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ABSTRACT

Many applications in optics, such as the diffraction theory
of optical aberrations, involves the analysis of a function
defined on a rotationally symmetric system, with either a circular
or annular pupil. In order to numerically analyze such systems
it is typical to expand the given function in terms of a class of
orthogonal polynomials. Because of their particular properties,
the Zernike polynomials are especially suited for numerical
calculations. We develop a recursive algorithm that can be
used to generate the Zernike polynomials up to a given order.

The algorithm is recursively defined over J where R(J,N) is the
Zernike polynomial of degree N obtained by orthogonalizing

the sequence rJ, rJ+2, ", _ |, rJ+2N gver (¢, 1). The terms

in the preceding row - the (J-1) row - up to the N+l term is

needed for generating the (J,N)th term. Thus, the algorith generates
an upper left-triangular table. This algorithm has been placed

in the computer with the necessary support program also included.
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An arbitrary function W(r,©), such as a wavefront error
function over a circular or annular region, can be expanded in
terms of an orthonormal series cf orthogonal polynomials. If
W is defined over a circular or annular region, it is convenient

to expand W in terms of the Zernike polynomials, an. This

W= n,l I Anlznl.
- 1 _ ilo 1
It can be shown {3} that Z, = Rnl(r)e where R~ depends
ile

only on the radial coordinate and e depends only on the

angular coordinate. Also, 1 is the minimum exponent of the

. 1 1
polynomials Zn and Rn

and the numbers n and 1 are either both
even or both odd. The radial polynomials Rnl are of degree n and

satisfy the relation

If we write, using only the real part,

_ % 2 sin j ©
Wm0 = 2y, M=o Pnj F jn+2 Cos j ©
the following properties are satisfied.
1. The Zernike polynomials are invarient in form with
respect to rotations of axes about the origin {3}.

2. The Zernike polynomials are easily related to the

classical aberrations {4}.
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3. The function W(r,0) is usually found as a best least-
squares fit to a collection of data points. Since the Zerrnike
polynomials are orthogonal over an annular region, the well~known
minimum-error property of Fourier expressions shows that each
term

Sin J 0

J Cos J O

R jn+2

Ans

also represents individually a best least-squares fit to the
data. Thus, the average amount of each term is given by the
magnitude of that term, without the need to do a new least-
squares fit.

Because the Zernike polynomials are being applied to an
increasing number of physical problems {1,2,5,6}, there is an
expressed interest in being able to generate the ?-rnike polynomials
up to a given order. In this paper, we Jevelop a numerizal method

due to Tatian {8} for ¢ 2nzrating the polynomials rY over

2n+J
an annular region. A discussion of the derivation of the
algorithm is presented in section 2 and a general discussion of
th. computer program that was written to facilitate this
algorithm is dis.ussed in section 3.

Bhatia and Wolf {3} have shown that the polynomials

RJ2n+j (r) are obtained by orthogonalizing the functions

over the interval {e,l}. The constant
€ represents the inner radius of the annuiar region and 1
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represents the outer radiusc. Thus € = o represents a2 circular
region. We convert this into the associated problem of

orthogonalizing 1, u, . . . , u® over [;2,1] with the weight

furction u’ by substituting u = 2. This follows from

J+?1 '+2k rdr

<rJ+21’ rJ+2k\ ==

7/

r2J+2l+2K =

rdr rdr

]

J.
1 5 £2, T+ 14k
"

yJtl+k du = ul ¥ (Ljdu)
J €2 .) €

First, Jet us consider the case J = ¢. Then Rgn (r) =

oo -
] =
|

Rg (u) is obtained by orthogonalizing the sequence 1,1, . . . ,

u” over {?.%] with the weight function 1. This however is a

Jacobic problem over the shifted interval {22,;]. Hence,
2

= n° . ~(0,0) r
(1) R, (r) =R> (u) = pg (2) TTT

(0,0}

where P, is the Legendre polynomial of degree n.
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Now, let us consider the case when J # o. We will show that

can be obtained by a recursive method over the variable J.
J=-1

J
R 2n+2

Suppose we have solved the problem of obtaining Q. (u) i.e.

orthogonalize 1,u, . . ., u” over {ez,l} with weight function uJ—l

and we want to obtain QJn (a); orthogonalize l,u, "°* u" over
[kz,;] with weight function uJ. We obtain a relationship between

these 2 polynomials by making use of a special case of the following

theorems {71}.

