg VOLUME, CONSUMPTION,
m3 WATTS

WASTE COLLECTOR 2 420 MANDAYS 81.6 0.70 240

EMERGENCY WASTE 1 6.8 0.028 0
COLLECTION

WET OXIDATION UNIT 18 0.45 52

PLUMBING, ETC. (159 2.4 0.07 —
OF WET OXIDATION
UNIT)

SUBTOTAL 108.8 1.25 292

INITIAL SPARES AND 26.7 0.3 —
CONSUMABLES

TOTAL 133.5 1.6 292

90 DAY RESUPPLY 16.1 0.2 —
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Table 5. 17 Wan System Summary O-Man Module, 90-Day Resupply)

SYSTEM TYPE MASS k0 VOLUME m3
NOMINAL POWER

WATTS

OPEN SYSTEM 101.8 1.60 380

00-DAY RESUPPLY 817 0.75 ---

RECYCLE SYSTEM 133.5 1.6 202

00-DAY RESUPPLY 16 0.2 ---

Table 5. 18 food Requirement and Packaging Loads (Ref. 8, 79 and 63)

SOURCE KG (LB)/MAN-DAY

FOOD, DRY 0.73 0.61

WATER, CONTAINED IN FOOD 0.45 11.0)

PACKAGING 0.45 11.0)

TOTAL 1.53 (16)
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Only common, edible plants with available design data were considered. The plants

considered are not necessarily the optimum choices for the mission, but are

representative for a generic analysis.

b.	 Three diets were considered for analysis:

1. Salad vegetables grown to supplement a standard packaged food diet,

considered as 3% salad and 97% packaged food.

2. Plant growth to contribute 50% of the diet; the other 50% supplied as

packaged food.

3. Plant growth to contribute 97% of the diet, a vegetarian diet; the remaining

3% supplied as vitamins, such as n-12, seasonings, and other miscellaneous

condiments.

The individual plants included in the three diets are listed in tables 5-19, 5-20, and

5-21. Growth data available in the literature are shown in the tables with the associated

references. These data were used to estimate growing areas, harvest rates, biomass

holdup, and plant wastes, which are required to establish plant growth equipment

requirements as shown in table 5-22. In addition, table 5-22 presents the derivation and

references of other equipment design data necessary to calculate weight, volume, and

power requirements associated with plant growth. In some cases, the data base was

insufficient to obtain design numbers, so engineering estimates were used. For example,

the sixth item in table 5-22 refers to the quantity of water required to supply plants with

nutrients and for transpiration. In one reference the quantity of transpiration water

recommended was an amount that, when applied on a per - growth-area basis, amounted to

a reservoir depth of 5.5 in. For aeroponrcally grown plants, this quantity of water was

considered excessive. A water depth of 2 in was assumed to be adequate and was used for

this study. The quantity of water required for transpiration is still an open question that

has considerable impact on system weight.

Using the basic data from table 5-22, equipment estimates were calculated for each

of the three diets selected for study. These data are presented in tables 5-23, 5-24, and

5-25. The equipment is sized for four - man modules to make it comparable with the

physiochemical systems that were analyzed.
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`^

F,
R	 0
;	 Z

W

y
Z_̂

; ^
Q -22

yy
O
t3

Qw`u
W U.

<
0. %L

<
> O
 1..

f'; J J < = y	 z
o ..t;

W tf
N

H.
Z y

<
"
V O

Q
< J

<
z
J

`¢`
J

V W
Z

g
W

^J J
OW

.1	
JW

< LL
VO

>

J'u^
tW
QO p O Q Ô
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In keeping with the logic flow (fig. 5-1), the food system equipment estimates

(tables 5-23 to 5-25) were combined with the food system operating level data (table 5-26)

to describe the open food system (table 5-27), and the food growing system for each of the

three diets (tables 3-28, 5-29, and 5-30). In table 5-28, the waste processing equipment is

stated as being included in with the EC/LS equipment. This is because the quantity of

additional waste generated by the 3% plant growth diet is a relatively insignificant

quantity, approximately 0.2 kg/day, as shown in table 5-23. The quantity of waste

generated by 50% and 97% vegetable diets is more significant, 14 kg and 70 kg

respectively. The waste processing equipment estimates to handle these increased food

system wastes in addition to the human waste and trash are shown in tables 5-29 and 5-30.

The food system summary data in table 5-31 show the comparison of the open

system and the three plant diet systems with respect to mass, volume, and power. In

analyzing these data, one can see that the system weight, volume, and power parameters

increase as you go from the open system to increasingly more slant growth. Conversely,

the resupply mass and volume decrease with more plant growth. At first it would seem

that growing plants to close the food system would not be advantageous; however, because

the resupply requirements would decrease with increasing plant growth, eventually a point

would be reached when the resupply mass of the open system would surpass the large

recycling equipment mass and power requirements of the plant growth systerns. This

subject is discussed in more detail in section 6.0 where the various EC/LS systems are

compared in terms of mission analysis and transportation costs.

5.5 Closure Scenarios with Associated Mass Estimates

Seven closure scene.. ^s were selected to enable the comparison of an entirely open

system with various physiochemical system closures, and the comparison of a closed

physiochemical system with three food-growing scenarios. Table 5-32 defines these seven

closure scenarios. Scenario codes A through G were assigned to the cases, and will be

used as identifiers in this report.

