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PREFACE

A Symposium on Nonlinear Constitutive Relations for High Temperature
Applications, under the joint sponsorship of the NASA Lewis Research Center
and the University of Akron, was held at the University of Akron on May 19-20,
1982. Some seventy-five attendees and participants representing NASA, other
Government agencies, universities and industries were at the Symposium. The
purpose of this Symposium was to review the state-of-the-art in nonlinear
constitutive modeling of high temperature materials and to identify the needs
for future research and development efforts in this area.

One of the specific goals of the NASA Lewis Research Center is to foster
technological development of gas turbine engine structures. In this
connection, it was recognized that considerable research efforts are urgently
needed in the development of nonlinear constitutive relations for
high-temperature applications. This need is stimulated by recent advances in
high-temperature materials technology and new demands on material and
component performance. The demands for better material performance have come
from not only the aerospace industry but also the stationary power and
automotive industries. Therefore, the intent of this Symposium was to bring
together both the developers and users of nonlinear constitutive relations for
exchange and quick dissemination of recent research progress and new
technology in this area.

The Symposium was organized into the following five sessions:

I. Material Behavior

II. Constitutive Modeling I

IIT. Constitutive Modeling II

IvV. Numerical Methods

' Panel Discussion and Recommendations

There were a total of twenty-one papers presented in the first four sessions.
The papers (extended abstracts or abstracts where papers were not available)
and the authors are grouped by session and identified in the Table of
Contents. Following the technical papers is a summary of the panelists'
remarks focusing on the identification of required future research and
development in nonlinear constitutive relations for high temperature
applications.

We, the Organizing Committee, wish to express our appreciation to the session
chairmen, authors and speakers, and panelists whose efforts have contributed
to the technical excellence and success of the Symposium. We are also
grateful to the staff and Mrs. Mary E. Chesrown, Assistant Director of the
Institute of Civic Education at the University of Akron, for their relentless
help before and during the Symposium.

D. A. Ross
T. Y. Chang

R. L. Thompson
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CORRELATION OF RUPTURE LIFE, CREEP RATE, AND MICROSTRUCTURE
FOR TYPE 304 STAINLESS STEEL*

R. W. Swindeman
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

and

J. Moteff
University of Cincinnati
Cincinnati, Ohio 45221

ABSTRACT

The stress and temperature sensitivities of the rupture life (tg) and
secondary creep rate (gg) were examined in detail for a single heat of
type 304 stainless steel (9T2796). Assuming that the rupture life (%Zp) has
a power law stress dependency, we observed relatively small differences in
the stress exponent (np) over a broad range of stress and temperature. In
contrast, large changes were observed for equivalent parameter (ng) for
secondary creep rate (&g). As a result of these differences, the Monkman-
Grant correlation was sensitive to stress and temperature below 650°C.
Metallurgical studies based on light and transmission electron microscopy
suggested that the temperature and stress sensitivities of ¢g5 at tempera-
tures below 650°C were related to features of the substructure not present
at higher temperature. Specifically, the presence of a fine dislocation
network stabilized by precipitates altered the stress and temperature sen-—
sitivities relative to what might be expected from high-temperature studies.

INTRODUCTION

Structural components in high-temperature service usually experience
variable loading conditions. Hence to assure that premature failure will
not occur, the design analyst must use some parameter for summing damage.
For nonreversing stresses time-under—stress,l’z creep strain,3 and strain
rate are sometimes used to sum damage, for fatigue loadings, cycles-to-
failure related to stress,> strain, and work energy7 are sometimes used
and for creep—fatigue two or more damage parameters are sometimes used. 8

One of the difficulties in developing damage concepts Lor tlme—degendent
failure is the need to verify that methods are valid for 102 s (3 x 10
Since fracture by creep or fatigue can be measured only once in a test,
there is no direct way to measure damage without destroying the test speci-
men. Verification of a damage accumulation model therefore requires a large
commitment of time and testing equipment. Crack growth rates can be
measured under varying conditions, but the existence of cracks and the
control of their growth in pressure boundary materials are not consistent
with design to prevent crack initiation. In contrast, strain rate can be
measured, does not require the preexistence of a crack, and on the basis of

*Work performed under DOE/RRT 189a OHO48, High-Temperature Structural
Design Methods.



the Monkman-Grant® correlation between minimum creep rate and rupture life
seems to be related to fracture, Consequenth several cumulative damage
models as proposed by Majumdar,1 Ostergren, and Manjoine“ use the strain-
rate response to estimate damage and predict fracture.

To place confidence in predictions that are based on strain rate as a
measure of damage, it is necessary to establish that the stress and tem
perature dependences of the secondary creep rate (ég;) and the rupture life
(tp) are similar. Further, it should also be demonstrated that this simi-
larly persists for conditions for which fracture data are meager.

This paper examines the stress and temperature dependences of &g and
tp for a heat of type 304 stainless steel on which a very large data base
exists. We also examine the validity of the Monkman-Grant correlation and
show how stress and temperature influences this correlation. Finally,
metallurgical factors that influence creep rate and rupture life are
discussed.

DATA BASE AND ANALYSIS METHODS

The data base consisted of several hundred tensile and creep-rupture
tests, which covered times in the range 1 to 1.4 X 108 s and temperatures
from 427 to 871°C. Data included 25-mm plate and 16-mm bar of a reference
heat of type 304 stainless steel (9T2796). Although not used directly in
the correlations, data on 51-mm plate extending to 2,2 X 108 s were of con-
siderable value in estimating the behavioral trends at long times.

Most of the data on which calculations were based have been published
elsewhere, "~ In some instances engineering stresses were reported, while
in others true stresses were reported. Our tensile stress data represent
the saturation flow stresses obtained from a fit of the Voce equation to the
true stress vs true strain data.!% The "rupture life" in tensile tests
represents the time between the ultimate strength and fracture. 12 The creep
stress data represent true stresses obtained by multiplying engineering
creep stress by the factor 1 + ep where ep is the inelastic strain about
halfway through the test.!? Below 650°C e was dominated by the plastic
loading strain, and the stress changed by f;ss than 10% during the creep
test. Above 650°C ep was dominated by the creep strain, which was in the
30-60Z range.

