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ABSTRACT

An algorithm is developed for sequencing and scheduling of
observations of stellar targets by equipment on Spacelab. The

method is a general one, but is motivated by the example of a

mission organized by the Office of Space Science denoted by 0SS-3.

This particular mission, along with interactions with NASA per-
sonnel in charge of planning the mission has been the basic model

for which this method was developed.

In this paper we define and examine the scheduling problem,

exhibit and document the method developed for its solution, and

make suggestions for further development and implementation of
this method.
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I

I. INTRODUCTION

The Spacelab 0SS-3 mission includes among other experiments
a telescope platform having three telescopes. These are referred
to as HUT (Hopkins Ultraviolet Telescope), WUPPE (Winconsin Ultra-
violet Spectropolarimeter), and UIT (Ultraviolet Imaging Telescope).
The telescopes are not independent, but are aimed along a common
axis. Targets are specified for each telescope by a scientist in
charge referred to a principal investigator. These targets fall

into two categories, faint or bright, depending on their magnitude.

Furthermore, each target has a viewing requirement consisting of

the number of observances requested and the length of an observance.

The distribution of the targets is as follows:

UIT faint - 48

UIT bright - 0

HUT faint - ]3

HUT bright - 35

_JPPE faint - 45

WUPPE bright - 37

Since none of the targets involve the Earth or Moon, each

target may be considered as being in a fixed location. It is

expected that all telescopes will function continuously, and so

two of the telescopes will be co-observing a target of the third

at any given time.

Each target has certain constraints on the times at which

it may be viewed. The first type of constraint is geometric, and

requires that the target not be occulted by Earth or Moon. Fainter

targets may only be viewed while the Earth is occulting the Sun,

and may additionally require they be viewed only if they are at

least some fixed angular distance from the Earth and/or Moon.
When the Orbiter is over a location in the South Atlantic region

characterized by high radiation referred to as the South Atlantic

Anomaly (SAA), no viewing is to be scheduled. Hence, each target

has certain periods at which it can be viewed during the mission,

referred to as observation opportunities. The mission is to last

5 days and encompass 72 orbital periods of 90 minutes each. Each

orbital period has 36 minutes of shadow and 54 minutes of Sun,

which places a premium on the shadow times of the mission.

Basically the problem is to schedule the observations while
obeying the constraints and maximizing viewing time. To do this,

one wants to minimize the time spent slewing between targets. If

we ignore the constraints this would be a single-machine sequencing

problem with sequence-dependent setup times, more commonly referred

to as the travelling salesman problem.
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In the present situation there are some fundamental differences.
In the travelling salesman problem one wants to visit a sequence
of n clients in n cities in such a way that minimizes the total
distance travelled. In the present situation the analogous pro-
blem would also have certain hours at which the clients were
available and requirements about how many meetings of what length
were required by each client. Another basic difference is that
we are trying to maximize clients seen in a fixed time rather
than minimize the time (or distance) it takes to see all of the
clients. Some aspects of a good schedule are not well-defined
and involve facts such as; that some clients may have flexible
requirements, some clients may be more important than others,
and that a balance should be maintained between three types of
clients (HUT, UIT, and WUPPE). In this paper we construct a
dispatching-type method to be implemented on a VAX computer for
this scheduling problem.

The need for such a schedule is two-fold. A method which
in a few minutes constructs a near-optimal or very good schedule
would clearly save a lot of man-hours and wages. If there is no
particular rush in obtaining a schedule, then a machine-produced
schedule could be hand-edited to conform to some of the more neb-
ulous criteria applied to such schedules. In the event that the
launch of a mission is delayed or there is a malfunction in orbit,
this hand-edited schedule becomes so much wishful thinking, and
there is an immediate need for a new schedule. For example, if
one of the telescopes were to become inoperable after a few hours,
a new schedule would be required which only involved targets cor-
responding to the other two telescopes. It is clear that time
is of the essence in such a situation, and that a computerized
method is required.