Plants growth provides other advantages in addition to supplying fresh food. The

water that passes through plants in the transpiration process is purified. This phenomenon

can be used to advantage if water purification equipment can be reduced in the total

system. This study assumed that no water purification equipment would be necessary if

the daily water requirement for the crew could be rnet by the growing plants. It was
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Tables-26 Food System Operatinq Level Ebro (*-Man Module, 94 Day Resupply (Re 1. 63)

OPERATING LEVEL
k0 (LB)14-MAN DAY

FOOD + WATER PACKAGING TOTAL

OPERATIONAL 4.7 (144) 1.8 (4.0) 6.5 (14.4)

DEGRADED 2.7 (6.0) 1.03 (2.28) 3.72 (8.2)

Tabb 5-?7 Open food Systrm/Data Summary (4-Man Module, 94Day Resupply)

NUMSER OF UNITS TOTAL TOTAL TOTAL NOMINAL
POWERITEM

CAPACITY WEIGHT KG
VOLUME 643

CONSUMPTION
RECl REDUNO. WATTS

FOOD • PACKAGING 1 390 MAN DAYS 647.0

CONTINGENC Y !CN C 1 300 MAN DAYS Mill 0.67 --
PACKAGING

STORAGE CONTAINER 731 ------
(26% OF F000 WT.)

STORAGE VOLUME IA ---	 -
IW% OF FOOD VOL)

TOTAL 1164 4.3 ----

ibOAY RESUPPLY 736 L7 `---
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Table 5-28 Food Growing System/Equinn-*nt Data S
Diet: 3% Plant Growth - 97% Food Resin

ITEM
TOTAL WEIGHT,

ly
TOTAL STORAGE

VOLUME, m3

NOMINAL POWER
CONSUMPTION,

WA TTS

WATER RESERVOIR 167

WATER TANKS 114

PLANT GROWTH STRUCTURE 43

PLANT GROWTH LC.c'IPMENT (INCLUDES LIGHTS. 679
ANALYZER, HUMIDITY CONTROL, tTC.)

HARVESTING AND PROCESSING EQUIPMENT 0

WASTE PROCESSING EQUIPMENT (INCLUDES
FOOD AND HUMAN WASTES AND TRASH) (INCLUDED WITH EC/LS EQUIPMENT)

TOTAL PLANT GROWTH VOLUME 11.26

POWER CONSUMPTION 1,6{19

SUBTOTAL 1,000 11.26 1,6Pu

INITIAL FOOD SUPPLY — COMPLETE FOR 90 1,164 4.3
DAYS (PLUS CONTINGENCY)

INITIAL SPARES (10% OF EQUIPMENT) 69 0.1

TOTAL 2.302 16.96 1,699

90-DAY RESUPPLY (971 OF DIET AND SPARES 730 2
AT 3% OF EQUIPMENT)
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Table 5-29 food Growing System/Equipment Data Summery
Diet: 509 Plant Growth - 50% food Resupply (4-,s#&n Nodule, 9aDev Resupply)

ITEM TOTAL WEIGHT,
k

TOTAL STORAGE
VOLUME, M3

NOMINAL POWER
 CONSUMPTION,

WATTS

WATER RESERVOIR 3,642

WATER TANKS 1,009

PLANT GROWTH STRUCTURE 403

PLANT GROWTH EQUIPMENT (INCLUDES LIGHTS, 3.222
ANALYZER, HUMIDITY CONTROL, ETC.)

HARVESTING AND PROCESSING EQUIPMENT 209

WASTE PROCESSING EQUIPMENT (INCLUDES 20
FOOO AND HUMAN WA: TES AND TRASH)

TOTAL PLANT GROWTH VOLUME 1010

POWER CONSUMPTION 14,000

SUBTOTAL 2,622 IOLO 14.000

INITIAL FOOD SUPPLY FOR 00 DAYS 709 2.7

INITIAL SPARES 1101 OF EQUIPMENT) 364 as

TOTAL 9.787 1016 11,000

04OAY RESUPPLY 160% OF FOOD AND SPARES 477 1.6 ---
AT 31 OF EQUIPMENT)
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Table 5.30 Food Growing System/Equipment Data Summary
Diet: 97% Plant Growth • 3% Food Resupply N-Man Module, 90-Day Resupply/

ITEM
TOTAL WEIGHT,

k@
TOTAL STOR 7 E

VOLUME, m

NOMINAL POWER
CONSUMPTION,

WATTS

WATER RESERVOIR 7,470

WATER TANKS X336

PLANT GROWTH STRUCTURE 720

PLANT GROWTH EOUI ►MENT (INCLUDES LIGHTS. 6.346
ANALYZER, HUMIDITY CONTROL, ETC.)

HARVESTING AND PROCESSING EQUIPMENT 636

WASTE PROCESSING EOUIPMENT (INCLUDES 224
FOOD AND HUMAN WASTES AND TRASH)

TOTAL PLANT GROWTH VOLUME 167.6

POWER CONSUMPTION 26,600

SUBTOTAL 16,633 167.6 26,600

INITIAL FOOD SUPPLY FOR 90 DAYS 776 27

INITIAL SPARES (10% OF EOUIPMENTI 611
rs

1.6
+s s

TOTAL 17,979 191.7 Mew

90.OAY RESUPPLY (3%OF OIiT AND SPARES 206 1.0
AT 3% OF EGUIPMENT)
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Table 5-:

SYSTEM TYPE MASS, kE VOLUME, T3
NOMINAL POWER,

WATTS

OPEN SYSTEM 1.164 4.7 ----

90-0AY RESUPPLY 776 2.7 ---

711 PLANT OROWT14 • 97% RESUPPLY 1,307 16.7 1,6N

90-0AY RESUPPLY 770 2.7 ---

6011 PLANT GROWTH • W% RESUPPLY 9,767 1019 14,500

90-0AY RESUPPLY 477 I	 ..9 --

97% PLANT GROWTH • 3% RESUPPLY 17,979 191.7 26,600

90-0AY RESUPPLY X16 1.0 ---

Table 5-32 EC/LSS Closure Scenarios

SCENARIO
CODE

EC/LSS
WATER 02/CO3 WASTE FOOD

A 0 0 0 0

B X 0 0 0

C 0 X 0 0

D X X 0 0

E X X 0 X	 (3% OF DIET
SALAD VEGETABLES)

F X X X X	 (50% OF DIET
ALL PLANT MATERIAL)

G X X X X	 (97% OF DIET
VEGETARIAN)

DENOTES RESUPPLY AND/OR STORAGE

DENOTES RECYCLE OR ON-BOARD GENERATION
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further assumed that waste removed from the water by the plants during transpiration is

removed from the inedible plant material during waste processing. The other important

advantage offered is the removal of carbon dioxide and the generation of oxygen by the

plants. Again, this is an advantage to the total system, based on estimated quantities of

CO2 removed and oxygen generated. These relationships and the percentages of crew

requirements satisfied by the three plant-growth scenarios are presented in table 5-33.

