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ABSTRACT

Four possible estimators are investigated for the monitoring

of crustal deformations from a combination of repeated baseline length

measurements and adopted geophysical models, particularly an absolute

motion plate model. The first estimator is an extension of the familiar

free adjustment. The next two are Bayesian type estimators, one weak

and one strong. Finally, a weighted constraint estimator is presented.

The properties of these four estimators are outlined and their physical

interpretations discussed.

A series of simulations are performed to test the four estimators

and to determine whether or not to incorporate a plate model for the

monitoring of deformations. It is concluded that it is preferable to

adopt even a weak but realistic model than none at all. In this case,

the weak Bayesian estimator (Best Linear Estimator—BLE) is preferred.

It filters the signal (deformations) from the measurement noise in an

optimal manner and, furthermore, is not overly sensitive to the errors

in the adopted geophysical deformation model.

The application of these estimations to the maintenance of a

new conventional terrestrial reference system is discussed. The

functions of the system are twofold. The first is to monitor the global

rotations and translations of the earth with respect to an inertial frame.

The second is to monitor the nonglobal motions or deformations of the

earth. The relationship between these two functions is outlined.
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1 INTRODUCTION

"Length, Breadth and Thickness take up the whole of Space.

Nor can Fansie imagine how there should be a Fourth Local

Dimension beyond these Three."

(John Wallis, 1685)

1.1 Background

The relatively new concept of a dynamic and deformable earth

and the recent availability of highly accurate geodetic measurement sys-

tems lead us to address the problem of how to establish and maintain a

suitable terrestrial reference system on such an earth. But first let

us review briefly the history and status of the present system (see

(Guinot, 1978) for a more detailed account) and how it came to be con-

sidered no longer satisfactory.

In the latter part of the 19th century, the existence of polar

motion was recognized. In order to monitor and correct for this

phenomena which as it turned out could vary station coordinates by

several meters, the International Latitude (ILS) was established in

1899. The fundamental concept was to remove the systematic errors in

the star positions from the latitude observations by choosing observa-

tories on the same parallel (approximately 39°08') with identical

instruments and procedures. Furthermore, it was assumed that the
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stations were motionless with respect to each other and without varia-

tions in their respective local plumblines. Thus, polar motion could

be determined in a consistent and well defined manner by assigning con-

ventional values for the initial latitudes of the five ILS stations.

This convention was adopted in 1967 by the International Astronomical

Union (IAU) and the International Union of Geodesy and Geophysics,

defining the Conventional International Origin (CIO) for polar motion.

The CIO pole definition, therefore, excluded the incorporation

of observations from other stations. However, the polar motion deter-

minations from only the ILS stations were not accurate enough particu-

larly in monitoring short-term variations. This became especially

apparent with the advent of new optical instruments and methods.

Therefore, in 1962 the ILS was reorganized into the International Polar

Motion Service (IPMS) which today provides pole coordinates at 0.05 year

intervals based on latitude measurements from about 80 stations with a

precision of about 1 meter. Here again a consistent set of initial

latitudes is required and furthermore weighting procedures are applied

since the quality of observations differ from station to station.

Therefore, the IPMS pole differs from the CIO pole.

The first axis of the present CTS is defined by the assigned

longitudes of about 50 time observatories of the Bureau International

de 1'Heure (BIH). The initial task of the BIH, created in 1912, was to

maintain a uniform time scale. This function evolved, in addition, to

monitoring variations in the earth's rotation rate. Since this

requires the pole position, the BIH began to compute its own polar

motion values, hence a BIH pole. Furthermore, the BIH began applying

2



corrections to its computations based on earth rotation variations esti-

mated from satellite Doppler and lunar laser ranging (LLR) observations

(Feissel, 1980). These observations, as well as those from the other

new space methods discussed below, are no longer referenced to the

directions of the local plumblines as are the optical instrument obser-

vations, but to terrestrial directions.

Thus, today one has the choice of several sets of earth orien-

tation parameters. The CIO pole adopted by the IAU and IUGG can no

longer be considered accessible and of practical use (Kovalevsky and

Mueller, 1981). The BIH provides the most frequent (five-day

averages) and precise estimates (approximately O'.'Ol (30 cm) for the pole

components and 1 ms (45 cm) for UT1). However, today's requirements

include estimates of polar motion every two days and variations in the

earth's rotation rate each day, both with an accuracy of 5 cm or better

(National Research Council, 1981). There is a further reason why the

present situation is unsatisfactory. By coincidence, in the same year

(1967) that the CIO pole was adopted, several scientific papers appeared

in two distinct areas that effectively render one of the fundamental

assumptions of the present system invalid.

The theory of continental drift was first proposed by Wegener

in 1912 although it was not accepted at the time by the scientific com-

munity (Wegener, 1924; Uyeda, 1978). This idea was reborn fifty years

later as plate tectonic theory. Culminating a previous decade of geo-

physical investigations (McKenzie and Parker, 1967) and one year later

(Morgan, 1968), advanced the hypothesis that the earth's lithosphere is



composed of rigid plates that are in relative motion along their

boundaries, over an under lying as thenosphere. According to this theory,

observations on the earth's surface are expected to have relative secu-

lar motions on the order of 1-10 cm per year, depending on which plates

the particular observatories are located. This, of course, invalidates

the CIO-BIH assumption of no relative motions between stations.

This theory alone did not in itself cause the IAU and IUGG to

defer their CIO decision because at the time such small secular motions

were lost within the noise of the available optical instruments. How-

ever, in that same eventful year results of the first experiments with

Very Long Baseline Interferometry (VLSI) were published (Broten, et al,

1967; Bare, et al, 1967). The opportunities presented by this measure-

ment system cover nearly all aspects of reference frame requirements

except the origin problem. First, recalling that radio interferometry was

initially developed for astrometric applications, it has the potential for

defining what is considered today, the most useful inertial reference sys-

tem based on an adopted catalogue of extra-galactic radio source coordi-

nates (Robertson, 1981). Second, it has the ability to measure interconti-

nental baselines with near centimeter repeatability (e.g., Herring,

et al, 1981), and can be expected to monitor the relative motions

between the observatories. Finally, it provides accurate estimates of

short term variations in polar motion and earth rotation (e.g.,

Robertson, et al, 1978; Fanselow, et al, 1978). VLSI together with the

other modern systems developed over the last 10-15 years, Satellite

Laser Ranging (SLR) - (e.g., Smith, et al, 1978), LLR (e.g., Mulholland,

1978) and the Global Positioning System (GPS) - (e.g., Fell, 1981) all
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having the potential to meet the present earth orientation accuracy

requirements, mark the urgency of defining a new reference system.

The geodetic community reacted quickly to these developments in

theory and instrumentation and since that time the problem of defining

reference systems for a deformable earth has been the impetus for much

activity. Two IAU colloquia (Kofeczek and Weiffenbach, 1975; Gaposchkin

and KoZaczek, 1981) have been entirely devoted to this topic and sum-

marize developments in this area. A general consensus has emerged on

how to remedy the present situation which will serve as a guideline

tor this investigation.

It is generally agreed that two reference systems are needed.

The first, using the nomenclature of (Mueller, 1981), is a Conventional

Terrestrial System (CTS) in which positions and deformations on the earth

could be described. The second is a Conventional Inertial System (CIS)

to which the rotations and translations of the CTS could be referred.

The first one is the focus of this investigation.

The problem on the deformable earth is to establish an adequate

representation of the earth's crust both spatially and temporally. We

will follow the kinematic approach as outlined, for example, in

(Gaposchkin, 1981; Kovalevsky and Mueller, 1981) which is the most con-

ceptually simple and unambiguous. As in the CIO-BIH system, the CTS

should be attached to observatories on the earth's surface. However, in

the new system the stations cannot be assumed to be motionless with

respect to each other. Furthermore, they should not be tied to the

direction of the local plumblines but rather to directions tied to



the crust. These stations define a polyhedron whose edges or baseline

lengths are accurately and directly estimable from VLBI and laser

ranging observations. An adopted set of coordinates for these stations

at an arbitrary initial epoch define what will be termed the fundamen-

tal polyhedron. Implicit in the coordinates of its vertices are con-

ventional spatial Cartesian axes that define the reference frame. These

are accessible at any epoch through global transformations (rotations

between the true frame to which the nutations refer, and translations

with respect to the initial origin). The problem is to relate the

rotated, translated and deformed polyhedron at a later epoch to the

fundamental polyhedron, or equivalently to both the CIS and CTS.

Therefore, the functions of the CTS stations are twofold. First, an

extension of the present BIH system is to monitor those motions common

to all points on earth (the polyhedron - CIS connection). The second

function is to monitor what is left, i.e., the deformations of the poly-

hedron (the polyhedron - CTS connection). Therefore, by definition, the

deformations do not contain any common rotations or translations (that

are statistically significant).

It is conceptually possible to directly monitor the orientation

parameters between the CTS and CIS frames simply by 3 rotation angles

between two purely kinematical reference frames (the CIS frame being

defined by a unit sphere polyhedron of extra-galactic radio sources -

Gaposchkin, 1981). These rotations include the combined effects of

precession, nutation, polar motion and earth rotation. However, since

precession and nutation can be computed quite accurately from adopted

earth models, it is preferable to model these effects. The earth
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orientation parameters (polar motion and earth rotation) which at this

stage cannot be modeled adequately are estimated through observations.

Of course, any errors in precession and nutation as well as common rota-

tions due to plate motions will be absorbed in these parameters. The

latter could occur from an inadequate distribution of observing stations

(for example, all stations on one plate). Considering that the require-

ments for earth orientation parameters call for 1-2 day resolution at

the subdecimeter level, near continuous observations are required. How-

ever, since these parameters are global, it is possible that only a

subset of the CTS stations will have to participate on a regular basis.

The orientation of the CTS reference frame axes are quite arbi-

trary. However, it is widely agreed that efforts should be made to

maintain continuity with the BIH system. This could be accomplished

most simply through VLSI observations as will be described in Chapter 2.

Similarly, the origin could be defined arbitrarily but it is preferable

that it be at the center of mass of the earth, as determined by satel-

lite or lunar laser observations. Changes in the center of mass could

be determined in the same way, or by absolute gravity measurements

(Heiskanen and Moritz, 1967; Mather, 1973; Moritz, 1979; Zielinski,

1981).

For the monitoring of deformations, it is anticipated that dis-

placements due to the tidal potential and loading effects can be com-

puted to within centimeters and therefore will be modeled (Mueller,

1981). Furthermore, although the stations should be located on stable

regions of their respective plates, any possible site stability prob-

lems should be monitored by on-site instruments such as gravimeters and
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by local geodetic networks, particularly using GPS interferometry

(Counselman and Shapiro, 1978). The deformation monitoring functions

of the CTS stations, then, will primarily be directed to interplate

motions. As for modeling plate tectonic motion, this is a controver-

sial question since it is uncertain whether the average long-term plate

motions inferred from geophysical and geological data relate to current

rates of motion. The adoption of a plate model has been advocated most

strongly in (Bender, 1974; Bender and Goad, 1979; Bender, 1981) and

will be addressed quite extensively in this investigation.

The fundamental polyhedron as defined by the adopted CTS station

coordinates at an initial epoch has a certain size and shape. At a

later epoch, the deformed configuration is completely determined from

the changes in the baseline lengths which are thus the key to monitoring

deformations. Since the CTS at any epoch is defined by the coordinates

of all the stations, and considering that deformations due to plate

motions are predicted at the decimeter per year level, only periodic

re-observations of the baseline lengths need to be taken but from all

stations (including the ones that monitor earth orientation on a regu-

lar basis).

The realization of the CTS should have low sensitivity to

changes in the distribution of the observing stations and in the fre-

quency of observations from individual stations, considering that the

number of stations and observations is likely to change from time to

time. It should avoid as much as possible any dependence on geophysi-

cal hypotheses although it is recognized that the CTS will require some

8



geophysical information, for example (earth tide or plate motion para-

meters as mentioned above). The definition of the CTS, however, should

not depend on this information.

The definition of the reference system should be compatible with

simple operational descriptions of how the system should be utilized.

There should be established procedures or algorithms for acquisition,

reduction, and application of observational data. This includes the

adoption of earth models and fundamental constants to be adhered to in

all computations.

1.2 Purpose and Objectives

It now appears that a new CTS (and CIS) will soon be estab-

lished possibly (and hopefully) as an outcome of the upcoming 1983

MERIT (to Monitor Earth Rotation and ̂ ntercompare the T_echniques of

observation and analysis) main campaign (Wilkins, 1981). In anticipa-

tion of this event, this investigation addresses certain aspects of the

problem of how to define and maintain a new CTS on the deformable earth.

The approach to be followed in this investigation, using as

guidelines the consensus described in the previous section, is outlined

in Fig. 1. The fundamental polyhedron and the reference frame are

defined at an initial epoch t.. by the adopted (fundamental) coordinates

X of a particular set of stations. The coordinates are to be esti-
C0

mated from a dedicated observation campaign of VLBI, SLR, LLR and pos-

sibly GPS stations as described in Chapter 2.

The level I stations include a dedicated subset of the CTS

observatories which monitor earth orientation parameters (EOF) on a

9
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continuous basis. The polar motion and earth rotation parameters are

averages over say 1-2 day periods as indicated by the short intervals in

Fig. 1. They are rotations between the true frame to which the nuta-

tions refer and the reference frame axes defined by X . In order to
C0

insure that these parameters continue to refer to the same set of axes,

the deformations of the polyhedron need to be estimated periodically but

from measurements at all the CTS stations (level II) as indicated by

the shaded portions of Fig. 1. For example, at the end of observation

interval A, the deformations AX are estimated as will be described in
tO

Chapter 3 and are then added to the fundamental coordinates X to
0

define the CTS for the next observational period B . In this way, the

reference system is maintained, i.e., the earth orientation parameters

refer to the same reference frame defined by X . As indicated by the
tO

addition of the terms in brackets to X , we allow the possibility of
C0

updating the station coordinates on the basis of an adopted plate motion

model. This could also be viewed as a correction to be added retroactively

to refine the earth orientation parameters estimated over interval A. It

should be mentioned that the number and distribution of the CTS stations

of level I can vary without affecting the reference system, assuming

that the deformations are estimated from a well distributed network of

level II CTS stations.

As mentioned in the previous section, any changes in the earth's

center of mass, relative to that defined by X , can be determined from
tO

satellite dynamics or absolute gravity measurements. In addition, a

scale parameter which would represent an expansion or contraction of the

11



earth could be determined from re-measured baseline lengths or from

gravity observations (Heiskanen and Moritz, 1967). Both the transla-

tional and scale parameters unlike the rotational ones, would have to be

monitored from a well distributed global network, preferably from all

CTS stations.

It should be clear that the reference frame defined by X , once
C0

chosen, does not change. It can be thought of as fixed to the initial

(at t_) positions of the CTS stations (the fundamental polyhedron). The

frame, therefore, consists only of a set of spatial Cartesian axes with a

particular orientation and origin. It is the reference system that is

changing and moving with the deformed polyhedron. The fundamental poly-

hedron-CIS connection is given by the EOF. The fundamental

polyhedron-CTS (deformed polyhedron) connection is given by the esti-

mated deformations. Therefore, the CTS and its frame coincide in

general only at the initial epoch. However, the CTS is not only a set

of changing station coordinates. It must contain a well-defined

description of anything that would influence these coordinates. This

includes, of course, X (the reference frame), the CTS stations, adopted
tO

earth models (precession, nutation, tides, plate tectonics, etc.) and

related fundamental constants, parameter estimation models and estab-

lished procedures for all CTS operations as mentioned in section 1.1.

The purpose of the CTS, then, is to make the reference frame accessible

to the user who can then determine positions and detect motions of the

earth.

12



It is useful to present here an excerpt from the concluding com-

ments from the 56th IAU Colloquium (Gaposchkin and Kolaczek, 1981) as

summarized by Kovalevsky and Mueller. These points concern the actions

required before final decisions are made with regard to the new CIS.

They include

1. Selection of observatories whose catalogue will define the CTS.

2. Initiation of measurements at the observatories.

3. Recommendation on the observational and computational mainte-

nance of the CTS (e.g. permanent versus temporary and repeated

station occupations, constants to be used).

4. Decision on how far and which way the earth deformation should

be modeled initially.

5. Plans and recommendation for the establishment of new interna-

tional services to provide users with the appropriate informa-

tion regarding the use of the CTS frame.

The objectives of this investigation address certain aspects of points

1, 3 and 4 listed above. The primary focus will be on the choice of

algorithms for the estimation of earth deformations and how this relates

to the estimation of earth orientation parameters and the maintenance of

the CTS (point 3). The choice of algorithm will depend on the question

of whether or not plate motion models will be adopted. An attempt is

made to answer the question of whether adding a model will improve the

deformation monitoring capabilities of the system (point 4). This will

in turn influence somewhat, as will be investigated, the selection of

observatories whose coordinates will define the CTS (point 1).

13



1.3 Organization and Scope

Chapter 2 discusses the definition and maintenance of the CTS.

A method is outlined for estimating the coordinates of the fundamental

polyhedron from a network containing different measurement systems.

Next, the separation of global and deformation parameters is addressed,

that is the polyhedron-CIS and polyhedron-CTS connections. An example

with a VLBI network is given for which a particularly suitable para-

meterization for CTS operations is proposed. Different approaches are

discussed for maintaining the reference frame. A set of constraints

are derived that maintain a discrete Tisserand's mean axes of crust.

The physical implications of adopting an absolute plate motion model

are described.

In Chapter 3, four estimation algorithms are presented for the

analyses of polyhedron deformations. Two are chosen from the class of

biased estimators considering the inherent singularity in maintaining a

reference frame solely from geodetic observations. Two conditionally

unbiased estimates are then presented. The optimal properties of these

four estimators are outlined as well as their physical meaning. All are

able to deal with the incorporation of geophysical data, particularly

provided by an adopted plate tectonic model. In fact, three of the

estimators require some a priori deformation information in addition to

the geodetic observations. Finally, least squares collocation is

applied to deal with the addition or temporary loss of several CTS sta-

tions .



In Chapter 4, numerical tests are performed to gain a better

appreciation of the optimal properties of each estimator. The main

thrust of these tests is to determine the best deformation estimation

algorithm, of the four presented in Chapter 3, for combining geodetic

and geophysical data. In anticipation of the planned MERIT main cam-

paign scheduled for 1983-84, we extend the optimal polyhedron design

analysis of (Mueller, et al, 1982). There it was assumed that no geo-

physical model for deformations is available. Here, we study the

effects of adopting an absolute motion plate model.

The appendices outline some recent results in the approximate

theory of optimal design which are applied to the polyhedron design

problem. In addition, several results are presented dealing with

weighted pseudoinverses.
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2 DEFINITION AND MAINTENANCE OF THE CTS

2.1 Introduction

In this chapter, a method is outlined to separate global and

deformation parameters in the maintenance of the CTS. Recall that

it is necessary to monitor the deformations and update the initial coor-

dinates of the CTS stations so that the transformation parameters (glo-

bal rotations and translations) will always refer to the same reference

frame. In order to do this, either some constraints are needed to

insure that the deformations indeed do not contain any global motions,

or some external information on the expected deformations is required.

Both of these approaches are discussed. In the former, the reference

frame axes are seen to be a discrete version of a Tisserand's mean axes

of crust. In the latter approach, the reference frame axes are fixed in

that part of the earth to which the a priori deformations refer, for

example the mantle when using absolute plate motion models. We begin

with a method to estimate the fundamental coordinates X_ (we drop the

subscript t of Chapter 1) that define the reference frame.

2.2 Definition of the CTS Frame

As discussed in Chapter 1, the main need for a new CTS comes from

the anticipated accuracy of the new geodetic measurement systems and
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subsequently their ability to monitor deformations of the magnitude pre-

dicted by plate tectonic theory. The systems can be divided into base-

line methods and coordinate methods. In the former, primarily

interferometric methods such as VLBI and GPS interferometry, the origin

of a terrestrial coordinate system is not sensed by the observables.

The smallest unit for this type of measurement is a baseline (hence,

baseline method) although it is a triangle for earth orientation analy-

sis (Bock, 1980). The estimable parameters are baseline lengths and

variations in earth orientation (relative to a well-defined initial

orientation, i.e. a CTS frame).

The coordinate methods include SLR, LLR and GPS in the Doppler

and pseudo-ranging modes (e.g., Fell, 1980). The basic unit for these

systems is one station. An origin is sensed and thus these systems

provide Cartesian coordinates. SLR observations are sensitive to polar

motion variations but basically insensitive to variations in earth rota-

tion (Van Gelder, 1978). On the other hand, LLR observations are sensi-

tive to all three earth orientation parameters but particularly to

variations in earth rotation (Calame, 1982).

In all of the new systems, though, coordinates (or in the case

of interferometry, coordinate differences) are inseparable from earth

orientation parameters. This means that to estimate coordinates (or

coordinate differences) an external source of earth orientation is

required and vice versa. By using BIH earth orientation values the CTS

frame can be made continuous with the present BIH frame at the initial

epoch as will be described below.
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Considering the different measurement systems available, it will

be necessary to merge several networks, each one defining essentially its

own reference frames both CIS and CIS, into a common set. Suppose the

relations between two CIS's is

x11 = R1(a1)R2(a2)R3(o3)x
1 (2'2~1}

Similarly, the relation between two CTS's is

X11 = R (S)B (3)R(3)XI (2.2-2)

The transformation from CIS to GTS is (Mueller, 1969)

x1 =sW
(2.2-3)

where common nutation (N) and precession (P) matrices are assumed to be

used in both techniques. The earth orientation matrix is given by

S = R2(-C)R1(-n)R3(6) (2.2-4)

in which £,n are the coordinates of the pole and 6 is the Greenwich

Apparent Sidereal Time. After some reduction and neglecting

second-order terms, we have from (Mueller, et al, 1982)

(2.2-5)

-A£ = -(S1-^11) = -B2 ~ cosine + Ct2cos0 (2.2-6)

WAUT1 = WOJT11 - DTI11) - - 33 + a3 (2.2-7)
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where W is the ratio of universal (UT1) to sidereal time. By station

collocation, i.e., maintaining different instrument types at common

sites, one determines the CIS difference ($ angles). Then through the

earth rotation parameter differences one finds the CIS differences (a

angles). This indirect approach has been suggested by (Kovalevsky,

1980). The determination of the CIS differences is treated in (Mueller,

et al, 1982).

In the following, a method to estimate the CTS differences and

simultaneously to define the CTS frame based on the estimation of a

unique well-defined set of coordinates for the fundamental polyhedron is

outlined. Suppose that one baseline method, VLBI, and two coordinate

methods, SLR and LLR, are to participate in a campaign to estimate the

fundamental global spatial Cartesian coordinates, X.. VLBI observations

are insensitive to the initial orientation of the CTS frame, making

coordinate differences and earth orientation parameters (polar motion

and UT1) inseparable. In practice, this dependency is broken by ini-

tializing earth orientation over, say, the first day of observations of

a particular campaign. As shown, e.g., in (Bock, 1980), the estimation

of baseline components is then biased by this initialization but in this

case the bias can be used to our advantage. Continuity with the pres-

ent terrestrial system can be achieved by the input of BIH polar motion

and earth rotation values for the initial step. In this way, at the

fundamental epoch t_ the new CTS frame can be aligned with the BIH frame

through the estimated VLBI coordinate differences (within the errors in

the BIH values). The first axis (x) of the BIH frame is in the direc-

tion of the Greenwich mean astronomic meridian and the third axis (z) is
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towards the average (mean) north terrestrial pole. The second axis (y)

completes a right-handed global spatial Cartesian coordinate system.

From the SLR or LLR estimated coordinates, the origin of the CTS frame

could be made geocentric.

One is then led to the following three sets of transformation

equations from which X. can be estimated

(2.2-8)

"0

-83

33 ~82

p Bx

x

•0 Y3 -Y2"

-Y3 o Y-L

Y2 -YX o _
<Vs (2.2-9)

(Vv - <Vv (2.2-10)

The first set (2.2-8), one for each LLR station, has as observations X,
Ti

the geocentric coordinates of site i . The parameters are the CTS

LLR site coordinates (X ) , three rotation angles 3-j» 32» 3o (connecting

LLR to VLBI), a scale factor c- (LLR to VLBI) and three translation

parameters 6.., 6-, 6 (LLR to SLR origin). For the second set (2.2-9),

the parameters are the CTS SLR site coordinates (X.) , three rotational
1. o

angles j , y , j (SLR to VLBI) and a scale factor c (SLR to VLBI).