The stress sensitivities of &g and tp were evaluated with the assump-
tion that power relations existed between both bs and 0/E and tp and o/E.
Thus, for any isothermal pair of points at (Ol/E es ) and (02/E, 24 ), the
stress exponent for creep rate, 7ng was calculated:

ey /g )

e = in(oa/oy)

Similarly, the stress exponent for rupture, np, was calculated:

n( tRz/ tp 1)
=l Z,(92/01)
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Data pairs were read from visually smoothed curves through the experimental
points. The two stresses, O01/F and 02/FE, were generally spaced about 0.15
log cycles apart.

RESULTS
Contour Maps

Figure 1 shows a contour map of the variation in the stress exponent
for rupture (nR) with the modulus-compensated stress (9/E) and the tem-
perature (7). Over most of the range where data are available np falls
between 6 and 8. A region also exists around 600°C for O/F less than 10~
where np appears to increase above 8. The stress exponent for creep rate,
ng, exhibits a more complicated pattern as 0/F and T are varied. This pat-
tern is shown in Fig. 2. At temperatures above 600°C ng usually falls in
the range 6 to 8. Thus, ng and ng; agree. Higher ng values are observed
for high o/F, and this pattern is also consistant with the trend for np.
Below 650°C the ng values differ from the np values. For example, between
540 and 600°C the ng values are in the range 8 to 10 compared to ng values
in the range 6 to 8. Below 540°C and at low stresses the ngz values seem to
decrease, but no data exist for np; hence, no comparison is possible.

Correlations Between Strain Rate and Rupture Life

Comparison of data in Figs. 1 and 2 leads us to conclude that the
stress and temperature dependencies of és and tp are similar above 650°C, at
least over the range where data are available. Thus, it should be possible
to use es as a parameter to sum damage for varying stresses. It is equally
apparent that the stress and temperature dependencies of es and tp are
dissimilar below 650°C. Even so, it might be possible to sun damage with
es if we can understand the functional relationship between es and tp. If
we assume that both e8 and l/tR can be represented by power law expressions,
then we can eliminate stress and show that for isothermal conditions:

tR x ‘e_sm e e o e o+ o & e e o e e o s e = (3)

where m is the slope of the Monkman-Grant plot and is equal to the ratio nR/ns.
In Fig. 3 we plot log tp vs log ‘e, for temperatures of 816, 760, 704, 649,

593, 538, and 482°C. Data at the two highest temperatures plot as a

straight line with a slope close to —1.0 (Fig. 3, Curve A). This trend

covers six decades of e; and tp. Data for 704°C more-or-less follow a trend
similar to data at higher temperatures (Fig. 3, Curve B).

Data for 649°C fall near Curve C in Fig. 3. Here the data at high

g follow the m= 1.0 trend, but for rates below 10~°/s the slope decreases
slightly and is closer to —0.97. The data base at 593°C is very extensive
and covers approximately ten decades of ‘eg (Fig. 3, Curve D). The curve
starts out with a slope near —1.0 then shifts to a slope of near —0.88 until
eg is 107 /s. Below this e8 the slope decreases precipitously and around
107!} /s the value of mis 0.5 or less. The large scatter in the data is
attributable to grain size variations in the material. Finer grain sizes
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(80 ¥m) lead to greater rupture lives than coarser grain sizes (180 um).
Relative to the high-temperature Monkman-Grant Curve A, Curve D at 593°C has
shifted downward by a factor of two at high strain rates and considerable
more at very low strain rates.

Data for 538°C are plotted in Fig. 3 and fall near Curve E. Here we
see that m= 1.0 for high 25, and 0.83 for lower strain rates. If the
trend continued the Monkman-Grant curve for 538°C would intersect the curve
for 593°C at a strain rate around 10'10/5. No data are available to verify
this. Difficulties occur in defining the %4 values at 482°C because the
creep curves have tertiary creep character. Hence, the data plotted
along Curve F in Fig. 3 for 482°C should be considered as tenuous. Over
much of the data range m is near 0.75 at 482°C. Compared to the high-
temperature Monkman-Grant Curve A, the curve at 482°C is displaced toward
lower Zp by more than a decade at low strain rates.

In summary, at high strain rates (10—4 to 10'1/5) the log tp vs log
és plots follow the m= 1.0 trend for all temperatures, but there is a
small decrease in £p with decreasing temperature for the same bs. Assuming
that np = n, at high bs values, it follows that the decrease in tp is asso-
ciated with a decrease in the post-uniform strain in the tensile tests with
decreasing temperature. At intermediate strain rates (10'9 to lO'“/s
the log tp vs log ‘e, plots fan out, with m decreasing and tp decreasing
with decreasing temperature for the same ¢;. This implies that np is less
than ng,, which is consistent with the contour maps shown in Figs. 1 and 2.
Very low-strain-rate data at 593°C exhibit low » values, but we do not
know whether the other curves bend over, This is important from an engi-
neering viewpoint since most of the creep-rupture damage is accumulated at
strain rates in the range 101! to 1078/s, while most fatigue damage is
accumulated at rates in the range 10-% to 10'5/5. Thus, service conditions
often enter into the region of poorly defined behavior.

An alternative approach to the use of strain rate as a parameter in
damage accumulation is the linear strain parameter. This is defined as the
product e,tp and is sometimes called the "plasticity resource.” %51
Whereas the Monkman—-Grant approach attempts to "predict"” rupture from the
"known"” strain rate, the linear strain parameter is not predictive since
both the ‘eg and tp must be known to evaluate the parameter. The parameter
‘e tp is highly sensitive to differences in the stress and temperature sen-
sitivities of &gz and tp. Assuming power law behavior:

bgtp = (/ED)PSMR v v v v v v v v v v o o(4)

Hence, a plot of log &gztp vs log O/F will define a curve with a slope that
reflects the difference ng — np. Data are plotted in Fig. 4. Here we see
that at high temperatures the isothermal data fall on horizontal lines.
This implies that ng = np. At lower temperatures data fall on lines that
exhibit slopes between 1 and 2. At low stresses the data trend is not well
defined, but there is some evidence at 593°C of a very steep slope. The
linear strain parameter is highly variable with stress and temperature, and
its "predictive" capabilities for very low stresses are questionable.