This paper describes an algorithm to accomplish this task.
In the section entitled Files, we describe the format of the data
which is fed to the program to produce a schedule. In Functions
we define certain quantities obtainable from the file which are

involved in the algorithm. In Subroutines we identify some com-

ponents of the algorithm. In the Main Algorithm section we dis-

cuss the principal subroutine as well as the overall method. In

the Outputs section we describe the desired format in which the
results are to be displayed.
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II. - FILES

To implement this program we must organize th_ information
corresponding to the set of targets we wish to consider into a
form which is compatible with the algorithm. In our general dis-

cussion we will let il, ....,n} index the set of targets we wish to

(.try to) schedule. For 0SS-3 there were 178 such targets and

the indexing scheme actually used was slightly different:

Type of experiment

UIT (faint)

HUT (faint)

HUT (bright)

WUPPE (.faint)

WUPPE (bright)

Number of targets indices

48 101-148

13 201-213

35 301-335

45 401-445

37 501-537

With this indexing format, it is easy to keep track of experiment

groups of up to 99 targets each. For most of the rest of this

paper we will use the {l,...n} approach for notational simplicity.

For each i=l,...,n, the Observation Requirement File lists

the quantities =_i and si, where

=i = the number of observances of target i requested

and

s i = the time (in minutes) required to complete a

single observance of targe_ i.

These quantities are provided by the principal investigators. The

quantity si is taken to be the minimum time necessary to obtain
significant information from observing target i. This quantity is

largely a function of the magnitude of target i and the sensitivity
of the instrument involved.

For each i = l,...,n, the Priority File contains an entry
p_ which corresponds to the impogtance of target i. In the

algorithm it is assumed that larger numbers denote more important

targets so that priority = 2 denotes a more important target than

priority = i. If this were to be reversed the term p_ could be

replaced everywhere in the algorithm by i/pi: These priority
numbers are decided upon initially by the prlncipal investigators.

The following hypothetical situation suggests a question concerning

priority values. Suppose a principal investigator groups his targets

into four categories of increasing importance. Which of the follow-

ing assignments of priority values would work best in the algorithm?

XVl-3



i, 2, 3, 4

I, 2, 4, 8

I, i0, I00, I000

It is hoped that experimentation will suggest an answer to this
question. The priority file could also be of use to the sched-
uling engineer using the algorithm. If a certain target or type
of target failed to schedule, then increasing the priority value
would cause the algorithm to "try harder" to schedule the target(s).

The Time Periods File consists of an increasing sequence
of times:

T0<T I <T 2 < ... < Tm.

The time To corresponds So the time in the mission when the tele-

scope viewing commences, and Tm corresponds to the time when view-
ing ends. The intermediate times are obtained in one of two ways;

consisting of all the ON times in the Shadow File and OFF times

in the SAA File. In actuality, there is no Time Periods File

since the program has been written to read the relevant information

off of the existing Shadow and SAA files. The user must specify

To and Tm, however, since we are only interested in the times in

these two files which fall between T O and Tm. By a time period
we mean[T£-l, Tl], £=l,...,m. Hence each tlme period begins at

the start of a shadow portion of an orbit or at the end of a SAA

portion of an orbit. Due to the nature of the program it will

also be necessary to insert a time into the Time Periods File

corresponding to the end of any time interval where viewing is

prohibited. This allows the program to "start over" when viewing

is again permissible.

The Observation Opportunity File lists the times during which
targets may be viewed. The actual format is somewhat different in-
actuality, but for purposes of simplicity in this discussion we

will assume that for each (target) i=I,...,178 we have a sequence

TO < tli < t2i < t3i <...< t2n.-i i<t2n, i -_< Tm
i i

where

[tli' t2i]' [t3i t4i]''''' [t2n -li t2n i ]
i , 1

are the n. time intervals during which target i may be observed.
This filelis computed using other programs available at the MSFC,

and takes into consideration geometric availability (whether the
target is occulted by the Earth or Moon) and other constraints
involving the magnitude of the target, sensitivity of the instru-
ment, and amount of direct or reflected sunlight present. The times

tli' t3i' t5i'''''t2n. -li
1
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are referred to as access times (acc-times) for target i, and the
times

t2i't4i't6i '''''t2n i
i

are referred to as loss times for target i.