For the third set (2.2-10), the parameters are the VLBI site coordi-

nates (X ) , and the observations are any independent subset of coordi-

nates differences AX^ from the VLBI estimated parameters. Different
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combinations of equations (2.2-8) to (2.2-10) could be formulated

although those given here reflect today's situation (origin defined by

SLR, orientation and scale by VLBI). Additional sets of equations could

be added for other measurement systems (e.g., GPS). Considering (2.2-8)

to (2.2-10) as observation equations and computing a weight matrix from

the covariance matrices of the laser ranging and VLBI adjustments, one

could then perform a least squares adjustment to estimate KO, a consist-

ent set of CTS coordinates (at the collocated sites (X ) = (X ) =i Li x o

(X ) is constrained) that would define the new reference frame. It

would be geocentric and aligned with the BIH frame at t_.

2.3 Separation of Global and Deformation Parameters

As mentioned in the previous section, all the available modern

measurement systems suffer from the position-orientation inseparability

problem which is inherent in all strictly earth based observations.

However, it is required for the definition of the CTS to estimate peri-

odically station coordinate changes (deformations) which are free from

global rotations and translations. In order to separate global motions

and deformations one approach is the addition of a set of constraints to

overcome the singularity problem. These constraints are derived in the

next section.

Without any external information of expected deformations, one

is led to a free adjustment with orientation parameters of which several

approaches are possible (Fritsch and Schaffrin, 1981). Here a two step

analog to the "classical approach" is presented. First, the earth
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orientation parameters are eliminated, more precisely those motions com-

mon to all stations. Then, the deformations are estimated from periodi-

cally repeated measurements of the baseline lengths by minimizing a

weighted norm in the parameter space of coordinate changes. Simul-

taneous adjustments (one step approaches) have been proposed for single

measurement types particularly VLBI (Cannon, 1979; Manabe, 1982). An

example, with a VLBI network will help elucidate these ideas.

Consider the basic VLBI mathematical model as given in (Bock,

1980). For baseline i-j observing source 1 at epoch k the path dif-

ference (time delay times the speed of light) which the incoming signal

must travel after its reception at station i till its arrival at

station j is given by

= -[AXij Ayij Azij

cos60cosa
JG X/

cos6 sina
Xf Xr

sin6.

]

1 0

0 1

cos6, sin0, 0k k

-sin6, cos 6, 0k k

(2.3-1)

c(ACQ

where (a,6) are the source coordinates, ACn»Ac, are clock parameters

and c the speed of light. As mentioned above, the coordinate dif-

ferences Ax, Ay, Az and the earth orientation parameters of polar

motion (£,ri) and earth rotation (6) are inseparable. This can be seen

by an examination of the linear relationships between the coefficients

of the design matrix A
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AP = AxA. - AzA .£ Az Ax

A = -AyA. + AzA. (2.3-2)
TI J Az Ay

A. = -AyA. + AxA.
8 3 Ax Ay

where the A's denote the partial derivative of the observable with

respect to the subscripted parameter which can be found in (Bock, 1980).

There, a different parameterization is proposed in which the total

observation period is split up into earth orientation steps. For the

m'th step, 3 rotation angles £ - E,, n - r|,, 0 - 6, are estimated,
m 1 m 1 m 1

relative to one fixed step, where £ , fL , 9, are input into the adjust-

ment as determined from external sources (e.g., BIH values). That is,

the earth orientation parameters are averages over certain time inter-

vals (e.g., 1 day averages). One set of coordinate differences are also

estimated for the entire observational period. This parameterization is

useful in some situations, one was mentioned in the previous section.

However, it is particularly unsuited for CTS operations since the func-

tion of the CTS is to separate earth rotation variations and station

displacements in a well-defined manner. In this parameterization, it is

difficult to maintain orientation continuity and furthermore the size

and distribution of observations of the first step are arbitrary. More-

over, this fixed step biases the estimation of coordinate differences by

any errors dE. , dr|, , d6 in the external earth orientation information

according to

(2.3-3)

"dl"

de

.da.

=

"dAx"

dAy

.dAz.

+

0 d0, -dEn1 1

-d91 o dnx

. d£ -dn, o .

Ax

Ay

.Az.
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where T, e, a are the "biased" baseline components (Bock, 1980)

The one step free adjustment approach for VLBI is as follows.

Consider the parameter vector

Xl

X,,

-X3

(2.3-4)

where 2L. represent the coordinate changes, X. the earth orientation

parameters (3 per step) and X, other "non-geodetic" parameters such as

the right ascension differences (a -a ), declinations (6 ) and clock

parameters (Cn,C,) appearing in (2.3-1). The normal equations can be

written as

(2.3-5)

"Nll N12 N13"

N12 N22 N23

T
N N N
LW13 K23 33J

"Xl

X2

-X3-

=

V
U2

-U3-

where

AjpAj

Ui * VLi

(2.3-6)

(2.3-7)

P is the weight matrix of the observations L . These are rank defi-

cient by six due to the origin (VLBI is insensitive to an origin) and

orientation (coordinate-orientation inseparability problem) defects.

One proceeds in ̂ two steps. First, the orientation and model

parameters are eliminated such that
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V
-X3.

"N22 N23~

-N23 N33-

-1 V
-U3-

"N12"

-Nl>

xl (2.3-8)

Note that only the Cayley inverse is required in this step. Next, and

most generally, a weighted norm is minimized

I|X||M (2.3-9)

where M is a weight matrix constructed from an adopted deformation

model as described in Chapters 3 and 4. Denoting

N

U

"N22

T
N23

N22

T
.N23

N23

N33

N23

N31

-1

-1-

'"L"
T

U2

.U3.

(2.3-10)

(2.3-11)

the coordinates of the CTS stations are estimated by (see section

3.3.1.2)

3L = M~1N(NM~1N)+U (2.3-12)

where + denotes the pseudoinverse. Here the matrix M is assumed to

be positive definite, the more general case of a positive semidefinite

M is treated in Chapter 3. If there is no a priori information model,

i.e., M = I

+= N U (2.3-13)
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the ordinary pseudoinverse solution. This choice of M-norm for X. is

equivalent (see the next section) to defining a discrete Tisserand's

mean axes of crust. Instead of using the pseudoinverse to compute X-,

a set of constraints derived and explained in the next section could be

augmented to the set of normal equations. In the second step, X~ and

X^ are estimated by (2.3-8).

As mentioned above, several other norm choices are possible.

Some of these including the "classical" approach presented here are

applied in (Dermanis, 1977,1981; Manabe, 1982) although in the less

general case of M = I. Other approaches are possible, too. One might

consider X. as a random variable vector and X- and X,, deterministic.

This would lead to a least squares collocation approach (section 3.6).

Other combinations are possible. In order to circumvent choosing from

all these different possibilities, the number of which indicates the

problems encountered from the coordinate-orientation inseparability

problem, an analogous but unambiguous approach is outlined below. It

takes into consideration that the X.. parameters need to be monitored

periodically from all CTS stations while the X. parameters must be

monitored continuously from possibly a subset of the stations. Fur-

thermore, the impractical simultaneous adjustment of several observa-

tion types (e.g., VLSI, SLR, LLR) is avoided.

Consider the following two step approach continuing the VLBI

network example. Once the fundamental coordinates Xn are adopted, the

following parameterization is particularly suitable for the first step

of monitoring earth orientation. Instead of parameterizing the coordi-

nate differences that appear in the mathematical model of equation
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(2.3-1), we parameterize baseline lengths for the set X-. The set X«

includes 3 orientation parameters per step (e.g., one day earth orien-

tation and two day polar motion averages), but in this case there is no

need to fix one step. These earth orientation estimates are with

respect to the defined reference frame axes implicit in the CTS coordi-

nates that are input into the adjustment. Thus, continuity in orienta-

tion is maintained consistently even with a gap in the observations and

no bias is introduced as in the previous parameterization.

The partial derivatives for the baseline lengths (the X.. set)

can be derived from the coordinate difference partials

"Ax
ij

cos6-cos(0 -OL,)

S*AAy..

Az, = -sin6

Then,

9Ax 8Ay SAz

(2.3-14)

(2.3-15)

The baseline vector can be written as

COSOS COS3

cosa.sin3

sinou,

where a and 3 are baseline direction angles, from which

(2.3-16)
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3Ax Ax
ao
 3 " cosct,.cos3 - -s-1 (2.3-17)
11 11

3Ay Ay
-r̂ r1 • cosa cos|3 - -fil (2.3-18)
OX. 1J 1J X.

3Az Az

so that

A. = [A Ax.. + A Ay + A Az ]/£ (2.3-20)

All the other elements of the design matrix A are the same as in the

coordinate difference adjustment (Bock, 1980).

Th'is parameterization allows a clean separation of rotation and

deformations. The baseline lengths (X.̂  can detect any possible

short term deformations but recall that only a subset of the CTS sta-

tions is observing. Although some have argued that VLBI observations

are sufficient for monitoring earth orientation (e.g., Gaposchkin,

1981) other measurement types will most likely be involved, too. In

that case, the CTS coordinates input into, say, SLR observation adjust-

ments, define the reference frame to which the earth orientation para-

meters refer. Recall that a consistent set of polyhedron coordinates

at the initial epoch would be determined from several measurement sys-

tems as outlined in section 2.2. These coordinates are updated

periodically using the deformations estimated from the second step of

this approach (see below), in order that the earth orientation
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parameters of the first step refer always to the same reference frame.

Thus, the coordinates of the stations are never included as parameters

for the earth orientation adjustments of any participating measurement

system. In this baseline length-orientation angle parameterization,

the orientation angles include any common rotations of the crust due to

plate motions relative to the mantle (although this is not expected as

discussed below). The baseline lengths may include a global expansion

or contraction. These types of motion will be absorbed in the CTS by

definition (Kovalevsky and Mueller, 1981).

For the periodic monitoring of deformations, the parameters of

interest are the baseline lengths (X.) of the deformed polyhedron

defined by all the CTS stations with possibly different measurement

systems. The baseline lengths contain only deformation information

since they are independent of coordinate system (assuming that the

coordinate system is not changing over the interval of time in which

the baselines are estimated, for example, over a long arc laser ranging

solution). They indicate the change in size and shape of the polyhedron

relative to the fundamental polyhedron. Furthermore, the baseline

lengths are the only strictly estimable parameters from all the dif-

ferent measurement systems and also the most accurate ones. The proce-

dure, then, is to pool the baseline length estimates from the separate

adjustments of the respective measurement systems, along with their

covariance matrices. In a second adjustment, which is the subject of

Chapter 3, the deformations of the CTS stations can be estimated by com-

paring the deformed baseline lengths to their initial epoch values.
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It is in the second adjustment that a plate motion model could

be introduced to improve the estimation of the deformations, and to test

its consistency with the geodetic observations. If no plate motion

model is adopted, then in order to maintain the CTS,a set of constraints

is required in the estimation of deformations to insure that they

include no global motions. These are derived in the next section and

are generalized to include geophysical models of deformations. In

the presence of such models, other approaches to maintain the CTS will

also be described.

2.4 Approaches to Maintaining the CTS

2.4.1 Reference Frame Constraints - Geometrical Approach

The reference frame axes at an initial epoch are conventionally

defined by the adopted coordinates of the CTS stations (the fundamental

polyhedron). At a later epoch, the deformed polyhedron will similarly

define a different set of axes. In order to maintain a consistent

reference frame one approach is that these two sets of axes are con-

strained to differ by only global transformations as least in some

weighted least squares sense. In this section, the constraints for

this approach are derived from geometric considerations.

At the fundamental epoch the polyhedron coordinates are given

by the initial coordinates X_. At a later epoch, the new coordinates

X from which global rotations and translations have been either modeled

(precession and nutation) or estimated (polar motion and earth rotation)

and removed, differ from X~. Furthermore, any translations due to
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changes in the center of mass have been corected for. Any remaining

differences between these two sets of coordinates are due to deforma-

tions. The constraints necessary to insure that the reference frame

axes implicit in X and X are equivalent can be derived as follows

(expanding on an example in (Leick and Taylor, 1980)). Consider that

the two sets of coordinates for station i

V

yo

-Z0-

V

yl

.zl-

(2.4-1)

are still related through 3 infinitesimal rotations a,, a2» a, and

3 translations <$-, 6«, 6_ by

yl

z.

xo
yo
zo

+

i

V
«2

«3

(2.4-2)

The scale problem will be addressed at a later stage. Here the assump-

tion is that any scale differences between the various systems have been

determined and reconciled as in section 2.2. The above equations can be

rewritten as 3 observations equations per station

+ V (2.4-3)

xl

yl

Zl_

-

xo
yo

.Z°.

=

'O -ZQ y0 1 0 O"

zo ° ~xo ° x °
- y 0 X Q 0 0 0 1 ^

"of
<x2

c»_U3
61
62
63

where V is the noise vector. In matrix form,
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L = AX + V (2.4-4)

The "observation vector", L includes the changes in the coordinates

with respect to the initial epoch, i.e., the deformations. The "para-

meter vector", X includes the common rotation and translation com-

ponents (what is left after removing precession, nutation, center of

mass changes, etc.). Introducing a weight matrix P for the observa-

tions we arrive at the standard least squares estimate (Uotila, 1967)

X = (Â Wr̂ PL (2.4-5)

In order for the reference frame implied in X. and X- to be maintained,

it is required that X = 0. This occurs in two non-trivial cases.

First, when L = 0, which would occur only for a rigid earth (within the

observational noise). The second, more interesting case would be when

ATPL = 0 (2.4-6)

Now, let us reconsider the problem. In reality, the deforma-

tions are the parameters to be estimated so that (2.4-6) becomes our

reference system maintenance constraint

CMX - 0 (2.4-7)

Consider M as a weight matrix derived from an adopted model for sta-

tion deformations as described in section 4.2. It defines a weighted

norm in the parameter space

|| X || = (XTMX)1/2 (2.4-8)
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The former design matrix A is now the constraint matrix C which has

the following form

Sl S2 •" Sp

I I ... I
(2.4-9)

where

0

zo

:yo

-zo
0

xo

yo

-xo
0

(2-4-10)

I is the 3x3 identity matrix and p is the number of polyhedron sta-

tions. To understand the significance of (2.4-7), let us assume for a

moment that M is diagonal and the weight for the i'th station is m .

The constraints can then be divided into two sets

p
S m.

P
Z m ±

0

£o

."yo

1

0

0

~zo
0

xo

0

1

0

yo

~xo
0

0

0

1

Xi ~ X0

y i ' y o

. z i " 2 o.

x i - x o
y i - y o

A" 'O.

= 0 (2.4-11)

» o (2.4-12)

These constrain, respectively, the orientation and origin defined by X-

and X. to coincide, in the weighted least squares sense.

Consider again the original problem. We know that the standard

least squares estimate has the property that

V PV = minimum (2.4-13)
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Since X = 0, it follows from

V PV = L PL - X U (2.4-14)

that

L PL = minimum

In our reversed problem this implies that

.

X MX = minimum

(2.4-15)

(2.4-16)

i.e., a minimum norm solution.

Thus, in the general case, we can say at this point that the

reference frame axes are fixed in the earth's crust, through a discrete

number of CTS stations, in a minimum M-nonn sense. In the next chapter,

we present estimation techniques that incorporate these constraints.

The constraints (2.4-7) are given above in terms of global

spatial coordinates. Let us express them in a local geodetic system

(u,v,w) where the u-axis is positive north along the geodetic meridian,

the v-axis is positive east and w-axis in the direction of the ellipsoi-

dal normal. From (Rapp, 1976), the relation between the two systems is

given by

Ax

Ay

Az

(2.4-17)

where <}> , X are the geodetic coordinates of station i . Assuming

again that M is a diagonal matrix and approximating the ellipsoid by
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a sphere of mean earth radius, we arrive at the two sets of constraints

p
£ m.

P
Z m.

=1

sinX -sincficosX 0

cosX -sin<j>sinX 0

0 cos<() 0

-sin4>cosX -sinX cos<J>cosX

-sin<f>sinX cosX cos({>sinX

coscj) 0 sin<{>

L

i

u

V

(w)

u

V

w

= 0 (2.4-18)

0 (2.4-19)

that correspond to (2.4-11) and (2.4-12), respectively. The constraints

(2.4-18) correspond to those given in (Bender and Goad, 1979; Bender,

1981). The w coordinate (which indicates geometric height) is in

parentheses since it appears in the matrix multiplication. This means

that an infinitesimal rotation only causes horizontal coordinate changes,

i.e., the height is insensitive to such rotations. However, the

opposite is not correct. Rotation is sensitive to height changes, the

proof of which is due to an unpublished manuscript of S. Y. Zhu and is

reproduced here. This will indicate that the constraints (2.4-18) and

(2.4-19) should be taken as a complete set.

An infinitesimal rotation a and a translation 6 will change the

coordinates according to (2.4-3). The corresponding height change for

a particular station is

Ax • x + Ay * y + Az * z
, 2^ 2^ 2.1/2
[x +y +z ]

(2.4-20)

If only an infinitesimal rotation exists, that is 6 = 0, then we will

find Aw = 0 as stated above.
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On the other hand, it can be shown that a height change Aw can

influence rotation significantly. Consider (2.4-3) again as observa-

tion equations where the parameters are the infinitesimal rotations a

and translations 6, and the observations are changes in the coordinates.

The normal equations are

NX = U

where

N

Z(z2 + y2) -Zxy

Z(x2 + z2)

-Zxz

-Zyz

Z(x

U

Symmetric

Z(Az • y - Ay • z)

Z (Ax • z - Az • x)

Z (Ay • x - Ax • y)

ZAx

ZAy

ZAz

0

•Zz

Zy

n

Zz

0

-Zx

0

n

-Zy

Zx

0

0

0

n

(2.4-21)

(2.4-22)

(2.4-23)

Compare the expression for U to (2.4-7) and (2.4-9). In general, as

seen in (2.4-22), the off-diagonal elements of N are not equal to

zero. We write N as

[a±j]
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Transforming the above equation into the local geodetic system and

setting u = v=0 (see (2.4-19)), that is considering only a height

change,

0

0

0
U

ZAw cos<t>cosX

I Aw costj>sinX

I Aw sin(|>

(2.4-24)

and

Si5U5 + ai6U6 (2.4-25)

,,-1Since a.., a.c, a., of N generally are not equal to zero, neither is
14 ID ID

a.. Simulation shows that a. can be of the same order ot magnitude as

Aw. This indicates that in general rotation is sensitive to height

change.

In addition, the weight matrix M cannot be assumed to be dia-

gonal but a full symmetric matrix as we shall see later on. Therefore,

the two sets of constraints (2.4-11) and (2.4-12), in global spatial

coordinates and (2.4-18) and (2.4-19) in local coordinates are a com-

plete set as indicated in (2.4-7). This is the case regardless of which

3-D measurement is being considered, and even if we are only interested

in rotations.

It is useful at this point to outline the approach taken by

(Cannon, 1979; Cannon and Rochester, 1981) in establishing a terrestrial
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reference frame by means of VLBI observatories since it leads to the same

set of constraints. It is based on analogies to the study of differen-

tial deformations in continuum mechanics.

Define the displacement (deformation) vector for baseline i

D - X^ - X (2.4-26)
•i-i u±

This quantity is in general not equal to zero due to deformations of

the polyhedron and to measurement errors. An analog to the differen-

tial tensor of the infinitesimal displacement field is given by the

unitless matrix for the k'th baseline

T
DiXCL

(2.4-27)

This matrix can be written as the sum of two matrices

C± - I e± + | J2± (2.4-28)

where

c

is analogous to the strain tensor and describes deformations of the

i'th baseline and

ni = v cl -

is analogous to the rotation tensor of the displacement field. The

displacement vector is then the sum of the "strain" matrix and the
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"rotation" matrix times the initial polyhedron coordinate vector of

station i

Di - I ei\ + I nix0i
 = cixo±

 (2'4-31)

A weighted mean global strain matrix is defined over the p

polyhedron stations by

E = —^— I m.e (2.4-32)
1=1 -1 *•

as well as a weighted mean global rotation matrix

A = —^— Z m.n. (2.4-33)

where m is a weighting factor. We can then define

e± = E + e± (2.4-34)

« = A + ̂  (2.4-35)

where e. and w. are residual deformations and rotations such that

-~— Z m.e = 0 (2.4-36)

f m i
=1

1 m
1-1
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E m.w. = 0 (2.4-37)

.Z m
1=1

If the polyhedron stations were well distributed over the

earth's surface the matrix E would be representative of the global

deformations of the earth. As can be easily shown, if trace (E) would

differ significantly from zero (basically a weighted average of the

distance changes) this would indicate global earth expansion or contrac-

tion, i.e., a scale change. The off diagonal elements would indicate a

global skewing ("shear") of the polyhedron. These effects could be

absorbed by the CTS coordinates by computing new spanning base vectors

as -described by Cannon. The residuals e., u). therefore should be due

to non-global phenomena, i.e., deformations.

Any global rotation of the stations would be indistinguishable

from errors in the SNP transformation (i.e., in the estimation of polar

motion and earth rotation or modeling of precession and nutation).

Therefore, the mean global rotation matrix should be identical to zero,

i.e.,

A = 0 (2.4-38)

and thus (2.4-35) becomes

fl± = U)± (2.4-39)

i.e., residual rotations should be almost entirely due to non-global

phenomena.
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Let us now examine the residual equations (2.4-36) and (2.4-37).

They look quite similar to equations (2.4-11) and (2.4-12). If e and ft

are tensor analogs, it should follow that so are e. and co . This can be

seen from

" 0

zi
_~yi

0

Xi

yi"

~xi

0

(2.4-40)

1 0 0

0 1 0

0 0 1

T (2.4-41)

where

" 1
zi

;7i

-zi yi
i

x± 1_

(2.4-42)

is the sum of a symmetric (e ) and antisymmetric (w ) matrix. The con-

straints then become

(2.4-43)

(2.4-44)

These equations are equivalent to (2.4-11) and (2.4-12) as well as to
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(2.4-36) and (2.4-37). In the study of differential deformations in

continuum mechanics, the differential motion of the particle displace-

ment field can be split into two independent components, the strain ten-

sor and the rotation tensor. It is true that, in our case, we are

considering small changes over baselines of possibly several thousand

kilometer extent. However, the tensor analogy ends since as described

above the 6 constraints form a complete set and are not independent.

Furthermore, the M matrix is generally not diagonal. Therefore, our
i

constraints should be written as

Yl " Yl Y2 " Y2 ''' YP ~ YP

Yl + Yl Y2 + Y2 ' YP + YP

M(X1-XQ) = 0 (2.4-45)

or equivalently

CMX = 0 (2.4-7)

Thus, we see that these constraints have appeared in the literature in

different but usually less general forms (see also (Moritz, 1979;

Richter, 1981)) particularly in the analysis of horizontal deformations
/ _.

(e.g., Brunner, et al, 1981).

2.4.2 Reference Frame Constraints - Physical Approach

In the previous section, we presented a set of constraints that

insure that the reference frame defined through the fundamental poly-

hedron is maintained, in an M-norm sense. In the following, we show
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that this corresponds to maintaining a discrete analog of Tisserand's

mean axes of crust.

The time derivative of a position vector fixed in the earth is

given by (e.g., Goldstein, 1981)

[dxl fdxl
4= N

+ <D x x (2.4-46)
T

The subscripts I and T indicate that the time derivatives are with

respect to an inertial and terrestrial frame, respectively. The vector

a) is the instantaneous angular velocity of the earth or its rotation

vector. Equation (2.4-46) can be written as

V = V + w x X (2.4-47)

For the rigid body, V = 0 since there is no rotation of points rela-

tive to the terrestrial frame. In this case, V results solely from

the rotation of the earth in space. For the deformable earth V

denotes those motions relative to the chosen terrestrial frame, i.e.,

deformations. Furthermore, the rotation vectors are in general dif-

ferent for each point, although for points on the same tectonic plate,

they may be nearly the same. In any case, deviations in the rotation

vector from one point to another are small and thus it is useful to

define an instantaneous mean rotation vector, u) such that

/// V • V pdE = minimum (2.4-48)
E T T

where p denotes density. This condition defines the motion of the
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reference frame termed the Tisserand mean axes of body (Munk and

MacDonald, 1960). According to (Smith, 1981), this integral should be

evaluated only over the earth's crust (solid outer surface) since this

is where our observations are taken and station coordinates assigned.

In this case, one has a Tisserand's mean axes of crust. Since observa-

tions are only available at a finite number of observing stations (a

polyhedron) condition (2.4-48) is unrealizable in practice. In this

case, only a discrete analog of this condition is attainable

p
Z m (V • V ) = minimum •< (2.4-49)
L=l L± Ti

where m. are mass elements. Hopefully, the distribution and number of

these stations will make this approximation meaningful, in the sense of

being representative of the motion of the earth's surface.

