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ABSTRACT_J

'_ Many applications in optics, such as the diffraction theory
of optical aberrations, involves the analysis of a function
defined on a rotationally symmetric system, with either a circular
or annular pupil. In order to numerically analyze such systems
it is typical to expand the given function in terms of a class of
orthogonal polynomials. Because of their particular properties,
the Zernike polynomials are especially suited for numerical
calculations. We develop a recursive algorithm that can be
used to generate the Zernike polynomials up to a given order.
The algorithm is recursively defined over J where R(J,N) is the
Zernike polynomial_of degree N obtained by orthogonalizing
the sequence rJ, rJ+Z, rJ+2N over (£, i). The terms

• in the preceding row - the (J'l) row - up to the N+I term is
: needed for generating the (J,N) th term. Thus, the algorith generates

an upper left-triangular table. This algorithm has been placed
in the computer with the necessary support program also included.

Xlll-iii

i

1983009101



oRIGINaL pAGE IS Y

: INTRODUCTION oF POORQUALITY

An arbitrary function W(r,8), such as a wavefront error

function over a circular or annular region, can be expanded in

terms of an orthonormal series cf orthogonal polynomials. If

w is defined over a circular or annular region, it is convenient

to expand W in terms of the Zernike polynomials, Zn I.
This

: W = n,l _ -_ AnlZnl.

1
l(r)e iI0= R where Rn I dependsIt can be shown {3} that Zn n

only on the radial coordinate and e il@ depends only on the

angular coordinate. Also, 1 is the minimum exponent of the

polynomials ZnI and Rn I and the numbers n and 1 are
either both

1
even or both odd. The radial polynomials Rn are of degree n and

satisfy the relation

-i 111
= R = RnRn n

If we write, using only the real part,

R 2 Sin j 8

W (r,0) = _j=o _n=o Anj jn+2 Cos j 0 '

the following properties are satisfied.

i. The Zernike polynomials are invarient in form with

respect to rotations of axes about the origin {3}.

2. The Zernike polynomials are easily related to the

classical aberrations {4}.
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3. The function W(r,e) is usually found as a best least-

squares fit to a collection of data points. Since the Zer_ike

polynomials are orthogonal over an annular region, the well-known

minimum-error property of Fourier expressions shows that each

term

Sin J e

RJjn+_ Cos J eAnj

also represents individually a best least-squares fit to the

data. Thus, the average amount of each term is given by the

magnitude of that term, without the need to do a new least-

squares fit.

Because the Zernike polynomials are being applied to an

increasin9 number of physical problems {1,2,5,6}, there is an

expTessed interest in being able to generate the _nike polynomials

up to a given order. In this paper, we develop a numerical method

due to Tatian {8} for c_nerating the polynomials RJ2n+j
over

?

an annular region. A discussion of the derivation of the

algorithm is presented in section 2 and a general discussion of

th_ computer program tLat was written to facilitate this

algorithm is discussed in section 3.

Bhatia an_ Wolf{3_ have shown that the polynomials

RJ2n+j (r) are obtained b_, orthogonalizing the functions

rJ, r J+2 J+2n, . . . , r over the i_terval {¢,!}. The constant

c represents the inner radius of the annui_r region and 1
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represents the outer radiu_. Thus _ = o represents a circular

, region• We convert this into the associated problem of

orthogonalizing i, u, , un over [_2 ]
• • • ,1 with the weight

function u j by substituting u = r2 This follows from

t

J+2k

rJ+21 rJ+2k = rJ+21 r rdr •' /
I'

2

_ ?

= uJ+l+k du : _ =

. e2 E

First, let us consider the case J = c. Then RO (r) =2n

o (u) is obtained by orthogonalizing the sequence l,u, . . . ,Rn

n IJu over [E, with the weight function I. This however is a

Jacobic problem over the shifted interval _2,1]. Hence,

o (r) o _(o,o) r2 .--2--e - 1
(1) R2n = Rn (u) = Pn (2) I- £I "

where p (o,o) is the Legendre polynomial of degree **.
mt

o
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Now, let us consider the case when J _ o. We will show that

RJ2n+2 can be obtained by a recursive method over the variable J.

Suppose we have solved the problem of obtaining Qn J-I (u) i.e.

orthogonalize l,u, . , u n over {e 2 J-I• . ,I} with weight function u

QJn ... n :and we want to obtain (u); orthogonalize l,u, u over

[e 2 i] with weight function uJ, . We obtain a relationship between :

these 2 polynomials by making use of a special case of the following

i
1 theorems {7}.
i

Theorem i. Let {Pn(X)} be the orthonor_al polynomials associated

with the distribution d_(x) on the interval {a,b}. Also, let

p(x) = c • (x - x 1) " (x - x 2) . • . (x - Xll

be non negative in this interval• Then the orthogonal polynomials
#

{qn(X) } as3ociated with the distribution p(x) d_(x) can be

' represented in terms of the polynomials Pn(X) as follows:

,i

• Pn (x) Pn+l (x) ••"Pn+l (x)

p(x) qn !x) = Pn(x l) Pn+1(x I) "''Pn+l(x I) 'i

I Q

• Pn (xl) Pn+l (xl) "Pn+l (Xe)
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Theorem 2. The following relation holds for any 3 consecutive L

_ _rthogonal polynomials:

(x)

Pn(X) = (AnX+Bn) Pn-i (x) = Cn • Pn-2

of the highest coefficient of pn (x) is denoted by kn, we have

_ An !
kn and Cn =

Theorem 3.