The Weight File is a list of 54 4-tuples, (_,B,_,Y ,) where
the values of the entries are:

c_ = O, .5, i

B = 0, 5, i0

= .01, .I

Y = O, I, I0

These are listed in lexicographic order from (0, 0, .01, 0) to

(I, i0, .I, I0) in the Weight File as the rows of a 54-by-4 matrix.

Each weight produces a schedule for any given time period which

gives the program 54 trial schedules to choose from for any time

period.

The Slew Time File is regarded as a 178-by-178 matrix

D := [dij ]

where dii is the time required to slew from target i to target "
If the slew rate is a constant, then dii directly proportional ]to

the angular distance between targets i _nd j, which is available
on another file. In our initial program we are assuming a slew

rate of .4 degrees/sec., so if _._ijis the angular distance (in
degrees) between targets i and ], then

a. .

19
dij = 1440 (in decimal hours).

Since D is a symmetric matirx with zero diagonal, the actual file

only lists di_ for i<j. In this paper we will refer to dij with-
out restricting ourselves to i<j.
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III. FUNCTIONS

The algorithm requires computation of certain quantities in

the process of selecting a next target at any time t. In this

section we describe the following five functions related in this

idea: Local Availability, Total Availability, Initial Selecter,
Successive Selecter, and Reselecter. In addition we define an

Objective function which evaluates a schedule over a time period•

The Local Availability function is denoted by A(t,i), and
is computeH in the following manner:

It

2.

3.

If t <_ t2n j i, then A(t,i)=0

If t< tli , then A (t,i)=0

If tsi < t< ts+ 1 i, s even, then A(t,i)=0

• If tsi<- t< ts+ 1 i, s odd, then

A(t,i)=ts+l i -t.

This function is 0 unless that t is a time at which target i can

be observed. If t is a time at which target i can be observed,

then A(t,i) is the amount of time target i can be observed before

the observation opportunity ends.

The Total Availability function is denoted by B(t,i) and is
the amount of time left in the mission at time t that target i

may be observed. It can be computed as follows.

lo

2.

•

If t ! t2n i, then B(t,i)=0.

J
If t < tli, then

19.

B(t,i) = l I t2/i-t2/i-i i.

_=I

If tsi<__ t< ts÷ 1 i, then

n.

B(t,i)=A(t,i) + 1 1 t2/ i "t2/-I i.

In step 3, the symbol [ ] refers to the greatest integer or step
function defined by

[x] = the largest integer n satisfying n<_x.

In step 3 the computation of B(t,i) involves the quantity A(t,i).

This presents no practical difficulty since the algorithm only

requires the computation of B(t,i) after A(t,i) has been computed

and found to be positive. Hence it is unnecessary to activate the

subroutine for _(t,i) in step 3 since it has already been computed.
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In fact, it seems natural to compute A(t,i) and B(t,i) in a single
sequence of steps in order to simplify the programming.

The Initial Selecter function is used to choose a target to

be the first viewed in a time period. It is denoted by F(t,i), and
calculated as follows:

I. If ri=0, then F(t,i)=0

2. Compute A(t,i)

o

4.

If A(t,i)<_i,then F(t,i)=0

If A(t,i)_>si ' then

F(t,i) = Pi[_+ACt,i) ] [y+_iri]

B+B(t,i).

In other words, A(t,i)=0 unless there is sufficient local avail-

ability at time t to conduct at least one observance of target i.

In this case, F(t,i) is given by the formula in step 4.
The Successive Selecter function is used to select a next

target (j) to follow target i which has been scheduled up until

time t. It is denoted by G(t,i,j) and calculated as follows.

I. If rj=0, G(t,i,j)=0.

2. Evaluate A(t+dij,J).

3. If A(t+dij,j)<_j,then G(t,i,j)=0.

4. Evaluate B(t+dij,J).

5. G(t,i,j) = Pi[_+A(t+dij,J]" [_+siri]

[8+B (t+dij,J) ] " [_+ dij] •

Step i sets G(t,i,j)=0 if we have already satisfied the require-

ment of target j.

Step 3 sets G(t,i,j)=0 if there is not sufficient local avail-

ability to conduct at least one observance of target j at time

t+dij, which is the first time at which viewing of target j can

be initiated after viewing target i until time t. If steps i
and 3 do not establish the value of G(t,i,j), then it is defined

By the formula in step 5.

