METALLIC ALLOY STABILITY STUDIES

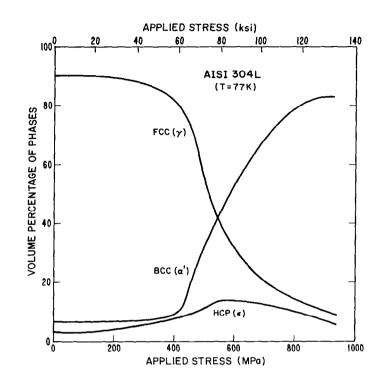
George C. Firth Lockheed-Georgia Company Marietta, Georgia

Т

An investigation into the dimensional stability of candidate cryogenic wind tunnel model materials was initiated due to the distortion of an airfoil model during testing in the Langley 0.3-Meter Transonic Cryogenic Tunnel. Flat specimens of candidate materials were fabricated and cryo-cycled to assess relative dimensional stability. Existing 2-dimensional airfoil models as well as models in various stages of manufacture were also cryo-cycled. The tests indicate that 18 Ni maraging steel offers the greatest dimensional stability and that PH 13-8 Mo stainless steel is the most stable of the stainless steels. Testing of more sophisticated "stepped" specimens will provide a basis for more conclusive comparisons.

Dimensional stability is influenced primarily by metallurgical transformations (austenitic to martensitic) and manufacturing-induced stresses. These factors can be minimized by utilization of stable alloys, refinement of existing manufacturing techniques, and incorporation of new manufacturing technologies.

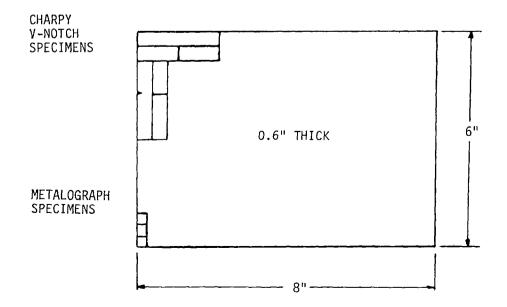
2-D AIRFOIL

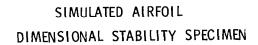


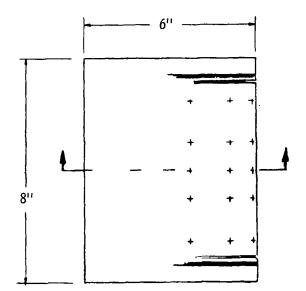
DISTORTION MECHANISMS

 METALLURGICAL TRANSFORMATION
 O AUSTENITIC TO MARTENSITIC (15-5 PH, 17-4 PH)

|`__.

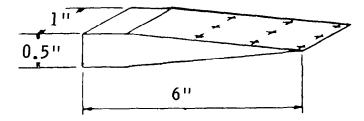

REDISTRIBUTION OF FABRICATION STRESSES
 O INFLUENCED BY GRAIN SIZE




STRESS EFFECTS ON MARTENSITIC PHASE TRANSFORMATION IN AN ANSI 304L STAINLESS STEEL*

^{*}From R. L. Tober, Materials for Cryogenic Wind Tunnel Testing, National Bureau of Standards, NBSIR 79-1624, 1980, p. 27.

BASIC DIMENSIONAL STABILITY SPECIMEN



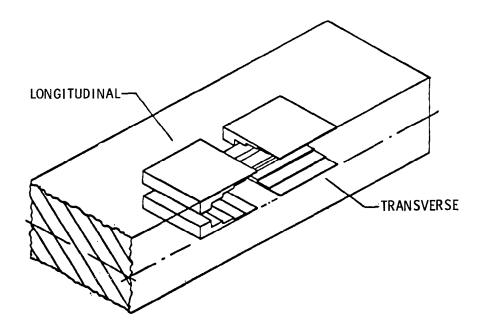
3. ____

DIMENSIONAL STABILITY WEDGE

COMPARISON OF CONVENTIONAL MACHINING (WORK INDUCED STRESSES) vs WIRE ELECTRO-DISCHARGE MACHINING (HEAT AFFECTED ZONE)

	Deviation after three cryogenic cycles			
Airfoil, material, design	Upper surface		Lower surface	
1027 airfoil, 347 stainless steel, brazed coverplate	high _low total	+0.0008 -0.0016 0.0024	high low total	
0014 airfoil, 15-5 stainless steel, bonded coverplate	high low total		high low total	
65-213 airfoil, 13-8 stainless steel, tongue and groove	high low total	+0.0011 -0.0005 0.0016	high low total	. –
5/8-in. by 5-in. by 8-in. sample, NITRONIC 40 stainless steel, tongue and groove	high low total	+0.0005 -0.0003 0.0008	high low total	

WARPING OF 2-D AIRFOILS OF VARIOUS MATERIALS AND DESIGNS


DISTORTION AFTER CRYO CYCLING

NITRONIC 40 (TONGUE IN GROOVE) SIMULATED AIRFOIL	0019		
15-5 PH (H 1025) (E.B.W. COVER PLATE) 67 SUPERCRITICAL AIRFOIL	,0023		
		DEVIATION FROM ABSOLUTE FLAT	
		BEFORE	AFTER
 NITRONIC 40 FLAT SPECIMEN (BONDED COVER PLATE) 	.0012	.0013	.0004
VASCOMAX 200 A	.0002	.0003	.0004
VASCOMAX 200 B	.0005	.0013	.0011
VASCOMAX 200 A (SIMULATED AIRFOIL)	.0010		
CUSTOM 450 (1 x 6)	.0009		
*ERROR IN MEASUREMENT SPECIMEN REPROCESSED	.0007		
12 NI SPECIMENS (.23 x 3 x 3)	.001		

STEPPED DIMENSIONAL STABILITY SPECIMEN

SPECIMEN ORIENTATION

ĥ

MATERIALS INVESTIGATED NITRONIC 40 15-5 PH VASCOMAX 200 CVN PH 13-8 Mo 347 STAINLESS STEEL CUSTOM 450 2024 ALUMINUM 12 NI STEELS

EURTHER_INVESTIGATIONS VASCOMAX 200 CVN PH 13-8 Mo A-286 9 NI STEEL HP 9-4-20 NITRONIC 40 12 NI STEELS AF 1410 300 SERIES STAINLESS STEEL 5000 & 6000 SERIES ALUMINUM COPPER ALLOYS NICKEL ALLOYS

FABRICATION TECHNIQUES

- A. FORGING
- B. CASTING
- C. POWDER METALLURGY
- D. DIFFUSION BRAZING
- E. DIFFUSION BONDING
- F. SUPER PLASTIC FORMING
- G. ELECTRO-DEPOSITING (PLATING)
- H. EDM-GRINDING & CHEM-GRINDING
- I. ELECTRO POLISHING

CONCLUSIONS

STABILITY

Å.

- 0 VASCOMAX 200 CVN
- 0 PH 13-8 Mo & A-286
- O AUSTENITIC STEELS (300 SERIES, NITRONIC 40)
- O DUAL PHASE ALLOYS (15-5 PH, AF 1410)

CONCERNS & PROSPECTS

- O CORROSION
- 0 SENSITIVITY OF ALLOYS TO MANUFACTURING, FABRICATION & HEAT TREATMENT PROCEDURES
- 0 12 NI STEELS & GRAIN REFINEMENT