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ABSTRACT

Fuel optimal maneuvers of spacecraft relative to a body in circular orbit

are investigated using a point mass model in which the magnitude of the thrust

vector is bounded. All nonsingular optimal maneuvers consist of intervals of

full thrust and coast and are found to contain at most seven such intervals in

one period. Only four boundary conditions where singular solutions occur are

possible. Computer simulation of optimal flight path shapes and switching

functions are found for various boundary conditions. Emphasis is placed on the

problem of soft rendezvous with a body in circular orbit.
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I. INTRODUCTION

Most of the immediate applications of space involve a body in circular

orbit. Fuel optimal maneuvers of a spacecraft relative to such a body constitute

the subject of this investigation.

We assume the spacecraft to be a point mass with a variable thrust vector

of bounded magnitude. The mass of the spacecraft is assumed constant over a

fixed flight time tf and a minimum fuel maneuver will be regarded as a maneuver

in which the integral of the magnitude of the thrust is minimized. The position

x and velocity v of the spacecraft are relative to a coordinate system fixed in

the rotating body whose angular speed is _. The positive x I axis is in the

direction of the orbital velocity, the positive x 2 axis is toward the center,

and the positive x 3 axis completes a right handed system. Relative to this

coordinate system, the acceleration of the spacecraft is determined by the

applied thrust, a coriolis acceleration, and a centrifugal acceleration.

The case where _ = 0 is equivalent to the problem of fuel optimal maneuvers

relative to a fixed point in deep space. This problem of minimum fuel translation

or its mathematical equivalent, minimum fuel rotation, has been discussed by

several authors [1-5] and is a special case of other second order linear systems

that have been studied [6, 7]. It is well known that the nonsingular solutions

of this problem consist of intervals of full thrust and coast with at most one

coast interval. Minimum fuel control of other and more general linear systems

have been investigated [8-12] and, in general, the solutions are not so

restrictive. The nonsingular fuel optimal solutions for the case where _ _ 0
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have also been found to consist of intervals of full thrust and coast but more

than one coast interval is possible [13]. We extend that result here to show

that as many as three coast intervals can occur for flight times less than or

equal to 2_/_ and more can occur for flight times exceeding one period. We

show also that there are only four boundary conditions for which singular

solutions exist. Finally we present the results of computer simulation of

optimal maneuvers for various boundary conditions.
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II. MATHEMATICAL ANALYSIS

The problem of minimum fuel maneuvers of a spacecraft about a body moving

in a circular orbit is formulated as follows.

Let U denote the set of all Lebesque measurable functions which map the

real closed interval [0, tf] into the closed unit ball in _3. We seek u_U

to minimize the functional

tf
J[u] : f lu(t) Idt (I)

o

(where I I denotes the Euclidean norm or magnitude) subject to the differential

equations

x(t) : v(t)

_(t) = Ax(t)+Bv(t)+bu(t) (2)

which hold a.e. on [0, tf] and the boundary conditions

x(O) = x 0 x(tf) : xf

v(O) = v 0 v(tf) : vf (3)

where x O, vO, xf, and vf are specified points in _3 and

(oo:)(! o1A : 0 3_ 2 B = a 0 0 (4)

0 0 -_ 0 0 .

The scalar _ is the orbital angular speed of the body in circular orbit and the

scalar b is the maximum thrust magnitude divided by the mass of the spacecraft.

Since the integrand in Eq. l is independent of x and v the Pontryagin

Maximum Principle provides both necessary and sufficient conditions for a minimum
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[14, Sec. 5.2]. For boundary conditions in which the solution is normal the

Hamiltonian is

H = lu(t) l+p(t)Tv(t)+q(t)TAx(t)+q(t)TBv(t)+bq(t)Tu(t) (5)

where the functions p and q which map [0, tf] into _3 are absolutely continuous

solutions of the adjoint differential equations

p(t) = -ATq(t)

q(t) = -BTq(t)-p(t) (6)

and a nonsingular optimal control function is defined a.e. on [0, tf] by

u(t) = O, lq(t) I < 1

u(t) =-q(t)/lq(t) I, lq(t)l :, I. (7)

An optimal solution in which lq(t)l = 1 on a set of positive Lebesque measure is

called singular on that set.