The Reselecter function is denoted by H(t,i,j,k) and is

used when target j has been selected to follow target i which

finished viewing at time t. In the algorithm, we check to see

if target k might be a better choice to follow target i than

target j. This could happen if k is not available at time t+dik
but is available at time t+d. o

lj"
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In such a situation the schedule might be improved by the inser-
tion of idle time. The function is calculated as follows.

lo

2.

3.

4.

5.

If rk=0 , then H(t,i,j,k)=0.

Evaluate A(t+dij,k).

If A(t+dij,k)<_k, then H(t,i,j,k)=0.

Evaluate B(t+dij,k).

H(t,i,j,k)= Pk [_+A(t+dij _k)] [y+skrk]

[_+B (t+dij ,k )![8+ dij ].

The careful reader may note the similarities between the

functions F, G, and H. In fact, both F and G can be computed

by the same subroutine used to calculate H. The relations are
as follows.

F(t,i) = H(t,i,i,i)

G(t,i,j) = H(t,i,j,j).

For programming purposes the above substitutions would reduce

program length and number of subroutines. For purposes of ex-

plaining the algorithm we will stick with the various selecters

F,G, and H, rather than having a single function (H).

The previous five functions form the basis of the scheduling

routine which establishes a schedule for a time period [Tk-l,Tk].

Since the weight (_,_,_,y) appears in these functions, we obtain

one schedule for [Tk_I.T k] for each of the 54 weights in the
weight file. Suppose *e-denote the schedule obtained from a par-

ticular weight by S(_,B,_,y) and let us further assume that the

schedule is presented as follows.

(i I, t'o, t I)

(i2, t' I, t 2)

(i3, t'2, t3) =

{.is, tB_l,t s)

Here it is assumed target i, is scheduled from time t'o to time

tl, target i2 is scheduled from time t'l to time t2, etc.. We

define an Objective function as follows.

o (s) = o( y)
S

!

Pi e (te-te-I ).
g=l
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In the algorithm we will choose a schedule S=S(a,¢,_,y) for the
time period which corresponds to a maximal value of 0 ( _, _, 5, ¥).
The value of 0 ( a, B, _, y)) (sometimes referred to as the "grade"
of S (a, B, 6, y)) is simply priority-weighted viewing time, or
simply viewing time if Pi=l, all i=i,...,178.
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IV. SUBROUTINES

In this section we identify and describe certain portions

of the main algorithm_ There are several reasons for doing this.

For one, it is easier to understand the main algorithm in a
modular fashion than all at once. For another, it is convenient

to have the main algorithm broken into subroutines for repro-

gramming purposes. For example, an improvement could be made by

rewriting one of the subroutines rather than rewriting the whole
program. Also, subroutines can be tested and debugged individually

if problems occur.

The first subroutine is referred to as the Initial Selection

Algorithm, or INSLA for short. The input to this subroutine is a

time to, and the output is (to, il) where target il has been chosen

as the "best" target to schedule at time to , or the message STOP.

The procedure is as follows.

i. Input to.

2. Evaluate F (to, i), all i = I .... ,n.

3. If F (to, i) = 0, all i = l,...,n, then STOP.

4. Choose il where F (to, il) > F (to, i), all i.

5. Output (to, il)

In practice we would evaluate F (to, i) for i = i .... , n, with

instructions to save imax and Fmax = F (to, imax). The only time

the output is STOP is when there is no target to view at time to

that is available at time to and has a requirement left.

The Experiment Scheduler Algorithm, or EXSA, has as its

input (to, io, il) where target io has been viewed until time to

and target il,is the next target to view. The EXSA schedules as

many consecutive observances of target _, as possible as soon

as possible. The output is the message (tl, il) which signifies

that target _, has been scheduled (consecutively) until time tl.

The algorithm is described as follows.

,

2.

3.

4.

.

•

.

Input (to, io, il).

Evaluate A (to + dioil, il).

If A (to + dioil, il) _> sil, let to = to+dioil .

If A (to + dioil il) < Sil let

to = the first t_il where _ is odd and to + dioil < t_i I.
I

If to + Sil > T, let tI = to .