When credits for water and oxygen generation and carbon dioxide removal are

applied to the total system characterizations, the weight, volume, and power system

requirements are affected. For the 3% plant growth scenario, the percentage credits are

19% for water, 6% for oxygen, and 5% for CO 2. Because percentages in this case are

relatively low, no cre&t was given for water purification or air revitalization from plant

growth. In the case of growing 50% of the required food, the water requirement is clearly

met with 180% and the oxygen and carbon dioxide credits are app roximately 50%. The

equipment data summary utilizing these credits is shown in table 5-34. Credits given for

the 97% food growth scenario were assumed to be 100% for all three materials, even

though the CO2 removal is shown to be only 85% of the new requirement. It was assurned

that 100% CO 2 removal could be easily achieved by adjusting the plant species in the diet.

The number derived for CO 2 removal in this study was averaged from several plant

species; numbers for individual species vary widely. The credits given for the 97% food

growth example, are presented in table 5-35.

Other factors to be considered in estimating the total .:!sure scenaroo weights are:

(1) A pressure vessel module to house the equipment in the space environment, and (2) a

resupply module to provide protection for transporting supplies. To determine a first-

order estimate of the weight of these modules, a density factor of module weight-to-

volume was applied. The density factors for both of these modules were derived from

Space Operations Center data (reference 63). The habitat module wes used as a baseline

to estimate the housing module for CUSS equipment: The basic elements and associated

weights are shown in table 5-36. The derived weight-to-volume factor of 44.0 kg/m 3 is

used as a volume penalty in later calculations. The derivation of the volume penalty

applied for the resupply module (27.8 kg/m 3) is given in table 5-37.

Total system mass and power requirements were determined for each of the closure

scenarios. The development of these data are presented in tables 5-38 through 5-44 for

t	 closure scenarios A through G. The equipment and supplies data for initial total mass and
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Table 5.33 Water Purification and Air Revitalization Cre
(4-Man Module, 94Day Resupply)

ITEM DERIVATION AMOUNT, k0/DAY
%OF CREW

REQUIREMENT

NOMINAL REQUIREMENT i/4-MAN CREW

WATER 912 --

OXYGEN 13 ---

CARBON DIOXIDE 4.0 ---

3% PLANT GROWTH - 97% F000 RESUPPLY

WATER 13.000y H 201 (6 m2 1 19 19%

OXYGEN (35.70 0 2) (6 m 2 ) 0.21 6%

CARBON DIOXIDE 1319q CO 21 (6 m 2 1 0.20 5%

50% PLANT GROWTH - 50% FOOD RESUPPLY

WATER 13,0D0g H 20) (56 m 2) 166 Ism

OXYGEN (35.70 0 2) (56 m 2 1 2.0 61%

CARBON DIOXIDE 133.9q CO 2) (56 m 2) 1.9 48%

97% PLANT GROWTH - 3% FOOD RESUPPLY

WATER 13.000g H 20) (100m2 1 300 322%

OXYGEN (35.7902) 1100 m 2) 16 109%

CARBON DIOXIDE (33.9v CO2) (101) m2) 14 85%
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Table 5.34 Water, O? /CO? and Waste System Equipment data Summary Utilizing Capabilities
of the 50% Plant Growth Scenario N-Man Module, 906Day Resupply/

NJMBER OF UNITS TOTAL TOTAL TOTAL
STORAGE

NOMINAL
POWERITEM CAPACITY

WEICIHT, VOL19, NSUMPTIONREOUNOREO 4 WATTS

WATER (ASSUME 100% WATER
PURIFICATION BY PLANTS)

EMERGENCY WATER STORAGE 3 721 kg H 2O 2510 0.57 ---

WATER OUALITY MONITOR 1 27 0.11 40

SUBTOTAL 314 a." 40

02ico2 (ASSUME 507E AIR
REVITALIZATION BY PLANTS)

RECYCLING SYSTEM trl 31110 1.72 2.Ws

SUBTOTAL 31111111 1.72 2.605

WASTE 0NCLUOED WITH PLANT - - ---- --
GROWTH EOUIPME"

TOTAL 714 ?.^ 7.6 5

90-OAY RESUPPLY 24.6 O.OB --
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Table -35 Water, O? / CO2 and Waste System EquiMnent Data Summsry Utilizi
of the 97% Plant Growth Scenario (4-Man Module, 9aDay Resupply)

NUMBER OF UNITS TOTAL TOTAL TOTAL
STORAGE

NOMINAL
POWERITEM

CAPACITY
WEIGHT,

k6 VOLl1ME.7
ONSUMPTION.