It is useful to present a set of constraints equivalent to

(2.4-49). Without loss of generality we continue with summation instead

of integration for the reason mentioned above-. That is, we shall con-

sider the polyhedron as a system of discrete mass particles with inter-

nal motions and rotating in inertial space. Its angular momentum

vector H is related to the torques L by Euler's equation

dH
Sr + « * H . (2.4-50)

T

The total angular momentum is given by

P
H = Z m. (X x V.) (2.4-41)
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which from (2.4-47)

H = Z m [X x (w x X + V )] (2.4-52)
1=1 1 1 * L

m [X x (a) x X.)] + Em (X x V ) (2.4-53)
1 x * 1 L

= I • (0 + h ' (2.4-54)

Thus, the angular momentum splits into a rigid body motion

HR = I • to (2.4-55)

where I is the inertia tensor, and into a relative angular momentum, h

due to the deformation of the system of particles. This is analogous to

splitting the gravity field into a normal and disturbing potential, or

a satellite orbit into a Keplerian orbit and its perturbations.

Carrying the satellite analogy further, the fundamental polyhedron cor-

responds to the Keplerian orbit. If at the fundamental epoch, the

earth became rigid, then the axes defined by the polyhedron would con-

tinue to rotate with angular momentum IL.

It can be shown that the constraints (2.4-48) are equivalent to

the condition

h = 0 (2.4-56)

Working along the lines of (Jeffreys, 1970) denote for the discrete case
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T - Z m (V • V )
1=1 * Ti 1

(2.4-57)

Z m (V -w x X ) - (V -a) x X )
i = 1 i i 11 i

(2.4-58)

Z m [(V -u z + u y)
±=1 i i z j

(2.4-59)

Minimizing T with respect to the components of w, the instantaneous

rotation vector, yields

3T 2j. 2+ z 0 (2.4-60)

9 T 2 2
-5—= Z m.[(x +z )
0(1)2 i— 1

_ + (xv,-zv.) - y(w x + u_z) ] = 0 (2.4-61)

3 T 2 2
•5—« Z m. [(x +y )w + (yv. - xv.) - z(u> x + w.y)]. = 0 (2.4-62)
ow_ ._- 1 J 1 / , 1 2. 1

In matrix form,

P
Z m.

y +z

-xy

-xz

-xy
O '

x2 + z'

-yz

-xz

-yz
*7 r

y +x

0)

LW3.

P
Z m.
1=1 J

yv -

(2.4-63)
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or.

implying that h = 0 from (2.4-54). This means that

p
z

p
z

0 -z

z 0

-y x

0 -z

z 0

-y x

y

-x

0

y

-x

0

i

i

V
VT2

.V

dx

dy

dz

(2.4-64)

(2.4-65)

(2.4-66)

where dX are the differential displacements of the polyhedron stations

with respect to the fundamental epoch. Considering that only periodic

re-observations of the polyhedron deformations will be available over

finite time intervals, the differential displacements can be approxi-

mated by a finite displacement vector AX.. Finally, if we interpret the

mass elements m as weights, the discrete approximation of the conditions

(2.4-48) and (2.4-56) is equivalent to the set of orientation con-

straints (2.4-11) of the previous section. As pointed out by (Munk and

MacDonald, 1960) only the motion of the Tisserand axes are defined by

the above constraints, the choice of origin and orientation being arbi-

trary. Following the requirements outlined in Chapter 1, we can choose

the orientation of the polyhedron to be consistent with the BIH system

and the origin to be at the center of mass, both at the fundamental
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epoch. The translation constraints (2.4-12) maintain the origin

definition.

Thus, we have seen that the CTS reference frame as maintained

by the constraints CMX = 0 is a discrete Tisserand's mean axes of crust

or geographic axes as defined by (Munk and MacDonald, 1960).

2.4.3 Alternate Approaches

One drawback to Tisserand axes is precisely the problem of rela-

tive motions as pointed out by (Moritz, 1979, 1980a). In the presence

of secular motions the Tisserand axes will rotate with respect to the

observatories. In other words, the constraints CX = 0 (all stations

are weighted equally, M = I) will introduce inconsistencies in the

maintenance of the reference frame since in general the constraints have

no relation to physical processes. This is the situation if one is

restricted to geodetic observations on the earth's crust.

It would be an improvement if there was some model available

for the expected deformations from which the model weight matrix M

could be constructed. This can be done through absolute motion models

from which plate motion velocities with respect to the mantle could be

computed (section 4.2). Minster and Jordan (1978) refer to a mean meso-

spheric frame which "is fixed with respect to the average position of

the deep mantle, assumed to be rigid or at least to have typical inter-

nal motions with slower motion than the motion of the plates." They

construct a model based on the Wilson-Morgan fixed hot spot hypothesis

(Wilson, 1963, 1965; Morgan, 1971, 1972) which is used in the
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simulations of Chapter 4. Another model is constructed by (Solomon and

Sleep, 1974) by constraining the crust to have no net rotation with

respect to the mantle. This is a requirement for any absolute motion

model that is being considered for the GTS. It fits in with the

generally accepted hypothesis that the crust and mantle very nearly

rotate together (Smith, 1981). In any case, (Bender, 1981) indicates

that the absolute plate motion velocities appear to differ by about

1 cm/year among the available absolute motion models even though they

are derived from different plate motion assumptions. It should be

noted though that there is a controversy regarding the hot spot hypo-

thesis and absolute reference frames (e.g., Le Pichon, 1973).

Suppose a model weight matrix is constructed from an adopted

absolute motion plate model (section 4.2). It can be constructed for

any number of stations on the crust so one can define M_ as the global(j

model matrix of infinite dimension. In this case

CMJt = 0 (2.4-67)
G

for a model that does not contain any net rotations of the crust with

respect to the mantle. Recall that X = X - X are the coordinate

changes (deformations). For a particular polyhedron of stations a

finite dimensional M is constructed, a subset of M . Therefore, one
G

st
could use the constraints CMX = 0 developed in the previous section as

/\
an alternative to CX = 0 when a model is available.

^Alternatively, one could use the constraints CX = Y where Y is

computed from the model. If Y ̂  0, this does not mean that there are
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common rotations (or translations) between the crust and mantle.

Rather, for this particular distribution of stations, the absolute plate

motion model implies, for example, that the coordinate changes due to

plate motions of the crust over the mantle do not sum to zero. Another

approach would be to use the M matrix directly in the deformation

analysis without imposing any constraints. All these approaches have a

corresponding deformation estimation algorithm which will be discussed

in Chapter 3. Here we discuss in general terms the physical signifi-

cance of using an M matrix.

Recall the assumption that the mantle and crust rotate in a mean

sense together, or equivalently that the M matrix includes no net rota-(j

tions between the crust and mantle. The CTS reference frame axes,

defined at the initial epoch by the fundamental coordinates X-., can then

be considered fixed with respect to the crust and mantle. At a later

epoch, the CTS observatories will have different coordinates X (where

all global rotations and translations have been removed) with respect to

this frame. These new coordinates in the crust and mantle fixed frame

define the CTS. In order to maintain the reference frame consistently,

it is necessary to estimate the deformations X = X - X .

Summarizing, periodically all CTS stations observe in a short

campaign for the purpose of monitoring deformations. From the baseline

lengths and the model matrix M (if one is adopted), the deformation

vector X is estimated in a second adjustment using one of the four

algorithms of the next chapter. Any inconsistency between the

re-estimated baseline lengths and the plate model will show up here.
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Of course, the baseline lengths being crust fixed observations cannot be

used to construct an absolute motion model. On the other hand, if there

were no inconsistencies there would be no reason to challenge the

assumption that the reference frame axes are crust and mantle fixed.

After this short deformation analysis campaign, the subset of earth

orientation monitoring stations continues its regular operations. But

now, input into the earth orientation estimation algorithms (using the

parameterization of section 2.3) are the updated CTS coordinates in the

crust and mantle fixed system. Thus, polar motion and earth rotation

still refer to the same reference frame axes as defined by X , i.e.,

the reference system is maintained. If one did not correct for the

deformations, the reference frame axes would rotate with respect to the

CTS and degrade the earth orientation estimates. Applying the con-
>\

straints CX = 0 without an M matrix means that the reference frame is

only fixed in the crust; and if the distribution of stations is inade-

quate (CX £ 0 in reality), then the earth orientation parameters would

be degraded but to a lesser extent than not correcting for deformations

at all.

Of course, one could use an absolute motion model and not talk

about the mantle at all. But implicit in M would be the mantle fixed

frame and the assumption of no common rotations with the crust. In

fact, it is possible to adopt only a relative plate motion model (e.g.,

Minster and Jordan, 1974, 1978) and then no assumption about an absolute

reference frame in the mantle would be involved at all. Everything

would then refer to the crust, an approach that probably has many
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advocates (e.g., Smith, 1981). However, a relative motion model pro-

vides information only, of course, on the relative motions between

stations not on changes in station coordinates (deformations). In any

case, it seems preferable to estimate deformations using some plate

model along with the re-estimated baseline lengths than to artificially
A

impose the constraints CX = 0. This conjecture will be tested in the

simulations of Chapter 4. It is important to estimate the deformations

using the geophysical data in a weak way in line with, as stated in

section 1.1, the requirement that the CIS should not be dependent on

geophysical hypotheses. In other words, the deformation estimates

should be as insensitive as possible to errors in the geophysical model.

Furthermore, any inconsistencies between the geodetic and geophysical

data should be detectable in the estimation process. The purpose of

the remainder of this investigation is to find such an estimation

algorithm.
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3 DEFORMATION ANALYSIS ALGORITHMS

3.1 Introduction

One of the requirements for the establishment of a reference

system is the adoption of well-defined computational and estimation

algorithms. We investigate in this chapter four possible algorithms

for the analysis of polyhedron deformations.

The analysis of deformation is accomplished in a two step pro-

cedure. Periodically, observations are taken from all polyhedron sta-

tions. Each measurement system analyzes its own data from which the

estimated baseline lengths, along with their covariance matrices, are

pooled into one common set. These baseline lengths are then compared

to their corresponding values at the initial epoch which determines how

the polyhedron has deformed. However, the absolute location of the

deformed polyhedron, i.e. its new coordinates (or rather the change in

coordinates relative to the initial epoch), is undetermined from just

the length of its edges, but this is what we seek. Without any other

information the estimation of the deformation vector in this form is

singular due to the familiar origin and orientation defects and there-

fore, the best linear unbiased estimate (BLUE) does not exist. This

leads us to investigate other classes of estimators. Two are chosen

from the class of biased estimators and two from the class of condi-

tionally unbiased estimators. All are general enough to incorporate
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adopted geophysical deformation models but do so in fundamentally dif-

ferent ways. Furthermore, considering that a particular set of station

coordinates defines the reference system, it is necessary to deal with

the possibility of the loss or addition of a particular number of CTS

stations. This leads to an application of least squares collocation.

3.2 Mathematical Model

Given are the adopted fundamental coordinates X_ and their cor-

responding set of fundamental baseline lengths L.. at an initial epoch.

By comparing the estimated baseline lengths L at a later epoch t to

L , the deformation of the polyhedron can be estimated.

The mathematical model for the deformation analysis is simply

the chord length of baseline i - j at epoch t

L = [(x -x )2 + ( - )2 + (z -z )2]1/2 (3 2-1)
tjj J i J i J i

It is fundamental that the linearization of this model be performed

about the initial coordinates, X_, that define a datum for monitoring

the time variations of the polyhedron. This is especially the case for

our problem since we will be dealing with estimates that are sensitive

to the initial parameter approximations. Linearization of (3.2-1)

about xn yields for baseline i - j

3L
ij

t±.

t
(x - ii (z -z. ) (3.2-2)

J Jn
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Adding a true noise vector V yields the basic observation equation

L » AX + V (3.2-3)

The observation vector is

L - Lt - LQ . (3.2-4)

2 -1
the changes in the baseline lengths. We denote aJP as the covari-

2
ance matrix of the observed baseline lengths L , where o~ is the variance

of unit weight. The assumption is that any uncertainty in L. is not con-

sidered (see section 4.4). The parameter vector X includes the

deformations of the polyhedron, i.e., the change in coordinates between

the initial epoch and a later one (e.g., AX , AX , ... of Fig. 1).
C0 cl

The design matrix A contains the partial derivatives appearing in

(3.2-2) evaluated at X_. It has dimensions n x u where n = p(p-l)/2

is the number of polyhedron baselines (assuming all are observed),

u = 3p is the number of polyhedron coordinates, and p is the number

of vertices. The column rank of A is deficient by 6, due to the

orientation and origin defects so that

R(A) = 3p - 6 (3.2-5)

where R denotes the rank of the matrix.

Without any a priori information on the parameter vector X

one is limited to the Generalized Gauss-Markoff (GGM) estimation model

(L, AX, Q ) where (e.g., Rao and Mitra, 1971)

E{V} =0 ; D[V] = Qv = a*?"
1 (3.2-6)
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from which

E{L} = AX ; D[L] = a*?'1 (3.2-7)

The operator E stands for expectation and D for dispersion.

The rank deficiency of the A matrix implies that the best

linear unbiased estimate (BLUE) for X does not exist. This leads us

initially to investigate the class of biased estimators. In the next

section, we examine two estimators of this class.

3.3 Biased Estimation

3.3.1 Best Linear Minimum Bias Estimation

3.3.1.1 A Deterministic Approach

It is well known that the method of least squares can be

developed in a purely deterministic manner, most easily using the con-

cept of inner product spaces. The starting point is an inconsistent

set of linear (in our case linearized) equations

Y = AX (3.3-1)

The matrix A represents a linear transformation of the vector X in

E , a u-dimensional (parameter) vector space, to a vector Y in E , an

n-dimensional (observation) vector space. E becomes an inner product

space with the definition of an inner product, in the most general case

a weighted inner product

<y1»y2>p - yj;py2 ; y^^
 En (3.3-2)
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It must fulfill the following properties (Davis, 1975)

(1) <x,x> _> 0 , <x,x> = 0 if and only is x = 0 (Positivity)

(2) <x1fX2>p = <x2,x1>p (Symmetry)

(3) <ox1,x2>p = a<x1,x2>p ; a real (Homogeneity)

(4) <x1
 + x

2»
X3>p = <\'K3>p + ̂'̂ -p (Linearity)

For the weighted inner product to be properly defined, the weight

matrix P must be positive definite. An inner product is essential

for least squares solutions since it introduces the concept of projec-

tion.

An inner product space is also a normed vector space, the

weighted (ellipsoidal) norm being defined through the inner product as

II y l i p - (yV)172 ; yGEn (3.3-3)

providing the concept of length. It must fulfill the properties

(Davis, 1975)

(D II y lip 1 0 (Positivity)

(2) II y lip = ° if and only if y = 0 (Definiteness)

II ay lip = Mllyllp for every scalar a (Homogeneity)

II x + y li < INI + l|y li (Triangle Inequality)p p p

Again, P must be positive definite.

Normed spaces are also metric spaces, the weighted metric

defined as

(3.2-4) -
j. i. r j. t. "i i i. x t-

providing a generalized concept of distance.
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Likewise, in E we define

(3.3-5)

x ||M - (x
TMx)1/2 ; x £ EU (3.3-6)

A (•* V ^ = II v —v = I" f v —v } Mf-v —v ^ 1 fl 1 T\^ 1* 2 M " 12 "M I >-xi j *• 1 ? \J-J '.)

In the most general case, and the one that we will encounter

in the analysis of deformations, the A matrix of equation (3.2-3) and

the weight matrix M in (3.3-5) - (3.3-7) are rank deficient. For

non-positive definite M and P , their corresponding weighted inner

product and normed spaces are improperly defined as will be discussed

later. In this investigation, though, P is always assumed to be

positive definite.

Consider a solution to the set of equations (3.3-1)

X = GY ' (3.3-8)

In our general case, we would like to preserve the property of least

squares and this can be accomplished by minimizing the weighted norm

.• T 1/2
||Y-AX||p= [(Y-AXrP(Y-AX)] ' (3.3-9)

This leads to the familiar normal equations

NX - U = 0 (3.3-10)

where

N = ATPA ; U = ATPY (3.3-11)
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Since A is in our case rank deficient, so is N . From (3.2-5)

R(N) = 3p - 6 (3.3-12)

and therefore (3.3-10) cannot be solved for X using Cayley inversion

of N . In order to arrive at a solution of (3.3-10) , generalized

matrix algebra is required, particularly that of the pseudoinverse so

that the solution is unique, the primary prerequisite property. The

ordinary pseudoinverse solution X = N U where + denotes the pseudo-

inverse is well known and has been used, for example, in the analysis of

local horizontal deformations (e.g., Brunner et al., 1979). However,

the most general case of a weighted M-norm, particularly for a singular

M matrix, has not been treated let alone applied to any geodetic prob-

lem. Let us, then, develop the case of an M-norm in E , considering

first that M is positive definite, along the lines of (Rao and Mitra,

1971).

In order to introduce the weighted norm ||x|| we minimize the

Lagrangian function

<|> - XTMX - 2KT(NX-U) (3.3-13)

so that the solution vector will have the additional property of mini-

T
mizing X MX subject to the P least squares property implicit in the

normal equations. Minimizing <{> with respect to X and the Lagrangian

multiplier K yields two matrix equations

MX - NK - 0 (3.3-14)

NX - U = 0 (3.3-15)
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From (3.3-14)

X = U'̂ m (3.3-16)

and substituting into (3.3-15)

NM^NK - U = 0 (3.3-17)

Since

R(NM"1N) - R(N) = 3p - 6 (3.3-18)

then

K = (NM~1N)+U (3.3-19)

Substituting into (3.3-16) yields the following unique solution

X « M~1N(NM~1N)+U (3.3-20)

where for (3.3-8)

G - M~1N(NM~1N)+ATP (3.3-21)

Note that the + could be replaced by any generalized (g) inverse

(Appendix A.I). Using the symbolism of (Rao and Mitra, 1971)

(3.3-22)

is the minimum M-norm P least squares g-inverse of A . It has also

been referred to as the weighted pseudoinverse (Boullion and Odell,

1971). In the case of M = I,
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G = API = N+ATp (3.3-23)

and

X = N+U (3.3-24)

the ordinary pseudoinverse solution.

In order to prove that G is indeed an A the following four

conditions must hold (Appendix A.I)

AGA = A (3.3-25)

GAG = G (3.3-26)

(GA)TM = MGA (3.3-27)

(AG)TP = PAG (3.3-28)

Conditions (3.3-25) and (3.3-28) are equivalent to (see Appendix A.I)

ATPAG = ATP (3.3-29)

and (3.3-26) and (3.3-27) to

GTMGA - GTM (3.3-30)

The proof that (3.3-29) and (3.3-30) are fulfilled for (3.3-21) can be

found in Appendix A. 2.

It can be shown (Appendix A. 3) that

N^ = M~1N(NM~1N)+ (3.3-31)

the corresponding G matrix for the consistent set of normal equations

so that
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X = N* U (3.3-32)
1M

from which we get the relationship

(3-3-33)

Summarizing, the solution X = GY for the set of inconsistent

linear equations (3.3-1) is unique and has the property of minimum

M-norm P least squares. Substituting X = GY into (3.3-1) yields a new

vector

Y* - AGY (3.3-34)

where Y = AX is a consistent set of equations. The matrix AG can be

easily shown to be idempotent and therefore a projection operator. It

projects any vector Y in Eu into Y a vector in the image (the column

space) of A . In fact, the consistency of Y = AX is used in defining

the concept of generalized inverse (Rao and Mitra, 1971) which indi-

cates why it is important that A_ be a g-inverse. This will concern

us further in section 3.3.1.4 where the more general case of positive

semidefinite M is treated.

3.3.1.2 Estimation Model

The results of the previous section can be applied to the

linear estimation problem essentially through an appropriate choice of

inner products by considering the weight matrices P and M as inverses

of moment matrices. Consider again the set of observation equations

L = AX + V (3.2-3)
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We assume an expanded GGM model (L,AX,QW,Q-) where
V A

E{V} = 0 (3.3-35)

Qv = E{W
T> - D[V] - â P'1 (3.3-36)

and

Q- = E{XXT} = (T̂ M"1 if Q- positive definite)
* U X (3.3-37)

such that

V- = E(X} = X (3.3-38)
A

Z- = E{(X-X)(X-X)T} (3.3-39)

It follows, as in the GGM model (3.2-6,7), that

E(L} = AX ; D[L] = aJjP"1 (3.3-40)

In this setup, X is an independent estimate of the parameter vector

and is stochastic in nature. On the other hand X is deterministic.

In this section, we assume that Q- is positive definite. Note the two
A

2 2variances of unit weight O and T , the latter related to the para-

meter space. Note that X does not appear in (3.3-40), but enters only

through the EU inner product weight matrix M.

The solution vector X (3.3-20) then becomes our first defor-

mation estimate
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(3.3-41)

M~1N(NM~1N)+U (3.3-42)

(3.3-43)

GJI being defined as in (3.3-21). This is derived from minimization of

(3.3-9)

|| Y- AX ||p = || V ||p = VTPV (3.3-44)

followed by, as before,

|| x|| - minimum (3.3-45)

Thus, the statistical meaning of X follows from the model defined by

(3.3-35) - (3.3-40). The P and M matrices are defined now through

the moment matrices (X. and Q:r. In our case, Qv is the covariance matrix for

the baseline lengths (since E{v} =0). In the following then, we

denote a covariance matrix by Z and a moment matrix by Q , e.g., I

instead of Q . The moment matrix Q- can be constructed from an adopted

model that predicts the deformations of the polyhedron stations (an

example is given in section 4.2). This can be done only approximately

for this estimation model since in (3.3-37) y- = X is unknown and we

must approximate y- by X.
A,

Now that X has statistical meaning, using (3.3-40)

E{X.} = G1E{L} » G,AX = M~
1N(NM~1N)"fNX (3.3-46)1 1 1 ^ ^ '

But the rank of A is not full so that
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G.A* i (3.3-47)
1 u u

since in general for the product of two matrices A and B

R(AB) < R(A) and < R(B) (3.3-48)

Thus,

E(XX) f X (3.3-49)

and X is a biased estimate. However, it can be shown that X results

from minimizing the bias norm

|| I - GA 11 , (3.3-50a)
M

or alternatively

tr[(I-GA)M~1Cl-GA)T] (3.3-50b)

where tr denotes the trace operator (Chipman, 1964). For this to hold,

it is necessary and sufficient that

AGA = A

(3.3-51)
L = M~1GA

An alternative formulation for the minimum bias estimator is as

follows (Rao and Mitra, 1971). Considering the model (3.3-35)-

T
(3.3-40) find a linear estimate G L for X such that

tr(S T ) = aiitr (GTZ.G) = a* ||GT ||J (3.3-52)
G L u ** u L-^

is a minimum (this is the minimum norm condition) in the class of
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estimators which minimize the bias (the least squares condition)

|| ATGT - I || = ttr((ATGT-I)TQ::(ATGT-I))]1/2 (3.3-53)

T
where Q- is positive definite. Then G is a minimum Q (Z ) -norm, (fc

X V li A

T T
-least squares solution of A G =1 (which is inconsistent) such that

(3.3-54)

using a result from (Rao and Mitra, 1971) whereby

and

*1 = G1L

From the above, it can also be seen that X is also a minimum variance

estimate in the class of minimum bias estimators (see also (Chipman,

1964)).

The covariance matrix for X- is given from (3.3-43) by

T^ ̂  n T* J~t ̂ -

N)NM~ (3.3-55)

T

where N_w is given by (3.3-31). An unbiased estimate for the a posteriori
1M

variance of unit weight is (Uotila, 1967)
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~2 V PV
°0 n - R(A) '

where

VTPV = LTPL - xju (3.3-57)

In our case, for p stations

n = £teil (3.3-58)

and

R(A) = 3p - 6 (3.3-59)

from which it follows that

(3.3-60)

It is evident that in order to achieve redundancy at least five poly-

hedron stations are required.

2
An estimate for TO of (3.3-37) is approximately given by

^X *
•*. ̂  A. MA, /A n /• i \
TO - ̂- (3.3-61)

where, in this case, u is the number of parameters (and the rank of M) .

