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IMAGE DATA COMPRESSION

INTRODUCTION

JPL has long been involved in the development of imaging data compres-

sion concepts and techniques primarily aimed at space program applications. A

subset of these techniques will be key elements of the Galileo and Voyager (Ura-

nus) imaging systems as well as in a ground based application to the transmission

of IR weather data for the National Oceanic and Atmospheric Administration

(NOAA). This year's efforts have focussed on investigations of .the potential of

these techniques to satisfy the anticipated mission requirements of Imaging Spec-

trometer missions as currently defined.

Background

Noiseless Coding. Noiseless coding of data sources means compression

techniques which allow exact bit for bit reconstruction of the original data. This

is illustrated in Fig. I.

INPUT DATA FEWER
SEQUENCE BITS

I, ,

Fig. i. Noiseless Coding

Coder _b[-] maps data sequence X into coded sequence _[X] from which X can be

retrieved precisely using a decoder or inverse, _-i[.]. Typically, _b[X] will

require many fewer bits than input sequence X. The average number of bits

required by _b[X] will vary depending on a "data activity" term called entropy.

_b[X] is generally considered to perform efficiently if the average number of bits

required by _b[X] is close to the entropy. JPL developed "universal noiseless

coders [I]-[3] which adapt to changing data statistics to ensure that such effi-

cient performance occurs at all entropies. The general result is illustrated in

Fig. 2.
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Fig. 2. Universal Noiseless Coder Performance

In image applications to deep space photos and NOAA IR weather satellite

images [4] noiseless coding could be expected to reduce 8 bits/picture element

(bits/pixel or b/p) by, typically, 2:1 to 4:1. Ho'wever, some military reconnais-

sance photos required over 5 bits/pixel.

Rate Controlled Compression. The variability of the compression factor

derived by noiseless coding poses an operational problem for some applications.

Further, the noiseless constraint was unnecessarily restrictive in many situations,

limiting the compression factors obtainable to the range noted above. These fac-

tors led to the development of rate controlled compression with the general char-

acteristics noted in Fig. 3. A graph of image quality vs. rate in bits/pixel is
i

shown in the figure. The two points discussed thus far are shown for no com-

pression and noiseless coding where the absicsa (rate) for the latter is data

dependent. The new feature is to be able to specify the rate: per image for a

two-dimensional algorithm .called RM2 [ 5]-[6] or per line for a one-dimensional

algorithm called BARC. [7] If a selected rate is above what is required for
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Fig. 3. Basic Rate/Quality Tradeoff

noiseless coding (= entropy) then BARC or RM2 will return coded data which will

allow exact reconstruction.

A gradual reduction in selected rate below what is required for noiseless

coding will yield reconstructions with a corresponding gradual decrease in quality.

At selected rates above 3 bits/pixel the relative performance between RM2 and

BARC have generally been observed to be small, whereas at much lower rates

(below 2 bits/pixel) RM2 clearly performs much better. On an absolute scale,

either RM2 or BARC yield what might generally be considered "archive" quality

at selected rates above 3 b/p. Here "archive" quality generally means that all

objectives for which the data is intended, subjective and quantitative, can still

be accomplished. If there is a constraint for archive quality or no need to

achieve compression factors much beyond the 3 bits/pixel range then the simpler

BARC should provide a more practical solution. The real potential advantage for

RM2 and imaging spectrometer missions is the broad user controlled rate/quality

tradeoff that could be applied both spatially and across multi-spectral bands to
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properly emphasize features of primary interest. This is discussed further in a

later section.

CCA.[8] Another development in data compression and processing at

JPL which should, .in some form, be applicable to the IS program is a process

called the Cluster Compression Algorithm (CCA). CCA obtains data compression

by working directly on multi-spectral vectors as a multi-dimensional adaptive

quantizer. It has the unique property that standard supervised spectral classi-

fication procedures can be performed directly on the data in compressed form.

While one might operate CCA with a 4:1 to 6:1 compression factor, the computa-

tion required to obtain classifications can be reduced by factors of 1000:1 or

more. This enables such classification in real-time using low-cost computer ter-

minals rather than special purpose hardware. While CCA has produced excellent

rate/quality performance in earlier studies its most significant advantage may be

on the ground as a preprocessor for classification.

FY81 Direction

The primary emphasis in data compression investigations for Imaging Spec-

trometer missions has been devoted to further development of the BARC algorithm

• concept. The primary motivations have already been alluded to in prior discus-

sions and are noted below:

l) Link requirements for near term demonstration missions suggest

that compression factors of 2 to 3:1 would adequately match instrument data rates

(for primary modes) with the expected downlink capabilities.