Theorem 1. Let {pn(x)] be the orthonorral polynomials associated

with the distribution da(x) on the interval {a,b}. Also, let

p(x) = c (x = xl) (x ~ x2) I & xl)
be nor. negative in this interval. Then the orthogonal polynomials
{qn(x)} associated with the distribution p(x) dua(x) can be

represented in terms of the polynomials pn(x) as follows:

(x)

Pn(x) Pn+1l **'pn+l(x)

Pn(xl) Pn+1(xl) "'Pn+1(xl)

Pn(x1l) Pn+l(x1)

p (x) q, x)

Pn+1(xe)
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Theorem 2., The following relation holds for any 3 consecutive

~rthogonal polynomials:

_ _ (x)
Pp(¥) = (AX+B) p_y (¥) =C, - Py

of the highest coefficient of pn(x) is denoted by kn’ we have

An = Xn and Cn = An
k A
n-1 n-1

Theorem 3.

po(x) po(y) + Py (x) Py (y) + ° ° ° pn(x) pn(y)
= k1 P (x) p_(y)
- n+l n'¥’ - Py, (x) pn+1(y)
n+1l =y
. . _ ~J-1 _Jd - o
using Theorem 1 with pn(u) = Q) (u), qn(u) = Q) (u) and pfu) = u,
we have
J-1 J-1 ,.
2 J 2
1 u.” (u) =J-1
Q J-1 J=21
Qn(o) Qn (o) Qn+l (o)
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We note that this formula becaomes undeterminate for u = r2 = O.

But we need the values of Qf\ at u = o to calculate the next set

of polynomials, so expand equation 2.1 and use Theorem 3 to get

J-1 n

J _ h J-1 J-1
(2) Qn (u) = n Qi (o) Qi (u)
J-1
(1-e2) @ (0)b—i=o . Tt
i
i where
i ,
(3) n) =% ) @ u au
2 8

»

is the normalization constant for Q‘r{ (u). By substituting the
expression in equation 1 for Qi (u) into equation 3 and using

Theorem 3, we obtain
J~1
J 0. -
(4) n; = -1 000 -
1 A S | 1

1 - £ Oi (0)

converting back to the variable r, we have

J _J J 2
(5) R2n+J (r) = x Q (r™).
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3. Some comments about the computer program.

The outline for this computer program is:

'—'<F = N :
or J =1¢toN //‘——'*—1

Compute
J J .
Qn and H n using

J-1 J~-1 J=1
Qn ' Qn+l and Hn
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For a given value of N, the following table shows

of Q‘; and Hi that are generated.

the values

TABLE 1
J J 0 1 2 3 * *
Qn or Hn
0 * * * *
1 * * * *
2 * * x *
3
N..z »* * *
N-1 * *
N *

above rows are shorter by 1 entry.
X1l11-8
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The polynomials Qg are directly computed from forumla (1)

namely,
0° (u) = p_(0,0) (au+v)
n = Ppio o
(0,0) . . _ 2
where P, is the Legendre polynomial of degree n, a=2/(1-¢)
and v = - (1 + cz)/(l - 52). Likewise, the constants

Hg are directly computed from (3); namely,

1 2
S = %— (Qg (u)) du.
2
€

NGTE: The above integral is computed in closed form. This is
possible because Qg (u) is a polynomial of degree n., This is
done via a call to SQPOLY (square the polynomial) and a call to
INTGRL (find the integral of a polynomial).

once the first row is known (Qg and Hg for J = o), the
recursive algorithm can then be used to compute each succeeding

J

row (Qi and H for J = Jo). The results are then printed via

a call to RIN (compute RJ 2 oJ (r2).

2n+g - ¥ Qn

X111-9



ORIGINAL PAGE 1S
OF POOR QUALITY

4. Example

A computer run for n = 3 is shown below.

ENTER N-LARGEST R(@,N) DESIRED

?3
R(P,9)
1.p0000

R EE YT EEEE R
R(g, 2)
NORM: 3.83767639

-.5487 + l ﬂﬁﬁﬂ*R** 2
R EEEEERE. Xk ok x
R(g, 4)
NORM: 16.4661363¢

.2331 - 1.9973*R**2 + 1. Qﬂﬂﬂ*R** 4
ok ok ok ok Kk ko k kK K Kk h ok Kk Kk * & X ok Kk *
R(g, 6)
NORM: 71.94691818

~-.1981 = . 78@F9*R** 2 - 1,6460*R** 4 + 1. ggg@*R** 6
ok ok kR ok ok ok ko k ok k ko k kK % ok Kk k ok Kk kok ok kok kK Kk koK K
R(1, 1)
NORM: 1,94923153

1.000g*R** 1 +

* k * % %k % % % k * %k * k k % *

R(1, 3)
NORM: 8.32586779

-6724*R** 1 + 1,0@g@*R**3
* ok k k % k k k k k f ok k *k k k *

R(1, 5)
NORM: 35,89625267

«3191*R** ] - 1,2252%R** 3 + 1. Q@g@Qg*R** 5
Xk Kk Kk & k Kk k Kk Kk k k k k Kk k k k k k k k k * *

R(2, 2)
NORM: 2.32829044
1.0000*R** 2 +

* k% k% * * % k * k % k *x * %
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R(2, 4)
NORM: 11.84469583

-.7897*R** 2 + 1.gg@g@g*R** 4
EEEEEEEEEIIE I I I

R(3,3)
NORM: 2,.6873584
1.00@g*R** 3 +

* * * k& x k& * %k Kk k k &k & * *

* STOP * @

A COPY OF THE ABOVE PROGRAM CAN BE OBTAINED FROM THE AUTHOR.
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