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R. Nathan

Image Processing via VLSI

Abstract

The generaT-purpose digital computer is not able to handle the data
ratesband sdbsequent throughput requirements of data systems in the mid-
80's and early 90's. In particular vast qﬁantities of image data will
have to be calibrated, geometrically projected, mosaicked and otherwise
manipulated and merged at rates that far exceed the capacities of present
systems. Even the "super" computers, some of which have been designed
explicitly for image processing, promise- insufficient throughput cabacity.
Implementing specific image processing algorithms via Very Large Scale
Integrated system§ offers a potent solution to this perp]éxing problem.
Two aigorithms stand out as being particularly critical -- geometric map
transformation and filtering or Corre]aticn. These two functiohsvform the
_basis for aata ca]ibratfon, registration and mosaicking. VLSI presents
itself as an inexpensive ancillary function to be added to almost any
general purpose computer and if the geometry and filter algorithms are
implemented in VLSI, the processing rate bottleneck wou]d be sfgnificantly
relieved. This work develops the set of image processing functions that
1imit present systems to deal with future throughput needs, translates
these functions to algorithms, implements via VLSI technology and inter-

faces the hardware to a general purpose digital computer.

Objectives

* Design and fabricate special purpose VLSI chips to perform specifi;
image processing algorithms.

* Integrate such chips into interface systems which are under the
control of a central general purpose processor assigned to image

processing..
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* In particular, design and test filter system and a cubic spline
geometric reprojection system.
* Examine and develop VLSI design concepts for other image processing

requirements.

Motivation

Bracken (1) has spelled out the need for improving the processing
speed of image data collected from an ever increasing array of satellites
each with a larger information bandwidth than its predecessor. The pfoces-
sing problem has several dimensions.

* In order to enable the end user to use new information, the data
must be restructured to match a previous information base. A com-’
mon requirement is to reproject and register images taken from an
oblique satellite view to a normal projection on the surface. This
reprojection along with the need to correct for any systemmatic
camera distortions requires that images be stretched 1ike a "rubber
sheet" to fit the desired reprojection. This shift which entails
many rotations and magnifications within each image requires relo-
cation of interpolated data to locations which may be far distant.
from some original position.

* In order to determine the precise shift which will bring two images
into registration, match points must be determined. Modified cross
correlation calculations can be used to maximize the best fit of
these match points. Correlation and filtering have similar mathe-
matical structure and both can be implemented with a special purpose
VLSI system. The filtering operation is also used to smooth noisy
data or enhance fine image detail. Image enhancement has been

applied rather infrequently in spite of image improvement because
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it is an expensive process. VLSI operation can reduce the cost and
time of processing. Filtering also enab{;s certain feature detection
and extraction algorithms.

* Another dimension of image processing relates to where in the data
stream the processing is to be performed. Our present technology
.thus far requires transmission of unprocessed images. As high speed
compact processing technology evolves, processing can be movéd on
to the satellite and transmission bandwidth reduced by several
orders of magnitude.

* Pipeline processing implies placing simultaneous hardwired algorithms
in tandem. Other image processing functions such as sorting maximum
values, change detection, developing time dimensions on accumulated
data bases become accessible in near real time when thinking in

terms of modular hardware.

Background

Digital image processing became a working reality in the early 1960's
with the advent of JPL's Ranger, Surveyor and Mariner series. We (Nathan-2)
had effective]y established the requirements for various processing algo-
rithms from pragmatic pressures. Filtering was performed to remove system-
matic noises from the camera and geometric corrections also were required
to correct camera distortion. Filtering further evolved to enhance fine
image detail without stretching low frequency data to cause image satura-
tion. In those early missions it was generally possible to keep up with
the data load with the processing power of computers available at the time.
No real attempt was made to do more than refine those algorithms using com-
mercially available machines. Sinée thaf time the situation has dramatically
changed in terms of volume while the algorithms have remained relatively
static.
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Severé] attempts at creating special parallel processors have proven
~expensive and unwieldy. A comparison of several "super" computers was
performed by Mitre Corporation (3). They were given several classes of
very limited tests against which to measure processing effectiveness.