Summarizing, X1 has the deterministic properties of minimum

M-norm in the class of P least squares estimators and the stochastic

properties of minimum variance in the class of minimum bias estimators.
A

Therefore, Xj is known as the Best (minimum variance) Linear Minimum

Bias Estimate or BLIMBE (Rao and Mitra, 1971). In the next section,

A

we see that X.. can be computed by augmenting the singular normal equations

(3.3-10) with the set of constraints CMX = 0 derived in Section 2.4.1.
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3.3.1.3 The Weighted Inner Constraint Estimate

It is well known that the ordinary pseudoinverse estimate

X = N U
(3.3-62)

is equivalent to augmenting the system of singular normal equations

NX = U by a matrix C such that the conditions

NCT - 0 (or ACT - 0) (3.3-63)

CX = 0 (3.3-64a)

are fulfilled (Meissl, 1969; Blaha, 1971). The set (3.3-64a) is known

as an inner constraint. For our particular case, we need six such con-

straints, the number of rank deficiencies of N . We generalize the

results to deal with the definition of an M-norm in the parameter

space. We assume that M is positive definite. The derivation of

this weighted inner constraint estimate is a generalization of the

development in (Blaha, 1971). Instead of (3.3-64a) we substitute the

condition

CMX = 0 (3.3-64b)

We start by minimizing the Lagrangian function

4> = VTPV - 2K(AX + V- L) - 2K(CMX) (3.3-65)

with respect to the unknowns V , X , K , K . After some matrix

manipulations we arrive at
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T"
N MC

CM 0

"

X

-K2

• "

U

0
(3.3-66)

The resulting augmented normal matrix is non-singular and we could

solve for X directly. In order to eliminate K_ , and derive an

explicit expression for X we can write

"f
U MC

CM 0 _D3 Y

=
I 0

0 I
(3.3-67)

Explicitly, this represents four matrix equations

ND + MC D- - I

ND2 + MC D, = 0

CMD = 0

CMD2 = I

Pre-multiplying (3.3-69) by C

CND_ + CMC D. = 0
2 4

(3.3-68)

(3.3-69)

(3.3-70)

(3.3-71)

(3.3-72)

But CN = 0 from (3.3-63) and since CMC is full rank (which follows

from the assumption of M positive definite), we have

(3.3-73)

Pre-multiplying (3.3-68) by C

+ CMC D_ = C (3.3-74)
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from which

^-C (3.3-75)

Inserting D = D into (3.3-71)

(CMCT) (CMC1)'1 = I

which implies that

>3 " C(CMCT)~1 (3.3-76)

Substituting into (3.3-68) yields

MCT(CMCT)"1C =1 (3.3-77)

This is equivalent to

[N+kMCTCM][D1+k~
1CTCCMCT)~1(CMCT)~1C] = I (3.3-78)

This follows from (3.3-63) and (3.3-70). The scale factor k is

arbitrary as can be seen by performing the multiplications on the left

hand side of (3.3-78). It is useful for improving the condition of

TN + MC CM for inversion. It can be shown following the same reasoning

T
as in (Blaha, 1971) that the matrix N + kMC CM is non-singular. There-

fore

(N+kMC:rCM)~1-k~1CT(CMCT)~1(CMCT)~1C (3.3-79)

From (3.3-66) we have
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X = D U (3.3-80)

= [(N+kMCTCM)"1-k~1CT(CMCT)~1(CMCT)"1C]U (3.3-81)

= (N+kMCTCM)~1Q (3.3-82)

T
since CA =0, and

Zx = â OW-kM̂ CM)'1 - k~1CT(CMCT)~1(CMCT)"1C] (3.3-83)

In order to demonstrate that this estimate is equivalent to

+ Tthe BLIMBE estimate X = A M̂L it is necessary to prove that G = D A P

is A . For this to hold, it must satisfy the conditions (3.3-29)

and (3.3-30). First, we show that

ATPAG = ATP (3.3-29)

Post-multiply (3.3-77) by ATP

T T T T — 1 T T
A PADjA P + MC (CMC ) CA P = A P (3.3-84)

Twhich follows from CA =0. Second, we prove that

GTMGA - GTM (3.3-30)

Transpose (3.3-77) and pre-multiply by (D ATP)TM (=GTM)

T T T T T T T —1
(DjA P) MD^ PA + (DjA P) MC (CMC ) CM

= GTMGA + PAD MCT(CMCT)~1CM (3.3-85)

T
= G M
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which follows from (3.3-70). Therefore, the weighted Inner constraint

estimate (3.3-82) is equivalent to the BLIMBE (3.3-43). However, the

former is computationally more efficient considering that only a

Cayley inverse is required.

A note should be added concerning the units for the computation

of X by (3.3-82). In order for (3.3-64b) to be consistent, C and

M must be unitless so that the 0-vector will be in units of length.

Therefore, we divide the length unit elements of C by a mean earth

radius R , i.e. (see 3.3-90 below),

s = -e

0

zi
R

R

-Zi -yi
R R

n i.
R

* o_

(3.3-86)

In addition, M is divided by its Euclidean norm

C3.3-87)

so that

M
M (3.3-88)

Therefore, in (3.3-82) we should write strictly

(3.3-89)

but this has no effect on the estimate which is independent of a scale

factor k as shown above.
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The constraints C for this particular problem can be derived

Tfrom the condition AC =0. It is found that

Sl S2 •" SP

I ... I

(3.3-90)

fulfills this condition which is just (2.4-9), the reference frame

maintenance constraints. Therefore, the BLIMBE (or equivalently the

weighted inner constraint) estimate provides an algorithm to maintain

a discrete version of the Tisserand mean axes of crust which incorporates

also the stochastic properties of non-perfect measurements and adopted

geophysical models (that come through the weighted parameter norm). In

this case, we can say that the reference frame axes are maintained in a

minimum M-norm F least squares and BLIMBE sense by a specified number

of CTS stations.

3.3.1.4 A Generalization for M-Seminorms

In the previous sections, we have derived X under the assump-

tion that P and M are positive definite, i.e.,

II x II - (xTMx)1/2 > 0 for all x£EU (3.3-91)ii i i f j

II y f l p " (yTPy)1/2 > 0 for all y£En (3.3-92)

except for the trivial cases x = 0 and y . o for which equality holds.

As we shall see, it is quite possible in our applications that the

moment matrix Q- is only positive semidefinite (it must be at least
A.

positive semi-definite since it is a moment matrix). This more general
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case raises several problems. First, M can no longer be defined as

the Cayley inverse of Q= (in general, non-positive definiteness does
X

not necessarily imply singularly, however, since we are dealing with

moment matrices, non-positive definiteness does imply singularity).

Second, assuming an appropriate M could be found, the properties of

the weighted inner product and norm listed in section 3.3.1.1 may no

longer hold for E .

If M is a positive definite matrix, it can be expressed as

M = UAUT (3.3-93)

by singular value decomposition where A is a diagonal matrix of dimen-

sion u whose non-zero elements are the real eigenvalues X. of M ,

Tand the columns of the n-dimensional orthogonal matrix U (U U = I,

T
UU = I) are the corresponding normalized eigenvectors U.. In this

case, all the eigenvalues are positive (nonzero). The eigenvectors

form an orthogonal basis for E . Therefore, the weighted norm

|| x || and inner product <x ,x£ M can be defined properly over the

entire space E . However, if M is only positive semidefinite, then

it can be decomposed as (e.g., Lanczos, 1961)

M = U A UT (3.3-94)
u u u p p p p u

where A is a p-dimensional diagonal matrix whose diagonal elements are

the p non-zero eigenvalues of M (there are u-p zero eigen-

values) and the p columns of the semiorthogonal matrix U
~fp~ ~.~.r£

(U U = I, UU ^ I) which contain their corresponding p eigenvectors,
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i.e., the reduced eigenspace

) | A± > 0 , i = l,...,p] (3.3-95)

The U are also called the principal vectors of M (Ben Israel and

Greville, 1974). In this case, the principal vectors form on ortho-

gonal basis only for a subspace of E , call it E .

It follows that the weighted (ellipsoidal) norm and inner

product can be defined properly over the same subspace E . That is,

for the inner product

<x,x> = x*Mx ; x , x G Eu (3.3-96)

and for the norm

|| x || = (xTMx)1/2 ; x£ Eu (3.3-97)

However, the parameter vector X may not necessarily be an element of

E . Therefore, one is led to define an "improper" weighted (hyper-

bolic) norm for the entire space E although it can "properly" be

applied to physical problems (Pease, 1965). Property 1 of a proper

inner product (see section 3.3.1.1) must be modified to

(1!) <x,x>_. > 0 (Positive Semidefiniteness)M —

since the inner product could be equal to zero for x $ 0. This means

that a vector x could conceivably be orthogonal to itself but in the

semidef inite weighted sense. Likewise, the property (2) of definite-

ness no longer holds for a weighted norm. Rao and Mitra (1971) refer
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to such norms as seminorms. Furthermore, as shown in (Pease, 1975),

the triangle inequality property (4) of section 3.3.1.1 may also fail.

Consider Q as only positive semidefinite. Then
A

Qx = 5-̂ u| (3.3-98)

as described above. In this case, a reasonable choice for M is

M = Q = ^ (3.3-99)

a well known result for the computation of a pseudoinverse. It can be

shown that M is also positive semidefinite (Lewis and Newman, 1968).

Consider Q- as an operator
J\.

Ul U2
Qv : E - > E (3.3-100)
A.

ui "2
where^E and E are p-dimensional inner product spaces. For

Qxu = 0 (3.3-101)

Similarly,

u u
M : E 2 > E I (3.3-102)

This holds since M = Q is a unique operator which makes the above
X

choice of M suitable for our purposes (in fact, a reflexive g-inverse

Ar (Appendix A.I) also has this property). In general though, for any

matrix A
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(A8)8 * A

which makes just a g- inverse unsuitable.
«7

Now that we have defined a seminorm || X || and found a suitable

choice for M, let us address the problem of generalizing the deforma-

tion estimate (3.3-43). This discussion will be primarily based on

(Rao and Mitra, 1971; Mitra and Rao, 1974).

Let us first consider the simplest case of an ordinary least

squares estimate (i.e. N is full rank) with a weighted parameter norm

defined in the parameter space where M is positive definite. We

start from the normal equations

NX - U = 0 (3.3-15)

and minimize

XTMX - 2KT(NX-U) (3.3-103)

with respect to X and K . This yields the relationship

MX - NK = 0 (3.3-104)

in addition to (3.3-15). It follows that

X = M"1 NK (3.3-105)

Into (3.3-10) and solving for K

K = (NM N) U (3.3-106)

Substituting into (3.3-105) gives
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x = M~1N(NM~1Nr1u (3.3-107)

-N-1!!

Of course, this could have been directly obtained from (3.3-5). How-

ever, it does prove that the ordinary least squares estimate is invari-

ant with respect to any defined positive definite norm in E . This is

not surprising since both N and M are full rank and are not

restricted to any subspace of EU. This is really what we mean by an

^ A u
unbiased estimate since E(X) = X can conceivably hold for any XGE .

In fact, it is enough that N be full rank even if M is not positive

definite. That is, the best linear unbiased estimate (if it exists) is

unaffected by any weighted norm in the parameter space. This follows

from the fact that I - GA = 0 so that the bias norm (3.3-50) is zero

independent of any weight matrix.

A more general case will now be described where the M matrix

is positive semidefinite and the design matrix A is rank deficient.

As pointed out in (Rao and Mitra, 1971) care must now be taken since

both M and N are not of full rank. Let us return to the two matrix

equations

MX - NK = 0 (3.3-14)

NX - U - 0 (3.3-15)

Combining (3.3-14) and (3.3-15)

(N + M)X - NK = U (3.3-109)
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from which

X « (N+M)~1(NK+U) (3.3-110)

assuming that N-HM is full rank the necessity of which for our applica-

tion will be described below. Into (3.3-15) yields

N(N+M)~1(NK+U) = U (3.3-111)

that can be solved for K as

K = [N(N4M)~1N]"f"[I-N(N+M)~1]U (3.3-112)

Substituting back into (3.3-110)

X = (N+M)~1N[N(N-WI)~1N]+U (3.3-113)

+ (N4M)"1!!

The last two terms can be shown to cancel using the relations (Rao and

Mitra, 1971)

A(ATPA)8A PA - A (3.3-114)

(ATPA)(ATPA)8AT = AT (3.3-115)

Tfor any matrix P such that R(A PA) = R(A). This holds automatically

for positive definite P for which the above results could be modified

as
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PA(ATPA)8ATPA = PA (3.3-116)

(ATPA)(ATPA)8ATP = ATP (3.3-117)

Using (3.3-117) the second term in (3.3-113) can be written as

which reduces from (3.3-114) to

(N+M)~1NN8ATPL

Applying (3.3-117) again, the second term is seen to be equal to the

third term in (3.3-113) so that

where

X »
(3.3-118)

= GL

G = (N4M)~1N[N(N+M)~1N]+ATP (3.3-119a)

Note that the same estimation model is assumed as in section 3.3.1.2.

The relation (3.3-117) can be used to show that X is invariant with

respect to any g-inverse for the term in brackets. It gives

G = (N4M)~1N[N(N+M)~1N]8NN8ATP (3.3-119b)

Another result from (Rao and Mitra, 1971) is that A(ATPA)8AT is invari-

ant for any choice of (ATPA)8 which applied to N[N(N4M)~1N]gN proves

the above assertion.
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According to (Mltra and Rao, 1974) for the possibly inconsistent

set of linear equations L = AX

G = (N+M)8N[N(N-fM)8N]8ATP

called an A inverse of A, is one choice for a minimum M-seminorm

P-semileast squares inverse of A . It follows that X = GL has minimum

M-seminorm among the semileast squares solutions of L = AX. According

to the same theorem, A_M is unique if and only if N + M is positive

definite explaining our use of Cayley inversion in the above derivation
/\

for X . However, uniqueness is not sufficient for our purposes since

A_M may not even be a g-inverse (AA-.-A 9
s A). We require this property

in order to make (3.3-34)

L* = AGL

consistent. Also, we would like A_ to be reflexive^so that

= R(A) (Rao and Mitra, 1971). If these properties hold, then

is called an ApM; but recall that unlike the situation in section

3.3.1.1, P and M may be positive semidefinite. If both are positive

definite, A^ is equivalent to the G matrix of BLIMBE.

For ApM to exist it is necessary and sufficient that

C(M) n C(AT) C ATP (3.3-120a)

where C denotes column space, according to theorem 3.6 of (Mitra and

Rao, 1974). In our application P is always positive definite so

that this condition could be modified to
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C(M) n C(AT) C AT (3.3-120b)

which always holds. Therefore, in order for G to be A_M, according

to theorem 3.2 in the same paper, the following four conditions are

necessary and sufficient

PAGA - PA (3.3-121)

MGAG o MG (3.3-122)

(GA)TM = MGA (3.3-123)

(AG)TP = PAG (3.3-124)

That G fulfills these four conditions is proven in Appendix A.4.

For P positive definite (3.3-121) is equivalent to (3.3-25). Condi-

tions (3.3-123) and (3.3-124) are equivalent to (3.3-27) and (3.3-28),

respectively. Therefore, the difference between the M positive

definite case of section 3.3.1.2 and M positive semidefinite is just

condition (3.3-122). Unfortunately, without the fulfillment of (3.3-26)
/\

which can occur only if M is positive definite, the solution X = GL

for G in (3.3-119) although M-seminorm P least squares is no longer

BLIMBE as we shall see in the simulations of Chapter 4. Thus, we will
~* *

call X-= G L a MINDLESS (minimum norm (seminorm in this case) least

squares solution) using the terminology of (Schaffrin, 1975). For posi-

*.*
tive definite M , X.. = X. as shown in 3.3.1.2. Nevertheless, the

solution (3.3-119) may still be applicable to deformation analysis as

will be tested in Chapter 4.
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/\£
The covariance matrix of T is, using (3.3-118)

x L
~2 -1 -1 4- -1 + -1 0.3-126)

= aQ(N+M) N[N(N-W1) N] N[N(N4M) N] N(N4M)

«2 2where a_ is given by (3.3-56). Here, TO is given approximately by

A *"
T =T0

where Q^ = TQ M+ (compare to (3.3-37) and (3.3-61)).

~*
The deformation estimate X- of this section is no longer equi-

valent to the weighted inner constraint solution of section 3.2.1.3

(recall that there M was assumed positive definite) . Therefore the

most one can say is that the reference system is maintained in a mini-

mum M-seminorm P-least squares (MINDLESS not BLIMBE) sense by a speci-

fied set of CTS stations.

3.3.2 Best Linear Estimation

Another possible biased estimator is called the Best Linear

Estimate or the BLE although several versions are available in the

literature (e.g. Rao, 1973). Recall the multivariate definition of the

mean square error

MSE(X) - E{(X-X)(X-X)T}
(3.3-128)

= Z- + [X-E{X}][X-E{X}]i

as a sum of covariance and bias squared. As shown in section 3.3.1, the

BLIMBE minimizes the bias term. Conditional on this property is the
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minimum variance one. The BLE, on the other hand, minimizes the mean

square error. Unlike the BLIMBE, it can only be approached in a prob-

abilistic manner. Its existence is dependent on some a priori knowl-

edge of the parameter vector as we shall see below.

As before we will derive a homogeneous estimate of the form

X = GL

We assume now that both X and L are random variables with moment

matrices

Qv = E{XX
T} (3.3-129)

A

Q_ = E{LLT} (3.3-130)
Li

QXL=E{XL
T} (3.3-131)

where Q is non-singular (note that this is not assumed for Q ) . By
l-i A,

the Gauss-Markoff theorem, the linear minimum mean square error esti-

mate of X is (Liebelt, 1967)

* = QXLQLlL (3.3-132)

with mean square error matrix

MSE(X) = Qx - Q̂ Q- (3.3-133)

Note that some knowledge of the moment matrices is required.

For the observation equations

L = AX + V C3.2-3)
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we assume an estimation model of the form (L,AX,Q ,Q ) where X and V
V A

have a priori probability distributions. For "V

E{V} = 0 (3.3-134)

Qv = E{W
T} = D[V] = agP"1 (3.3-135)

and for X

E{X} = X (3.3-136)

D[X] = E{(X-X)(X-X)T} = Zv (3.3-137)x

(recalling that X is an independent estimate of X) so that

Qx = E{XX
T} = Zx + XX

T = OQ M'1 (3.3-138)

2 +
where for positive semidefinite Q , Q = o_ M . Here X is stochastic

A A U

and X deterministic, the oppositve of the BLIMBE model. The conditional

distributions of L are then given by (Chipman, 1964)

E{L|V} = AX + V ; D[L|V] = AẐ 1 (3.3-139)

E{L|X} = AX ; D[L|X] = ô P'1 (3.3-140)

from which

E(L> = E{E(L|V>} = E{AX+V> - AX (3.3-141)

D[L] = E{D[L|V]> + D[E{L|V}]

= E(AZ AT} + D[AX+V]

= AZXAT + ajjP"1 = ZL (3.3-142)

Therefore,
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QT = E{LLT} = E{(AX + V)(AX + V)T}
Lt

= A QY AT + a^ P'1 (3.3-143)
A U

T T 2
= A Z A + A X X + a* PA U

= I + E{L} E{LT}
Li

Furthermore,

Q^ = E{XLT} = E{X(AX + V)T}

rp rri rn

= E{XX } A + E{XV }

= Qv A
T (3.3-144)

A.

where we have assumed for both (3.3-143) and (3.3-144) that

Qxv = E{XV
T} = 0 (3.3-145)

In our context, this means that baseline measurement errors and deforma-

tions are uncorrelated. As we shall see, it is useful to assume as

indicated in (3.3-138) that Q., is also known to within a scale factor
A

2
a , which can be taken as unity. The deviation of an unbiased estimate

2
for a.., derived later, from unity will indicate the degree of compatibility

between the baseline measurements and a chosen geophysical deformation

model. With this in mind and from (3.3-132) it follows that

Xg = Qx A
T (A Qx A

T + P'V1 L (3.3-146)

where S denotes that X is assumed stochastic. The mean square error matrix

can be computed from (3.3-133) as

MSE(XS) = Og [Qx - Qx A
T(AQXA

T + P'1)'1 A QX] (3.3-147)

Note that strictly Q should be replaced by M+ in (3.3-146) and (3.3-147)
A.

although we will continue with this notation since using M may indicate

misleadingly that pseudoinversion is required.
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We see that this estimate is general enough to deal with rank deficient

A and Q matrices encountered in the analysis of deformations. In the
A

case that Q is nonsingular, using the identities (Liebelt, 1967)
A.

+ P'V1 = (A^A+QWP (3.3-148)

and

+ P'VV Q (3.3-149)

both for possibly rank deficient A , we get in simpler form

X = (N+M)'1!! (3.3-150)
S

and

MSE(X ) =O-Q(N+M)~I (3.3-151)

where M = Q .

We see that the approach here to overcoming the singularity

problem due to the rank deficiency of A (and N ) is to use a priori

information for the deformation vector X . In BLIMBE, the approach

was to use pseudoinverse algebra or equivalently to augment N with a

set of inner constraints.

Now, it is quite useful to derive another estimate which is a

limiting case of the above estimate X , following essentially (Bibby

and Toutenberg, 1977). We minimize the quadratic loss function

R(X) = E{(X-X)TB(X-X)} (3.3-152)

The expression in the brackets represents a generalized distance (com-

pare to (3.3-7) for the metric defined by B (assuming that B is
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non-singular), or a weighted norm

|| e || . ; e - X - X (3.3-153)
B"1

where B indicates the relative importance of the different elements

2 -1
of X . We start with the GGM model (L, AX, a P ) of section 3.2

L - AX + V ; V - (O.aJjP'1) (3.3-154)

The estimate X will be a function of L

X = GL = GAX + GV (3.3-155)

from which A

X - X = (GA- I)X + GV (3.3-156)

and

R(X) - E([(GA-I)X + GV]TB[(GA-I)X+GV]}
rn rn rn T T * "̂ ""̂ *"̂  '

= X (A G - I)B(GA-I)X + E{V1GBGiV>

where it can be shown that

E{V GBGTV> = O trace (BGP~ G ) (3.3-158)

2 _i *r A /v
Note that croGP G is the covariance matrix of X . Minimizing R(X)

with respect to G yields

T T T T 2 —1 —1
G = XXXA (AXX A + OP A) ̂  (3.3-159)
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so that

V "• YY A f A W A i_ /w w ^ T ^ ̂  ^ 1 AO ̂

where D denotes that X is assumed deterministic. Note that this

result is independent of B . The estimate doesn't seem to be of any

use since it depends upon the true value of X which, of course, we do

not know.

Let us examine (3.3-160) more closely. By the identity

(3.3-149)

T T 2 - 1 - 1 1 T T
[AXX A +00P ] = ~ [P-PAX(XiA

ao

2 - I T T
X P] (3.3-161)

Note that although this identity holds also for a rank deficient A

matrix, in the literature full rank is usually assumed in the deriva-

tions of BLE's. Substituting into (3.3-160)

1 T T T 7 —1 T T-^ xx1 A [P-PAX^NX+O-Q) VA P]L
ao

(3.3-162)1 x
°00

1-

-

T
V X Ux T

X NX +

T
XXNX

xTNX+a2

Q -

T
X U

2
0

Now,
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E{iL} = -=-S - j XTE(U)

T
X XNX (3.3-163)

-1

T
X NX

which shows that on the average, JL (3.3-160) is an underestimate of X .

Let us then compare the estimates X (3.3-146) and 2L (3.3-160).

First, X is derived under the assumption that X is stochastic while

/\ /\ f
for X^ it is assumed deterministic. Thus, for X_, XX is required

/\ T
while for X only its expected value, i.e. the moment matrix Q = E{XX }.

S X

Furthermore, X^ is on the average an underestimate of X.

How can one alleviate the unfortunate situation of X^ for which

the true value X is required. Several approaches are possible. If

there is a priori information on X, say X, one could replace X by X in

(3.3-160). This is essentially the approach advocated by (Rao, 1973).

In practice, a covariance matrix may be available for X . There-

T
fore, a preferable approach is to replace XX in (3.3-160) by its expec-

tation Q = E{XX } given in (3.3-138). This means using X instead of
A O-

^ s*

X^. Therefore, we shall refer to X^ as our Best Linear Estimate (BLE).

Consider the limiting case when the expected deformations X

are known perfectly. Then E— = 0, X = X and X becomes iL which

yields, as shown above, an underestimate of X . On the other

extreme if I- -»• °°, it is as if one has no a priori information on X so
X
/\ >\

that neither X nor X_ are useful. In this case, only BLIMBE is

90



2 2available with M = k I (it is invariant with respect to k as is easily

seen by examining (3.3-42)). We can then write the I-norm BLIMBE or the

ordinary pseudoinverse solution as

X = N+U = lim [(N + k2!)'1!!] (3.3-164)

2
for singular N. Then k = 0 in the case of no a priori information. Or

more generally it is a limit for BLE when M -»• 0. The expression in

brackets in (3.3-164) is a special case of BLE, called the ridge esti-

mator (see (Pavlis, 1979) for a good review).

Considering these two limiting cases it should follow that

II ̂ LE II BLIMBE II (3'3-165)

as we shall show below. Recall that the minimum norm property of

BLIMBE is conditional on P-least squares.