REOUNOREG T WATTS

WATER (ASSUME 10(M WATER
PURIFICATION BY PLANTS)

EMERGENCY WATER STORAGE 7 221 kE H 20 2" 0.67 ---

WATER QUALITY MONITOR 1 27 M11 40

SUBTOTAL 310 0." 40

O 2/CO 2 (ASSUME 100% AIR

REVITALIZATION BY PLANTS)

EMERGENCY 02 STORAGE I p R4 0 2 12666 0.62 --

EMERGENCY CO 2 REMOVAL 1 $4.0 0.19 --

ATMOSPHERE MONITOR 1 22.7 am 100

SUBTOTAL 202.3 0.77 100

WASTE (INCLUOE0 WITH PLANT --- -- ---
GROWTH EQUIPMENT)

TOTAL S1B.3 1.46 140

90I 	OAY RESUPPLY 4.4 0.01 ---
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Table 5.36 Mass Estimate for CELSS ModuAe (Bawd on Space Operations Center Habitat
Modulo, Ref. 63)

ELEMENT DESCRIPTION MAU. k1

NaOrtlit Module Sao and Vokume • 247 on the n • 82 on f - 140.E m3

Module Me,♦ EalMnane

• atn/C.Na ktdudn 2.2 now sho"orsrsi p►easn► skin, "h^rrtw 27, 2
dons. hh Ove,	 , mein tutrpon range, tv000►e lon"aona.

• Mshanwns earthing Port d•

• Thernial Control Intends radiator skin. *Am artd padearrI	 Freon 2792
Goolant, muldlgnr atrulalgn, gold pinoS arc

• Mac Electrical Equrpmerrt Unclad« Ouous4 hernwcw eoees, con ow orb wood e1S
Interior 1001wwl eta

Total Man Esnmate $187

WNO+ t to volume Natty 6187 k G11 40 E m 3 44 0 k g/m3

Table 5-37 Mass Estimate for Resupply Module (Based on Space Operations Center
Logistics Module, Ref 63)

ELEMENT DESCRIPTION MASS ko

Loptra Modulo Ste and Volun» 1.47 rn die a 6.60 on Q - 103 A m3

Module Man Estrmatoe

• 9trueaun knldudot 2.2 mm akintonum skin: moport rmp. lorgaons 2001
and trunnbm. ttorap su0pu►t structure. entry hatter. etc.

I

• Mo hareems Sarthsrq Pon so

• Thewnal Control Radiator pawl. ntultilatre hswdetWn and rmsedlaneout
mmpone^b

85

• Min. Eleetna l Equipment Nnnonee, rrltoNo lighting, metaMaaous e0urprnant 105

• Stomp Cabers3̀  Freaie, etc. SS1

Total Man Erti nave 290

Wadht to Vokone Ratio 21190 ko/103.6 m3 77.e kq/M3
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for Closure Scenario

INITIAL INITIAL 9"AY MOAY NOMINAL
EC/LS SYSTEM TOTAL TOTAL RESUPPLY RESUPPLY POWER,

MASS, kb VOLUME, m2 MAIL k6 VOLUME, m 2 WATTS

SOUIPMENT AND SUPPLIES

WATER IOPEN WITH
RESUPPLY)

14.44E 24.8 10,M4 21.E 20

O /CO 40"N WITH
RISUMLY/STORAGE 1

2.251 7.4 BBB 2.8 760

WASTE (OPEN WITH 192 1.7 q Oi 260
STORAGE)

ADO 10% PACKAGING 14 2.8
VOL FOR ABOVE

FOOD (OPEN WITH 1,164 4.2 726 2.7 ---
RESUPPLY)

SUBTOTAL 16,072 414 12,710 20.2 1,140

PRESSURE MODULE
ESTIMATES

CELSS MOGUL E (44.0 k6/m 3) 1,622

RESUPPLY MODULE 842
127.8 k6/m3l

TOTAL MASS AND POWER
ESTIMATE FOR CLOSURE
SCENARIO

17.886 12.662 1,140
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Title 5,39 Mart and Power EielmmItm for Clorum Scenario 0 (4-M&n Module, 90-Day Resupply)

INITIAL INITIAL 11"AY gOAY NOMINAL
EC/LS SYSTEM TOTAL TOTAL RESUPPLY RESUPPLY POWER,

MASS, Its VOLUME, mi MASS, kb VOLUME, rd WATTS

EQUIPMENT ANO SUPPLIES

WATER (RECYCLE) 1,320 1.9 M 0.7 797

O	 22 (OPEN WITH 2,281 71 9918 2.8 760
R SU/1LY/STORAaE)

WASTE (OPEN WITH 192 1.7 p CA 300
STORAGEI

AOO 10% PACKAGING 1.1 016
VOL FOR ABOVE

FOOO (OPEN WITH 1,164 4.3 7.2E 2.7 ----
R E SUPPL Y )

SUBTOTAL 4.947 19.7 1,910 6.9 1.907

PRESSURE MODULE
ESTIMATES

CE L.SS MOOULE IM.0 tb 	 3 M7

RESUPPLY MODULE 191
117.E ► 6/T3)

TOTAL MASS A%O POWE R 6,614 1.102 1,907
ESTIMATE FOR CLOSURE
SCENARIO
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Table 5.40 Mass and Power Estimates for Closure Scenario C (4-Mon Module, 90-Day Resupply)

INITIAL INITIAL 9"AY S"AY NOMINAL

EVILS SYSTEM TOTAL TOTAL RESUPPLY RESUPPLY POWER,

MASS, k6 VOLUME, m 2 MASS, k6 VOLUME, m2 WATTS

EOUIPMENT AND SUPPLIES

12,4" 24.0 10,004 21.5 20WATER (OPEN WITH
RESUPPLY)

02/002 (RECYCLE) 704 11 N 0.2 6,000

WASTE (OPEN WITH 102 117 p 0.0 280
STORAGE)

ADO 10% ►ACXAGING 2.0 2.2
VOL FOR ABOVE

FOOD (OPEN WITH 1,164 4.2 720 2.7 --
RESUPPLY)