Equation 7 shows that a nonsingular optimal control function has values that

are either on the unit ball or are zero (i.e. either full thrust or coast).

Moreover q determines entirely which of these situations occurs. If q(t) is

outside of the unit ball a full thrust is required, whereas a coast is required

if q(t) is inside the unit ball. Qualitative information about the nature of

optimal solutions such as the number of thrusts and coasts or whether or not the

solution is singular can be determined from the function q. We shall therefore

solve Eq. 6 for q and examine the various forms that this solution can take.

Eliminating p(t) in Eq. 6 we obtain the differential equation

• - T-
q(t)+B q(t)-ATq(t) = O. (8)
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Before finding the general solution of Eq. 8 we note that AT = A and BT =-B

so that if we eliminate v in Eq. 2 we obtain

'_(t)+BT_(t)-ATx(t) = bu(t). (9)_

During a coast interval in which u(t) = 0 the differential equations 8 and 9 are

identical. For this reason q(t) may be visualized as a point in orbit relative

to a body moving in a circular orbit.

Using subscripts to denote the components of the vector q(t), Eq. 8 may be

replaced by the following system of scalar equations:

Q#

ql(t)-2_2(t) = 0

°_2(t)+2_l(t)-3_2q2(t) = 0 (lO)

_3(t)+a2q3(t) = O.

Equation 7 shows that a boundary point t between a thrusting and coasting

regime of u(t) must satisfy the condition

lq(t)l = I. (ll)

The function lq(t)l - l is called the switching function of u(t). A value of t

at which the switching function changes sign is called a switch of u(t). Whenever

a switch occurs u(t) changes from thrust to coast or from coast to thrust and

conversely. Whenever a switch of u(t) occurs the solution of Eq. lO intersects

the unit sphere. Clearly the number of switches cannot exceed the number of

intersection points.

The form of the solution of Eq. I0 depends on whether or not _ = O. The case _ = 0

corresponds to a problem of optimal maneuvers in deep space rather than about

a circular orbit. In deep space Eq. 8 becomes

_(t) = 0 (12)
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and its general solution is

q(t) = -Pot+qo (0 _ t j tf) (13)

where PO and qo are constants in _3. Geometrically, this solution describes

a straight line segment in _3. This shows, in view of Eq. II, that an optimal

maneuver in deep space can have at most two thrust intervals and one coast interval.

A detailed discussion of this case which also includes singular controls can be

found in [13].

There is more variety in the type of optimal maneuvers that can occur about

a body in circular orbit. In the case where _ _ 0 the general solution of Eq. I0

is

ql(t) = 2 p sin (_t+_)-3clt+c 2

q2(t) = p cos (_t+_)-2c I (0 j t _ tf) (14)

q3(t) = a sin (_t+_)+b cos (_t+@).

Geometrically this solution resembles a helical segment if p, cl, and either a

or b is nonzero. Less general situations can occur which we shall consider. Of

special interest is the case in which a = b = O. In this case the solution curve

is confined to the plane of the circular orbit.

I. Solution in the Orbital Plane

If the third component of each of the vectors xO, vo, xf, and vf in Eq. 3

is zero, then the solutions u(t), q(t), and x(t) from Eqs. 7-9 are each contained

in the orbital plane.

In this case the plane curve obtained from Eq. 14 resembles a type of cycloid

if cI and p are nonzero. The relationship to a cycloid can be demonstrated by the

following transformation.
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Y1 = -ql/2

Y2 : -q2 •

The curve defined by y = (YI' Y2 ) is a type of cycloid.

following change of variables:

C)= _t+_

= 3c l

2_

c =-3c I - c2 .