Some of the computers compared were the Cray I, the DAP (English), the
PEPE (Army), the\Iliiac 1V, the Cyber 203, the AP-120B, the CLIP 3 and the
MPP (Goddard-Goodyear). A1l but the AP-120B are extremely expensivé
(several millions of dollars each) whereas the AP-120B is very much slower.
Mitre judged the MPP to be the best as determined from the given conditions.
But the filter and geometric test problem was much too constrained and
Just fit the 128x128 area of parallel memory in MPP. Only a kernal of
20x20 can be filtered against a 128x128 image. Only a shift 6f 8 pixels
using linear interpolation is allowed for geometric remapping. These
restrictions have been hardwired and only slow software can overcome them.
The heart of the MPP is a general purpose VLSI processing unit. The
direction of the conceptvis still in terms of multiple function perform-
ance by a particular hardware unit.

VLSI s a general tool which can be viewed as an extension of soft-
ware in the sense of the next generation of comphting power. These con-
cepts have been under development at Caltech under Mead (4). JPL has a
very close relationship with the campus. We have recently been working
with Mead to aid in the rapid evolution of the software techniques for
designing VLSI circuitry and have, in addition, been developing filtering
hardware concepts following a data fiow algorithm froh Cohen (5) which
allows successive multiplier-accumulators to be pipelined. A modification
in memory handling allows an extension to two dimensions and is being

breadboarded to fit fhe VLSI design. As a seed effort we have started to
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design a VLSI chip which will allow us to create a 31x31 element kernal

that will compete favorably timewise and dollarwise against the MPP.

Approach
| VLSI design is still a rapidly evolving field. Computer 1anguages

are under development which will eventually allow high level statements
to be made which establish funétional criteria and these statementsewould
be converted to n-channel metal oxide semiconductor (h-MOS) or complemen-
tary c-MOS wire lists. These lists are in turn converted by computer to
drawings of different overlays of.meta1 and metal oxides. The drawings
are then photo-reducéd and photo-etched onto silicon or sapphire wafers
which are then cut and wired to form individual chips.

The amount of logic that can be placed on a single chip is also
evolving rapid1y.: Today many tens Qf thousands of transistors can be
stored on a surface 7x7 mm sq. Within three to five years that number is
expected to increase by 2 to 3 orders of magnitude. At JPL we are experi-
menting with ways to develop languages which will allow variation of
parameters, number of multipliers, number of bits/multipliers, serial or
parallel additions/multiply and other parameters which will allow us to
tailor fit to customer need without massive redesign effort. | |

As we contemplate the marriage of VLSI technology with image proces-
sing requirements, not all the pieces are yet in place. Some of the
designing effort is still initiated by manual drawings to meet YLSI design
rule requirements. The logic for multiplication is still not finalized
as compefition for area (on the chip) and speed (minimum clock cycles

per multiply) is under sgudy.‘ Conceptual design for the geometry opera-
tion is under rapid restructuring as various experts are consulted

(Billingsley-6). Projects like these are studied by Caltech students in

258



Prof. Mead's classes and valuable interchange is derived from those dis-
cussions. The whole idea is to be able to upgradé design concepts and
create new VLSI chips as though debugging computer software.

In paraliel with the actual chip development hardware is being
developed to interface the VLSI to existing computer structures. A not
too surprising result emerges as this effort progresses. VLSI a]lyws an
improvement in throughput over a serial general purpose computer by a™ -
factor of 2 to 3 orders of magnitude. We very quickly become 1/0 bound
in terms of magnetic tape or disk. Consideration must be given to grabQ
bing the data once from mass (serial) storage, and performing all processes
at once (pipeline serial) before sending the restructured data or extracted
information back on to tape or out to the customer.

We have spent some time with the initial development of a VLSI chip
wh1ch presently has four multipliers each of which stores 20 bits and .