SUBTOTAL 11,600 17.0 11,760 27.5 6,399

PRESSURE MODULE
ESTIMATES

CELSS MODULE (44.0 ko/m^ 1,620

RESUPPLY MODULE 760
127.5 k&%31)

TOTAL MASS AND POWER 14.210 12,522 6,200
ESTIMATE FOR CLOSURE
SCENARIO
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Table 5.41 Mass and Powrr Est/moms for Closure Sconario D (4-Mar Moduli, 90-Day Resupply)

INITIAL INITIAL 90-DAY O&DAY NOMINAL

EC/LS SYSTEM TOTAL MASS. TOTAL RESUPPLY RESUPPLY POWER,

kq VOLUME, m 3 MASS, ke VOLUME, m3 WATT5

EQUIPM ENT AND SUPPL I ES

WATER (RECYCLE! 1,320 4.9 94 0.2 797

02/CO2 (RECYCLE) 796 3.4 M 0.2 6,009

WASTE (OPEN WITH 192 1.7 63 0.9 30C
STORAGE

ADO 101E PACKAGING 1.0 0.1
VOL FOR ABOVE

FOOD (OPEN WITH 1,164 4.3 735 17 ---
RESUPPLY)

SUBTOTAL 3,467 16.3 966 4.0 6,166

PRESSURE MODULE
ESTIMATES

CIE LSS MODULE 144.0 k6/m31 677

RESUPPLY MODULE 111
127.8 kg/m3)

TOTAL MASS AND POWER 4,136 1,089 8,188
ESTIMATE FOR CLOSk"I6
SCENARIO

1t
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Table 5-I2 Mess and Po"r Estimate,

INITIAL INITIAL MDAY MDAY NOMINAL
EC/LS SYSTEM TOTAL MASEL TOTAL RESUPPLY RESUPPLY POWER,

IN VOLUME, T3 MASS. kq VOLUME, m7 WATTS

EOUIPMENT AND SUPPLIES

WATER IRECYCLE WITH 1,720 4.9 94 0.2 797
NO CREDIT FOR PLANT
GROWTH)

O?j/CO IRECYCLE WITH
NO CREDIT FOR PLANT

799 3.4 M 0.2 5.009

GROWTH)

WASTE 10 ►EN WITH 192 1.7 93 0.9 390
STORAGE)

ADD 10% PACKAGING 1.0 0.1
VOL FOR ABOVE

FOOD (31 PLANT GROWTH. 2,702 15.7 770 2.7 1.594
97% RESUPPLY)

SUBTOTAL 4.610 29.7 953 4.0 7,792

PRESSURE MODULE
ESTIMATES

CIE LSS MODULE 144.0 kq/m 3)

RESUPPLY MODULE
127.9 kq/rd

1,175

111

TOTAL MASS AND POWER
ESTIMATE FOR CLOSURE
SCENARIO

5,796 1,064 7,752



Tab/M 543 Man and Power Esdnmtm for Cloauis Scenario f (4-/,4an Module, 90-Day Resupply)

INITIAL INITIAL S"AY 90DAY NOMINAL
ECILS SYSTEM TOTAL MASS, TOTAL ASU-APPLY RESUPPLY POWER,

ke VOLUME, m3 MASS, Ito VOLUME, iw2 WATTS

EOUIPMEAT AND SUPPLIES

WATER IRECYCLE WITH 316 0.011 40
CREDIT FOR PLANT
GROWTH) 24.8 0.09

O	 2IRECYCLE WITH 388 1.72 2Am
CREDIT FOR PLANT
GROWTHI

WASTE (RECYCLE • —• — -- ---
INCLUDED IN PLANT
GROWTH EOUIPMENT)

ADO 101► PACKAGING 0.2 0.008
VOL FOR ABOVE

F000 160% PLANT 6,787 100.6 477 1.8 14,900
GROWTH • 50% RESUPPLY)

SUBTOTAL 10,601 111.1 602 1.7 17,445

PRESSURE MODULE_
ESTIMATES

CELSS MODULE 144.0 k9hn3 ) 1,888

RESUPPLY MODULE 47
127 8 koh"31

TOTA- MASS AND POWER 16,388 649 17,446
ESTIMATE FOR CLOSURE
SCENARIO
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Table 5.11 Man and Power Estimates for Closure Scenario G (1-Man Module, 906 0&y Resupply)

INITIAL INITIAL WDAY BO DAY NOMINAL
fC/LS SYSTEM TOTAL (MASS, TOTAL RESUPPLY RESUPPLY POWER,

he VOLUME, rd MASS, tb VOLUME, on WATTS

EQUIPMENT AND SUPPLIES

' vATER IIIECYCLE WITH 310 0.68 W
CREDIT FOR PLANT
GROWTH) 44 0.01

O	 O 77 (RECYCLE WITH
CAM FOR PLANT

202 0.77 100

GROWTH)

WASTE FRECYCLE --- --- - -- -
INCLUDED iN PLANT
GROWTH EQUIPMENT)

A00 IOM PACKAGING 1116 OAO'
VOL FOR ABOVE

FOOD 191 ♦ PLANT 17,079 191.7 206 1 0 28,1500
GROWTH „ RESUPPLY)

SUBTOTAL 18,497 1913 200 101 26 740

PRESSURE MODULE
ESIIMATES

-

CE LSS MOOUL E 114 0 k6/m 3 1 8.606

RESUPPLY MODULE
127.8 ► ymll

TOTAL MASS AND POWER 27,002 217 26.11
ESTIMATE FOR CLOSURE
SCENARIO
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volume, 90-day resupply mass and volumo, and power requirements were taken from the

summary tables 5-6, 5-12, 5-17, and 5-31. The pressure module mass estimates were

derived by multiplying the initial total volume times the CUSS module !actor of 44.0

kg/m 3 , and the 90-day resupply volume by the resupply module factor of 27.8 kg/m3.