PO (x) Po (y) + Pl (x) Pl (y) + " " " Pn(X) Pn(Y)

= kn Pn+l (x) pn(Y) -Pn (x) Pn+l(Y ) i
nK_+l x-y

J (u) and p(u) = u,
J-i (u), qn (u) = Qn

using Theorem 1 with pn (u) = Qn

we have

J-i J-I (u)

Qn (u) Qn+l

1

: 2.1 UQ J(u) =J-I Qnj_ 1 _ J-I (o)(o) (o) _n+l
Qn
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2
We note that this formula becomes undeterminate for u = r = o.

J

But we need the values of Qn at u = o to calculate the next set

of polynomials, so expand equation 2.1 and use Theorem 3 to get

hJ-I _k_ "" •
J-i J-l(u )

J (u) = n _ _ Qi (o)

(2) Qn ....... Qi

(l-e2) n °) l---'i=° h.
l

where

:i I

(3) hJ i { J (u))2 uJ
• n = _ Qn du

%

d
J (u) By substituting the; is the normalization constant for Qn "

J

expression in equation 1 for Qn (u) into equation 3 and usingt

Theorem 3, we obtain

. oJ- i
(4) hJ. = -i i+l (0) hJ-I

l 2 "_=_J-1 ._-_ l
1 - oi-o3

converting back to the variable r, we have

J (r) rJ J
(5) R2n+J = Qn (r2)"

i

"t
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3. Some comments about the computer program.

The outline for this computer program is:

J=o

• o

Compute On

< and HO
n

--_ For J = 1 to N >

Compute

Q_ and HJ n using

J-I QJ-I HnJ-
n ' n+l and

%
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qF PriOR QUALITY
• For a given value of N, the following table shows the values

J HJ that are generated._: of Qn and n

TABLE 1

• QnJ or HnJ 0 1 2 3 " " " N-2 N-I N

, 0 * * * * * * * '

1 * * * * * * "

3

%

• ¢

J-i each of the
NOTE: Since hJ is dependent upon know_,ing Qn+l '

above rows are shorter by 1 entry•%
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0

The polynomials Qn are directly computed from forumla (i) _:

name ly,

O

Qn (u) = Pn (o,o) (uu+u)

where Pn (o,o) is the Legendre polynomial of degree n, u=2/(l-e 2)

and u = - (i + e2)/(l - £2). Likewise, the constants

H° are directly computed from (3); namely,n

Ho 1 2
n = _ (u) du.

2

NOTE_ The above integral is computed in closed form. This is

o (u) is a polynomial of degree n. This ispossible because Qn

done via a call to SQPOLY (square the polynomial) and a call to

INTGRL (find the integral of a polynomial).

Once the first row is known (Q_ and HJn for J = o), the

recursive algorithm can then be used to compute each succeeding

row (Q_ and HJn for J = Jo )" The results are then printed via

a call to RJN (compute RJ2n+J = r2 QnJ (r2). _:
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4. Example

A computer run for n = 3 is shown below.

ENTER N-_RGEST R(_,N) DESIRED
?3

R(_,_)

R(@, 2)
NORM: 3.83767639

-.5487 + I.@@@@*R** 2
* * * * * * * * * * * * * * , ,

R(@, 4)
NORM: 16.4661363@

.2331 - 1.@973"R*'2 + l.g@gg*R** 4
************************

R(@, 6)
NORM: 71.94691818

-._981 = .78_9"R** 2 - 1.646_*R** 4 + I.@_*R** 6
*********************************

R(1, 1)
NORM: 1.9@923153

Z.gggg*R** 1 +

R(I, 3)
NORM: 8.32586779

-6724"R** 1 + l.g@g@*R**3
********** _******

R(I, 5)
NOW: 35,89625267

.3191"R** 1 - 1.2252"R** 3 + I.@@@g*R** 5
*************************

R(2, 2)
NOW: 2.32829@44

I.g@@@*R** 2 +
**************
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,_ R(2, 4)
i NORM: ii. 8446_583

-.7897"R** 2 + l.gg_g*R** 4
_ ******************

R(3,3)
NORM: 2. 6873584

I._*R** 3 +
* * * * * * * * * * * * * * *

* STOP * _'

A COPY OF THE ABOVE PROGRAM CAN BE OBTAINED FROM THE AUTHOR.
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