If to + si I ! T, schedule one observance of target il

to t' + si I and let ril = ri I - i.from to o
I

If ri I = 0, let tI = to + si I.

. If ri1__ 0, go back to i, replacing to with

tl = t_ + Sil and io by il. (i.e., replace (to, io,
il) with (tl, il, il)).

The Selecter Algorithm, or SELAG, is used to select a next

experiment in the middle of a time period. The input to this
subroutine is (tl, il), which represents the fact that target il

XVl-10



has been veiwed until time tl and a new target is to be chosen.
The output is either (tl, il, i2), which signifies that i2 has
been chosen to be scheduled next, or STOP. The STOP output can
occur in the following way. If there is no experiment i2 which
is possible to schedule at time tl + di_ i2, then STOP occurs.
This would happen in a SAA time interval, for example. The
Selecter Algorithm is composed of two iterations: one each
corresponding to the successive selecter and reselecter functions.
It is possible to view the SELAG subroutine as two subroutines,
but in this account we will describe the process as one subroutine.
The description is as follows.

i. Input (tl, il).
2. Evaluate G (tl, il, i), all i # il.
3. If G (tl, il, i) = 0, all i # il, then STOP.
4. If G (tl, il, i) is not identically zero, then select

l'"2 which maximizes G (t I, iI, i).

5. Evaluate H (tl, il,.i_, i) all i # il.
6. Select i2 which maxlmlzes H (tl, il, i_, i), and output

(tl, il, i2).

Steps 1-4 make an initial selection for a next target and steps
5-6 examine whether a different target might be a better choice

if idle time is inserted. If i2 = i½ (i.e., there is no better

choice), then this _orresponds to the situation to = to + dioil
in EXSA. If i2 # i2 and idle time is inserted, this corresponds
to the definition of to in step 4 of EXSA.

The Descheduler Algorithm, or DESAG is used to fit partial

scheduler together and requires some explanation of the main

algorithm, which can be obtained in the next section. Briefly,

suppose that a partial schedule, say Sk, has been obtained over
the first k time periods, (To, Tk). The algorithm next produces

a partial schedule for the (k+l) st time period, (Tk, Tk+l).

Call this partial schedule Sk+l. The Descheduler is designed to
combine these two partial schedules into a schedule for (To, Tk+l)
which we will refer to as Sk+l. Suppose that the last target in

Sk is io which finishes viewing at time to < Tk, and the first

target in Sk+l is LI, which begins veiwing at time Tk. If

Tk - to _ dioil,
\

then there is sufficient time to slew the telescope from target

io to target iI, and we combine the two schedules. If

Tk - to < dioi I,

then the Descheduler deletes the last observance of io until

sufficient slew time is available. When DESAG deletes an obser-

vance of io it is necessary to let

rio = ri o + I.

The input to DESAG is Sk, Sk+l, and the output is Sk+l.
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VI. MAIN ALGORITHM

In this section we define the principal subroutine as well
as the main algorithm.

The principal subroutine is the Scheduler Algorithm, or

SCHALG, and is designed to produce a schedule, for a time period

(Tk-l, Tk). If we let (to, T) play the role of (Tk-l, Tk),
then SCHALG is described as follows.

I. Input (to, T), (_, 8, 6, 7).

2. Send to to INSLA, T to EXSA.

3. If INSLA yields STOP, then S = _.

4. If INSLA yields (to, il), then send (to, il, il) to

EXSA and obtain (tl, il).

5. Send (tl, il) to SELAG and obtain (tl, il, i2) or STOP.

6. Send (tl, il, i2) to EXSA and obtain (t2, i2).

7. If t2 = tl, then STOP.

8. If t2 > tl, go back to 5, letting (t2, i2 ) play the

role of (tl, il).

Some comments about step 7 are in order. This step is used when

target i, has been viewed until tl, i2 is chosen next by SELAG,

and EXSA finds it impossible to schedule i2 within the current time

period. A moments reflection yields that this may occur only when

the local availability for i2 extends past the end of the current

time period. This cannot occur if the observation opportunities

are all contained within a time period, as was indicated would

be the case by the NASA planning personnel assigned to this project.