Metallurgical Features

The features of the metallurgical substructure (Figs. 5-8) are more-or-
less consistent with the observed mechanical behavior. In the region of
stress and temperature where ng; = np, subgrains form (Fig. 5) and precipi-
tate when present consists of large and blocky particles. Matrix carbide
particles exceed 0.1 um (Fig. 6), and grain boundary carbide particles are
0.5 um in size (Fig. 7). Failure is always intergranular and initiated at
triple points and twin grain boundary intersections. At the lowest stresses
we suspect that microvoid formation and coalescence are active, but we have
not studied them quantitatively. Below 650°C the evolution of substructure
is complex, and this complexity probably produces the variation of ng with
stress and temperature. At high stresses cells generally form and grain
boundary carbides are often present. These carbide particles quickly grow to
a size in the range 0.1 to 0.2 um. Matrix carbides may be absent or rela-
tively fine (<0.05 um). Failure is predominantly intergranular with wedge-
type cracks nucleating at grain boundary triple points. When 0/F values
fall below 0.00l no cells or subgrains form. Rather, the substructure con-
sists of a fine network of dislocations perhaps stabilized by the fine
distribution of carbide, as suggested by Hopkin and Taylor.1 The change in
dislocation density appears to be about 507 higher than for comparable
O0/E values at higher temperatures (Fig. 8). Large grain boundary carbide
particles (0.1 ato 0.4 pym) are present, and failure is intergranular with
wedge-type cracking. At stresses below the range where rupture data are
available, the substructure consists of coarse dislocation networks
decorated by a fine precipitate. This is essentially the same substructure
that developed in simply aged material.l® Below 510°C matrix carbides are
not observed to 36 Ms, and even grain boundaries are relatively free of
precipitates. Again, failure is initiated by wedge cracks at grain boun-
daries, but often these cracks are blunted by additional plastic deformation
in the final stages of creep rupture. Thus, the transgranular creep rupture
described by Ashby and coworkers!?s20 dominates.

Cracking patterns were studied in approximately 50 specimens. Data
were obtained in several categories including crack density, ratio of the
number of triple point cracks to total cracks, ratio of crack length to
grain boundary length, and the orientation angle between the crack and the
stress axis. Most of the data were obtained bg Bhargava, who used proce-
dures developed by Nahm, Michel, and Moteff.?1,22

No cracks were observed in specimens with less than 3% total strain,
and when cracks were present both the crack density and the crack length
increased with creep strain. The orientation angle between the cracks and
the stress axis increased with decreasing strain rate and was usually in the
range 50 to 80°. Grain boundary migration was sometimes observed above
593°C, while recrystallization was sometimes observed above 704°C. These
observations are consistent with literature data. 22

DISCUSSION

The strong stress and temperature dependencies of log tp vs log &g and
log 24tp vs log O/FE are not unique to heat 9T2796. Indeed, we have analyzed
data on two other heats of type 304 stainless steel and find similar trends
at 593 and 649°C. To some extent the rupture life is influenced by the pre-



cipitation of the M23Cs carbide, and this influence shows up as a slight
cusp in the log tp vs log o curve. !2 However, the variations in the stress
and temperature dependencies of Zp are not nearly as severe as the
variations for e&gz. The reasons for high ng values around 600°C are not
altogether clear. One possibility is that the precipitation-stabilized
dislocation network acts in much the same way as precipitation hardening.
If so, we could speak of an internal stress, 0;, which is relatively
constant for a given temperature. Then &, in terms of an effective stress
is

Bo = FL Lo=0/E} oot (5)

where [(0-0;)/E] is the effective stress (Lagneborg,ZL+ Wilshire,25 and Nix

and coworkers“®). As the carbide particles grow in size and particle
spacing increases, o, could change. If it does not, then when the applied
stress is below 0;, the secondary creep rate would be zero (if we ignore the
contribution of grain boundary sliding, diffusional flow, and climb over the
particles). Creep would then consist of only transient and tertiary
components. However, at 649°C subgrains sometimes form and the matrix car-
bide particle size is large. Thus, diffusion and thermal recovery proceed
rapidly, and the possibility of hardening as outlined above is questionable.
Tanaka and Shinoda?’ link the creep strength at 650°C to the carbide
particle size and spacing, which suggests that the carbide con-

tinues to influence 0;. Our data on carbide particle sizes agree well with
weak heats of 18-8 stainless steel studied by Tanaka and Shinoda 27 and
Etlenne, Dortland, and Zeedijk.28 However, we emphasize that it is not the
precipitate alone that produces the hardening. We say this because, as
pointed out by Barnby and Sikka et al.,18 the results from creep tests on
aged materials that develop precipitates show either a loss or no change in
creep strength relative to the nonaged condition. Thus, dynamic precipita-
tion gives rise to the strengthening effect of 0;. Precipitation kinetics
with or without strain is qualitatively understood in type 304 stainless
steel. We know, for example, that the matrix carbide develops more rapidly
under monotonic and cyclic strains than under simple aging. We do not know
whether the dislocation substructure produced by dynamic precipitation is
different from the substructure developed by creep testing aged material.
This would be of considerable interest.

An alternative explanation for high ng values could be solid-solution
strengthening, as proposed recently by Miller and Sherby. 30 Here the solid
solution is produced by a Cottrell atmosphere drag force on dislocations.
The magnitude of the effect is a function of a temperature-compensated
strain rate %2g/6, where 9 is given by exp(—Q/RT) and @ is the activation
energy associated w1th the spec1es that produces the Cottell atmosphere.
Miller and Sherby propose a "drag"” rather than a "frlctlon strengthening
effect. Hence, instead of Eq. (5) we have

o g
es=f{T,G-D(Te—ST}............(6)

where 0p is the strengthening effect due to drag. This is a very powerful
modification, since it is possible to let op(T,e;) reflect interstitial,
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substitutional, and interaction solid-solution hardening effects. It is
also possible to introduce a dependence of 0Op(T,25) on the total deformation
as well. With this much flexibility the complex variation of ng could be
modeled to any degree of accuracy. If we restrict ourselves to only one
solution strengthening mechanism, then by use of the treatment outlined by
Miller and Sherby,30 ng should be a unique function of 0/E and not vary with
temperature for constant 0/EF. If we assume that more than one solution hard-
ening mechanism is present and that Eq. (6) could be used to represent ‘eg,
then we would expect that the slope of log Zp vs Bs might return to —1 at
sufficiently low stresses. Similarly, the linear creep component

‘egtp should always exhibit nonzero values and perhaps even increase at low
stresses. Eventually, new deformation mechanisms and failuBe mechanisms may
enter the picture, as suggested by Ashby and coworkers.lgx2 However, it is
beyond the scope of our experimental data to assess these new problems.
Nevertheless, Morris and Harris?3! recently suggest that a deformation
"mechanism based on dislocation locking by solute atom complexes” occurs in
type 316 stainless steel around 525°C. Hence, apparently more data are
being obtained for this temperature range.