Consider the minimization of the Lagrangian function

<j> = VTPV + XTMX - 2KT(AX + V-L) (3.3-166)

with respect to X , V , K which gives (we assume here that M is

positive definite)

PV - K = 0 (3.3-167)

MX - ATK = 0 (3.3-168)

AX + V - L = 0 (3.3-169)

Solving (3.3-167) for K and substituting into (3.3-168) gives
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MX - ATPV = 0 C3.3-170)

Substituting V from (3.3-169) into (3.3-170) yields

X = (N + M)~ U

as in (3.3-150). Therefore, the BLE has the property of

VTPV + XTMX = minimum (3.3-171)

Denote

X- = BLIMBE

X2 = BLE

As shown by (Hoerl and Kennard, 1970)

(L - AX2)
T P(L - AX2)

- (L - AXj)T P(L - AX,) + H (3.3-172)

H = (1, - X J

Since H is a quadratic form and in general X ^ X^ (see (3.3-175)

below) then

(VTPV)2 - (V̂ V̂  > 0 (3.3-173)

yv

which already follows from the P-least squares property of X . From

(3.3-166)

(VTPV)2 + (X
TMX)2 < (V

TPV)1 + (X
TMX)1 (3.3-174a)
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or

0 < (VTPV). - (VTPV), < (XTMX)1 - (X
TMX). (3.3-174b)

^ 1 1 ^

which proves (3.3-165), i.e., between BLE and BLIMBE, BLE has the mini-

mum norm property. Therefore, the BLE for the deformation vector is on

the average smaller than the BLIMBE, it is closer to zero. On the

other hand, the BLIMBE has minimum bias. Note that this comparison has

been performed for only M positive definite recalling the discussion

of section 3.3.1.4 for M positive semidefinite.

Since the vector U is the same for X- and X. it easily fol-

lows that

(3.3-175)

indicating that in general X j* X-, in the case when N is singular,

except as explained before if M=0 in which case

*. + * + *.
X = N = N U = X

As a summary, it can be shown (Chipman, 1964; Rao, 1976) that

the BLE can be obtained from minimizing the mean square error matrix

(3.3-128) also called the risk function

R(G) = (I-GA)Q (I-GA)T + GE GT

2 (3.3-176)
= (bias) + covariance

This yields
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(3.3-146)

(if Qx non-singular) (3.3-150)

as before. The minimum risk then becomes

) = (I-G2A)QX (3.3-177)

which is just the mean square error matrix (3.3-133).

/\T /\
It is useful to compute an expression for V PV. In general,

VTPV = (L-AX)TP(L-AX) (3.3-178)

T ^T <*T ^
= L PL - 2X U + X NX (3.3-179)

rp /\rn /\rn m /\

- L PL - X U + (X N-U )X (3.3-180)

When Qv is positive definite and from (3.3-150)

(N+M)X2 - U - 0 (3.3-181)

or

and

- UT = 0 (3.3-182)

2N - U
T)X2 = -X2MX2 (3.3-183)

Substituting into (3.3.180) yields

sjr y\ T /\"r /xf />,
V2PV2=L PL - X2U - X2MX2 (3.3-184)
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From (3'.3-166) it follows that the BLE minimizes (Q positive definite)
A.

U (3.3-185)

Now,

Since

= E{LTPL} - Ett U}

E{LTPL} = E{tr[LTPL]}

= tr[P E{LLT}]

= tr[P(Og P'1 +

and

n a^ + tr(P A Qv A
T) (3.3-186)

U A.

U) = E{LT(AQXA
T + a* P *) 1 AQXA

TPL}

= tr[(AQJ(A
T + a* P"1)'1 AQXA

TP E{LLT}]

= tr[(AQxA
T + QQ P"1)'1 AQ^P (AQ̂ 1 + o^ P'1)]

= tr[PAQxA
T] (3.3-187)

we find that

2 + X2MX2> = n OQ (3.3-188)

This leads us to an unbiased estimate for the BLE variance of unit

weight

•̂T1 *s ys'T' xv

9 V,PV_ + X9MX_
S0= n <3'3

which can be shown to hold also for Q positive semidef inite. As men-
A.

tioned above and as will be seen in the simulations of Chapter 4, this

a posteriori value will indicate the compatibility of the baseline
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observations and the geophysical model introduced through the moment

matrix Q .
J\

The physical meaning of the BLE corresponds to one of the

alternate approaches discussed in Section 2.4.3. In this case

information is available on the expected deformations of the poly-

hedron stations, for example, from an adopted absolute motion plate

model (see Section 4.2). This would essentially eliminate the

singularity of the CIS problem since the expected deformations refer

to an absolute frame of reference fixed in the mantle (or crust and

mantle). In order to improve on these expected deformations and to

test the deformation model, geodetic observations are taken (repeated

baseline lengths). By estimating the deformations of the polyhedron

stations periodically, the reference frame is maintained since the

GTS stations can now be assigned updated positions in that frame.

Any adopted model should also include model parameter standard

errors. This information and the expected deformations themselves

are included in the moment matrix Q for the BLE. Another approach
X

is to simply correct the station coordinates directly and then use the

stochastic portion of Qx in estimating any residual motions that remain.

The next estimator will follow this approach.
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3.4 Unbiased Estimation

3.4.1 Bayesian Estimation

In the previous section, two possible biased estimators were

presented. In the case of no a priori information on the deformation

vector X , these reduce to the ordinary pseudoinverse (or equiva-

lently inner constraint) estimate, X = N U. In the case of the avail-

ability of a Q matrix, we investigate whether an unbiased estimate of
A.

X exists, and under what assumptions.

Consider another extended GGM model (L, AX, QV> X, £-) similar

to the BLIMBE estimation model except that the moment matrix Q- of
A.

(3.3-37) is split into X and I-. For random variables X and V
X

E{X> = X ; D[X] = Z- = E{(X-X)(X-X)T} (3.4-1)
A.

and

E{V> = 0 ; D[V] = Q = E{WT> = Z (3.4-2)

Given the probability distributions of V and X we obtain the con

ditional distributions (Chipman, 1964)

E{L|X> = AX ; D[L|X] = z- (3.4-3)
A

E(L|V} = AX + V ; D[L|V] = AẐ AT (3.4-4)

It follows that the unconditional distribution of L is
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E(L} = E{E(L|V} = E{E{L|X» = AX

D[L] = E{D[L|V]} + D[E{L|V}]

(3.4-5)

(3.4-6)

Compare these results to (3.3-141) and (3.3-142).

In order to introduce the random expected deformation vector

directly and not through the moment matrix as for BLIMBE and BLE we

define a new random vector

vx = x - x

There now can be written two sets of observation equations

L

\

=
A

I
X +

V

A
where

LX

and

V

v,,
0 ; D

V

>.
= X

0

p "

2x_

(3.4-7)

(3.4-8)

(3.4-9)

(3.4-10)

A linear estimator of X is given as a combination of L and L by

x = GL + GXLX = [G GX]
L

LX

(3.4-11)
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Let us construct an estimate that is unbiased and of minimum variance

following (Chipman, 1964). From (3.4-1) and (3.4-5)

E(X) = GAX + G X
A.

= (GA + GY)X
A

(3.4-12)

By equating to X , for unbiasedness

Gx = I - GA (3.4-13)

The minimum variance condition then requires

or

f

;G i - GA]

~ ~

*L °

0 E=

T
G1

(I-GA)T

^

>

minimum (3.4-14a)

tr{GE_GT + (I-GA)E-(I-GA)T} = minimum
Li A

(3.4-14b)

i.e., the trace of the covariance matrix is minimized. Comparing this

expression to the risk function (3.3-176) for BLE it follows that

G = Z (3.4-15)

This differs from G_ of (3.3-146) in that E- replaces Q . It follows
2 . X X

from (3.4-9, 11, 13, 15) that the estimate for X , call it X , is

given by

(3.4-16)
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Thus, X has the properties of unbiasedness, under the assumption

E{X} = X, and minimum variance (but is not BLUE being heterogeneous) .

In other words, it has minimum mean square error in the class of unbiased

estimators. Recall that the BLE has the property of minimum mean square

error but in the class of biased (homogeneous) estimators.

For positive definite Z-
A

M = Zjf1 (3.4-17)

X = (N+M)"1!! + [I - (N+JO'-'-NlX (3.4-18)

= X* + [I - OHM)"1!!]* (3.4-19)

where X_ is similar to the BLE (3.3-150) but with Z- instead of Q .
£, A A.

The second term in (3.4-19) is the bias of X .
/s

Estimate X (in 3.4-18) can be written in another form as

X = X + (N+M)~1ATP(L-AX) (3.4-20)

which involves a correction term to the expected deformation. In

other words, the second term in (3.4-20) can be considered an estimate

of the residual deformation

Xt - (XQ + X) (3.4-21)

where X are the CTS coordinates at an epoch t . Examination of

(3.4-20) indicates that linearization of the mathematical model

(3.2-1) is about the fundamental coordinates X~. In the no noise case

L = AX (3.4-22)
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and

X - X (3.4-23)

Finally, in yet another form, for £= positive definite and usingx

identity C3. 3-149) on C3.4-16)

X 3 = (N+M)"
1!! + [ I ~

= (N+M)"1!! + [M"1 - M~1AT(AM~1AT + Z, )~1AM~1]MX
L (3.4-24)

the familiar weighted parameter estimate (Uotila, 1973) or the Bayesian

estimate (Bossier, 1972).

The covariance matrix is given by (3.4-14) and (3.4-15) as

~ GA)Zx(I ~

jj - GAZ- - Z^

G(AZ-AT+ZL)G
T + Z- - GAZ- - £-ATGT

(3.4-25)

When Z— is positive definite, using identity (3.3-149)
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(3.4-26)
3

Since the Bayesian estimate results from a combination of two

types of measurements (see (3.4-8), associated with each type could be

a different variance of unit weight. Define

ZL = E{VV
T> - aJjR (-a*?'1, R positive definite) (3.4-27)

EX = E*VXVX* = T0S ̂ O11'1' S P°sitive definite) (3.4-28)

P2 = °o/T0 (3.4-29)

Then, estimate (3.4-16) may be written more generally as

/\ 2 T ? T 2 —1
X3 = TgSAVoASA^aJJR) L

+ [i - TQSAT(TQASAT + a
(3.4-30)

T T 2 -1
= SA (ASA +p R) L

T T 2 -1 - (3'4'31)
+ [I - SA (ASA +p R) A]X v

In the case of positive definite R and S (Chipman, 1964)

X, - [A'pA+pSo'̂ PL
3 (3.4-32)

+ [!-(/

2 2
Different assumptions could be made about 0_ and TQ as outlined in

(Bossier, 1972). For the purpose of this investigation we assume that

T0 = aO (p2 = 1} (3.4-33)

2 2(the case when T_ ̂  an will be investigated in a future study) so that

for the a posteriori variance of unit weight (Bossier, 1972)
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(3.4-34)

where, in general,

/sT1 * x^T1 /\ xv'T /v

[v PVI = v PV + VXMVX

T T (3.4-35)I+ ( L X - X ) M ( L X - X )

and

[VTPV] = LPI + LML - XTU - XTML (3.4-36)

when M is positive definite. In the expression for O^, n is the

number of geodetic (baseline length) observations. Note that for posi-

tive semidefinite Z-, we use M = Z^ for (3.4-35).
X X

/\

The physical interpretation of the Bayesian estimate (X ) is

the same as that of the BLE (X?) as explained in the previous section.

They differ in how the expected deformations X are incorporated into
y\

the adjustment. For X,, the expected deformations are added directly

as corrections to the CTS coordinates (see (3.4-20)). Therefore, the

estimated parameters are residual deformations. Since the deformation
/\

model is so directly introduced we refer to X, then as a "strong"
A. /s

Bayesian estimate. For X9 (and X - BLIMBE) , the expected deformations

are introduced in a weaker manner via the moment matrix Q and the
A

/\
estimate is the total deformation. Therefore, we refer to X- as a

"weak" Bayesian estimate. In fact, BLE is sometimes referred to as the
v̂

Bayes (instead of Best) Linear Estimate (Rao, 1976). Furthermore, X_

is an unbiased estimate though under the "strong" assumption E(X) = X,
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while for the biased estimate X« we make no such assumption. Finally,

for X,, X is assumed deterministic and X stochastic as for X.. For

X_ the opposite assumption is made. These differences will be studied

in the simulations of Chapter 4.

3.4.2 Best Linear Conditionally Unbiased Estimate (BLICUE)

As seen above, we have found an unbiased estimate for X under

the assumption that E(X)= X. In this section, we present a condi-

tionally unbiased estimate following essentially (Plackett, 1950;

Chipman, 1964; Theil, 1971; Bossier, 1972).

The starting point is the model (L,AX|CX = CX,Zx,Qy) for the

two sets of observation equations

(3.4-37)

where C is the constraint matrix (3.3-90). The second set of equa-

tions contain the weighted constraints

L

LX.

si

A

C
X +

V

>.

CX = CX + Vx ; (Lx = CX) (3.4-38)

so that

vx = c(x-x) (3.4-39)

where X is the expected deformation of the polyhedron stations. For

this model
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0 ; D
V,

V

vx_
=

anp~1 °
0 CZ-CT

(3.4-40)

where

D(VX) E{vxvx> (3.4-41)

so that

A

C
X ; D

L

.Lx
=

aop

0 CZ-CT

A

In contrast to the Bayesian estimate X, for which each station is

treated individually in applying the expected deformations X, here

the a priori information is reduced to six constraints. For example,

the sum of changes in the X coordinates of the CIS stations may not

sum to zero. Of course, if C = I then this model is equivalent to

that of X3.

The least squares minimum variance solution of (3.4-37) is

X. = [N + + CTPVCX]
A.

(3.4-43)

where

x (3.4-44)

Since AC = 0, it can be shown (Chipman, 1964) that using the notation

of section 3.3.1

[N + C1? C] (3.4-45)
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and

Cp j. = [N + Ĉ cr1^ (3.4-46)
A.

Recall that this means that (3.4-45) and (3.4-46) satisfy the four con-

ditions of a minimum M-norm P-least squares g-inverse where in this

case M = I. For (3.4-46), C ... is P-least squares. Therefore, X
A.

can be expressed as

CX (3.4-47)
X

or in a more revealing manner as

X, = N+U + C* TCX (3.4-48)
X

>N

applying a result similar to (3.3-33). Thus, we see that X, is com-

posed of the BLIMBE with the condition CX = 0 (M = I) and a correction

term that introduces the deviations of the reference frame conditions
/\

CX from zero due to the possible secular deformations of the poly-

hedron. If no deformations are expected (X = 0) at an uncertainty

^level given by Z-, X reduced to the standard pseudoinverse solution.

Now,

E{X,} = [N + CTP C]"1 [NX + CTP CX]
* (3.4-49)

so that X. is an unbiased estimate conditional on
4

E(CX) = CX (3.4-50)

Since it also has the minimum variance property (in this class of
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estimators) we shall refer to X, as the Best Linear Conditionally

Unbiased Estimate or BLICUE for short. Theil, (1971) refers to this as

the mixed estimator and shows that it has a Bayesian inference inter-
A

pretation which is apparent when comparing it to X . Therefore, it can

be interpreted as a combination of the BLIMBE and Bayesian approaches.

Furthermore, it bridges the gap between weighted parameter and con-

strained estimation being a weighted constraint estimate.

For the computation of the BLICUE by (3.4-43) only Cayley

algebra is required as long as R(PV) = R(C) = 6 in which casej\
T ~

N + C PC has full rank. Otherwise, X, could be computed from

(3.4-48).

The covariance matrix for BLICUE is derived as follows. Con-

sider

where

X
4
 = G1L + G2LX

T T —1 —1 T
[N + C (CZ-C1) ̂ c] A P

= [N
T — 1 — 1 T1 ^-

(3.4-51)

(3.4-52)

(3.4-53)

Then,

G2] (3.4-54)

where

'
(3.4-55)
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Z_ = (CZ-CT) (3.4-56)LX x

which reduces to

A. * (I X
4

T
Deriving an expression for V PV yields an interesting result.

Denoting

VTPV = vTpV, + V?rJL (3.4-57)

the second term is seen to be

V*PVVV = [C(X-X)]
T(CZ-CT)~1[C(X-X)] = 0 (3.4-58)

A A A A

__ ^

since the weighted constraints require that CX = CX. Then,

VTPV - V^PV1 = L
TPL - xj U (3.4-59)

~2
which is the same as for the BLIMBE, and therefore, so is a_ (3.3-56).

By examining (3.4-48) one can interpret the BLICUE approach to

monitoring deformations and maintaining the CTS, as dealing with the

"systematic" part of the deformations in a P -least squares sense and
A

the remaining "random" part in a P-least squares sense. As stated in
s\

Chapter 2, applying the constraints of the form CX = L (L ^ 0) does

not imply that the deformations include global motions, rather secu-

lar motions that do not average out. That is, for the expected defor-

mations X, with respect to the reference frame implicit in the

geophysical model, and for a particular station distribution, one

expects that CX = L and not CX = 0.
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3.5 Summarizing the Properties of the Four Estimators

Table 1 summarizes the properties of the four estimators pre-

sented above. In the next chapter, numerical comparisons will be made.

3.6 Addition and Temporary Deletion of CTS Stations

3.6.1 Introduction

The CTS frame is defined at an initial epoch by the adopted set

of coordinates of a polyhedron of stations. In order to maintain the

system, the CTS coordinates are updated periodically for the deforma-

tions of the polyhedron. It is very possible that from time to time,

one or more of the stations will not be able to participate in a parti-

cular deformation analysis observing session. Furthermore, it must be

anticipated that new stations will be added to the system periodically.

Both of these occurrences must be accounted for, in order to maintain

continuity and avoid ambiguity in the reference frame definition. We

will adopt a least squares collocation approach to handle these situa-

tions.

3.6.2 Addition of New CTS stations

In order to deal with this situation, we will apply the general

model for least squares collocation (Moritz, 1980b)

L = A^X + t + V (3.6-1)

The observation vector L is composed of different parts. The first

contains X , a non-random parameter vector to be estimated and A the
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usual design matrix. The second is the signal part t, of a random nature,

and third, a noise vector V due to errors in the observations (possibly

also model errors). In our application, X yields estimates for the new

CTS station coordinates. The signal portion is

t = A2S (3.6-2)

where the signals S are the deformations to be filtered, and A-, their

design matrix. The L vector is defined as before. Then, the expanded

linearized equations for the mathematical model (3.2-1) are

L = AXX + A2S + V

A ] + V (3.6-3)

In order to isolate the stochastic portion of (3.6-3), define

L = L - A^ (3.6-4)

The covariance function (moment matrix) for L is then

Q- = E {LLT}
Li

= E {(A2S + V)(A2S + V)
T}

= A2E {SS
T} A2 + E{W

T} (3.6-5)

where we assume that signal and noise are uncorrelated. It follows

that

QL = A2QSA2 + QV (3.6-6)

where

Qs = E {SS
T} ; Qv = E {VV

T} (3.6-7)

are the signal and noise covariance functions (moment matrices)

respectively.
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Note that Q is constructed only for those stations whose deformations
O

are being estimated while Qv refers to all observations. The cross

covariance function for the deformations and observations L is

QSL

= E(S(A2S + V)
T}

T T . (3.6-8)
= E{SST}A2

T
' QSA2

The collocation estimates for X and S are then given by

(Moritz, 1980b)

X = [A(A2QSA + Q v ) " ] Ai(A2QsA2 + Py)' (3.6-9)

S = QgA^QgA* + QV)"1(L - A^) (3.6-10)

and

X = tAl(A2QSA2 + V~lAl]+ (3.6-11)

T -1 T T -1 (3.6-12)

+ v~* s ' (3-6-13)

The design matrix
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A
n u

n

has the general pattern

u-q

II

III

Fig. 2 A-Matrix Structure for Addition of CIS Stations

The number of rows in I is the number of baselines in the original

polyhedron. The number of rows in II is the number of baselines with an

original station at one end and a new one at the other. The number of

rows in III is the number of altogether new baselines. Since both A.

and A. are computed from the same baseline length model, they are both

rank deficient. This explains the pseudoinverse in the expression for

X (3.6-9).
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Reiterating, the vector X contains the estimated coordinates

of the new CTS stations. The linearization, in this case, is taken

about some approximate station coordinates. The vector S contains

the filtered signals (deformations) relative to the expected deformation

and the linearization is taken about X-., the fundamental coordinates.

It should be mentioned that once new stations have been added to the

system, in subsequent deformation analyses the linearization of the

mathematical model (3.2-1) should be taken about X where t is the

epoch at which the new stations were added. In any case, it may be

useful to update the linearization point periodically from convergence

considerations although the deformations are small compared to the

baseline lengths.

An examination of the estimates for X and S is quite

revealing. Consider for a moment that there are no new CTS stations.

Then

S = QSA
T(AQSA

T + QV)"
1L (3.6-14)

which is just the BLE estimate (3.3-146). Thus, application of this

estimator represents the philosophy of considering the deformations as

signals to be filtered from the observational noise. Recall that in

the estimation model for BLE, the deformation vector X was assumed to
y\

be random. Next, consider the X vector when there are no signals

X = (Â A)"1" AT Q^L (3.6-15)

Adding an M-norm in the parameter space yields the BLIMBE (3.3-43 ).
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Thus, the BLIMBE approach follows the philosophy of considering the

deformations as parameters, i.e. deterministic quantities.

3.6.3 Temporary Deletion of Several CTS Stations

Some CTS stations may be unable to participate in a particular

deformation analysis observing campaign. Provisions must be made for

this in order to maintain the reference system. In this case, it is

possible to apply the prediction capabilities of collocation, which is

equivalent as shown by (Dennanis, 1976) to minimum mean square error

prediction. Recall that the BLE yields minimum mean square

error so that this method will be an extension of the BLE model.

Consider the BLE model with new notation reflecting its fil-

tering interpretation

L = Bt + V (3.6-17)

where now, t represents the signals (deformations) actually measured

(at the participating CTS sites) and B their corresponding design

matrix. Then

C = B QBT + Q (3.6-18)

CSL

from which

S - QSB
T(B QtB

T + QV)~
1L (3.6-20)

Here S , the signal vector has two components
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S = (3.6-21)

where t are the deformations to be filtered at the participating

stations and u are the deformations to be predicted at the missing

sites. The structure of the B matrix is as follows

B = B

L TQ fl
m 4

: 0

m u-q
u

where there are m baseline observations. The signal covariance matrix

Q is constructed from the geophysical deformation model for the q

observing stations. The full Q matrix is computed for all the CTS

stations whether they have observed or not. Actually, both Q and Q
t b

are subsets of the global Q matrix that can be computed for any point

on earth (compare to M of section 2.4.3).
G

The prediction is accomplished through the adopted geophysical

model from which is derived the signal covariance function. In this

context the covariance function has probabilistic justification.

Dermanis (1976) shows that the choice of inner product (i.e. weighted

norm) is equivalent to the choice of covariance function in colloca-

tion.

3.7 On the Estimability of the Baseline Length Change Estimates

The question raised in this section is whether or not the

"adjusted" baseline length change vector

L = AX (3.7-1)
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is estimable, or in other words is it an unbiased estimate of L for

each of the four estimators? In our context, is the estimated change in

the size and shape of the polyhedron unbiased?

For BLIMBE,

AQ-N(NQ-N)gATPL

(3.7-2)

Then,

E{£

= AAjjjAX (3.7-3)

- AX = L

Therefore, L is an unbiased estimate for L though X is biased.

For MINDLESS (differentiated from the BLIMBE by an asterisk)

£* - AX* = A(N+Q|)~1N[N(N+Q|)~1N]SATP(AX + V)

= ANgN(N+Q|)"1N[N(N+Q|N]8[NX + ATPV] (3.7-4)

= ANSNX + AG V = AX + AG*V

using identities (3.3-114) and (3.3-115). It follows that

£{£*} = AX = L (3.7-5)

~*
Therefore, L^ is unbiased, too.

Recall that the MINDLESS and BLIMBE are equivalent when Q- is
X

*
positive definite. Note that AG and AG., are idempotent and, therefore,
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both are projection operators. That is, they map the observation vec-

/\
tor L into L an element of the column space of A .

For BLE,

(3.7-6)

and

E{AX2> = AG2AX 9* AX (3.7-7)

/\ *
in general. Therefore L_ is biased as is X . Note that since AG? is

not idempotent, it is not a projection operator.

For the Bayesian estimate,

- AX3 = AX + AEA(AZA + aP")~(L- AX) (3.7-8)

and

E{£3> = E{AX3> = AX = L (3.7-9)

if E{X} = X, the assumption made for this estimate. Similarly, the

BLICUE

E{LA> = L (3.7-10)

under the assumption E{CX} = CX. Therefore, both estimates yield con-

/\ s*.
ditionally unbiased estimates for X and L . Note that both esti-

/\ s\

mates are not homogeneous and, thus, one cannot express X and L as
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X = GL or L = AGL, as can be done for BLIMBE and BLE, except by adding

another term to L (see (3.4-11) and (3.4-43)).
/\ **

How does one interpret the fact that L is unbiased and L.

biased? For BLIMBE, it is apparent that the model moment matrix Q- has
A

yv

no effect on the estimation of L . That is, L- is invariant with

respect to a weighted norm in the parameter space and would be the same

as obtained in a free adjustment without any geophysical information at

all. This also follows from examining the BLIMBE estimation model

(3.3-35)- (3.3-40) in which there is no connection between L and X .