2_ 2

the curve takes the standard form

Yl = aC) - p sin @ + c

(15)

If we introduce the

(16)

Y2 = _ - p cos 0 + _/3 (17)

This curve is a cycloid if p = lal and p > O, a prolate cycloid if p > Is] > O,

and a curtate cycloid if 0 < p < lal. In each case the curve is periodic with

a period of 2_. For this reason the curve defined by q is a segment of a periodic

curve having the orbital period 2_/_. It has periodic loops if and only if

p>3lCll >o.
2_

The nature of the optimal thrusting sequence is determined by the relationship

of q(t) to the unit circle in the orbital plane. This is depicted in Fig. l for

the case where _ = O. Since a straight line can intersect a circle in at most two

points, it is seen that a fuel optimal maneuver in deep space can have at most two

switches. If _ _ 0 more switches can occur as is demonstrated in Fig. 2 where

q(t) takes a cycloidal shape. There is an essential difference between the deep

space case and the circular orbit case even if tf is small. This is because even
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though 0 may be restricted to an arbitrarily small interval, there are values of

the constants _, p, and c so that a prolate cycloid can have a complete loop on

that interval. For this reason even if tf is small there are values of p, cl, and

c2 so that q(t) can intersect the unit circle more than twice.

Equation 15 transforms the unit circle into the ellipse

yl2+4Y2 2 = 4. (18)

This ellipse can intersect the curve defined by Eq. 17 at most six times in one

period and more than six times over larger intervals than a period. This indicates

that at most six switches are possible during one period of a fuel optimal maneuver

about a body in circular orbit and more are possible for longer flight times.

A case where six switches occur is presented in Fig. 3 where the curve q(t)

intersects the unit circle at six points. This corresponds to a "thrust-coast-

thrust-coast-thrust-coast-thrust" maneuver, a thrusting sequence consisting of

seven phases. This information can be seen more easily from Fig. 4 which presents

the magnitude of q vs the orbital angle 0 which is defined in Eq. 16. The thrust

intervals occur where lqlis greater than one and the coast intervals occur where

lql is less than one. A seven phase maneuver can also occur for any smaller flight

time if p, cl, and c2 are picked correctly but these maneuvers for small flight

times may require that some of the boundary conditions defined by Eq. 3 have

enormous magnitude.

We now consider the degenerate cases.

If cI = 0 and p # 0 then q(t) defines a segment of an ellipse whose ratio

of major-to-minor axis is two. An ellipse can intersect the unit circle in at

most four points so the maximum number of switches that can occur in an optimal

maneuver in this case is four in one period although more can occur for flight

times exceeding one period.
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If p = 0 and cI _ 0 then q(t) defines a straight line segment as in the

deep space situation and at most two switches are possible.

If both Cl and p are zero, no switches can occur. This is the only situation

in the orbital plane case where singular solutions can occur and this happens if

c2 = ±l. This fact will be shown in the material which follows.

2. Solutions Out of the Orbital Plane

We now examine the other cases where q(t) as defined by Eq. 14 is not in the

orbital plane.

We first consider the cases where cI # O.

We note, first of all, that singular solutions are impossible for these cases

because cI _ 0 in Eq. 14 shows that Eq. II cannot be satisfied identically.

If a and b are not both zero and if p is nonzero then the solution of Eq. 14

defines a helical type path that intersects the unit sphere on at most six points

during one period. This establishes at most six switches of u(t) during one period

of an optimal maneuver.

If p = 0 and a and b are not both zero then Eq. 14 defines a shifted sine

curve. This curve can intersect the unit sphere at six points but not more. In

this situation also an optimal maneuver has at most six switches in one period.

We now consider the cases in which cI = O.

Singular solutions occur if and only if Eq. II is satisfied identically, that

is

b2-a 2 = 3p2, ab = O, c2P = O, p2+b2+c22 = I. (19)

Equation 19 is satisfied only in the following cases:
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o = I/2, c2 = O, a = O, b = -+f3"/2

p = O, c2 = -+I,a = O, b = O.

These are the only cases where singular solutions occur.

(2O)

(21)

Equation 20 provides

the only cases in which singular solutions exist outside of the orbital plane and

Eq. 21 establishes the existence of the singular solutions in the orbital plane

previously mentioned.