6.0 STUDY REST

The total i

shown rreviousl;

comparisons. The first set compares the mass data f-om the open system, closure

scenario A, with each of the physiochemical system closures, scenarios B, C, and D. See

table 5-32 for these scenario codes. The second set compares the closed physiochemical

system, D, with each of the food closure scfnarios, E, F, and G. These two sets of

comparisons, discussed in section 6.1, are based strictly on the mass and power estimates

that were developed in section S for each of the closure scenarios and do not include any

transportation considerations. The transportation analysis, section 4, is used in combina-

tion with the closure mass estimates to derive potential cost savings that may be

available by closing the food system. These cost data are discussed in section 6.2.

Section 6.3 presents the conclusions and recommendations based on these study results.

6.1 Mass Comparisons

The mass comparisons for each closure scenario must be worked separately for each

mission, since the factors for converting power to mass and the radiation shielding factors

are different for each mission. These power conversion and radiation shielding factors

were discussed previously in section 3 and listed in table 3-1. The comparisons for each

mission are discussed in the paragraphs below.

In the comparisons that follow, closure scenario E (3% food closure, salad plants) is

not considered. Due to the sma:l amount of oxygen generated and carbon dioxide removed

by the plants, see table 5-33, the physiochemical syste;ns must be used to the full extent

to Satisfy the requirements, therefore no savings would be realized. Scenario E could

provide psychological advantages but it is not considered significant from a life support

systern viewpoint.

6.1.1 LEO—Low inclination Mission

Mass estimate data used for comparing the open EC/LS system versus the

physiocher ical system closures are summarized in table 6-1 for the LEO low inclination

mission. Mic-s;or.-dependent mass penalties for power and radiation shielding are added

onto initial launch mass numbers. For this mission the power penalty factor is 113 kg/kW
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and includes the weight of the solar array and batteries necessary for power in the near

Earth orbit. Radiation shielding is not required for this mission, since the orbit is below

the Van Allen radiation belt and the pressure vessel wall of the module provides adequate

protection.

The curves drawn in figure 6-1, from the data in table 6-1, show the weight

advantages of closing the physiochemical systems. All closures show an immediate

advantage over the open system, although the combined water and air systems closure

provide the greatest weight savings. The physiochemical system closure comparisons

follow this pattern for other missions as well. Also, because of the tremendous weight

saving from closing the water and air systems, it does not appear reasonable to consider

open water and air systems for long-term missions, especially those beyond the Earth-

Moon system. For these rersonc, the other five mission comparisons for physiochemical

systems have not been i.iclude...i this report.

Mass emmate data used for comparing food system closures, scenarios F and G,

with the closed physiochemical system, scenario D, are shown in table 6-2. The mass

penalties for power and radiation shielding are the same as discussed previously for this

mission.

These data were used to draw the lines in figure 6-2. Breakeven times for the

LEO—Low Inclination mission are shown at the intersecting points of the curves for

scenarios F and G and the curve of scenario D. Breakevr_n times for the m i ssion are

approximately 5.9 and 7.5 years for closure- scenarios F and G respectively. These

numbers indicate that at least some growing plants could be beneficial, especially if

mission life is 10 or more years.

6.1.2 EEO—High Inclination Mission

Mass estimate data for the LEO—High Inclination mission given in table 6-2, show a

relatively low power penalty factor of 32 kg/kW with no shielding required. The power

factor is low because the solar arrays are exposed to the sun during the entire orbit, which

reduces the heavy battery requirement. The curves for this mission are shown in figure

6-3. In response to the low power penalty, breakeven times occur slightly earlier than for

the low inclination mission, at 5.6 and 7.1 years for food closures F and G respectively.

sl



ORIGINAL FAGS l3
OF POOR QUALITY

SCENARIO A (OPEN SYST&MI

.a

2i(

SCENARIO C (AIR CLOSED!
M

11u

^ 200

ISO

SCENARIO S (WATER CLOSEDI

100

SO

SCENARIO  (WAFER AND
AIR CLOSE 0)

2	 1	 1	 1	 10	 12	 14

I.IISSION TIME. YEARS

Figure 6-1 Mass Comparison of Physiochemical Systems Mission: LEO - Low Inclination (4 Men)
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6.1.3 6 x GEO Mission

Table 6-4 summarizes the closer- scenario data for the 6 x GEO mission. This

mission has a relatively low power penalty because of the orbit. However, the radiation

shielding becomes a significant weight factor at 10 g/cm 2 because the orbit is above the

Van Allen radiation belt. The increased burden for radiation shielding is evident in the

breakeven time (shown by the curves plotted in figure 6-4) cf 10.5 years for closure

scenario F, and 12.9 years for scenario G.

6.1.4 Lunar Base Mission

The Lunar Base Mission mass estimates are shown in table 6-5. This mission was

selected as a 12-man permanent base on the lunar surface. The increased drew size

increases the overall mass estimates. ;Nuclear power was selected for this mission

because of the long da y -to-night cycle that requires artificial light during the night c-v(le

to aid plant photosynthe.; ► s, Lunar soil can be used to shield the nuclear power %venerator

and to protect the base from solar radiation. The curves in figure 6- 5 show the breakeven

tunes of 5.7 years and 7.2 years for scenarios F and G respectively. This :.ssion could

have a long mission life, .making closure of the food cycle very desirable.

6.1.3 Asteroid Mission

Since the Asteroid rnissiun was defined for 5,000 ; people, the • nass rstirndtr, uscI d ► n

the previous scenarios had to be adjusted. Figure 6-6 shows the adjustrnents nade for

equipment, resupply, and power requirements. The mass estimates were reduced by 25`aE,

to allow for econornic and technological advancement, since the mission is programmed

for the 2050 era.