2) Sophisticated adaptive modes involving user directed rate/quality

tradeoffS had not been adequately studied to incorporate in demonstration missions

: : (with high probability). Archive quality on all data would preclude user objec-

• tions. The groundwork for understanding the potential usefulness of RM2 or

CCA should be established, however.

• "3) Implementations at expected 300 megabit/sec input rates was a

far more likely practicality for the simpler BARC.

w

i.
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DATA COMPRESSION INVESTIGATIONS

This section firsttreats our primary efforts to improve BARC and then

investigates the potentialimpact of a more powerful RM2 to IS missions. Time

did not also permit an investigationof CCA which seems best suited for ground

application.

Efforts to Improve BARC

The original BARC algorithms are described in Ref. 7 as well as Galileo

design documents. Efforts to make BARC a realizable element of a 300 Mbit/sec

Imaging Spectrometer (IS) mission dealt with several issues: l) Attempts to sup-

plement basic BARC with sub-sample modes to extend its efficient rate-quality

performance to lower per pixel rates (recall the drop off at rates much below

3 bits/pixel in Fig. 3; 2) modifications to BARC which provide more modularity

and ease of parallelism needed for high rate implementations; 3) modifications

which provide more accurate rate allocation procedures to enable the modularity

improvement; 4) investigations of correlation detection/correction procedures to

minimize the impact of channel errors on compressed data; 5) quality evaluations

on data relevant to IS mission objectives.

Improvements at Low Rate. As noted earlier, if the number of bits

allowed for an image line equals or exceeds the requirements of noiseless coding

then a BARC coded line can be exactly reconstructed. If the number allowed is

inadequate to enable such noiseless coding then the basic BARC algorithm achieves

the needed reduction in bits by selectively reducing the linear quantization in

blocks of 64 pixels across the line. This is a fruitful operation until the i'emain-

ing entropy in a block drops below roughly 3 bits/pixel. Further reductions

begin to yield contouring effects. This fact leads to the increasing disparity in

performance between RM2 and BARC at low selected rates (Fig. 1). In an effort

to extend the one-dimensional BARC operation to lower rates we investigated

supplementing the quantization reductions with small decrements in spatial resolu-

tion as illustrated in Fig. 4.

As shown, the subsampler preceeding BARC deletes 1 of E = n + 1 pixels

(in a staggered line by line pattern). As a result, an overall rate of R' is

achieved with BARC operating at a higher rate of ER'. Missing pixels are

replaced by linear interpolation.
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Fig. 4. BARC with Subsampler

We considered E values of 1.0, 1.2, 1.25, 1.33, 1.5 and 2.0. The results

are shown in Fig. 6 for two deep space Voyager images: a rather inactive Jupiter

image and an active image of the satelliteCallisto (we did not at the time have

data which more closely modeled IS characteristics). The graph plots selected

rate in bits/pixel vs. root-mean-squared-error (rmse).I'

For the less active Jupiter image the subsampling modes were quite effec-

tive in lowering the rinse of BARC at per pixel rates of 2 and less. However,

the combination was stillin general much less effective than RM2, particularly at

rates of 1 bit/pixel and less. Subsampling provided littleadvantage to the more

active Callisto image which is closer in characteristic to IS data. The conclusions

are then :

a) Subsampling could improve BARC performance at low rates for

some applications if an adaptive mechanism for selecting subsample modes can be

found.

b) It probably is of no value to IS missions.

Improved modularity, BARC2. The basic BARC performs quantization

reductions over blocks of 64 pixels whereas the noiseless coding functions are

performed over 16. This was partly to minimize the overhead associated with

identifying the choice of quantization as well as with assuring adequate operation

of the procedure for determining how quantization is determined in each block. [7]

tThe standard deviation of the pixel errors in data numbers, DN.
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Experience in the Galileo design suggested that performing both quantization

reductions and noiseless coding functions over the same block of 16 pixels could

effect simplifications in implementation, particularly in high rate applications such

as IS missions. A new method of determining block quantizations needed to be

devised to avoid excessive variance in the actual number of bits used over a

prescribed data span (e.g., a line). The solution has turned out to be not only

simpler and actually more accurate than the old method used on blocks of 64.

Compression performance is essentially the same for either approach.

Henceforth, we will assume this new approach and call the overall algo-

rithm BARC2.