Hence, if everything is in order step 7 will not be used. If the

Observation Opportunity Files do not obey this constraint with

respect to the Time Periods File, then step 7 will prevent the

program from falling into a loop where it repeatedly chooses

target i2 and then is unable to schedule an observation of it.

If no such difficulties occur, then the SCHALG will exit on step 5.

The Main Algorithm, or IIAINALG, produces a schedule for the

time interval (To, Tm). The method is to generate 54 schedules

for the first time period, (To, TI), then pick the best one using

the objective function and proceed to the next time period (TI, T2).

The DESAG then fits these two schedules together to form a schedule

for (To, T2). Proceeding in a similar fashion, we obtain a schedule

for (To, Tm). Before we proceed, we explain the following notatior,

concerning partial schedules.

S£ or S£ (_, B, 6, Y ) denotes a schedule for (T£-I, T£),

S£ denotes a schedule for (To, T£),

S = Sm is the schedule for (To, Tm).

The MAINALG is described as follows.

i. Let the time period (to, T) be (T£-I, T£), £ = I.

2. Let the weight (_, B, 6, yj be (_il, 0_i2, o_i3, _i4), = i.
3. Send (to, T) and (_, _, 6, y) to SCHALG and obtain a

schedule S _ (_, _, _, y).
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4. Evaluate 0 (S£ (_, B, _, _)) over (to, T).
5. Go back to 2 and increase i by I until i = 54.
6. Choose S£ from among the 54 trial schedules for (t o , T)

which maximizes 0 (S£ (_, B, _, y)).
7. Use the DESAGto adjoin S£ to S£-I to form S£.
8. Go back to step 1 and increase until £ = m.

A comment on observation requirements is in order. Since we are
examining 54 trial schedules for each time period but only using
the best one it is important to not write the program in such a
way that it thinks all 54 schedules were performed. In other words,
the requirement r i should be decremented during each of the 54
trail schedules but revert to what it was at the start of the
time period when the next trial schedule is to be computed.
Then, of course, when the best schedule for the time period is
obtained and adjoined to the previous partial schedule by DESAG,
then the ris are diminished accordingly.
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VI. OUTPUTS

The algorithm described results in a scheduling sequence,
say S, which has been constructed from the subschedules for the m
time periods. This needs to be presented in some fashion. One
method of presenting S would be as follows.

!

(il, to, tl)
(i2 tl, t2)

(i 3 t_, t3)

!

(iu, tu-l, tu)

!

In this scheme target il is scheduled between times to and tl,

target i2 is scheduled between times t_ and t2, etcetera. T_e

algorithm produces a schedule which automatically satisfies the

two important constraints:

(tl_ I, t/) is contained in an i/-window for all £ = i .... , u.
and

!

t£_ I - t£_ I _ di£_li£ alll= 2,..., u.

It might also be useful to indicate the number of observances

as well as the viewing time.

To evaluate the schedule we need to have an objective function

to give a grade to the schedule. We define this as follows:
U

!

Grade = 0 (S) = r Pi£ (t£ - t/_l).
l=l

This grade is simply priority-weighted viewing time.

We also wish to have the viewing times displayed.
each i = i,..., n, we define

!

V(i) = Z tI - tl_ I.
i=i£

For

These quantities we would not wish to display, but it would be

advantageous to be able to call them up if desired. The following

six quantities should be displayed along with the schedule.

148

V(100) = E V(i),
i=101

213

V(200) = Z V(i),
i=201

335

V(300) = Z V(i),
i=301
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445
V (400) = Z V(i),

i=401
537

V (500) = E V(i),
i=501

V = V(100) + V(200) + V(300) + V(400) + V(500).

Note here that we are referring to the alternate numbering scheme
and not to i = i, ..., 178.