In the case where p _ O, Eq. 14 defines, in general, an ellipse which either

intersects the unit sphere in at most four points or which is identically on the

unit sphere. The latter is the singular situation described by Eq. 20. The former

indicates that at most four switches in one period are possible for a nonsingular

optimal maneuver in this case.

If p = 0 and a and b are not both zero then Eq. 14 defines a point moving with

simple harmonic motion along a line segment. This moving point crosses the unit

sphere at no more than four values of t. In this case also no more than four

switches can occur during one period of an optimal maneuver.
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III. COMPUTER SIMULATIONS

This section presents the flight path and switching function for several

fuel optimal maneuvers in a plane, both in deep space and about a body in

circular orbit. These results were obtained by solution of a two point boundary

value problem using a program written by Roger R. Burrows of the Flight Mechanics

Branch of the George C. Marshall Space Flight Center.

Figures 5-I0 are presented to illustrate optimal maneuvers in deep space for

a variety of boundary conditions. Since only the basic shapes are of interest here

Eq. 2 is normalized with b = l and the flight time tf is four. Intervals of

thrust or coast can be determined from the regions where the switching function

depicted on the left is respectively positive or negative.

Figures ll-12 compare an optimal soft rendezvous with a body fixed in deep

space and an optimal soft rendezvous with a body in circular orbit for identical

initial conditions. These simulations were based on a spacecraft mass of approxi-

mately 3400 kilograms, maximum thrust of 267 Newtons, and a flight time of 600

seconds. The upper part of the figures illustrates the optimal switching function

and flight path shape for the deep space rendezvous (_ = 0 rad/sec) whereas the

lower part presents this information for rendezvous with a body moving in a 435

kilometer altitude cirucular orbit (_ = .001122 rad/sec). The similarities and

differences in shape are apparent.

Figure 13 presents an optimal soft rendezvous of a spacecraft in the 435

kilometer altitude circular orbit with a body one kilometer behind in the same

orbit for flight times of 600 seconds, one half period (2800 sec), and three fourths

period (4200 sec). The mass and maximum thrust are the same as in the previous case.
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Figure 14 also presents a soft rendezvous in which the same spacecraft is

ferrying a mass nine times heavier than itself to a body in the 435 kilometer

circular orbit, The spacecraft begins one kilometer above the body with the

same velocity. The flight time is long, six sevenths of a period (4800 sec) and

the optimal thrusting function has four switches. The thrusting sequence is

"thrust-coast-thrust-coast-thrust."

Figure 15 depicts a situation in which the spacecraft pushes a mass nine

times heavier than itself out of circular orbit to a point in an elliptical orbit

73 kilometers behind. This optimal maneuver has a flight time of one period

(5600 sec) and the optimal switching function is determined from the curve q(t)

presented in Fig. 3. This can be seen from the similarity between Fig. 4 and the

switching function shown in Fig. 15. This is an example of an optimal maneuver

which has a thrusting sequence requiring the maximum of seven phases in one period.
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IV. CONCLUSIONS

Several different forms of solutions to Eq. lO can occur. If _ = 0 the

solution is a line segment and the optimal control consists of intervals of full

thrust and coast with at most two switches. If _ # 0 the solution may be a

helical type segment, a shifted sine curve segment, a horizontal straight line

segment, a prolate or curtate cycloidal type segment, or a segment of an ellipse.

The optimal control consists of intervals of full thrust and coast in each of

these cases. More than two switches are possible even for small flight times.

If cI # 0 there is a maximum of six switches possible in one period. If cI = 0

the maximum number of switches that can occur in one period is four.

If _ # 0 only two cases exist in which singular solutions (defined by Eq. 20)

can occur outside of the orbital plane. Also only two cases where singular

solutions (defined by Eq. 21) exist can occur on the orbital plane.

Computer simulations were run for solution of Eqs. 2, 3, 6, and 7 for cases

where _ = 0 and where _ = 2_/5600 rad/sec. It was found generally that for small

flight times and boundary conditions of small magnitudes the optimal maneuvers

contained no more than two switches. Boundary value problems whose solutions

consisted of four switches and six switches were found.
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