CONCLUSIONS

1. Above 650°C the stress and temperature dependences of the secondary
creep rate (&) and the rupture life (tp) are similar. The product e tp is
relatively constant, and the exponent in the Monkman-Grant relation is
close to 1.0. These observations apply to at least 4 X 10° s.

2. Below 650°C the stress and temperature dependences of %, and
tp often differ. The product e, tp decreases stress and decreasing
temperature. The exponent in the Monkman-Grant changes from 1.0 toward
zeEo as t%mperature and bs decrease. These observations apply in the range
10" to 10~ s.

3. The fact that és-tR correlations are stress and temperature sen-
sitive below 650°C is due primarily to changes in the g behavior rather
than in the rupture mechanism. Changes in the &, behavior could be attri-
buted to either a high internal stress, o;, produced by the development or
precipitation-stabilization dislocation network or to a somewhat complex
solute hardening mechanism.

4, Although grain boundary carbide particle sizes and crack densities
change over our range of stress and temperature, there was no evidence to
indicate that these features of microstructure greatly influence the stress
and temperature dependence of the rupture life.

5. Above 650°C &g can be a parameter for a damage accumulation model.

Below 650°C 2, can be used to sum damage over the range of stress and times
where the relation between ‘ez and ¢p is known.
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ABSTRACT

It is demonstrated that creep rate in compression is lower by factors of
2 to 10 than in tension if the microstructure of the two specimens is the same
and they are tested at equal temperatures and equal but opposite stresses.
Such behavior is characteristic for monotonic creep and conditions involving
cyclic creep. In the latter case creep rate in both tension and compression
progressively increases from cycle to cycle, rendering questionable the
possibility of expressing a time-stabilized constitutive relationship.

The difference in creep rates in tension and compression is considerably
reduced if the tension specimen is first subjected to cycles of tensile creep
(reversed by compressive plasticity), while the compression specimen is first
subjected to cycles of compressive creep (reversed by tensile plasticity). In
both cases, the test temperature is the same and the stresses are equal and
opposite. Such reduction is a reflection of differences in microstructure of
the specimens resulting from different prior mechanical history. If specimens
of identical microstructure are tested in tension and in compression, large
differences in creep rate are again evident, whether that microstructure was
developed by prior loading in tensile creep/compressive plasticity or by
tensile plasticity/compressive creep. The significance of the differences in
creep rate under tension vs. compression, as related to the development of
constitutive relationships for creep-fatigue problems, requires further study.

Little research has been conducted to explain the physical basis for this
behavior. Several speculative reasons are offered, but require verification.

*This work was performed under NASA Grant NAG3-46.
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INTRODUCTION

It is common to assume that the creep characteristics of metals in
compression are similar to those in tension. Such an assumption derives from
the fact that the time-independent deformation characteristics in tension and
compression are similar. Very few experimental programs have, however, been
conducted to determine the validity of presupposing similarity of creep charac-
teristics.

In the course of our studies of Strainrange Partitioning over the past de-
cade it has become clear to us that the differences between tensile and
compressive creep rates at the same stress Tevel can be appreciable, at least
for 316 stainless steel, which we have investigated most extensively. The ear-
ly tests in 1971 [1] on cyclic creep were very revealing in this respect.
These tests will be discussed later in this report. Loading was first in ten-
sion, allowing creep to develop a pre-specified strain. The stress was then
reversed to a compression of equal magnitude, and this stress was maintained
until the compressive creep strain completely reversed the tensile strain. In
many cases the time vrequired to produce the compressive creep strain was as
much as a factor of three or more higher than that to develop the tensile creep
strain. This Tong time was, in fact, the basis for conducting what turned out
to be the first cp test (in Strainrange Partitioning terminology [2]) when an
attempt was made to reduce the unacceptably long times required to reverse the
tensile creep by imposing much higher compressive stress which reduced the re-

versal time essentially to zero.
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In addition to the experience with the cyclic creep tests, we have ob-
served in a number of other test programs that the compressive creep rate at a
given stress level is lower than the corresponding creep rate at an equal ten-
sile stress. It is the purpose of this paper to outline the results of some of
these experiments. Though the difference between tensile and compressive creep
strain rates is not necessarily of great importance in many aspects of formula-
tion of the constitutive relations discussed in this Conference, it may be of
significance in some cases, as will be illustrated later.

The micromechanistic reasons for the differences in creep rates have not
been extensively investigated; in this report we offer several speculations

which, of course, require verification.
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EXPERIMENTS INVOLVING DIFFERENCES BETWEEN TENSILE
AND COMPRESSIVE CREEP RATES
The following discussion relates to observations wherein appreciable
difference was observed between tension and compression creep rates. Although
most of the results shown involve AISI 316 stainless steel,*we have also ob-
served the effect 1in a limited number of other materials, which leads us to
speculate the phenomenon is a general one, the magnitude of the effect varying,

ot course, among materials.
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A. CYCLIC CREEP RUPTURE TESTS

a) Background

Reference to these tests has already been made in the Introduction. They
were 1nitiated in an effort to improve the time-and-cycle approach for treating
creep-fatigue, as discussed in Ref. 1. 1In this approach creep damage is taken
as the ratio of time at which a given stress and temperature is imposed divided
by the creep-rupture time at the same stress and temperature. Because the use
ot monotonic creep-rupture tests often gives poor results when so applied, and
in recognition that creep-fatigue tests involve cyclic variations of stress,
our hypothesis was that cyclic creep rupture tests would produce improvements
in predictions made by this method. Reference 1, in fact, demonstrates the
validity of this hypothesis.