A second consideration for this mission was to use the unmanned cargo pods, defined

in the transportation analysis, as CELSS modules. Since these cargo pods are not reused

for transportation, they are available and ade luate for use as CELSS modules. Each

module would be approximately 3000m 3 , and 43 modules would be required each supply

period (928 days) to transfer cargo. The first 43 would supply enough space to house the

CELSS equipment associated with scenario F, and in 928 days the second 43 modules

would add sufficient space for scenario G.
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Table 6-4 Mast Estimate Comparisons Minion. 6X GEO (4 Men)

CLOSWI!
s':lNAR10
CC.7!

tali INITIAL
LAUNCH MAU,
KO

1• ,'1199711 ►l NASTY
KO AT 711 KG/KW

RADIATION
SHIlLO1N0,
KO AT 10 S/CY2

TOTAL INITIAL
LAUNCH MAU,
KO

$$"AV
RESUPPLY
MASS, KO

1-V&A.R
RESUPPLY
MASS, KO

0 11,304 1,70 7,199 2.139 6.779

1!,!011 1199 12,997 71,409 I'M 2.198

G 77.279 so 213" 10.647 !"A 9"

Table 6-5 Mass Estimate Comparisons Mission: Lunar Base (12 Wen)

CLOSURE
SCENARIO
000E

GC/Li 1NITInI
LAUNCH MAU.
KG

POW IR PENALTY,
KG AT 6l.7KG/KW

RADIATION
0II9LOI04G,
KG AT 0!/6#2

TOTAL INITIAL
LAUNCH MASS,
KO

900AY
RESUPPLY
MrIIE. KO

1-YEAR
RESUPPLY
MASS, KG

0 12,406 S7S NOT RSG'O	 17.267 7.70) MO20
IUSS LUNAR
SDIU

46,187 1771 NOT RtO'0	 69AU 1,647 !,!99
(USE LUNAR
SOIL)

G 51,099 IAKW NOT RSO'o	 64.640 711 1646
ILA" LUNAR
SOW	 I
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SCENARIO D
RECYCLE EQUIPMENT

577 KG/PERSON X 0.75
FOOD GROWTH EQUIPMENT

ONE
EQUIPMENT RESUPPLY

0.82 KG/PERSON/DAY X 0.75
FOOD RESUPPLY

2.04 KG/PERSON/DAY
POWER REQUIREMENT

1541.5 WATTS/PERSON X 0.75 X 94.3 X 10-3
TOTAL EQUIPMENT AND POWER
TOTAL RESUPPLY

SCENARIO F
RECYCLE EQUIPMENT

178. 55 KG/PERSON X 0.75
FOOD GROWTH EQUIPMENT

2172 KG/PERSON X 0.75
EQUIPMENT RESUPPLY

0.37 KG/PERSON/DAY X 0.75
FOOD RESUPPLY

1.02 KG/PERSON/DAY
POWER REQUIREMENT

4351.25 WATTS/PERSON X 0.75 X 94.3 X 10'3
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TOTAL RESUPPLY

SCENARIO G
RECYCLE EQUIPMENT
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FOOD GROWTH EQUIPMENT
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0.06 KG/PERSON/DAY
POWER REQUIREMENT

8M WATTS/PERSON X 0.75 X 94.3 X 10'3
TOTAL EQUIPMENT AND POWER
TOTAL RESUPPLY

109 KG/PElS-N
542 KG/PERSON
2.5 KG/PERSON/DAY

-	 133.9 KG/PERSON

1629 KG/PERSON

-	 0.22 KG/PERSON/DAY

-	 1.02 KG/PERSON/DAY
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-	 2071 KG/PERSON
-	 1.3 KG/PERSON/DAY

- 97 KG/PERSON

-	 3119 KG/PERSON

-	 0.39 KG/PERSON/DAY

-	 0.06 KG/PERSON/DAY

473 KG/PERSON
3689 KG/PERSON
0.45 KG/PERSON/DAY

Figure 6-6 Mau Adjustments for Asteroid Mission
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The mass estimate data g; iien in table 6-6 includes only the modules and equipment

used at the asteroid base for each closure scenario. The modules and EC/LS equipment,

scenario D, used to transfer the crew and the priority cargo between the low Earth orbit

staging area and the asteroid base are not included in the mass estimate data for this

mission. (See section 4.3 for a discussion of the transportation analysis for this mission.)

The data are no -z included because the mass would remain the same for this portion of the

mission regardless of the closure scenario being considered at the base, and therefore

these data would have no direct effect on the mission mass comparisons.

The closure scenario mass data are plotted in figure 6-7. The breakeven times for

closing the food system occur very early in this mission, approximately 1 year for closure

scenario F, and 1.8 years for scenario G. With these early breakeven points it would be

cost effective to close the food system at the beginning of the mission, or to build up to

full closure as the necessary cargo pods arrive at the base.

6.1.6 Mars Surface Exploration Mission

The Mars mission considered for this study is a sortie type requiring equipment and

supplies to be loaded onboard initially, as no resupply is available during the mission. A

summary of the mission, taken from section 4.6, follows-.

a. Modules of a vehicle are transported and assembled in LEO and with a crew aboard

travels to ,Mars and is established into a Mars orbit (trip requires approximately 205

days.

b. The crew and required equipment are transferred to a landing module that lands on

Mars.

C.	 The crew remains on the surface to conduct scientific exploration (200- and 543-day

staytimes were considered for this study).

d.	 The crew returns to the orbiting vehicle,

e.	 The crew then returns to Earth, requiring approximately 200 days for travel.
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A unique feature of this mission is that any modules, power sources, or equipment

that are not required to return the crew to Mars orbit, would be left on Mars. The

propellant penalty for lifting noncritical material off the surface of Mars is prohibitive.