Error Protection. The effect of communication errors on compressed data

such as from RM2, BARC2 or noiseless coding is much more severe than on un-

compressed data. For BARC2 or pure noiseless coding the effect is a propaga,

tion of the error across a line until interrupted by a known sync word or other

mechanism for a restart. For RM2 the loss may be several two'dimensional blocks

of data until restart. If error events are very infrequent then the real damage

is minimal. The solution for deep space is the implementation of a concatenated

Reed-Solomon/convolutional-Viterbi channel. [ 5] , [ 9]-[ ll] This channel produces

"virtually error free" (<10 -I0) communication at the same link signal-to-noise

ratio that an uncoded link would have error rates higher than 1/100. NASA is

considering the application of these same Reed-Solomon codes to high rate earth

orbit communications. However, the exact characteristics of communication links

for IS missions is not totally defined at this time. Hence we considered the

question of what could be done to accomodate errors when they occurred, however

rare. Whether further error protection coding would be desirable could be

answered at another time.

We first developed a normalized measure of correlation between • lines (and

defined for each pixel) v_hich tends to hover about unity for the data sets we

have thus far investigated. Applying this measure to decompressed BARC2 data

will yield similar results, unless a communication error Occurs. In the latter

case, the correlation measure will eventually diverge, usually very quickly, thus

detecting an error event. _
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The simplest use of this error detection information is the replacement of

subsequent data (up to the next restart) with either the line immediately above or

or perhaps the average of the line above and the line below. When error events

are extremely rare this is probably a completely adequate solution. However,

by projecting back to the point where the correlation began to diverge one can

consider correcting the error by alternately changing bits and preceding forward

until the correlation measure no longer diverges. These observations are illus-

trated in Fig. 7.

NORMALIZED
CORRELATION

IF ERROR

I
I
I

PIXELNO.
CHANGE
BITSHERE

Fig 7. Correlation Detection/Correction

We are still in the process of developing the error correction procedures.

However, an example of automatic line replacement resulting from error detection

is shown in Fig. 8. The image on the left is the result of an error rate of

roughly Pe = 10-5 affecting an image compressed 2: 1. The right hand image is

the result after detection and replacement.

We anticipate that a sophisticated combination of detection/correction/

replacement should enable effective BARC2 operation at much higher error rates

but are focussing on the simpler task of P -< 10-5 which probably bounds IS rais-e

sion requirements.
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JUPITER 2:1 Pe = 10-5 AFTER DETECTION/REPLACEMENT

Fig. 8. Detection/Replacement

Application to 15m Multi-spectral Data. Band 4 of a selected aircraft

derived 7-band multi-spectral image of Ventura County, CA., is shown in Fig. 9.

The 2410 pixel by 956 line, 8 bits/pixel image shown provides 15 meter resolution

and covers the spectral range of 0.52 _m to 12.5 _m. Band 4 represents the

range from 1.0 _m to 1.3 _m. The four regions enclosed by white borders are

512 x 512 subsets selected for computer processing.

BARC2 runs at 3.24 bits/pixel (or 2.5:1) on bands 1-7, subset 2, pro-

duced an overall rmse of 1.79. This is a quite accurate representation for an

image with an average band entropy of just over 5 bits/pixel and a standard

deviation about the data mean of nearly 30. The pictorial representation of these

results is given in Fig. I0. The image in the upper left is the original Band 4

of 512 x 512 Subset 2 in Fig. 9 whereas the upper right is the BARC2 result at

3.24 bits/pixel (2.5:1). It is impossible to see the difference. The 128 x 128

bordered region in both images is severely blown up directly below. These

results should support the "archive quality" assumption made earlier.
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Fig. 9. Ventura County, Band 4

RM2 Application to 15m Ventura

The RM2 algorithm noted earlier was also run on the high resolution

multi-spectral image of Ventura County, CA. The results are illustrated in the

pictures of Fig. Ii-13 and the rate vs. rmse graphs in Fig. 14. The images deal

again with Band 4, Subset 2 whereas the rmse plots are composites over all 7

bands.

An original 8 bit/pixel (b/p), 512 x 512 rendition of Subset 2 (Fig. 9),

band 4 is shown in Fig. ii along with RM2 results at 2.0 b/p (4:1), 1.33 b/p

(6:1) and 1.0 b/p (8:1). This is followed in Fig. 12 with the corresponding

"diff-pics" which display the error between the original and compressed images

shifted to an average value of 128. Selected blowups at 256 x 256 appear in

Fig. 13.