The type of test adopted for obtaining cyclic creep rupture tests is shown
schematically 1in Fig. 1. The loading was generally started in compression to
insure that the stress level chosen would not immediately produce a run-away
creep strain. As shown in Fig. 1(a) the selected stress was held constant un-
til a specified total strain was reached, usually of the order of 1 to 2%. The
time required is shown as AB in Fig. 1(a), and the strain pattern is shown by
the curve 0AB. At point B the stress was reversed to tension, and this stress
was held constant until an equal tensile strain was reached. The stress and
strain pattern during this period are shown as BCD 1in Figs. 1(a) and 1(b),
respectively. The pattern of reversal of equal stresses and strains in tension
and compression was repeated successively as shown in Figs. 1(a) and 1(b) for
as many cycles as were required to rupture. The hysteresis loop followed in

all cycles was essentially OABCDA of Fig. 1{c).
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The results of these tests are shown in Fig. 2, representing a plot of
stress versus rupture time, as in conventional creep-rupture plots. Monotonic
creep-rupture is shown by curve M. When only the tension time of the test is
used (neglecting the reversal time in compression), the results are shown by
curve N. In the analyses of Ref. 1 we found good agreement between predictions
and experiments when several types of creep-fatigue tests were analyzed using
-the creep rupture curve N in the “time-fraction" terms. The total time curve
P, which includes the compression time, did not prove as useful as curve N in
the analysis, and its development required excessively long times.

As can be seen from Fig. 2, factors as high as 5 or more existed between P
and N. In order to minimize the test time a type of loop shown in Fig. 3 was
developed. The compressive stress pattern BCE was introduced, reversing the
creep strain AB by only essentially instantaneous plasticity. Thus the Toop
ABCDA (essentially what was later termed a cc loop in SRP terminology) was re-
placed by ABCEDA, Tlater recognized as a cp loop (in the same terminology).
Whitle a small effect was produced on the tensile time creep-rupture curve N in
Fig. 2, the curve so obtained for the cyclic creep rupture representation of
the material was about equally suitable for creep-fatigue analysis by the time

and cycle fraction method. Test time was, however, appreciably reduced.

b) Comparison of tension and compression creep rates

Since the tensile and compressive stresses were the same in the cc 1oops,
and since the temperature was held constant, the results of these tests provide
direct data for comparison of creep rates under the two Tloading conditions.
Some of the data used are shown in Fig. 4 which is a scale plot analogous to

the schematic of Figs. 1(a) and 1(b). Fig. 4 shows two effects on creep rate.
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First, it is noted that both tension and compression creep rates vary as a
function of time (or applied cycles). The time required to complete the first
cycle is nearly a factor of 10 longer than the time required to complete the
90th cycle in this test which ran 98 cycles to cause rupture. In each cycle
the time required to complete the tension creep is considerably shorter than
the time required to complete the compressive creep of equal magnitude. Thus
there are two major effects: the relation between the tensile and compressive
creep rates in any single cycle, and the relations among the tensile and
compressive creep rates in successive cycles.

The complete analysis of results shown in Fig. 4 is given in Fig. 5. Here
both the tension and compression creep rates are plotted as a function of cycle
ratio. It is clear from this figure that both the tensile and compressive
creep rates increase as cycle ratio increases, varying by as much as a factor
of 10 from the first cycle to the last few cycles. Similarly, it is clear that
. the tensile creep rate is higher than the compressive creep rate in each cycle.
The compressive creep rate is, on average, about 1/3 as high as the tensile
creep rate.

An addititonal test which shows similar results is shown in Fig. 6. This
tigure also clarifies how creep rates were determined without introducing error
associated with cross-sectional changes that are different in tension and in
compression. Figure 6(a) shows the hysteresis loop. By measuring the tensile
creep rate at point E where the strain is zero, and the compressive creep rate
at point F where the strain is also zero, true creep rates are determined,
since the cross-sectional areas were exactly the same at the two points in the

cycle. The creep rates are shown in Fig. 6(b). The tensile creep rate is
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again seen to be two to three times as high as compression. Although the
steepness of rise in creep rate in the later cycles gives the illusion that the
two curves are approaching each other, the difference by a factor of two to
three persists until near-failure, as can be determined by measuring vertical
distance between the two curves. Since the vertical scale is logarithmic, this
constancy of vertical displacement implies a constant ratio between the two

values.

c) Significance of results

These results show not only that creep rate in tension differs from that
in compression, but that both rates vary significantly during the 1lifetime,
even for this simple repetitive loading pattern. Attempts to develop constitu-
tive equations that will be applicable throughout the 1ife should be in harmony
with this simple observation.

On the other hand, it should be pointed out that stabilization has readily
been achieved in many SRP strain cycling tests involving creep in only one
direction. Thus while some caution is required in seeking constitutive rela-
tions involving reversed creep, the more practical applications in which the
major creep component occurs only in one half of the cycle (tension or compres-

sion) does not seem to involve this complication.

B. CONSTANT LOAD TESTS

Another series of tests we have conducted in which differences in tensile
and compressive creep rates have been observed relate to ordinary static creep

under constant l1oad. The results are described below.
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a) Specimen Stabilization

In these tests the specimens were first stabilized relative to cyclic
plastic strain by the scheme shown in Fig. 7. The strain amplitude was first
gradually increased to 1% while cycling at a frequency of 0.20 Hz. Then 30-40
cycles of the 1% strain amplitude was applied, after which the strain amplitude
was reduced during cycling in a manner symmetrical to the forward-loading. The
cycles at constant + 1% strain stabilized the material and established a re-
petitive hysteresis loop, similar to the manner a material is normally stabil-
ized in room temperature fatigue to establish a cyclic stress strain curve.
Such curves do not significantly reflect the hardening or softening charac-
teristic of the early loading cycles. The stabilization was initially intro-
duced because the intended purpose was to develop a constitutive creep model
for the material for later use in creep-fatigue analysis. Thus it was thought
appropriate to decouple the cyclic creep effects from the cyclic plasticity ef-
fects. In the present discussion we are concerned only with the static creep
behavior of the stabilized material.