Another desired output is the weight sequence which produced

each of the m best subschedules for the time periods. This will

show the user which weights were more effective in generating

schedules, and will lead to beneficial changes in the weight

file. Eventuallythe number of entries in the weight file should

be much less than 54. If a weight is never used it would be

dropped from the weight file, where one which appeared many times

would be bracketed closely by other weights. Finally, an

effective weight file will result. This output could be presented

as an m-by-4 or 4_by-m matrix. It is worth pointing out that the

overall schedule S is not a function of one particular weight as

the subschedule for a time period is. Rather, the overall schedule

is a function of the whole weight file rather than one particular

weight. As a preliminary guess it seems plausible that each of the

parameters _, B, _, Y could have two specified values. This would

have the effect of cutting the running time of the program by

two-thirds by reducing the number of trial schedules from 54 to 16.
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VII. CONCLUSIONSAND RECOMMENDATIONS

In this section we discuss possible pitfalls in the program
as well as suggestions for beneficial modifications. It was hoped
that these matters may have been investigated after the algorithm
was functioning on the VAX computer. This, however, proved to be
impossible to achieve within a ten week period. A programmer has
been working on putting the algorithm in the computer, but it was
not functioning at the time this report was written. The single
attempt to run the program to date was less than auspicious. The
machine ran for nearly two hours without scheduling one target
observance and then stopped due to programming difficulties. An
examination of some of the quantities involved revealed, for
example, that A (t, i) and B (t, i) were computed to be the same
quantity, which was erroneous. Initially it was planned that the
method could be tested, then improved for two to three weeks.
Hopefully the following comments may be of assistance to anyone
attempting to use the methodology presented in this report, or any
part thereof.

One possible source of difficulty lies in the SELAG. In
step 3 of SELAG, the algorithm stops if there is no target available
at the current time. The MAINALG then proceeds to the start of
the next time period. Hence, if there was a "blank spot" in the
middle of a time period where no target was available, the whole
remaining portion of the time period would remain unscheduled.
This would become more likely towards the end of the mission when
more of the targets have their requirements satisfied. There are
various ways around this problem if difficulty occurs in practice.
For one thing, if there are many more targets listed than can
possibly be observed, then this problem is unlikely to occur since
the SELAG can always find a suitable target. Another method
would be to include in the files a bogus target labelled "wait"
which would be scheduled for one minute if nothing else was
available. The "wait" target would of course have to have variable
slew times for effective implementation. The comments about step 3
of SELAG apply equally well to step 3 of INSLA.

The DESAGmight also cause difficulties. It is conceivable
that the DESAG could unschedule a very long observation, thereby
ruining the schedule for the previous time period. This would be
as a result of the algorithm insisting on starting the initial
observance in a time period exactly at the start of the period
rather than adding any necessary slew time. This feature was
included at the suggestion of the project engineers who indicated
it was preferable to do all possible slewing during the Sun portions
of the orbits, thereby saving the valuable Shade portions for
viewing. There are ways around this problem if the difficulty
occur in actual use. For one, the DESAG could be eliminated.
Another approach would be for a secondary program that could be
used after this program that would fill in any gaps. For example,
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any gaps could be fed to SCHALGafter the program had been run.
A minor modification might be inserted specifying where the
telescope was going to end up at the termination of a gap. Such
a "scheduling over" method could be applied to the problem previously
discussed regarding SELAG and INSLA.

A feature which has been suggested is a variable requested-
time capability. It has been remarked that when a principal
investigator specifies a value of si, say for example 30 minutes,
that what is actually desired is at least 30 minutes, but as much
more as can be scheduled consecutively. If that turns out to be
a common occurrence, it would be advantageous to have the capa-
bility of entering a value of 30+ rather than 30 for si.

Another area of investigation we will label as "grouping".
The telescope mount has a capability of gimballing some 17 degrees.
It is preferable to use the gimbal mechanism whenever possible to
re-aim the telescope since it slews much faster, and it is more
efficient to utilize the telescope mount apparatus than to slew
by maneuvering the entire Orbiter. To take advantage of this
capability it would be first necessary to identify groups of
experiments which are in the same portion of the sky (i.e., within
17 degrees of a central point), and all of which can be viewed
during some specified time interval. These groups could be
identified by the use of some auxiliary software which would
examine the Observation Opportunity File and the Angular Distance
File. Once these intervals and groups are identified they can be
fed as time periods to SCHALG. It would also be necessary to make
an adjustment in the Slew Time File to compensate for the faster
slew rate of the telescope mount. The identified groups would then
be scheduled, using SCHALG, and then the remaining time periods
could be scheduled.
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