/\
On the other hand, for BLE, L- is influenced by the a priori information

given by Q , or in other words by the expected value L of the new
X

distances computed from X the expected deformations. Therefore, it

comes down again to what is preferred a biased or unbiased estimate for

some parameter, or does one prefer to ignore a priori information or

not.

It is well known that a biased estimator can improve upon

unbiased estimators if there is some a priori information about the

ys

unknown parameters (Rao, 1973). In our application we can show that L_

has minimum mean square error. That is,

MSE(L2) = E{(L2-L)(L2-L)
T} = minimum (3.7-11)

From (3.7-6)
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MSE(L2) = E{[AG2L-L][AG2L-L]
T} (3.7-12)

= E{[AG2-I]LL
T[AG2-I]

T)

2 2
(using Qy^O)

AV T T T T T T
= [AG2- I]AE{XX

1}A [AG2-I] + AC

= A[G2A- I]E{XX
T}[G2A- I]

TAT + AC^

= AE{(X - X)(X - X)T}AT (3.7-13)

- A MSE(X) AT (3.7-14)

which follows from (3.3-128). Since the BLE estimator minimizes the

mean square error (in the class of biased estimators), then it follows
/\

directly that (3.7-11) holds and improves upon L.. Using the same
/v

reasoning it follows that L_ for the strong Bayesian estimate has mini-

mum mean square error (also minimum variance - being conditionally

unbiased) in the class of conditionally unbiased (heterogeneous)

estimators.
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4 DEFORMATION ANALYSIS SIMULATIONS

4.1 Introduction

In Chapter 3, four possible estimators were presented as pos-

sible candidates for CTS deformation analysis. Each one has its parti-

cular optimal properties. In this chapter, we study the significance

of these properties by running a series of simulations. The main ques-

tion to be answered is whether or not an absolute motion plate model

should be adopted, as opposed to performing an ordinary (unweighted)

pseudoinverse solution (a free adjustment). In addition, we seek to

determine the best way to combine geodetic baseline observations and

geophysical models in the estimation of crustal deformations. Recall

that in a free adjustment, the singular normal matrix is augmented with

/s

the constraint matrix C such that CX = 0 (alternatively, pseudoinverse

algebra is used to solve the set of normal equations. That is, these

constraints arbitrarily impose no net translation or rotation for the
/v

estimated deformations X without any real physical justification.
s*

The introduction of a geophysical model can direct X to a physically

more meaningful solution. A similar concept has been applied in

(Prescott, 1981) for monitoring deformations along a strike slip fault.

We "adopt" the absolute motion model AM1-2 of (Minster and

Jordan, 1978). Since using this model leads to a positive semidefinite
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moment matrix Q , we compare the four estimators first using a positive
X

definite and then a positive semidefinite model matrix.

4.2 The Model Matrix

As mentioned in section 2.4.3, it is postulated by Wilson and

Morgan that hot spots (or sources of volcanic magma) are fixed in the

deep mantle and, thus, form a set of rigid points that serve as an

absolute reference frame for plate motion. In AM1-2, rotation vectors

for eleven major plates are given in this absolute frame. The compo-

nents of these vectors are the poles of rotation of the plates (<j> ,Xp)

and their rates of rotation (a) ). Standard errors are also provided

for these estimates in Table 2, for which the data is obtained from

(Minster and Jordan, 1978). As can be seen, the errors in the

slow moving plates are quite large for the pole parameters. The

intention is not to advocate a particular model but to adopt one for

simulation purposes. We note that there is controversy regarding the

hot spot hypothesis (e.g., Le Pichon, et al. ,1973). Nevertheless,

as mentioned before, Bender (1981) points out that absolute motion

models derived from different geophysical assumptions about plate

motions differ by about 1 cm/year.

A model moment matrix for the expected absolute velocities of

the CTS stations can be constructed from an absolute motion model as

follows. The velocity of station i on plate j in an absolute frame

is given by (Minster and Jordan, 1974)

V = flx X± (4.2-1)
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where

COS(f> COSX.

cos4>.sinX

is the j'th plate's rotation vector, and

«• •_

cos ({> cos X.

cos<{> sinX.

sincfj.

(4.2-2)

(4.2-3)

is the spatial Cartesian i'th station vector. A spherical earth

approximation is sufficient for the description of plate kinematics

where R is the radius. Then,

V.

cos<j).sin4> sinX. - sin<j> cos<j>.sinX.

cost}) cosX. - cos(j>.sin

cos<f>.cos<J>.sin(X. - X.)

sincj) cost}) cosX. - cos(j>.sin(fi cosX. (4.2-4)

By error propagation, the variance-covariance matrix for the

station velocities is given by

Zy = GZpGT (4.2-5)

where G is the partial derivative matrix of the form
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, V , V
y

*ij ~ 3(4 , X , u )
Pj PJ Pj

(4.2-6)

where k denotes the number of stations, i the number of plates and

I, is the covariance matrix for the plate parameters given from

Table 4.1. Here we assume a diagonal covariance matrix. It has been

learned that a full covariance matrix is available (J. B. Minster, 1982,

private communication) although too late to be used for these simula-

tions. The partial derivatives are computed as

3V
Jj

^

. [-sin<f>.sin<J>.sinX. - cos<(>. cos<f>.sinX. ] (4.2-7)

3V

3X.
Ro cos<{>. sin<}> cosX.

_ij
°j

3V
3

~3u

3V

"9^

R[cos<j> sin<f).sinX. - sin<j>.cos(() sinX. ]

[cosd).cos<i.cosX. + sind).sin<b.cosX,
j j i i Y3 Yi j

(4.2-8)

(4.2-9)

(4.2-10)

Rw.cos(j).sin(().sinX.
J J x 3

(4.2-11)

-5—•*- = R[sin<j>.cos<{) cosX. - cos<}).sin4).cosX,
oW, J i i J 1 J

(4.2-12)

34-,
Rw sine}) cos<{>.sin ( X . - X . ) (4.2-13)
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.. ^ = -Ru).cosij).cos<{>.cos (X. - X.) (A.2-14)
OA. j 1 i i j

-pi = Rcos<|> cos^sin (A- X ) (4.2-15)

It is apparent that

GIJ = O

if station i is not located on plate j .

We assume the deformation vector X to be related linearly to

the velocity vector by

X = V(t-tQ) (4.2-16)

where t - t_ is the time elapsed from the initial CIS epoch. The model

moment matrix for the deformations is given by

Qx = E{XX
T} = (t-t0)

2E{WT}

(4.2-17)

= zx + xx
T

using

Qv = E{W
T} = Zy + VV

T (4.2-18)

where V denotes the expected velocity vector computed from (4.2-4),

X is the expected deformation vector computed from (4.2-16). and £ and

Z.. are the covariance matrices of V and X , respectively. Recall

that in Chapter 3 the moment matrix Q is introduced differently for
A.

each estimator. Note that in (4.2-16) and (4.2-17) as the time inter-

val gets shorter the deformation gets smaller and so does its
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covariances. This is somewhat misleading since the plate models are

given as long-term average rates (over approximately 50 years to several

million years (J. D. Minster, 1982 private communication)). However,

Bender (1981) suggests that the present rates of motion should not be much

different from the long-term average rates. This is then the assumption

made in these simulations and the one that will eventually be tested by

geodetic observations.

The matrix Qv for a horizontal plate model, such as AM1-2, is
A

always rank deficient. Implicit in the plate velocities (4.2-4) are

horizontal motions between rigid plates. That is, no vertical motion is

indicated and baseline lengths on the same plate should not change. The

Q matrix is given though in terms of deformations in 3 components
A.

(x,y,z) per station. If we would express the deformations in a local

system (see section 2.4.1), the height component would drop out. There-

fore, there is one rank deficiency per station due to the vertical com-

ponent. In addition, for stations on one rigid plate there is one

rank deficiency per non-redundant baseline. For example, consider 4

stations on one plate. The model predicts 12 deformations, 3 per sta-

tion. For 4 stations, a quadrilateral, there are five independent

baselines out of six. Therefore, there are 9 rank deficiencies—

4 vertical motions + 5 rigid independent baselines. This reasoning

f
applies to the Z portion of Q . The XX portion always has a rank of

X X

one so that the sum of the two matrices, i.e., Q , can at most be
X

increased by one over the rank of E .
A.
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The above example of 4 stations indicates also that the minimum

number of stations per plate should not be less than four from the

reliability point of view. For n < 4 there is no redundant baselines

and therefore no check for systematic errors or site stability prob-

lems .

4.3 Numerical Tests

4.3.1 Simulation Procedure

In Chapter 3, four estimators were presented as possible candi-

dates for deformation analysis. Each one has its optimal properties.

In order to get a better feeling for the applicability of these esti-

mates, this section describes some numerical tests. For example, it

was shown that the BLIMBE is a minimum bias estimator. However, if this

minimum bias is large, it makes little sense to use this estimate for

deformation analysis. Through controlled experiments described below,

it is possible to assess the magnitude of the bias, and similarly test

the other properties of the different estimators.

Several numerical comparisons were made for the four estima-

tors. The least squares property is examined through the computation

~T ~ /\f *
of V PV and the minimum norm property by X MX. For the two biased esti-

mators, the trace of the bias matrix is computed, i.e.,

tr[(I-GA)QY(I-GA)
T] (4.3-1)

A

where for BLIMBE (Q positive definite)
A.
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(GA)1 = V(NQXN)+N (4.3-2)

For the minimum M-seminorm P-least squares estimate (MINDLESS) with

positive semidefinite Q
A.

(GA). = (N+Q+)~1N[N(N+Q+)-
1
N]
+
N (4.3-3)

-L A. A

For the BLE, Q positive definite
A

(GA)2 = (N+Q̂ V̂ -N (4.3-4)

and

(GA)2 = QXA
T(AQXA

T + ZL)"
1A (4.3-5)

for positive semidefinite Q. The minimum variance (mean square error)
A.

property is reflected by the trace of the different covariance (or mean

square error) matrices. For the BLIMBE this quantity is added to the trace

of the bias matrix to yield the mean square error. The ratio of maximum

and minimum eigenvalues (referred to as the C-measure in section 4.3.4)

assesses the condition of the covariance or mean square error matrices .

Another property, and a most essential one, is how close does

the estimate come to the true value. This is tested in a simulation

environment where the "true" value is known. For this purpose, we com-

pute the root mean square of the deviations of the estimated value from

the true value as
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1/2

RSMPE
1=1

A
(X, -X V
1 1

3p-l
(4.3-6)

3P

2 1/2
[variance + (bias) ]

1/2

(4.3-7)

where the bar denotes an average and p is the number of stations. Both

variance and bias terms are computed and added to yield what we will

call the RSMPE (the root mean square of the sampling error).

The simulation procedure is as follows. For a particular net-

work at an initial epoch tn, we assign a set of "fundamental" coordi-

nates X.. and compute their corresponding baseline lengths. Next, by

means of the AM1-2 absolute plate motion model, we compute the expected

deformations X = (X - X_) at some later epoch and compute the corres-

ponding expected baseline lengths. To these we add 3 cm Gaussian noise

and subtract from them the initial baseline lengths to yield the

"observed" baseline length changes. We assume that the baseline

lengths are re-observed after two years (t - tn = 2 years).

The adjustment algorithms outlined in Chapter 3 are followed.

In all cases, the linearization of the baseline length mathematical

model (3.2.1) is taken about X... It is assumed that the re-observed

baseline lengths are accurate to 3 cm and uncorrelated. This is a

reasonable assumption considering that at the present, it is possible

to estimate individual intercontinental VLBI baselines with nearly such

precision (Herring, 1981). The model moment matrix Q is computed on
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the basis of the AM1-2 model as explained in the previous section.

The network depicted in Fig. 3 is the basis for the simula-

tions. Three stations were chosen per each of six major tectonic

plates (North American, South American, African, Eurasian,

Indian-Australian, and Pacific) and one station for two smaller plates

(Arabian and Nazca). The sites were chosen on the basis of several

criteria. First, the station if possible should be operational or at

least have been mentioned as a likely candidate. This criterion is met

by at least eleven of the sites (stations 4-11, 13, 16, 17 of

Table 3). The remaining sites were chosen in stable parts of each

plate according to Lowman's global plate tectonic map reproduced in

Fig. 4. Furthermore, each plate should be well represented which was

determined by an examination of the expected plate motion vectors shown

in Fig. 3 and listed in Table 3. This same network will be used in

the experiments of section 4.3.4.

In order to compare the four estimators using first a positive

definite Q matrix, a subset of 8 stations is chosen, one per each of
A.

the above mentioned tectonic plates (Table 3). In order to construct

a non-singular model matrix a secular vertical motion model was

selected arbitrarily (and therefore not reproduced here) and its cor-

responding model matrix added to that propagated from the AM1-2 model.

It consists of vertical deformations in the range of ±3 cm per year with

1cm accuracy. This eliminates the rank deficiencies due to the undefined

vertical components. Since there is only one station per plate, there

are no rigid baselines. The 8-station experiments are solely performed
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for the sake of comparison with a positive eemidefinite Q matrix.
X

Next, the same set of experiments are performed for the 18-station net-

work under realistic assumptions. Of course, the 18 station network is

much stronger having more degrees of freedom. Using (3.3-60) the 8

station network has 10 degrees of freedom, the 18 station network, 105.

In order to study the effects of errors in the model matrix Q ,
.A.

first 3 cm and then 6 cm Gaussian noise is added to the expected defor-

mations (4.2-16) computed from AM1-2 in order to construct a weak

but somewhat realistic model matrix. The simulated baseline length

changes are computed as described above using the "correct" model. Thus,

the geodetic observations detect the "true" deformations within 3 cm

observational noise but the geophysical model is rendered somewhat

incorrect, and inconsistent with the geodetic data. The noise level on

the deformations was chosen according to the uncertainties attached to

the AM1-2 plate rotation vector parameters. The propagated deforma-

tions have standard errors on the order of several centimeters for

t - t- = 2 years. This seems at first glance surprising considering

the large uncertainties in the AM1-2 parameters. A closer examination

indicates that the poles of the plate rotation vectors contain the

largest uncertainties, particularly for the slower moving plates.

These are not as critical as the plate rotation rates whose standard

errors are comparatively smaller.

4.3.2 Results of the 8-Station 8-Plate Experiments

The results of the 8-station network experiments are listed in

Table 4. it should be noted that all numbers are means over 3 runs
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each with different noise in order to get a more representative sample.

More "noise loops" were not considered necessary since the results from

the 3 runs did not appear to differ significantly.

The first conclusion from these runs is that the results are in

accordance with the optimal properties of each estimate as outlined in

/vT ^
Chapter 3 and summarized in Table 1. The V PV's'for BLIMBE and

BLICUE are equivalent and minimum, both being a generalization of the

ordinary least squares estimate (BLUE). It is interesting to note that

T
an error in the model matrix has a very small effect on V PV for both 3

and 6 cm model noise. This error is reflected, as expected, in the norm

/̂ T"1 /\ *̂P ^

X MX. This results from V PV being defined in the observation space

/s'P y\

while X MX is defined in the parameter space. As can be seen, the para-

~2
meter space variance of unit weight Tn (3.3-61 ) is a good indicator of

the compatibility between the adopted model and the geodetic observa-

~2
tions. The same holds for a (3.3-189) for the BLE, where now both

^̂  ^ /vp *.

V PV and X MX are defined in the observation space. Furthermore, we

*̂p ^ f̂p .A,
recall that the BLE minimizes V PV + X MX, as is the case here. For

the Bayesian estimate, the situation is similar to that of the BLE.

/\qi /<

V PV is computed as in (3.4-36) and the variance of unit weight

according to (3.4-34). Note that in Table 4 the contributions from

both terms of (3.4-35) are listed.

y\rP s\

For the Bayesian case, X MX is not very informative. Recall

that here M includes only the stochastic portion of AM1-2, as is the

case for the BLICUE. In fact, for the latter none of the indicators in

the table seem to reflect an error in the model matrix.
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For the minimum bias property we compute an "average bias for

(A.3-1)

tr[(I-GA)Qx(I-GA)
T]

3p" (4.3-8)

We see that this is approximately 0.9 cm for BLIMBE and 1.2 cm for the

BLE. Note that it does not depend on the actual observations so that

it is an a priori indicator and a function of the network geometry (the

design), the observational accuracy and the geophysical model. In any

case, though BLIMBE is minimum bias, that of the BLE is not much

larger. The BLIMBE minimizes the bias at the expense of variance com-

pared to the BLE. In other words, BLIMBE minimizes the variance in

the class of minimum bias estimators while the BLE does so in the class

of all biased homogeneous estimators. Furthermore, the BLE minimizes

the mean square error in this class. However, the heterogeneous Bayesian

estimator has even lower variance and thus mean square error (there is no

bias) than both biased homogeneous estimators.

The conditioning of the various solutions is reflected in the

C-measure. In this example, the Bayesian estimator yields the most

stable covariance matrix as can be seen from the correlation distribu-

tion given in Table 5. As can be seen the BLICUE seems to possess a

structure that lies between the Bayesian type estimators (BLE and

Bayesian) and the pseudoinverse one (BLIMBE) as was indicated in sec-

tion 3.4.2.

Finally, we examine what may be the most interesting indicator,

the RSMPE of the estimated deformation compared to the "true"

138



<p*J
0)
a
as
M

*04

ao
•r-l

a
u
o
u
<D
O

U
o

du
00
•rl *

3 0)

d>
-P

U] (0

i
o
•He
•PO
TJ-H
H4J

O I

ui

0)

0)

10

w
w

a I

VI I
o !
05
ca

u
03

3
U
H

CO

W
CQ

CO

w
a
a

uo
u

t
o

ne

OOOOOOr-tNOf^OCNCOOaOOOOO

oooooojaor-^r^aoo^oooooo

4»-o »-rg r"i ,* m so p» oo o> o
i i * * i * t t t i « i f i i t » i i «ooooooooooooooooooo»-
I I I I I I I I I

•̂0000000000000000000
I I I M I I I I I

139



deformation. The magnitudes of the "true" deformations (computed from

the AKL-2 and the vertical motion model) for a two year period are

listed in Table 6. Note the root mean square deformation of 6.3 cm.

In all cases the bias term is small compared to the variance term. Of

course, the Bayesian estimate yields the smallest RSMPE in the case of

no model errors, i.e., when the assumption E(X) = X (3.4-1) holds. In

this case, the adjustment just involves filtering out the observation

errors after the correct deformations have been applied directly

(3.4-20). Note that the weak Bayesian approach of the BLE yields com-

parable results even though the expected deformations are entered

indirectly through the moment matrix Q . However, as the model errors
A.

increase, X moves away from X , the Bayesian estimate yields the

largest RSMPE while the BLE is less affected. This will become more

pronounced in the results of the next section. Here, the biased esti-

mates and the BLICUE yield somewhat better results, i.e., they are less

affected by model errors.

4.3.3 Results of the 18-Station 6-Plate Experiments

In this set of simulations, 18 stations are distributed, 3 per

each of six major tectonic plates. The geophysical model is AM1-2,

thus the model matrix is positive semidefinite. The same series of

tests were performed as for the 8-station network. This simulation is

more representative from the point of view of greater redundancy (105

degrees of function versus 10 for the 8-station simulation) and more

interesting since only the AM1-2 model has been used as conceivably would

be done in practice. The results are listed in Table 7.
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î
*~
&
(*i

^ot
rM

IN

cn
Ô
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The first immediate conclusion is that the estimator of section

3.3.1.4 for seminorms is no longer minimum bias. Recall that the proof

of the minimum bias property assumed; a positive definite Q- matrix.
i ^

Therefore, the first estimator in Table 7 is denoted as MINDLESS, in

this case <a minimum Q:r seminorm P least squares estimate. Recall that the
X

~T *
minimum Q- seminorm is conditional on P least squares, so again X MX is

X

smaller for BLE. Notice that this estimate is very sensitive to errors

in the Q- matrix as can be seen in the RSMPE it appears unsuitable
A

for our purposes. The other estimators are not affected by the

non-positive definiteness of the model matrix.

It should be noted here that a BLIMBE could be found for a posi-

tive semidefinite Q- matrix. In fact it has the same equation as for the

positive definite case (3.3-41) (B. Schaffrin, 1982, private communica-

tion) . It was tested for this 18-station experiment but proved to be

quite unsatisfactory. The trace of the bias matrix was extremely small

—8 2
(~2 x 10 cm ), so that one almost has an "unbiased" estimate. On the

other hand, the standard errors of the parameter covariance matrix were

unacceptably large with a magnitude of several meters and the deforma-

tions were estimated very poorly. This is a classic example of not

choosing an estimator by only its seemingly optimal properties without

checking it also by simulations. Recall that the BLIMBE is formally

minimum variance, but only in the class of minimum bias estimators.

This is an extreme case of minimizing bias at the expense of variance.

Therefore, a warning is issued for all potential users of the BLIMBE

with a Q- seminorm.
X
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The good RSMPE results of the BLICUE are quite misleading as

will become clearer in the zero deformation tests of section 4.3.5.

Recall that 3 cm and 6 cm Gaussian noise were added to the "true"

deformations in order to construct an incorrect model matrix Q^. The

BLICUE constrains CX = CX (section 3.4.2) so that the random noise

has not significantly changed the overall six CX values. Therefore, this

is not the best way to test the BLICUE estimate. Later results will

show that the constraints CX = CX will make the BLICUE estimate too

sensitive to certain types of errors in the model matrix and therefore

also unsuitable for our purposes.

We are left then with the strong and weak Bayesian approaches,

i.e., Bayesian versus BLE. It seems clear that the weak approach, that

is introducing the expected deformations through the model moment

matrix Q , is preferable to the strong approach of direct use of the
A.

a priori information. When the model is "correct", the RSMPE's of both

estimates are at the same level (approximately 0.7 cm). The AKL-2 com-

puted magnitudes of deformations for the two year period are listed in

Table 8. They have an RMS of 6.1 cm so that most of the

deformation is being recovered. On the other hand, the BLE is less

sensitive to errors in the geophysical model. Note that for both esti-
f\

mates, the variance of unit weight an is close to unity for the "cor-

~2
rect" model case. In the presence of model noise, o^ indicates an

incompatibility between the geodetic observations and the geophysical

model. One can then make a case that the Bayesian estimate may be more

appropriate for testing a particular geophysical model, as indicated by

the larger values for a...

144



ao
•*4*
<0
4*cn
oo

MH
O<0
IW«»

w ®
00
•ft-ri
4J
(00)

(DM
O(0

0)

CU
ax
OM

°s
0)0)

t>»(0
I -H

r-flu
I

00

0)

(0
H

B4
M-
O
+1
O
0)

CM

I I I

a
U

I I I I I I I f-«-f- I I I I •-
SO

I I I I I t I I (*• I I I I I I
I

ri g

ooa
COM
t O

a>
(0

0)
ttQ

00)
O M

ao
•H

+>to

I
O
9*

M
O.a
w
0)

a
10
CO WW

M
0)
H 0)
W 0)
H M

O-H

H3

0)
0)

0} t» (0 O <0>Q( 0 M O ( 0 M 0 M
JJ-H O>W"O (0-H ., ,
O (0 (0 0 OJ3 <0*» a > ( 0 « 0 ( 0 < 0 9 < 0 M ( 0 O

M
O0

0)0)
OB

0-P
10 O
0>O
•JOS

ff]J (w

MO)

O ^
+»0

•H

0)

0)
10)

0)

00
O CM

W (0
tJ-P
MO

O W
•P-

51**.

(0
Wfl)

0 W

0 M
O<0cu*
• o
U 0

MO
0 -H
O *M^
•HO)I0

M-HO

14-1004
<D OCX,
OH(0

145



4.3.4 MERIT-COTES Experiments

The planned MERIT 83/84 main campaign (Wilkins, 1981) may be the

first opportunity to establish the frame for a future CTS, considering

that approximately 20 globally distributed stations will be available

with a combination of the best VLBI, SLR and LLR instrumentation (Muel-

ler et al., 1982). The strength of the reference frame is actually an

indication of how well the polyhedron samples the earth. For a finite

number of stations, then we investigate how "optimal" are the possible

MERIT-COTES networks from the point of view of monitoring deformations.

In (Mueller et al., 1982) it was assumed that no geophysical

model is adopted and a free adjustment used for estimating deformations.

The proposed MERIT-COTES (Working Group on the Establishment and Mainten-

ance of a Conventional Terrestrial Reference System) networks (see

Tables 9, 10 and Fig. 5) were compared to optimal network (polyhedra)

designs for different numbers of vertices. These optimal polyhedra re-

sult from distributing p points on a sphere so that they are, in some

sense, as far apart as possible from one another. It was stated there

that an analogous optimality criterion is that the origin of the coordi-

nate system defined by the p points is best determined (at least from

the point of view of trace and determinant optimality defined below).