Fig. 7(b) shows the hysteresis loops developed during the increasing am-
plitude straining (continuous 1lines), the stabilized hysteresis 1oop (heavy
line), and the decreasing amplitude straining (dotted lines). It is clear that
in the final state the net stress and strain are both zero. Thus the creep
tests which follow are on specimens which have neither residual stress nor
residual strain nor do they have a memory of prior straining in one particular
direction. Since the stabilization cycling is very rapid, there is essentially
no creep damage on the test specimens. Also, since the specimen can withstand

about 15 such blocks as shown in Fig. 7(a), the amount of fatigue damage 1is
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also small.

b} Correction for cross-sectional area changes

Typical creep curves obtained are shown in Fig. 8 which are for a nominal
18 ksi stress in tension and compression at 1300F. While the creep curve OAB
in tension is clearly higher than that in compression, part of the difference
is due to cross-sectional area changes rather than inherent differences in
creep characteristics at the two stress states. In tension the cross-sectional
area continuously decreases as the strain decreases. Thus, for the constant
load (nominally 18 ksi for the original cross-sectional area) the true tensile
stress is continuously increasing.

The compression creep curve OA'B' involves an increasing cross-sectional
area which reduces the true compressive stress.

If we assume that creep rate at constant temperature is proportional to a
power law of stress m we can correct the tensile creep rate at a strain e by
dividing by (1+€ )™ to obtain the rate that would have been observed if the
stress had been kept constant by reducing the load progressively. Similarly,
for the compressive strain the creep rate must be divided by (1-€ )m to obtain

the appropriate strain-independent creep rate.

c) Test results

Figure 9 shows the results for tension and compression for a number of
creep tests conducted at several stress levels in both tension and compression.
Approximate straight lines can be drawn through the test results when steady
state creep rate is plotted against stress on logarithmic scales. Thus a power

law exists between the two variables. As seen in the figure strain rate for
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both tension and compression vary as approximately the 1lth power of stress,
the multipliers being different depending on whether the loading is tension or
compression, and whether the cross-sectional area correction is applied or not.
However, even when the correction is applied, the creep rate in tension is
about a factor of 5 higher than in compression. The "engineering" values, for

which no correction is made, show differences of about a factor of 7.

d) Significance of results

These results show that, at least for 316 stainless steel at 1300F, it is
inappropriate to develop constitutive relations based on the assumption that
tensile creep rate and compressive creep rate are equal at the same stress and
temperature. However, they also show that creep rate varies as the 11th power
of stress. Thus, to maintain a creep rate in compression equal to that in ten-
sion it is necessary to increase the compressive stress by only a small amount.
If, for example, the creep rate at a tensile stress of 40 ksi is to be repro-
duced as an equal value under compression, the compressive stress need only be
increased to 46.40 ksi. When tests are conducted which are strain-controlled,
forcing equal tensile and compressive creep rates will cause the compressive
stress to be higher than the tensile stress (16% in the present i]]dstration).

No reversed creep was involved in these tests. How the results would be
affected by the presence of such creep requires further study. But from the
results of Section A it is speculated that a significant effect could develop.
Constitutive relationships for application to cyclic creep and plasticity might

require appropriate recognition of this phenomenon.
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C. THERMOMECHANICAL LOADING TESTS

Applications involving simultaneous variation in stress, strain, and tem-
perature, commonly called thermomechanical loading, are among the most impor-
tant cases for which constitutive modeling is required. Because a cooperative
program between Case Western Reserve University and NASA-Lewis is currently
underway, it is appropriate to include here some of the results which are per-
tinent to the question of the relation between tensile and compression creep

characteristics.

a) Tests in progress

Figure 10 shows some of the control patterns of tests that are in pro-
gress. These tests use AISI 316 stainless steel specimens, not, however, sta-
bilized according to the pattern of Fig. 7. In one type of test, Fig. 10a, the
strain and temperature are cycled in-phase, high temperature and tensile stress
being achieved simultaneously. Such a loading usually develops cp type of
strain because the highest tensile stresses occur while the temperature is
high, causing creep, while the highest compressive stresses occur when the tem-
perature is 1low so that no compressive creep occurs. In the second type of
loading the strain and temperature are out of phase, producing net compressive

creep because the temperature is high only when stress is compressive.

b) Creep rates during actual cycling

Ideally, it would be desirable to compare the creep rates of the specimens
at the same temperatures and at equal but opposite stresses at appropriate
points in the in-phase and out-of-phase cycling where such conditions develop.

Unfortunately, such conditions do not develop for the very reason that compres-
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sive creep response differs from the tensile creep response. This fact can be
seen in Fig. 11 which shows the stresses developed at each temperature during
the in-phase and out-of-phase tests. If tensile and compressive creep response
were similar, the two curves would be mirror images of each other with respect
to the horizontal axis. The fact that the compressive stresses reached are
higher than the tensile values, verifies that creep rates at a given stress and
temperature are lower in compression than in tension. Thus, to maintain the
equal strain rates imposed, a slightly higher stress develops during the out-
of-phase loading tests, as is clear from Fig. 11. From this figure it can be
seen, then, that it is not possible to compare directly specimens taken from
each of these tests when they are at the same temperature and at stresses which
.are equal but of opposite sign.

By writing analytical relations for creep rates in the two tests in terms
of stress and temperature, it 1is possible, however, to calculate the creep
rates at the same stress in tension and compression. Several forms of consti-
tutive relationships have been studied; we consider here only the simplest type

taken in the form of the Arhenius equation

M
m RT

e= Ao e (1)
Analyses were made using the in-phase data only, the out-of-phase data only,
and combining all the data into one correlation. A complete discussion of all
the results will be published when the program is completed; the tentative

results pertinent to the current subject will be discussed only briefly.
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Using the common formulation of all the data, including both the in-phase

and out-of-phase results, the equation becomes:

. 10 -180633
Eg = (123.832)0 = exp ( T ) (2)
where o = stress, ksi
T = temperature, degrees R

€sc creep rate per sec.