‘multiplies an 8-bit pixel by a 12-bit weight. The chip has been submitted
for fabrication external to JPL. Turnaround is about two months. JPL's
role is not to compete with the commercial fabrication process, but we
are more interested in developing more versatile VLSI design tools,

Some effort has gone into the concept of a pipelined geometry remap-
ping chip. An initial concept designed by us (Nathan) was tried success-

. fully by Northrup for the Air Force. But that was only a nearest neighbor
design. We have developed many software algorithms over the years, and
recently thought is being given to a four point modified cubic spline
which should not degrade the image»as does nearest neighbor or linear
interpolation. The concept is to perform two orthogonal stretches (or
contractions) along each axis as serial operations (pipg]ined in two

VLSI functions) while have direct access to several megabytes of random
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access memory from the computer main frame. The pfoposed speed of trans-

formation is many times that presently available.

Expected Results

Two sets of hardwired algorithms are to_be produced. One algorithm
will perform two dimensional filtering or correlation on an arbitrarily
large image using a 31x31 kernal (at present design -- a modifiab]e
parameter). The other algorithm is a pair of one dimensional cubic spliné
geometry remapping functions which under sdftware control will "rubber
sheet" one image to anbther accordiﬁg to pre-established paés points. ft-
is expected that these systems will be installed for use in JPL's Image
Processing Laboratory (IPL) and be used in their image processing produc-
tion mode.

Progress is anticipated in the development of software which utilizes
the filter hardware to establish "pass points" and theée in turn will
generate the correction grid for the gepmetry hardware.

Also investigation into class extraction using the filter hardware
will be started. Studies of this sort exist as software only. It is
desired to explore increased dimension of class search once a fast hard-
ware filter becomes available.

Another product which can be eXpected is the abilfty to reproduce
other VLSI configurations with minor changes.in design parameters. This
abiTity gives us the power to update new hardware without major mechani-
cal redesign as customer needs ;hange;

As concepts develop regarding‘the utility of other imaging operations,

these too shall be pursued.
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DIGITAL MULTIPLIER

e TYPICAL IC MULTIPLIERS CONTAIN REGISTERS FOR MULTIPLIER AND
MULTIPLICAND OPERANDS.

® AN ADDITIONAL REGISTER IS PROVIDED FOR THE PRODUCT.

e MODERN LS!I MULTIPLIERS PERFORM ADDITIONS IN A RIPPLE FASHION.
THAT IS, EACH SUM IS PASSED ON FROM ONE ADDER TO THE NEXT WITHOUT

" THE USE OF CLOCKED SEQUENTIAL CIPCUITS. THEREFORE. THE
MULTIPLIER 1S COMPRISED OF AN ARRAY GF GATES AND ADDERS.

Xin
INPUT o oo 1 01 1}
REGISTERS JJJ)))J
0000000
1 000000
00000
0 0000
o0 011 \:zglgfgf
ATES
000 11 :
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0000 0 RS
0-0.0 1-0:0 0 0:1 00-0 Gf

PROOUCT REGISTER
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GEQMETRIC REPROJECTION

RESAMPLING

N = py W + pywy+ Py Wy + Py

FOR LINEAR INTERPOLATION OF MEW

H] = Wa = 0
My= 1 - f
N3 = f

THEBEFORE N] = PZ (]'fi) + p3 f]

Pi o ORIGINAL SAMPLES

Mi x NEW SAMPLES
£ FRACTIONAL

DISTANCE
BETWEEN POINTS

SAMPLE VALUES

FOR CUBIC INTERPOLATION ALL FOUR Wi ARE A TABLE LOOK uP

FUNCTION OF f,.

THE NEW INTERSAMPLE DISTANCE (d)

CAN ALSO BE HONLINEAR.

ALLOWANCE IS MADE FOR CUBIC SPLINE ADJUSTMENT FOR NON-LINEAR SAMPLING.
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CEOMETRIC REPROJECTION

CPU

cPU .
) i
\L Interface
VLSI

VLSI
I_A_ CPU .

Intertace Interface

VLSI interface

CPU + A
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GEOMETRIC REPROJECTION
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GEOMETRIC REPROJECTION
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