This is proven in Appendices B-D using some recent results in optimal

design theory. It was shown that to a good approximation the above cri-

terion also provides the best configuration for analysis of polyhedron

deformations. Obviously, the distribution of stations is constrained

by various factors, foremost of which is the location of the land masses.
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î  ^^^0*J *^ ^0

o <N ao in <N oo in <*) <N oo a> »• o^ WD n <*> ao =»• o <f> in 1*1

T-(N (N (N rs (N rM CM rg rn t\| •—«—tN

0^0000000^*0^ co w

1 1 I 1 I

V
O
a W

n)
ca

a)

O-OTJuJ

sa>a>
•PN w
M-P W N C U U (flO*»J3OS
k-P (d <d OT3T3 Ul S W O 0>-H
0) <l) U U-H O 10 O-H 9-H

CO-PO) O (U
nj-io (d<j>

Q) O Q<C3 CntJt^
KdidUfd

UQ a W 3OcH 0) CT>
a>tj cr
<D>H a> o a a u 9
uoMittdididid

•MCSCN

o •»-
0-P
c^ u

(TJ

W C D

* o
0-H
4J U

0)

Uu

T)

-P O
•H Oi

a a
oo

O TO
04->

O
[/} U

U W

0-P

X 0)

W
wo
a nj
(D*
S O

a a
atsjo
o -H
u <M->

*> 3.H
•H-PM

i OCX

149



The purpose of those simulations was to examine how close the possible

networks could come to the ideal case of being able to locate the sta-

tions anywhere on earth. In other words, how close can one come to

constructing an optimal polyhedra on the available land areas.

In the case when a geophysical model for the station deforma-

tions is adopted, this must be a factor in the design of an optimal

network. Unlike in the previous case, the optimal polyhedra are not so

apparent. Here, we use as a basis for comparison the 18 station net-

work distributed over the six major tectonic plates as described in

ection 4.3.1. In addition, one station is added to both the smaller

Nazca and Arabian plates to form a 20 station network. In constructing

these "optimal networks" we were guided by the considerations outlined

in Section 4.3.1. The MERIT-COTES networks of (Mueller et al., 1982),

now reanalyzed using the AM1-2 model, are compared to these two networks.

We can then compare the different design; measures under the two assump-

tions, no plate model or AMl-2 model, to test if the conclusions in

(Mueller et al., 1982) differ in any way.

In (Mueller et al., 1982) the corresponding covariance matrices

for the deformation estimate (3.3-55) and (3.3-83) are given assuming

M = QX
1= I by

Q N+ (4.3-9)

[(N + (̂C)'
1 - CT(CCTCCT)~1C] (4.3-10)
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2
respectively, where 0n = 1. Here we use the BLE for the comparisons

based on the positive assessment of that estimator resulting from the

simulations of the previous two sections, specifically the mean square

error matrix

MSE(X) = Qx - Q̂ CAQ̂ 1 + P'1)"̂  (3.3-147)

A canonical notion of design optimality is not available, and

we will briefly describe several common design criteria. All of these

can be expressed in terms of the reduced eigenspace (the non-zero

eigenvalues and their corresponding principal eigenvectors) of MSE(X).

A-optimality is defined as minimizing the average variance

(the A-measure), in this case the average mean square error, or

equivalently the spectral mean, i.e.,

1 3p 2
min •— trace [MSE(X)] = min — I a. (4.3-11)

3p JP 1=1
 1

3p-6
Y^T X X (4.3-12)3p-6 = i

2
where X. are the non-zero eigenvalues and <J the diagonal elements of

MSE(X).

D-optimality is defined as minimizing the determinant of MSE(X)

raised to the l/(3p-6) power (the D-measure) or equivalently

„!„ PPn~6 , I ̂^ <«•«»
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E-optimality is defined as

min X
X max (4.3-14)

We shall refer to the maximum eigenvalue as the E-measure.

Another criterion, though used usually for determining the con-

dition of a matrix rather than for optimal design, can be termed

C-optimality, and is defined by

Xmax

the ratio of maximum and minimum eigenvalues. This is useful, since it

is unitless and independent of scale factor, i.e., baseline precision.

It should be noted that all of these criteria are rotationally

and translationally invariant (isotropic and homogeneous) (Grafarend,

1974). That is, only the relative distribution of the stations affects

the optimal design.

Besides these four optimal measures, we compute the "average"

2
bias, (4.3-8) squared to be in the same units (cm ) as the first three

measures .

In Table 11 the optimal measures of the MERIT-COTES 18A and

20A networks are compared to their corresponding "optimal" 18 and 20

station nets. Recall that each baseline is observed twice, once by

VLSI and once by laser, or equivalently the baseline lengths are

observed with 3/SI cm accuracy. Note that both the ISA and 20A nets

cover only 5 tectonic plates. As expected, the "optimal networks"
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Table 11 Comparison of MERIT-COTES Networks Design Measures
with 18-Station 6-Plate and 20-Station 8-Plate
Networks

Experiment

Mo. Description

Design Beasures

A-Beasure D-Heasure
Al* A2*« D1* 02**

(cm2 >

HEHIT-COTBS with Single

7 Extended Polaris 16.5
10 Exp. 7 * DSH 3.6
11 Exp. 10 » Sao Paulo 2.9
12 Exp. 11 * Santiago 2.6

13 Status in 1983 2.5
14 Bxp.13 * Santiago 2.2

SBBIT-COTES with

12 Operational (91
18 A VLBI»SLB+LLB(aL
18B Primary (3
18C Continental (9
18D Global (9
20A Exp. 18+G2SLfi(al
20B Primary 13
20C Continental (9
200 Global (9

!)** llfl
4.9

.) ola
3.7
2.1
1.8

J

1

1

VLBI

.0

.3

.8

Laser

12

B-fleasure
E1* E2«*

C-Heasure Bias
C1* C2** **

(cm2 ) (cm2 ) (unitless]

Type of Instrument****

:

6.2
3.2
2.8
2.5

:
2.3

Combined

(
:l
.0
.8

1.9

S:!
1:2
M
1.6
1.5

1.5
1.4
1.4
1.3

1.3
1.3

Lasers

I:]
1.3
1.2
1.2

1:1
1.2
1.2

153.9
15.3
10.1
8.6

10.1
7.1

and

12.3
4.1

39.7
16.3
6.8
3.3

23.2

'fc?

5.7
5.4
4.8
4.6

4.4
4.4

120
16
12
11

15
11

479
148
116
100

38
63

(cm2 )

2.
1.
l!

0.
0.

1

0

9
8

TLBI'S****

4.7
4.2
4.8
4.6
4.5
4.4
4.9
4.7
4.7

28
16
75
43
19
15
48
36
22

51
38
35
33
33

111
115
110
117

0.
0.
0.
0.
0.
0.
0.
0.

0
6
8
7
6
7

Comparison Networks

18 6- PLATE (ALL) 0.8
20 8- PL ATE (AIL) 0.8

0
0
.6
.6

0.8
0.7

1.0
1.0

1.5
1.4

2.8
2.9

9
9

19
19

0.
0.

4
4

* Ho plate model, B=I (3 cm baseline accuracy)
** Afll-2 Hodel (3 cm baseline accuracy — 2 year interval)

*** Numbers in parentheses indicate number of collocated sites
**** For station locations see Table 9 and Figure 5
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yield better results as reflected particularly in the E and C

measures implying that the MERIT-COTES networks could be substantially

improved. The large C-measure for 20A indicates that the two European

stations added to ISA degrade the structure of the MSB matrix since

these stations are added in a small region of a plate that is already

densely covered in that particular area. Note that the bias term for

the "optimal nets" is also smaller.

It should be mentioned that the comparison of the no model and

AM1-2 model experiments also shown side by side in Table 11 needs some

qualification. First, two different estimators have been used.

Second, the no model case is independent of the time interval between

observations, while the AMI-2 Q matrix is a function of time. As can
A.

be seen by examination of the results, the conclusions in (Mueller,

et al, 1982) change in degree. That is, there are much smaller dif-

ferences between the various collocation schemes, indicating that the

absolute motion model provides an underlying frame of reference for

the monitoring of deformations.

Note that only the C-measures increase in the AM1-2 case. This

is due to the positive semidefiniteness of Q as compared to the posi-
A.

tive definite M = I case.

The conclusions for the single typed instrument experiments

also do not change. Note though that the geophysical model improves

the weaker VLSI experiment 7. This points to the advantages of a

geophysical model. It is possible to perform a 3-dimensional deforma-

tion analysis in a network of less than global extent. For example, in
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the VLBI experiment 7 stations are distributed over the North American

plate and only the westernmost portion of the Eurasian plate. On the

other hand, the free adjustment (M = I) requires a more global distri-

bution for a meaningful 3-dimensional analysis. Furthermore, consider

the polyhedron as wrapped completely about the earth. If the network is

not closed, that is if there is a gap due to certain baselines not

being measured, the free adjustment will have added to it further rank

deficiencies of a geometrical nature besides the six that result from

the coordinate system definition problem. This kind of singular situa-

tion could occur for example in a limited VLBI network where problems of

mutual radio source visibility make certain baselines nonobservable.

A realistic geophysical model could be very helpful in overcoming such

problems particularly using the BLE.

The 12 station VLBI and the 13 (14) station laser networks are

again of basically the same quality. The structure of the laser net is

stronger as reflected in the C-measure. This is most likely due to the

distribution of stations over 5 plates instead of 4 in the VLBI case as

well as the better coverage of the plates on which the stations are

located.

Finally, note that the MERIT-COTES stations may not be in their

optimal locations from the point of view of geophysically stable (on

the intraplate level) sites, for example, the Southern European and

Japanese stations. Furthermore, it would be prudent, as mentioned

before, to increase the number of stations per major plate to

four or five to increase the reliability of these subnets for interplate
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motion detection. Intraplate and local motions could be monitored by

filling in the subnets (within each plate) by, for example, GPS inter-

ferometric observations (Counselman and Shapiro, 1978).

4.3.5 Zero Deformation Tests

In this section we test the situation in which the deformations

are assumed to behave according to some model but actually there is no

motion. This means that the difference between the baseline lengths at

two epochs are due solely to observational noise. In these tests we

use the Q matrix computed from AM1-2 but only 3 cm Gaussian noise is
A

added to the initial baseline lengths to simulate the baseline observa-

tions. We use the 18-station network.

The results are listed in Table 12. As is apparent from the

RSMPE, the biased estimates are less affected by the introduction of

the faulty model, particularly the BLE. This is explained, as was

noted before, from the deformations being introduced in a weak way in

the biased estimates (MINDLESS and BLE) adjustments through the moment

matrix. This same information is applied in a strong way as correc-

tions to the station coordinates in the conditionally unbiased adjust-

ments (Bayesian and BLICUE).

The results from this test point again to the BLE as the best

deformation estimator. Recall that for the BLE estimation model, the

deformation parameter vector X was assumed random and the model

derived expected deformation X deterministic, while for the other

three estimation models the opposite assumption was made. The BLE

approach then is to filter the deformations (signals) from the
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Table 12 Zero Deforaation Simulations (AHl-2,
3 cm baseline accuracy. 2 year tine
tine interval, 18-station 8-plate network)

Estimate

Property HIHOLESS

¥TPV
(unitless)

XTMX
(unitless)

TBjyas) *

TijCojJI))*

TBIRSE(X))*
(ca2)

(unitless)
T2To

(unitless)

O Measure
(unitless)

SHPE (Vac)
(ca* )

SflPE (Bias)
(caZ)

BSHPE

105.5

11.7

V

93.4
(1.3)**

130.2
(1.6)**

223.6
(1.9)**

1.0

0.7

70.9

2.6

0.0

1.6

BLE

147.5

4.0

28.7
(0.7)

—

48.3
(0.9)**

1.0

19.4

0.5

0.0

0.7

Bayesian

181.6
104.6

81.0

0

44.0
(0.9)**

44.0
(0.9)**

1.9

13.9

11.7

0.0

3.4

BLICUE

105.5

142.3

0

124.3
(1.5)**

124.3
(1.5)**

1.0

20.0

23.2

0.8

4.9

* A Priori values
** Muobers in parentheses are root aean square values (cm)
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observational noise. This explains its success in this test since only

noise was present in the simulated observations. The fact that the

model matrix Qv indicated expected deformations (with an EMS of about
A.

6 cm) did not alter the filtered deformations significantly. On the

other hand, the a posteriori variance of unit weight (a_ = 1) did not

indicate anything peculiar although that there were no statistically

significant deformations could have been determined from examining the

deformation estimates. The Bayesian a posteriori variance of unit

2̂weight (an = 1.9) indicates that baseline observations and the geo-

physical model were incompatible. This is seen again, then, to be the

main positive point of the Bayesian estimator.

4.3.6 No Model Tests

In this section we consider the case where the AM1-2 model is

correct but no model weight matrix is used, i.e., M = I. Alternatively,

this could mean that we expect no secular deformations with a particular

2
uncertainty, or M = k I. Here we assume this to be at the 10 cm level.

In this case, as described in Chapter 3, the BLICUE reduces to the

BLIMBE, the Bayesian to the BLE which approximates the BLIMBE to a

2
degree depending on the scale factor k . Only the BLIMBE should be

used in this case since the normal matrices can be quite ill condi-

tioned for the other estimators as indicated by the C-measure in

Table 13, yielding unstable covariance (or mean square error) matrices.

The important result from this test is that under the assump-

tions made (3 cm baseline noise, AM1-2 motions and a 2 year

re-observation period) the RSMPE is at about the 5 cm level.
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Table 13 No Plate flodel Simulations (H=I) (3 cm baseline
accuracy, 2 year tine interval, 18-station
6-plate network)

Estiaate

Property

*\ •» ^
Y ' P V

(unitless)

X T HI
(unitless)

Tfl|ci2af>*
THJCO^I),*

T R ( H S E f X ) ) *
leaf)

o2

(unitless)
T2

(unitless)

C- Measure
(unitless)

SHPE (Var)
(cm2)

SHPE (JBias)(cm?)
BSHPE
(CB)

BLIHBE

118.8

9.2

600.0
(3. 3) **

8«.5
(1-3)**

684.5
(3. 6) **

1.0

0.2

8.7

22.7

0.8

4.8

BLE

119.0

8.9

601.7
(3.3)**

-

682.7
(3.6)**

1.1

201.0

22.6

0.8

4.8

Bayesian

119.0
8.9

8.9

0

682.7
(3.6)**

682.7
(3.6)**

1.1

201.0

22.6

0.8

4.8

BLICUE

118.8

9.2

0

684.5
(3.6)**

684.5
(3. 6) **

1.1

200.0

22.7

0.8

4.8

* A Priori values
** Numbers in parentheses are root aean square values (en)
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Comparing this to the previous tests in which somewhat erroneous models

were used, it can be concluded that it is preferable to apply a somewhat

incorrect model than no model at all. However, this is contingent on

the plate tectonic theory being essentially correct, though the precise

motions may not be well known.

4.4 The Treatment of Errors in X

In the simulations of this chapter, we assumed a linear, model

for the computation of expected deformations from the station veloci-

ties given by the plate tectonic model. Furthermore, we neglected the

effect of uncertainties in the fundamental CTS coordinates Xfi. That

is, we treated X- as errorless even though it will have been estimated

from the observations of different measurement systems as described in

section 2.2. Whether or not to consider the associated covariance

matrix of Xn,£ when computing deformations is a matter of philosophy.0 XQ

In any case, we seek a well defined datum to which deformations of the

polyhedron are referred. It is clear that since the deformation prob-

lem is dynamic, the X_ estimate can never be improved except by a rede-

finition of the reference frame initial epoch at a later time when

improved geodetic observational accuracy would warrant it. However,

since we are primarily interested in the changes in the fundamental

coordinates (X-X ), the effect of errors in X on these quantities

should diminish with time.

In this section, we add an offset term to the linear model

(4.2-16) and indicate how errors in Xn can be incorporated into the
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estimation by means of the model matrix Qv. This is done using a statej\

transition matrix approach which is almost trivial for this case but can

be generalized to deal with more complicated models. The motions of the

polyhedron are referred to an initial epoch, i.e., to the fundamental

polyhedron. If there were no deformations in the initial polyhedron, it

would continue to rotate with the earth in its initial configuration.

However, the earth is deforming so that perturbations are present which

must be monitored. These perturbations may be periodic or secular.

Consider that this motion could be described by a set of simul-

taneous first-order differential non-linear differential equations

(Liebelt, 1967)

g= H(X(t),d(t),t) (4.4-1)

where d(t) is a set of specified forcing functions. The integration of

these equations of motion using the initial condition (state) X(t.) = X ,

results in the deformed state (the state vector) X(t) at some later

epoch. Since we invariably have to linearize our problems, we can

simplify (4.4-1) by assuming a linear system

J£ = F(t)X + G(t)u(t) (4.4-2)

where u is a set of specified forcing functions which are related to

the time rate of change of X by the matrix G which in our case would

be computed from adopted earth models. In our application, we assume a

homogeneous linear system so that u(t) = 0 and
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dX
dt

F(t)X (4.4-3)

This has a solution of the form

where

and

X(t) = S(t,t0)X(tQ)

S(t,tQ) = F(t)S(t,tQ)

(4.4-4)

(4.4-5)

S(tQ,t0) = I (4.4-6)

S is called the state transition matrix familiar in satellite orbit

determination. If we can determine this matrix, then the deformed

state of the polyhedron can be computed at any epoch by operating S

on the initial state X-. In our case, we assume (compare to (4.2-16)

x(t) x0+v(t-t0) (4.4-7)

where X denotes the fundamental coordinates and X_ the change in these

coordinates computed from the AM1-2 plate tectonic model. The equa-

tions of motion are easily written as

dt

X

y
z

X

y
•

ss

0 00 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

_0 0 0 0 0 0

X

y
z
*

X

y
z

(4.4-8)
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Their solution is given in terms of S , Xn and Xfi by

X

y
z

X

y
z

1 0 0 t-tn 0 00
0 1 0 0 t-tQ 0

0 0 1 0 0 t-tQ

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

x = s(Vo)

x_
0

yo
zo
XQ

yo
.zo

~xn(t)~.0
_x0(t)_

(4.4-9)

Of course, this is just equivalent to (4.4-7). To compute the moment

matrix Q

_ = SZV ' S
T = ZY + (t-tn)

2E«
X X0'X0 X0 ° X0

(4.4-10)

and

Qx - E{XX
1}

E{xoxo}

(4.4-11)

where we assume that

E{X0xJ} = 0 (4.4-12)

It follows that (compare to 4.2-17,18)

(4.4-13)

where the X.X. term is already taken care of in the linearization of the

deformation mathematical model (3.2-1).
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In order to add the effects of errors in X_, then, to the

deformation estimation, it is necessary to add its covariance matrix

I to the model matrix Qv. Thus, the linearization point X. of (3.2-2)
XQ X 0

is seen to be stochastic and therefore so is Ln, the initial baseline

lengths of the polyhedron and the zero order term of the Taylor's expan-

sion. It follows that for (3.2-6) and (3.2-7)

D[V] = Qv = ocp + p") = D[L] (4.4-14)

4 where <?«?« is the covariance matrix of the initial distances !„ pro-

pagated from ZY . The same dispersion matrix for V is used for all
X0

the four estimators of Chapter 3.

Although this model is simple, it does provide a general method

whereby a more complex model matrix Q could be derived. It could
X

include complicating factors such as interplate and local motions,

tidal effects, etc. This would require differential equations of the

form (4.4-2). A finite element method may be most applicable to solving

this system and determining the state transition matrix. In this case,

the original state (X ) of the polyhedron would serve as initial condi-

tions and thete could also be appropriate boundary conditions. In this

way, too, the deformations of non-CTS stations could be determined by

densifying the finite element mesh.
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5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Alternatives for Reference System Maintenance

The frame of the future CTS is to be defined at an initial epoch

by an adopted set of spatial coordinates of a global network of observa-

tories mainly VLSI, SLR and LLR stations. In order to insure that the

earth orientation parameters are referred to the same set of axes, the

deformations of the polyhedron need to be estimated periodically, i.e.,

a new set of CTS coordinates. This is what is referred to as main-

taining the reference system so that the frame is accessible to the

user by the earth orientation (and translation) parameters in a con-

sistent and accurate manner.

In order to maintain the reference system on the deformable

earth, either some constraints must be applied or geophysical models

adopted, or both. One body of opinion holds that no geophysical model

should be adopted at least not in the initial stages of the new CTS

operations. During its early stages, one of the functions of the CTS

could be to test if the geodetic observations are indicating motions

compatible with those predicted by plate tectonic theory. Drewes

(1982) presents an estimation procedure to estimate plate rotation

parameters from a combination of geodetic and geophysical data, i.e.,

the inverse problem of instantaneous plate kinematics (Minster and

Jordan, 1974). Once the plate parameters are estimated, the forward
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problem yields expected deformations of the stations that could be used

to improve CIS deformation analysis.

If no geophysical model is adopted, all the four estimators of

Chapter 3 reduce to the I-norm BLIMBE, or to the familiar free adjust-

ment. Therefore, one is limited essentially to applying the set of
A

inner constraints CX = 0 which, without any real physical justification,

impose no net rotation nor translation for the estimated deformations
*.
X . As indicated by the simulations of Chapter 4, if there are secular

deformations of the CTS stations at the level predicted by the abso-
/v

lute motion plate models, the constraints CX = 0 are inappropriate.

The reference system will nevertheless be maintained in a well defined

manner. However, the CTS will then have fairly high sensitivity to

changes in the distribution of the observing stations, and moreover to

the actual locations of the chosen sites contradicting one of the

requirements of Chapter 1. With time, distortions may accumulate in

the system and the deformation estimates of the free adjustment may

less and less resemble the physical deformations.

Another body of opinion maintains that a geophysical model

should be adopted from the initial stages of CTS operations. After all,

one of the primary reasons for the establishment of a new CTS is the

general acceptance of plate tectonic theory. This approach does not

necessarily contradict the requirement of avoiding as much as possible

dependence on geophysical hypotheses. The CTS frame is still defined

by the coordinates of the fundamental polyhedron and is invariant with

respect to an adopted geophysical model. The geophysical model does
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affect the periodically updated CIS coordinates though hopefully

improving the estimation of station deformations as compared to the

free adjustment. In order to reduce the dependence on geophysical hypo-

theses, any deformation estimator should not be highly sensitive to the

adopted model. Furthermore, if the model is incorrect, a good estima-

tor will alert the investigator to this.

Three alternatives have been suggested for maintaining the

reference frame when a geophysical model is adopted and four estimators
/\

proposed. The first alternative uses the constraints CMX = 0 and its

corresponding estimator is the BLIMBE, i.e., the weighted free adjust-

ment. As shown in Chapter 2, the resulting reference frame axes are a

discrete Tisserand's mean axes of crust. In the case of a positive semi-

definite Q matrix (associated with any absolute motion plate model) the

minimum bias estimator is unsatisfactory as mentioned in Chapter A.

The MINDLESS proposed in section 3.3.1.4 is found to be quite sensitive

to errors in the Q matrix and, therefore, also unsatisfactory for defor-
x

mation analysis.

The second alternative is to combine the baseline measurements

and the expected deformations, computed from an absolute motion plate

model, without any constraints. This implicitely fixes the CTS frame

axes in the mantle (and to the mantle and crust which rotate together in

a mean sense). Two estimators presented follow this approach, the BLE and

Bayesian estimators. The BLE introduces the geophysical model through a

moment matrix in a weak Bayesian manner, while the Bayesian estimator does

so directly in a strong Bayesian manner. When the model is correct, both
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approaches provide good estimates. On the other hand, the BLE is less

sensitive to the errors in the geophysical model. In the case of

applying the AM1-2 model when there are in reality zero deformations

(only observational noise) the BLE does not indicate any significant

deformations. This follows from its being a filter rather than a true

estimator. Note that this approach is less sensitive to the distribu-

tion of the observing stations and in the frequency of observations

since the geophysical model is good for any station location (although

unstable areas should be avoided). It would seem that conversely the

dependence on the geophysical hypothesis should increase. This is so

for the Bayesian estimate but not for the BLE as described above.

Furthermore, an extension of BLE (least squares collocation) can be

used to predict deformations in case of trouble at a number of CTS

stations, as well as to estimate the coordinates of new stations.
/\ _

The third alternative is to use constraints of the form CX = CX

S\ —(instead of CX=0) where X is computed from the geophysical model as

explained in Chapter 4. It has been seen from examination of the cor-

responding BLICUE estimator that this approach is a hybrid of the two

previous ones. It has been shown to be quite sensitive to errors in

the geophysical model in certain cases and does not give an indication

of the presence of a poor model. This can be explained by its weighted

constraint interpretation.