Fig. 12 shows the correlation between the experimental creep rates measured in
both the in-phase and out-of-phase tests and the computations based on Eq. (2).
The agreement is quite good, suggesting a common constitutive relationship for
both tension and compression creep rates as a function of stress and tempera-
ture. While this result is very satisfying from the analyst's view of desiring
to neglect differences between tensile and compressive constitutive behavior,
it seems to negate the ftindings about the differences discussed. In order to
clarify the apparent discrepancy additional tests were conducted as discussed

in the next section.

c) Creep rates at approximately constant microstructure

The microstructure of a specimen sampled at a point of tension during the
in-phase 1loading can be considerably different from the microstructure of a
specimen sampled from an out-of-phase test at the same temperature (and approx-
imately equal and opposite stress). Thus, although it is fortuitous that the
same equation can be used to determine the strain rate of both specimens, the

equality of tensile and compressive creep rates does not negate our general
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finding that compressive creep rate is lower than the tensile creep rate at the
same temperature and equal but opposite stress. To determine if this finding
is general, and still valid for material in thermomechanical 1loading, it is
necessary to conduct tests in tension and compression of material in the same
microstructural state. Ideally, a scheme such as shown in Fig. 13(a) would be
suitable for this purpose. The hysteresis loop represents the path, for exam-
ple, of in-phase loading. At point A the thermomechanical loading is discon-
tinued, and temperature and stress are "frozen" and maintained constant at the
value achieved at this point. By holding the stress constant, creep strain oc-
curs along AB as a function of time as shown in Inset I of Fig. 13(a). The
steady state creep rate which develops is then characteristic of the tensile
creep behavior of the material in its microstructural condition at A. To ob-
tain the compressive creep characteristic we should, ideally, use a second
specimen, stabilize the 1loading Tloop by applying the same number of cycles,
stop again at point A, and then reverse the stress to an equal but opposite
value, maintaining the temperature. The path A'B', both on the stress-strain
diagram, and the strain-time diagram of Insert II then represents the compres-
sive characteristic of the material in its microstructure of point A. The
creep curves of Inserts I and II provide the needed comparison of tension and

compression for a material in the same microstructural condition.

The scheme actually used in this program is shown in Fig. 13(b). A single
specimen was first crept along AB, after which the Toad was reversed to an
equal but opposite value, and the compressive creep characteristic A'B' was ob-
tained. This procedure was used for two reasons: conservation of specimens,

and avoiding the possibility of scatter resulting from using separate speci-
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mens. Actually, then, a small change in microstructure was introduced by the
tensile creep AB tor the material subsequently tested along A'B'. However, the
economy and efficiency of using a single specimen was deemed sufficient to jus-
tify the alternate approach in the preliminary tests. Furthermore, our expec-
tation was that the compressive creep rate would be lTower than the tensile
creep rate. Since it is reasonable to assume that the prior tensile creep AB
would, if it had any effect, accelerate the compressive creep rate (in accor-
dance with the results of Figs. 1-3), any observed lower creep rate in compres-
sion would in fact be accentuated were the prior tensile creep not imposed.

A number of tests of the type described above were conducted, stopping at
various points 1in the in-phase loading loop. Similarly, analogous tests were
conducted by stopping at selected points of compressive stress in the out-of-
phase loading, and conducting tests in both compression and tension for micros-
tructures developed in these tests. Typical results shown in Fig. 14(a) relate
to one of the tests for in-phase loading; Fig. 14(b) displays results for out-
of-phase loading. It is clear that in both cases the creep rates 1in compres-
sion are significantly lower than these in tension. The other tests corro-
borated these observations.

We can conclude from this study that the generality holds for material 1in
thermomechanical tests, namely that if material is sampled from any point in
its path and tested both in tension and in compression, the tensile creep rate
will be considerably higher than the compressive creep rate. The two tests

must, however, be conducted on material in the same microstructural state.
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D. CYCLIC LOADING OF HASTELLOY X

It is interesting to study the results of Walker [3] on Hastelloy-X to
ascertain whether the general behavior abserved on 316 SS also applies to his
material. Some of his test results are shown in Fig. 15. Discussion of the
results of his calculations based on the Functional Theory are beyond the scope
of this paper. However, the experiments are amenable to analysis for the
present purpose.

Walker's tests were conducted on a specimen which was continuously cycled
at a constant strain rate, stopping at various points to establish the creep
rate for the material in its current metallurgical state. After each creep
loading at constant stress, the loop was re-stabilized before proceeding to the
next point. Thus the creep tests were on materials in different metallurgical
states, and direct comparison of tension and compression involves the difficul-
ties already discussed in connection with Fig. 2. However, it 1is still in-
structive to make the comparison because the careful experiments do reveal
differences in the two creep rates.

The continuous curves of this figure show experimental creep curves at
various stresses. Some are tension creep curves, others compression. While
the comparison can be made by direct examination of the curves of Fig. 15, the
cross-plots of Figs. 16 ahd 17 are more convenient for quantitative comparison.

Fig. 16 shows the cross-plot of stress versus strain after 40 seconds. OA
shows the strain developed after this time for tensile loading, OB the strain
for compression loading, for each of the stress levels studied. The dotted
curve OB' is a replot of 0B, changing signs of both stress and strain. By com-

paring OA to OB' it is clear that at any stress level the amount of strain in
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tension is more than that in compression after the 40 sec. used as a parameter.
The cross-plot of Fig. 17 shows the ratio of strain developed in tension to
that developed in compression after various times for the 21.5 ksi tests. While
these results are not as dramatic as those we have obtained for 316 SS, it is
quite clear that tensile creep rate is higher than compression creep rate at

the same temperature but equal and opposite stress.

PARAMETERS THAT CAN AFFECT CREEP RATE
AS A FUNCTION OF STRESS DIRECTION

The reason for the differences in creep rate at equal tensile and compres-
sive stress has not received much attention. In fact, the phenomenon is not
sufficiently well recognized to have stimulated study. We can only speculate

at this time why the phenomenon exists. Following are some possibilities.

I. Effective Friction at the Grain Boundary

One way of viewing the problem is by analogy to friction of masses in con-
tact moving relative to each other. Since creep frequently involves grains
sliding along their boundaries we can regard the individual grain motion and
the “friction" between them. The treatment is complicated, of course, by the
fact that there are numerous grains oriented at numerous directions relative to
each other. A simplified analysis is shown in Fig. 18 which assumes an average
orientation of 45 degrees. Drawing the analogy with the movement of a weight
on a frictional surface, shown in Fig. 18(a), we can see in Fig. 18(b) that the
net frictional force is larger when two grains are in compression than they are

when 1in tension. If we choose R as the ratio of the two forces, and assume
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that the relative creep rate varies as some power law of R, we get the results
shown in Fig. 18(c). The plot shows the relationship for different choices of
/L and m. It is seen that reasonable choices of /P‘ and m produce R values

agreeing with our experimental results.