Table 6-7 shows the mass data and closure scenarios used for this study. The

resupply equivalent data given in column 3 of this table were used only to calculate the

additional mass of equipment and supplies required in excess of the initial mass for the

total mission.

For this mission, three closure scenarios and two surface exploration periods (200

and 543 days) were analyzed. As shown in figure 6-8, the breakeven times do not occur

within the time frame of this mission. Based on these data, it does not appear that CELSS

would benefit this mission.

6.2 Cost Estimates

Each mission incorporates a different transportation scc,.ario, and therefore each

mission is assessed a different transportation cost. The costs presented in table 6-8 are

specific costs for vehicles to be used in near term, Earth-Moon missions. Table 6-9

presents the total transportation costs for all six selected missions. The transportation

costs for the 'Mars and Asteroid missions reflect additiona! space operations work such as

in-space vehicle assembly tasks.

These tables preser.t both real (shuttle) and projected operating costs. The numbers

are felt to be conservative projections of future costs, for exarrple; the present

difference in shuttle launch costs between Kennedy Space Center and Vandenburg Air

Force Base may no longer exist in 1995 for the LEO monitoring base; however, the

conservative projections used in this study maintain that differential. Projections for the

asteroid mission (70 years into the future) necessarily include significant technical

advancement and the corresponding cost decrease.

The transportation costs for each mission were applied to the rnass summaries (sec.

6.1) for the various scenarios from which cumulative cost Curves were constructed.

Figure 6-9 illustrates the cost comparison of the physiochemical system closures for the

low inclination LEO base. From the figure it is evident that scenario D is the optimum

system for the physiochemical considerations. As stated in the previous section, the
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Table 6-8 NMkAN Thmportation Cots

•KlTTLB ORBITER 11882 ERA) MANNED OTV (1999 ERA) LTV 12"0 ERAJ

KSC VANE 9I( ago LUNAR ORBIT LUNAR SURFACE

COST: I NO MILNLIGHT 111E MIL/FLIONT =0 MIL/PLIONT Of MIL/PLIGHT •.9 MILIPLIGHT

PAYLOAD: 41,000 Lai 19.000 In 18.30 LOS "6210 Lab 40.410 W

4"CIFIC 12r: W 4" 80.2 1422 W 1110 W 241 W
O08T: 17712 VKOI 106141 E/KG► 13174 W(G) 12970 E/K6 ► 1911 E/KGI

Table 6-9 MiW017 Transportation Cosa
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TIME FRAME
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comparison 'or the LEO—low inclination minion is representative of the other missions;

therefore no other physiochemical cost comparisons are presented.

Figure 6-10 projects the cumulative cost data for comparing food system clQ- .«s

for a four-person, LEO operations base in a low inclination orbit. For the first 6 years of

operation, phy%iochemical scenario D is the least expensive system. If station life is

expected to be between 6 and 10 years, scenario F, the 50% food closure, is the minimum

cost system. For expected station life greater than 10 years, 97% CELSS closure i.; the

most cost-effective system. After 13 years of operation, a 97% CELSS closure would

save approximately o8 million dollars wher compared with a physiochemical system—or

almost one-half of the cumulative transportation cost of the system.

All of the missions within the Earth-Moon system show similar results (see figures

6-9 and 6-11) except for the Military Command Post in 6 X GEO; figure 6-12. In this

mission CELSS mist pay a large mass penalty for shielding the plant-growing module from

the severe radiation environment. Even with this penalty, the 50% CELSS closure is cost

ef fective around year 10, and the 97% CELSS closure is cost effective at year 17. At 15
the potential cost savings for 50`x6 CELSS closure amounts to 30 million dollars. For

.he LEO high inclination base, figure 6-11 gives the optimum system breakeven points at

51S years for 50% CELSS closure, and 11 years for 97% CELSS closure. The lunar base

times shown in figure 6-13 are 5% years for 50% CELSS closure and 9f4 years for 97%

CELSS closure.

The available use of discarded cargo modules, and the advancement of technology

enabled CELSS to show an economic breakeven on the Asteroid mission at the time of the

first resupply and rotation cycle. Figure 6-14 shows this 2f4 year cost optimization point

and also demonstrates that the potential savings of a 97% CELSS closure mission is

greater than the initial cost of the system.

The Mars exploration mission cumulative transportation costs, diagrammed in figure

6-15, clearly demonstrate that this mission is not suitable for CELSS. The optimizations

point for a 50% CELSS closure is calculated to be for t surface stay of 1948 days (5

years), and for 97% CELSS closure the surface stay would be 3357 days (9 year ;. These

extended surface stays are outside the scope of a sortie mission.
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6.3 Conclusions and Reoominendatlons

The conclusions from this study are summarized below.

1. Small, manned space stations orbiting wi-thin the Earth-Moon system could benefit

from CELSS.

2. Large, manned bases beyond the Earth-Moon system will probably require CELSS.

3. Short duration, nonpermanent type missions, such as the Mars "sortie" mission

analyzed in this study, will probably not benefit from CELSS.

4. CELSS component weight and volume data that were available in the literature or

estimated for this study are considered to be conservative. Therefore, as additional

data become availabie and the existing data are further refined, support for CELSS

could become even m:-)re favorable than shown by this study.

The following recommendations are submitted for consideration.

1. A need exists for CELSS concept configuration analysis. One approach to this

analysis is to use preliminary design methods to configure various layouts and to

perform weight and volume trades. This technique will facilitate system

characterization.

2. Sensitivity analyses need to be conducted on the various elements of CELSS, e.g.,

diet, nutrition, plant yield, plant 0 2 production, water volume requirements, etc.

These analyses are in order to determine which elements have the greatest effect on

the total system. These elements then become the highest priority items for study.
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