Summarizing, on the basis of the simulations of Chapter 4 it

seems preferable to adopt even a weak but realistic absolute plate

motion model for CTS operations than none at all. In this case, the

BLE seems most suitable for deformation analysis. If the model is of
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poor quality, the estimation algorithm should indicate this. If no

model is adopted, the I-norm BLIMBE can insure a well defined reference

system but of questionable physical significance. N

5.2 MERIT-COTES Networks and the 18-Station 6-Plate Network

Several conclusions can be drawn from the comparison of the

MERIT-COTES networks to the 18-station six-plate network of section 4.3.4

other than the ones already mentioned. The planned MERIT-COTES net-

works for the MERIT main campaign provides a good starting point for

the eventual establishment of a new CTS. However, the distribution of

stations over the major plates should be improved. Furthermore, the

number of stations per plate should be at least four from the point of

view of reliability as well as geometrical strength (for which three

seems to be adequate though). Nevertheless, it is strongly recommended

that over the duration of the MERIT main campaign two or three short

sessions be devoted to observations from all stations. The first such

session at the start of the campaign could be used to establish an

initial CTS frame. Subsequent sessions could monitor deformations

using the recommended BLE estimator. For testing the compatibility of

the baseline measurements with geophysical models, particularly the

plate motion hypotheses, the Bayesian estimator is more appropriate.

Under the following assumptions,

1. an 18-station six-plate network

2. 3 cm baseline length accuracy (this implies removal of the

larger systematic errors)
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3. a fairly reliable absolute motion model

4. no significant anomalous deformations

it can be concluded from the simulations of Chapter 4 that station

deformations could be estimated at the 1 cm level from periodic reobser-

vation of baseline lengths every one or two years. This will essen-

tially remove the effects of interplate motions from the error budget

of the required 5 cm accuracy short term variations in polar motion and

earth rotation. The resulting reference frame will provide an accurate,

well defined and consistent zero-order global network for geodetic and

geophysical studies.

A potentially major problem in this optimistic scenario is in

assumption 4 above. This could be due to site stability problems,

intraplate motions and unmodeled tidal effects such as ocean loading.

Therefore, the sites must be chosen very carefully by geophysical sur-

veys. Once they are chosen, local effects could be monitored by on-site

observations such as gravity observations and local geodetic surveys.

Intraplate motions and some local effects could be monitored by GPS

derived baselines, particularly in the interferometric mode. Further

investigations are recommended to study optimal ways to incorporate

these observations in a well defined manner into CTS operations.

5.3 A Final Comment on Estimation

The examination of the four estimators in Chapter 3 and the

simulations of Chapter 4 have provided insight into the meaning of

biased and unbiased estimation. An estimate of a parameter vector is

unbiased if and only if there are no restrictions on the estimation.
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In order words, the estimate can conceivably take on any value in the

parameter space.

If the design matrix A is singular, there exist relationships

among the parameters, restricting the resulting estimate. In the pres-

ence of a priori information on the parameters, it is still possible to

construct an unbiased estimate (strong Bayesian) with the assumption

that the expectation of the a priori parameter vector is equal to the

true one. (Under this assumption, it is unbiased also when A is of

full rank.) Formally, we have constructed an unbiased estimate but we

have "biased" the estimate in the direction of the a priori value.

Strictly, this estimate can be only considered conditionally unbiased.

If the assumption is correct (within its uncertainties), the result will

be an estimate with lower variance than the BLUE (when A is full

rank) or BLIMBE (when A is rank deficient). If incorrect, the esti-

mate will suffer accordingly. This is the basic danger in applying the

strong Bayesian estimate.

A better approach, in the case of a priori information and

whether or not A is of full rank, is to use a biased estimate (BLE),

by constructing an appropriate moment matrix Q . This reduces the
X

effects of an incorrect assumption for X , which follows from its fil-

tering interpretation (treating X as a random variable). Its more

general prediction capabilities are also very useful.

Alternatively, in the case of singular A , the BLIMBE provides

a minimum bias estimate (in contrast to minimum mean square error for

BLE) that might be preferable depending on the application. For
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non-singular A , the BLIMBE reduces to the BLUE invariant with respect

to a chosen weighted norm in the parameter space.

Summarizing, if even weak but essentially realistic a priori

information on the parameters is available, it makes little sense to

ignore it. For non-singular A , this is what we do though when the

the BLUE is used. However, if we do not choose to ignore this informa-

tion, why try to construct a seemingly unbiased estimate (the Bayesian

estimate). Perhaps the term unbiasedness (and the related estimability)

is conveying incorrect connotations of approbation that are difficult

to shed. In the case when the BLUE does not exist (as in the deforma-

tion problem) we may be tempted to apply a conditionally unbiased esti-

mate (Bayesian again or BLICUE) in order to seemingly make up for the

biasedness (or non-estimability) of the problem. We have shown that

(at least for analyzing deformations) it is better to stay within the

class of biased estimators in the application of a priori information.

Perhaps this conclusion holds for problems that are non-singular to

begin with. That is, in the presence of a priori information, it would

be a better practice to move into the class of biased estimators. This

seems to conform with the current mode of thought and investigations of

the broader statistical community. (See (Trenkler, 1981) for a good

review.)
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APPENDIX A

THE WEIGHTED PSEUDOINVERSE

A.I Conditions for a Weighted Pseudoinverse

Consider an inconsistent set of linear equations Y = AX, for a

rank deficient A matrix. A is of dimension n x u and maps X in E

into Y in E . A weighted (ellipsoidal) norm is defined in E

II v II — fv \rv\ 'X u ~ ̂ X MX)

and in En

(LTPL)1/2

We assume that P and M are positive definite matrices. The fol-

lowing theorem from (Rao and Mitra, 1971) provides the conditions for a

solution X = GY to be minimum M-norm P least squares.

Theorem. Let there exist a matrix G such that GY is a minimum M-norm

P least squares solution of AX = Y. Then it is necessary and sufficient

that the following conditions hold

AGA = A (A-l)

GAG = G (A-2)

(GA)TM = MGA (A-3)

(AG)TP = PAG (A-4)
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where P and M are positive definite matrices.

A matrix G that fulfills these conditions is denoted by A , a mini-

mum M-norm P least squares g- inverse or a weighted pseudoinverse (Boullion

and Odell, 1971). In the case M and P=I this reduces to A , a minimum

norm least squares g-inverse, or simply the familiar pseudoinverse.

Consider conditions (A-l) - (A-4) when M = P = I. If a matrix

fulfills (A-l), it is called a generalized inverse A ; (A-l) and (A-2),

a reflexive inverse A ; (A-l) - (A-3) , a left weak inverse A ; (A-l) ,

(A-2) and (A-4), a right weak inverse A ; and all four conditions, a

pseudoinverse. Only a pseudoinverse is unique. These relationships are

illustrated in Fig. 6. '

Conditions (A-l) and (A-4) are equivalent to

ATPAG = ATP (A-5)

which can be proven as follows. Assume that (A-5) is fulfilled. Then,

T T T
(AG) P = GAP

T T T T T %"
= GVPAG = [G A PAG]

T T T
= [GAP] = PAG

which is just condition (A-4). Using this result

AGA = P~1PAGA

—1 T —1 T T
" P (AGKPA = P G A PA

T -IT
= [A PAGP ]

= A

which, is condition (A-l).
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* A full rank

Fig. 6 Classes of Generalized Inverses
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Conversely, given (A-l) and (A-4)

T T T
A PAG = A (AG) P

= ATGTATP

- (PAGA)T

- (PA)T

which completes the proof.

Condition (A-2) and (A-3) are equivalent to

GTMGA = GTM (A-6)

The proof is as follows. Given (A-6)

T T T
(GA) M = A G M

T T
= A G MGA

(ATGTMGA)T

(ATGTM)T

= MGA

which is condition (A-3). Using this result

GAG M-IMGAG
_i T -ITT

= M (GA) MG = M A G MG

T —IT
= [G MGAM ]

= G

176



which is condition (A-2). Given (A-2) and (A-3)

GTMGA = GT(GA)TK

= [MGAG]T

= [MG]T

T
= G M

which completes the proof.

A. 2 A Proof for A^ (M Positive Definite)

Here we prove that G = M N(NM~1N)gATP of section 3.3.1.1 and

3.3.1.2 is A^ . For this we will need the results (Rao and Mitra,

1971, p. 22)

(a) One choice of (AT)8 is (A8)T

(b) A(ATPA)8ATPA = A and (ATPA) (ATPA) 8AT = AT for any matrix P

such that R(A PA) = R(A) which automatically holds if P is

positive definite.

First, we show that G fulfills condition (A-5) ,

ATPAG = NG

= NM~1N(NM~N)8NN8ATP

= NN8ATP

T
A P
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For condition (A-6)

GTMGA = PA[(NM~1N)8]TNM~1MM~1N(NMN)8N

= PA[NM~1N]SNM~1N[NMN]SN

PA[NM~1N]gNM~1M

T
G M

Therefore, it follows that G is a minimum M-norm P least squares

g-inverse.

A.3 An Interesting Relationship

Here we show that G = M~ N(N~ wN)8 is an N „ for the system of
IM

consistent normal equations NX = U. In order to prove this we show that

conditions (A-l) - (A-4) are fulfilled (in this case P does not appear

T
in the conditions, being contained in N = A PA) using again (a) and (b)

of A.2.

(1) NGN = NM~1N(NM~1N)8N = N

(2) GNG = M~1N(NM~1N)gNM~1N(NM~1N)8

= M~1N(NM~1N)8 = G
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(3) (GN)TM = (MGN)T

= [MM~1N(NM~1N)8N]T

= [N(NM~1N)8N]T

= MM~1N(NM~1N)gN

= MGN

(4) (NG)T - [NM'̂ Craf1!!)8]1

- NM~1N(NM~1N)S

= NG

proving the assertion for G . This proves that

4M - </P (A-7)

A. 4 A Proof for A^ (M Positive Semidefinite)

Here we prove that

G = (N+M)~1N[N(N+M)~1N] §ATP

of (3.3-119) fulfills the four conditions of section 3.3.1.4. It follows

that G = A is, in this case, a minimum M-seminorm P-least squares

solution for AX = Y. We assume that P is positive definite and use

(a) and (b) of A. 2. Then,
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(1) PAGA - PAN8NGA

= PANgN(N4M)~1N[N(NfM)~1N]gN

= PAN%A

= PA

(2) MGAG = M(N+M)~1N[N(N+M)~1N ]SN(N-ttl)~1N[N(N4*l)~1N]8ATP

= M(N+M)~1N[N(N4^1)~1N]gATP

= MG

(3) MGA = (N+M)GA - NGA

= N[N(N-ttI)~1N]8N- N(N-+M)~1N[N(N+M)~1N]8N

= N[N(N+M)~1N]gN - N (symmetric)

= [N(N+M)~1N]8N - N]T

= (MGA)T = (GA)TM

(4) PAG = PA(N+M)~1N[N(N4M)~1N]8ATP

= PA(N4M)~1N[N(N+M)~1N]8NN8ATP

PAN8ATP (symmetric)

[PAN8ATP]T

(PAG)T - (AG)TP

which completes the proof.
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APPENDIX B

APPROXIMATE THEORY FOR OPTIMAL DESIGN

2 -1
Consider the Gauss-Markoff model (LjAX.â P ) for the observation

equations

L = AX + V (B-l)

where the rank of A is full. Each row of A is a u-dimensional

vector in the design space, a subspace of E . The normal matrix N is

known as the Fisher information matrix (Federov, 1972). Actually the-

definition of Fisher information is much more general (see for example

Silvey, 1980) but simplifies to N for the linear estimation problem

given above. The design problem is choosing n-vectors A. ,...,A

such that the covariance matrix (without loss of generality we assume

P = I)

[Z ATA.]'1 (B-2)

is minimized in some sense. Alternatively, we wish to minimize the

information matrix N . Several design measures have been presented in

section 4.3.4. For the linear model, the design matrix is independent

of X . However, for the linearized model, it is dependent on

the approximate values of X. In the case of deformation
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analysis, this value is given by XQ, the fundamental coordinates.

Since the expected deformations are small, several cm/year over base-

lines of intercontinental extent, the theory developed for linear models

is applicable here, too.

Optimal design criteria, in general, consist of different func-

tions of the information matrix

<KN(d)) (B-3)

where d denotes the A vectors that make up a particular design. An

optimal design, denoted by d , will maximize <|>. Since d consists of

a. discrete number of vectors A. , it is not practical to apply standard

optimization techniques to maximize (|>. A way to generalize this prob-

lem in terms of continuous functions has been developed by (Kiefer,

1974) which he has termed approximate theory. We outline this approach

as presented by (Silvey, 1980).

Consider a design space ft , a compact subset of E . Only cer-

tain collections of A EA can be considered as valid designs (for

example, the number of vectors must exceed the number of parameters) .

The collections or events can have probabilities assigned to them. The

class of possible events forms a field, particularly a Borel field since

any combination of these events is also an event and belongs to the

field. Let H denote the class of probability distributions over the

Borel field of possible events. That is, each possible design has a

probability associated with it. Then riEf Hcan be thought of as a

design measure. For every n define its information matrix
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N(n) = E {AA±} (B-4)

where A . c"A is a random vector with distribution n- The set of all

possible information matrices is given by

/J = {N(n) : n £ H} (B-5)

Define <j> as a real-valued function over the set of u x u symmetric

non-negative definite matrices. The design problem can then be stated

as determining Ti that maximizes <|>{N(n)} over H . Such a design is

called ({(-optimal. The properties of <j>, are outlined in (Federov, 1972;

Silvey, 1980). The above definitions, then, allow us to consider con-

tinuous optimal designs.

Two directional derivatives are defined. The Gateaux deriva-

tive of (f> at NI , in the direction of N« is

G (N1,N2) = lim

If <(> is differentiable at N, ,

Ĝ .Zâ ) = Zâ CNĵ ) (B-7)

a property that simplfies the design problem considerably. The

Frechet derivative of $ at N.. , in the direction of N. is

(B-8)

e-K)+

By definition,
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Ffr̂ l'V -G^^-H^ (B-9)

Two theorems are important in deciding whether a particular design is

optimum.

Theorem 1. When 4> is concave onĵ j, r\ is ({(-optimal if and only if

FjNdl ) , N(n)> £ 0 for all nC H

/
* *Theorem 2. If <{> is concave on.J(f and differentiable at NOl ) then r\

is <j)-optimal if and only if

F (N(n*), A±A^} <_ 0 for all A±e A

For similar theorems treating the more general case of a rank deficient

A matrix, see (Silvey, 1980). Theorem 2 will be useful in the study of

optimal polyhedra on a sphere (Appendix D). In order to apply this

theorem to this problem it will be necessary to compute the Frechet

derivative for each <{>-optimality criterion. We do this for D- and

A-optimality.

For D-optimality we define

<j> = log[det N] (B-10)

to ensure concavity. Then

J = log det (NX + eN2) - log det 1^

= log [det0̂ + eN2)N^
1]

= log [det(I+ eN'1)]
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Expanding in a McLauren series

J = log {detl+ [det (1+ eNN~1)]}= + 6(e
2)

but

- (det A) = det A tr (A'1

(Bodewig, 1959). Therefore,

J = log{detl+ e [detCl + eN̂ "1)

•tr((I+ eNjN")" (I + e

log{l + e[det(I + e N"
1) tr((H-e N

+ o(e2)

log{l+e tr(N2N~1)}+

Since

log(l + X) = X - jX̂ +...

-i 2
J =e tr(N0N. )+ o (e )

and we can compute (B-6) for D-optimality

G (N- ,N_) = lira —
. e

e-K)
(B-ll)

From (B-9)
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vw=
.]21 u u

- u

and

F ( ^ . A ) = t r C A N ) - u

- u (B-13)

- u

where A. is a row of the design matrix A . Then according to the

*
second theorem above, r\ is D-optimal if and only if

A.N~1(n*)Â  < u for all A,G .A (B-14)
i i — i

For A-optimality we consider the concave function

Then,

K

= trN'1- eA •[tr(N1+ eN2)"1]e=0 + trN'1 + o (e 2)

Now,

and
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3 -1 .-1 8A -1
A = -A A

(Federov, 1972). Then

K = etr[(N1+ e 1 ̂  *»

+o(e2)

from which (B-6) for A-optimality is

- lim -

E-K)+£

i i
tr(N XN N )

(B-15)

and from (B-9)

F(J)(N1,N2)=

It follows,

F (^.AA)

-1-1

= AIN~IN~IA^ -

(B-17)

Therefore, a necessary and sufficient condition that a design ri is

<j>-optimal is that

A±N~
1(n*)N~1(n*)Aj <_ trN~\n*) for all A±
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APPENDIX C

POLYHEDRA

C.I Some Polyhedra Definitions and Classifications

A polyhedra is a finite set of polygons arranged in space in

such a way that every side of each polygon belongs to just one further

polygon, with the restriction that no subset has the same property.

The polygons are called faces, the sides edges, and the juncture of

several edges, vertices. In order to define the regularity of a poly-

hedron, the concept of vertex figure is needed. A vertex figure of a poly-

gon is the segment joining the midpoints of any two adjacent edges. The

vertex figure of a polyhedron is the polygon whose edges are the vertex

figures of all the faces that surround a vertex, i.e. the polygon formed

by joining the midpoints of the edges which meet at a common vertex.

Generally, this is a skew polygon. A regular polyhedron is one whose

faces and vertex figures are all regular. Such polyhedra have faces of

all of one kind of congruent regular polygons. (See (Coxeter, 1963.

Fejes Toth, 1964) for more details.)

The following scheme is used to classify regular polyhedra

{p,q } (c-i)

where p is the number of edges on each face and q, the number of vertex

figures (also, the number of edges meeting at each vertex)(Coxeter, 1963)
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The only possible (p,q)'s are for the five Platonic solids

(3.3) - tetrahedron

(3.4) - octahedron

(4,3) - cube

(3.5) - icosahedron

(5,3) - dodecahedron

See Fig. 7. All (p,q)'s can be inscribed in a sphere. They are also

reciprocal (dual). This means that if we join the centers of adjacent

edges by segments, we obtain the reciprocal polyhedron (q,p). This fact

was used to construct near-optimal polyhedra (called dual polyhedra) in

(Mueller, et al, 1982).

A semi-regular polyhedron has regular polygons as faces, but the

faces are not all of the same kind. There are 13 such polyhedra called

after Archimedes. These all denoted symbolically by the number of the

edges about one vertex. For example, for a polyhedron of 24 vertices

we have (using the classification of Fejes Toth (1964))

(3,3,3,3,4) - snub cube (snub cuboctahedron)

i.e., about each vertex we have 4 triangles and one square (Fig. 7)

and

(3,8,8) - truncated cube

i.e., around each vertex there is 1 triangle and 2 octagons. For 8

vertices, the antiprism (Fig. 7) is represented by

(3,3,3,4)
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Antiprism

14*

Icosahedron
Cube + Octahedron

20*

Dodecahedron

24

32*

Dodecahedron + Icosahedron

* near optimal

**mlnimum distance maximized -

Fejes Toth , 1964 .Regular Figures

Snub Cube

Fig. 7 Examples of Optimal** Polyhcdra
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i.e., about each vertex we have three triangles and one square. All

three of these semiregular polyhedra can be inscribed in a sphere.

C.2 The Golden Proportion (Section) and Polyhedra Coordinates

The pentagram is a five-pointed star constructed by extending the

edges of a regular pentagon. The 10 outside edges of a pentagram is T

times the length of the edges of the original pentagon, where

(C-2)

is called the golden proportion. It is a root of

X2 - X - 1 = 0 (C-3)

Many interesting relationships are attributed to T (Pugh, 1976) . Some

of these relate to polyhedra. Dividing each edge of an octahedron by

T : 1 yields an icosahedron. If a diagonal is drawn across each penta

gonal face of a dodecahedron, a cube is formed. The edges of the cube

will be T times the edges of the dodecahedron.

The Cartesian coordinates for the regular and semi-regular

polyhedron described in the previous section are often expressed in

terms of T. For the tetrahedron (p = 4) , a set of coordinates is

(1,1,1) , (1,-1,1) , (-1,1, -1) , (-1,-1,D (C-4)

those of the octahedron (p = 6)

(±1,0,0) , (0,±1,0) , (0,0, ±1) (C-5)
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and those of the cube (p « 8)

(±1,±1,±1) (C-6)

or

(±a,0,±h) , (0,±a,±h)
(C-7)

For the icosahedron (p = 12)

(0,±T,±1) , (±1,0,±T) , (±T,±1,0) (C-8)

and the dodecahedron (p = 20)

(O.IT"1,!̂  , (IT.O.IT'1) , (±̂ ,±7,0) , (±1,±1,±1) (C-9)

(Coxeter, 1963). For the semi-regular polyhedra, the antiprism (p = 8)

inscribed in the unit sphere has coordinates

(±a,0,h) , (0,±a,h) , (±— ,±— ,-h) (C-10)
J2 J2

where

a = —g— ; h = 1 (C-ll)

The snub cube has coordinates (w. McWorter, 1982, private communication)

(±a,±l,±ct2) , (±l,±a,±a2) , (±a2,±a,±l) (

where =.5436890127... is a root of

X 3 + X 2 + X - 1 = 0
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and those of the truncated cube

(±a,±b,±b) , (±b,±a,±b) , (±b,±b,±a) (C-14)

where

a - ; b
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APPENDIX D

POLYHEDRA DESIGN

"On a planet, say, ten inimical dictators govern. How must the

residences of these gentlemen be placed in order to be as far

as possible from one another?" (Fejes Toth, 1964).

Consider the following variation of the reference frame problem.

A total of p polyhedron stations can be distributed over the earth's

surface. Assume a spherical earth and that the stations can be located

anywhere on the surface. We define the optimal reference frame as the

one that best defines the center of the sphere-, i.e. the origin. Assume

that the "observations" are the radii R to each polyhedron station.

Our mathematical model is then

o o 21/7Ri= [xi-V + (Yi"V +(zi"zo} ] (D-1)

The parameters are the center of the sphere (X ,Y ,Z ). The optimal

design is then the choice of p stations, i.e. (X.,Y.,Z., i = 1, p).

This is analogous to the problem of how to distribute the stations that

will best monitor the change in the size and shape (deformation) of the

polyhedron. In both problems the orientation of the reference frame

axes is arbitrary.

Linearizing the above model yields the elements of one row of

A of- the design matrix
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A rxi-xo Y±-YO zi-zoi
Ai |_ R R R J

Assuming a unit sphere and that the origin is at (0,0,0)

(D-2)

Ai -
(D-3)

The information matrix N for this problem for a particular

design, r), and assigning equal probabilities X. to each point, is

N(n)

ZXiYi

Sym

(D-4)

As an example, consider the case of p = 8 and check the cube and anti-

prism configurations for D-optimality and A-optimality. One set of

coordinates for the cube or the unit sphere is given by the 8 combina-

tions (C-6)

We take this as a possible design ru whereby

N(n0) i
= 24

•8

0

.0

0

8

0

0 '

0

8 .
-*'

Now, for nQ to be D-optimal (B-14)
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for all A £ . But A is restricted to points on the unit sphere. So

A±N
-1A - [X± V± Z±]3I

- TXI

indicating that the cube distribution is D-optimal.

For A-optimality (B-18)

AiN~
1(n0)N"

1(n0)Ai < tr for all A E

We have

[X± Y± Z±]9I

so that the cube distribution is also A-optimal.

The antiprism can be shown to maximize the shortest distance

between any two vertices of the polyhedron (Fejes Toth, 1964). We test

whether this criterion passes the D- or A-optimality test. One possible

set of coordinates of the antiprism is given above by (C-10). Then
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N(n

" 2

T- ° °
a2

0 ^ - 0

0 0 h2

•

"* • «"

0 ^ 0

_° ° p.
' ~T Xi + ~T Yi + ~2 Zi

a a h

T-l
*N

Is this less than 3 for any point on the unit sphere? Try the point

(0,0,1). In this case

-±r - 3.82 > 3
h

which shows that the antiprism is not D-optimal. A similar calculation

shows that it is not A-optimal, either. These two results are verified

in the experiments of (Mueller, et al, 1982). However, the antiprism

gave a lower E- and C-measure (Section 4.3.4) than the cube.

Consider the dodecahedron distribution for p = 20. The informa-

tion matrix is given by
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"<V • T

+T

0 0 0
1

0 ~2 0

D O T 2

4r 0 0
2

T

0 T2 0

0 0 0

2^

H
T2 0 0

0 0 0

0 0 —

1 0 0

0 1 0

0 0 1

*T

T2+-
1

c

0

.I <T2 +i +2)1

T

for R*^ and therefore,

N(nQ)

for the unit sphere. But

+ - + 2)1

so

N(n0) - y

and

N A(n0) = 3i

which proves that this distribution is D-optimal. In fact, it has the

same information matrix as for the cube. Therefore, A-optimality holds,

too. It can be shown that all regular polyhedra (i.e. the Platonic
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solids) have the same information matrix and therefore all are A- and

D-optimal. This also holds for the dual combinations

p = 14 : cube and octahedron

p = 32 : icosahedron and dodecahedron

(see Fig. 7)

and for

P = 18 : octahedron and icosahedron

Thus, regularity (or semi-regularity) is the criteria for A- and

D-optimality for the origin definition problem.
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