IR AREA ARRAY STATUS

JON RODE

AGENDA

• IR FOCAL PLANE OVERVIEW: THE CHOICES

• STATUS OF HCT HYBRID FOCAL PLANES

• AREAS OF DEVELOPMENT

TRADE-OFFS FOR APPLICATION COMPLEX

147

OPERATING TEMPERATURE QUANTUM EFFICIENCY FILL FACTOR WAVELENGTH UNIFORMITY (λ_{C}, η) COMPLEXITY YIELD COST **CELL SIZE ARRAY SIZE** SPEED OF READOUT **INTEGRATION TIME DYNAMIC RANGE** POWER SIGNAL PROCESSING BUTTABILITY

IR ARRAYS BASED ON PHOTON DETECTION

INTRINSIC (PV, MIS, PC)

- HgCdTe
- InSb
- InAsSb
- PbSnTe
- PbSSe
- HgMnTe

DETECTION

— PtSi

— PdSi

SCHOTTKY BARRIER

EXTRINSIC

Si: As, G, In, S, Zn, --

FOCAL PLANE ARCHITECTURE

BACKSIDE ILLUMINATED (EPITAXY, THINNED)

FRONT-SIDE

MONOLITHIC

CHARGE INJECTION DEVICE

SPRITE

HYBRID

Z-PLANE

LEADING ARRAY TECHNOLOGIES

- EPITAXIAL HgCdTe HYBRIDS (EXTEND TO Z PLANE)
- EXTRINSIC (As, Ga, In, S) SILICON (MONOLITHIC AND HYBRID)
- MONOLITHIC AND CID HgCdTe (ALSO InSb)
- SCHOTTKY BARRIER MONOLITHIC DEVICES (Pt AND Pd)

HYBRID TECHNOLOGY

EPITAXIAL HgCdTe HYBRID FOCAL PLANE

• SPECTRAL RANGE 1-12 μm

- 3-5 μm MOST MATURE

1-3 µm RIPE FOR DEVELOPMENT

- 8-12 μm MOST DIFFICULT FOR MATERIALS AND SIGNAL PROCESSING

ARRAY SIZE

- 64 x 64 DEMONSTRATED; 128 x 128 FEASIBLE
- DETECTOR SIZE AT 25 x 25 μ m,CAN GO TO 15 μ m x 15 μ m
- CELL SIZE AT 50 μm x 50 μm, CAN GO TO 30 μm x 30 μm

SIGNAL PROCESSING

- DIRECT INJECTION WITH DC SUPPRESSION AND GAIN REDUCTION
- GATE MODULATION (DC SUPPRESSION)
- AC COUPLED CIRCUITS IN DEVELOPMENT

PLANAR HYBRID FOCAL PLANE

SC81-13051

Rockwell International Science Center

PERSPECTIVE DRAWING

SC81-13778

HgCdTe LPE SYSTEM

24 CM² HgCdTe MWIR LPE

GOALS ADDRESSED: LARGE ELEMENT NUMBER, LOW DEAD SPACE VERSATILITY, PRODUCIBILITY

PARAMETER	TYPICAL VALUE
GROWTH AREA	> 15 CM ²
THICKNESS	15 µm
MORPHOLOGY	SUITABLE FOR DEVIC
» _C UNIFORMITY (ACROSS WAFER)	σ = 0.035 µM
<pre>x REPRODUCIBILITY (FOR > 200 LAYERS)</pre>	σ = 0.056 μM
HOLE CONCENTRATION	$3 \times 10^{16} \text{ cm}^{-3}$
MOBILITY	300 cm ² /V-sec
DEVICE QUALITY	EXCELLENT
	DICATED IN OTTED AND C

LPE HgCdTe CAN BE FABRICATED IN SIZES AND GEOMETRIES COMPATIBLE WITH SI PROCESSING

35 MEDIUM ARRAYS/WAFER POSSIBLE WITH OPTIMIZATION OF GROWTH

Rockwell International Science Center

GOALS ADDRESSED: COST, LARGE ELEMENT NUMBER, LOW DEAD SPACE PRODUCIBILITY VERSATILITY

ARRAY CHARACTERISTICS

- PLANAR (MAXIMIZES USEFUL AREA, SIMPLIFIES PROCESSING)
- PROCESS COMPATIBLE WITH S1 PROCESSING

- HIGH UNIFORMITY FROM IMPLANT PROCESS
- PROCESS ADAPTABLE TO PRODUCTION FOCAL PLANES

SCHEMATIC VIEW OF HgCdTe/CdTe DETECTOR ARRAY

Rockwell International Science Center

R_oA PRODUCTS OF SWIR PHOTODIODES AS A FUNCTION OF Eg

Fig. 3 Calculated and experimental results of R_oA versus energy bandgap for LPE-grown PV HgCdTe devices.

SPOT SCAN OF DIFFERENT AREA HgCdTe DETECTORS

SC81-12755

C. (2.0 x 2.0)

D. (4.0 x 4.0)

E.(10.0 x 10.0)

SPOT SCAN OF MWIR DEVICE 149N01-2C5

SC81-12340

68 μm UNIT CELL

DEVICE No. 149N01-2C5 T = 77K λ_c = 4.7 μ m

BACKGROUND SUPPRESSION OF DIRECT INJECTION INPUT

INPUT CIRCUIT DESIGN FOR AC COUPLED MULTIPLEXER

$D_{\lambda p}^{*}$ HISTOGRAM

 $D^*_{\lambda p}$ HISTOGRAM

NOISE EQUIVALENT TEMPERATURE DIFFERENCE

NOISE EQUIVALENT TEMPERATURE DIFFERENCE HISTOGRAM

FOCAL PLANE MODULES

DEVELOPMENT OF HgCdTe FOCAL PLANES

MATERIALS

- ALTERNATE SUBSTRATES (CHEAP, STRONG, UNIFORM)
- ALTERNATE GROWTH TECHNIQUES (IMPROVE MORPHOLOGY)

PROCESSING

- PASSIVATION
- YIELD

UNIT CELL

- NEW INPUT STRUCTURES (ESPECIALLY LWIR)
- IMPROVE SIGNAL PROCESSING
- INCREASE DYNAMIC RANGE

FOCAL PLANE ARCHITECTURE

- --- LOW DEAD SPACE
- Z-PLANE
- MONOLITHIC

