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Abstract

Discriminationand identificationof lithologiesfrom multispectralimages

becomemore challengingwith increasingdensityof vegetativecover. Although

hyperaridareas such as partsof the Saharahave virtuallyno vegetationa

greaterpart of the earth'ssurface,includingmuch of the WesternU.S., shows

reflectancefrom somemixtureof rock/soiland veqetation. Rock/soilidentifi-

cationcan be facilitatedby removingthe componentof the signalin the images

that is contributedby the vegetation. Conversely,in some studiesit is

desirableto isolatethe vegetationsignaland to suppressthe rock/soilsignal.

Work to date suggeststhat at least for someareas unmixingtechniquesprovide

uniqueand usefulinformation.

Our approachreliesheavilyon the resultsof laboratorystudiesof the

spectralreflectanceof minerals,rocks,weatheringproducts,soils,and vege"

tation. We have developedmixingmodels to predictthe spectraof combinations

of pure end members,and have testedand refinedthosemodels using laboratory

measurementsof realmixtures. Modelsin use includea simplelinear(checkerboard)

mix, granularmixing,semi-transparentcoatings,and combinationsof the above.

We also rely on interactivecomputertechniquesthat allow quick comparison

of the "spectrum"of a pixel stack (in a multibandset)with laboratoryspectra.

To make these comparisonswe recalculatethe laboratoryspectrato the values

that would be expectedif the samplewere being viewedby the imagingdevice.

Solar,atmospheric,and instrumentalcorrectionsare applied. This approachhas

87



been used successfullyto identifylithologiesin VikingLanderand Orbiter

images,and usingLANDSATimages.

There are two main objectivesof the pixel-by-pixelspectralanalysis. First

a rapidcheck can be made of the laboratoryspectrafor correspondencewith pure

materialsor mixtures;and their distributioncan be displayedon the image by

alarminglike pixels. Second,whetheror not there is correspondencewith any

laboratoryspectra,the "pixelspectra"can be analyzedand classifiedaccording

to their rankingas end membersor as part of a mixtureof end members. Displayed

on the image these data show uniqueunits (rock,soil, vegetation,mixes, etc.),

and the mixing relationsbetweenunits. In idealcases where a continuousgrada-

tion existsbetweenend membersA and B, the proportionsof the mixturesof A and

B can be contouredon the image. We have studieda LANDSATimage of part of the

WesternDesertof Egyptwhere there is continuousspectra]mixing betweendark

lag chert and lighterdriftingsand. Pixelsthat fallon the mixing line between

A and B can with some confidencebe assignedthe percentagesof spectraof the

two contributingcomponents(chertand sand)even thoughneithercomponentis

spatiallyresolvedby LANDSAT.

The spectralresponseof green vegetationis more complex. There are, of

course,importantdifferencesbetweenspecies_n both pigmentaland leaf/stem

surfacecharacteristics.In additionthe architectureof the plant (arrangement

of leaves,stems,etc.) and the multi-layerednatureof a plant communityintroduce

factorsof shadingand shadowwhich when coupledwith the reflectanceof

detritalcomponents,often make the signaturesof plant assemblagesdifficultto

interpret.

Workingwith field and laboratoryvegetationdata and LANDSATMSS images in

two semi-aridareas,Arizona (TucsonMtns.)and Hawaii (MaunaKea-MaunaLoa saddle),

we find littleevidenceof simplemixingof vegetationand the rock/soilsubstrate.

That is, changesin vegetationdensitydo not usuallyinvolvesimplechangesin

the proportionsof spectralcomponentsA and B (vegetationand rock/soil)seen in
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the images. Insteadimage analysis,confirmedby field work, typicallydefines

severalvegetationand rock/soilzones that are spectralend members. These do

not mix appreciablywith one another,even thoughthe type of rock/soilis

constantthroughoutthe image. These observationsare consistentwith ecological

theory. For example,plant densitychangeswhich often followaltitudinalor

moisturegradientstypicallyare accompaniedby changedin numbersof speciesor

in the relativeproportionsof those species.

• To isolate(and possiblyremove)the spectralsignatureof vegetationrequires

an understandingof the typesof vegetationpresentin an area, as well as an

estimateof the percentcover. This maybe a difficult"task,dependingon how

much is known about the area in the imagethat is being studied. Given some

knowledgeof the likelyvegetationtypes and their distributionin an area we can

isolatethe vegetationsignalafterworkingthroughan interativeprocessthat

progressivelynarrowsthe model (speciesand percentcover) for a vegetationzone.

The steps are: first,to definethe zone (spectrallyuniqueend member that does

not mix with other zones);second,to model in the computerthe compositespectral

signatureof the vegetation(whichdoes involvemixturesof the spectraof the

vegetationspecieswithin the zone);third,to model the percentcover of the vege-

tation. With field data and laboratoryspectraon the main kinds of vegetation

that occur in altitudinalzones in the TucsonMtns. and on Mauna Loa we can re-

constructthe complexvegetationsignal. In these areas a limitedfield traverse

providesdata that allowscorrectanalysisof large surroundingareas. With

propermodelingof the complexvegetationsignalwe can then isolatethe component

from the rock/soiland more readilymap lithologies_

The techniquesdescribedhere have been developedusing LANDSATMSS data. We

concludethat futureadvancedmoltispectralimagingsystemswith manyband-passes

will greatlyfacilitateidentificationof rock/soiland vegetation,and will sub-

stantiallyimprovethe reliabilityof mixingmodels. At the same time the increased

data loadwill force the use of selectivestrategiesfor discriminating,identifying
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and mapping, and wil_ make less attractive "brute force" approaches for classifying.

We propose that spectral mixing techniques will become increasingly useful as

the instrument technology advances.

9O