Degradation is difficult to observe in the more realistic 512 x 512 displays

for rates down to 1.33 b/p. Image quality is quite good but probably not of
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Fig. 10. BARC2 on Ventura, Band 4, Subset 2
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Fig. 11. RM2 on Subset 2, Band 4
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Fig. 12. RM2 Diff Pies on Subset 2, Band 4
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Fig. 13. RM2 256 x 256 Blowups
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Fig. 14. RM2 rinse results, Subset 3
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archive quality at 2.0 b/p. Note that rmse data points in Fig. 14 lie along a

straight line which roughly extrapolates back to the data entropy, which for

band 4 is 5.03 b/p (a completely random field would an entropy of 8 b/p). This

extrapolated graph will lie slightly below the data point for BARC2 at 3.24 b/p

(and illustrated in the pictures of Fig. 10). The results are consistent with the

introductory discussions.

It is important to note that the rate/quality tradeoff evidenced by these

images and rinse graphs is a continuous one and is not limited to only the selected

sample points presented here. A user could arbitrarily tradeoff spatial quality

for spectral coverage in virtually any combination, and change his options at

any time.

RM2 Global Rate Allocation. Additional gains are potentially possible if

one looks further into the rate control structure of RM2. RM2 partitions a single

band image into subpictures of size 32 x 32 or 64 x 64, and determines an activ-

ity measure for each. This results in an array of activity numbers as shown in

Fig. 15 for an N Subpicture image. The activity numbers reflect the relative

need of each small area for bits. Given B total bits to use in an image an RM2

rate allocation procedure utilizes this information to designate B. bits to be used1

to code the i TM subpicture (where i = 1, 2, ... N) so thatt

N

B. B where B arbitrary (1)1

i=l

Subpictures with larger activity measures tend to receive more bits than the less

active subpictures. Such allocations Could in principal be applied across spectral

bands or even sequences of images.

Geographic Boost. This global rate allocation procedure thus focusses

bits and hence quality towards regions based on a natural measure of activity.

The next potential step in performance might be obtained by simply fooling the

rate allocator. Suppose for example that a certain geographic area of say 256 x

tA subpicture to be completely edited (not sent) receives zero bits by this
procedure.
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Fig. 15. Rate Allocation

256 size within a very large image (e.g., 2048 x 2048) was known to be of criti-

cal importance to a user. He desired 7 full bands at very high quality in this

region but the link could support all 7 bands only at an average of 1 bit/pixel.

If the position of this region could be (roughly) designated then the user's prob-

lems are easily solved. By artificially boosting the natural activity numbers, Ai,

of the subpictures in the designated region, the rate allocator would unknowingly

allocate a greater number of bits (and hence quality) to those subpictures at the

expense of the remaining regions. Since the selected region is only 1/64 th of the

total this would have little impact on remaining regions. In general, the amount

of boost would reflect the relative importance and perhaps size of the selected

region over other areas. This is illustrated in Fig. 16.

Auto Boost. More generally, artificial boosts to activities might be deter-

mined by independent pattern recognition devices which looked for special features

of interest. When certain features were found to be present in a subpicture i the
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Fig. 16. Geographic Boost to Acitvity (=_ quality)

device(s) would call for a boost to the natural activity measure A. leading to1

additional bits and hence quality into subpicture i.

These considerations are summarized in Fig. 17 where _i >-"1 is the user

generated geographic boost associated with subpicture i (a user would not pin-

point subpictures but whole regions), and _i -> 1 is the corresponding artificial

boost determined by some pattern recognition device. Note that these two forms

of added direction to a limited number of bits has no impact on RM2 itself and

could be developed or considered as later supplements.

Principal Components. The following investigation is incomplete but offers

the possibility of better performance at low rates. We now preceed RM2 with a

spectral transformation which maps each multi-spectral pixel onto a new set of

basis vectors which are the eigenvectors of the data covariance matrix. Such a

transformation is called "principal components," or Karhunen-Lo_ve (K&L) and

other names as well. We will stick with the name principal components.
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Fig. 17. Generalized Global Rate Allocation
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Ideally the result of this transformation is a set of new spectral bands

which are no longer correlated and for which most of the image energy has been

concentrated in only a few of the new bands. The real hope for improved com-

pression is that principal components makes use of band-to-band correlation which

we have so far ignored. Ready and Wintz [12] obtained some encouraging results

using less sophisticated spatial compression than RM2. However, their test sets

were significantly less active than the Ventura image, Fig. 9.

RM2 Conclusions. It would seem clear that the RM2 concept offers the

potential for significant increases in real information transfer rates. This would

come from sophisticated user and autonomous direction of the rate/quality trade-

off provided by the RM2 rate control structure. How and if that flexibility fits

within the spectrum of IS missions needs to be considered. A more thorough

investigation of RM2 capabilities as well as implementation assessments should be

completed.
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