II. Change of Lattice Parameter
The size of the lattice increases in tension and decreases in compression.
An effect can thus be produced on the creep rate according to the explanation
given in Ref. 5:
"For close-packed crystals like fcc, hcp, the partial molar volume of va-
cancies 1is an appreciable fraction of molar volume of the metal. Under
hydrostatic pressure in tension, the specimen will lose vacancies in an
effort to relieve the pressure increase. This decrease in the concentra-
tion of vacancies will in turn decrease the self diffusion."
If creep rate is influenced by self-diffusion, as is commonly accepted,
the hydrostatic compression should reduce creep rates and hydrostatic tension

should increase creep rates.

III. Grain Boundary Cavitation:

At high temperature, cavities are generated in the grain boundaries which
are 1in tension, facilitating the movement of one atom over the other, increas-
ing in creep rate. In compression, however, the cavities are absent or col-
lapsed even if activated previously in tension. This phenomenon is shown
schematically in Fig. 19. Accordingly we can expect higher grain boundary

creep when the net force across the grain boundaries is tensile than when it is

compressive.
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IV. Defects Other Than Grain Boundary Cavitation

Any defects developed in the microstructure of the material would tend to
be open 1in tension and closed in compression, Fig. 20. Hence there would be
greater tendency for reduction of cross sectional area in tension. Therefore

the creep rate would be higher in tension than in compression.

CONCLUDING REMARKS

In all of the various types of tests that we have studied, tensile creep
rate has always been higher than compressive creep rate if the loading is on
specimens that have the same microstructure. This similarity of microstructure
may be the result of absence of significant prior straining history, or it may
be the result of a complex history of thermomechanical loading. Differences in
creep rate from 2 to 10 have been observed. However, if the microstructure of
the specimen to be tested in tension is different from that used in compres-
sion, the general pattern of behavior can be altered, although in the limited
cases we have examined, there is still a bias toward lower creep rate in
compression. Some of the effect is geometrical, -- tension producing a higher
true stress because of decreases in cross-sectional area, while the area of a
compression specimen increases. However, even when appropriate corrections are
made for cross-sectional variations, the qualitative comparisons are not al-
tered, although quantitatively the effect is somewhat smaller.

of speciaT interest is that the microstructure that develops during hys-
teresis cycling -- whether at constant strain rate and constant temperature, or
whether the temperature variation is cycled in- or out-of-phase with the strain

-- seems to be such as to bring closer together creep rates in the two direc-
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tions when the tension specimen is taken at a point in the tensile part of the
hysteresis 1loop and the compression specimen 1is taken at a point in the
compression part of the loop. Whether there is a natural tendency for micros-
tructure to develop to produce such a bias remains to be determined by studying
additional loading patterns. From an engineering point of view, the effect is
fortuitous because it makes more accurate the assumption usually made that the
two creep rates are equal.

Even when there is an appreciable difference between the two creep rates
at equal but opposite stresses, the error of engineering calculations based on
the assumption of rate equality is mitigated by the fact that creep rate bears
a high-exponent power law relationship to stress, so that only moderate changes
in stress are needed to bring the actual creep rates to equality. Also, it 1is
fortunate that in most of the important engineering problems involving stress
and strain reversal, particularly thermal fatigue problems, the 1loadings are
governed by 1imposed strains and strain rates. Thus the assumption that the
stresses developed follow the same stress / strain / strainrate relationships
in both tension and compression produces small error in the stress determina-
tions. Were the loads specified, the errors in stress and strain rates would
be much higher. The effect is further mitigated by the metallurgical tendency
of microstructural development to more closely justify the usual engineering
assumption.

Thus, while the effect of the phenomenon is somewhat suppressed in some
practical engineering problems, its presence cannot be negated. As illustrated
in this report at least some applications can better be understood in terms of

the characteristic differences between creep rates in tension and compression.
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Further experience may reveal other important applications. In any case it is
an interesting phenomenon, both from mechanistic and analytical viewpoints, and
it merits recognition, if not further study.

Finally, this study has led to a closer focus on a Tlong-held observation
that a combination of tensile and compressive creep produces an anomalous ef-
fect, at least on 316 SS. When creep is either absent or monotonic -- i.e. in
pp, pc, or cp loading, we have usually found that after a few cycles of loading
a stable hysteresis loop develops. Stress, strain become repetitive with
respect to time as measured from some arbitrary point on the hysteresis loop.
When reversed creep is present, i.e. involving cc loading, the temporal aspects
of the loop are not repetitive. In the cases we have studied, extreme soften-
ing takes place, and an attempt to apply a single constitutive relationship to
characterize all cycles could lead to significant error. The mechanistic ef-
fect here, as well as the mechanisms that cause creep rate in tension to be
much higher than that in compression justify further study. Such study should
lead to an improved understanding of the nature of creep in engineering materi-
als and provide a useful input toward determination of appropriate time-

dependent constitutive relations for handling reversed creep.
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by the formula given above.

39



40 40

Stress, u /‘\ Stress, o
ksi
r_ A ——— [} . kst 8
8
20
Strain ]
ol A -
time
S
F
train, 1 strain, «
> s —
A 8 A
time
1
Stratn 8’
(a) )
Ideal Test Actual Test
Tension and compression at Small microstructural change introduced
identical microstructure in compression by prior creep in tension

Figure 13. Stress-strain response of a typical in-phase thermomechanical test.

Axiszl Strain

Axia) Strain | THSC; In-Phase; BYY-117 il
(1n/1n) 8¢ = 0.01045 n/tn (in/in)
3 44,03 kst @ 1227°F
: 1. -6 -1
[fu]‘r 14.3631 * 10 6 sec . THSC; Out-Of-Phase; BYY- 114
e, ), = 2.6115) * 107 sec” P 8¢ in = 0.00520
Pl 5 45.33 kst @ 1227°F
e - ]
024 .012 [e ] = 6.5 % 1076 5ec”)
0084 .008 4
. 0044 004 «
0 " L L 1 o 4 e 9
- o0 10 20 30 40 time (min) <00t time (min)
-. 0084 -.008 4 -
..0124 Te-aa -.012 4 T
-.0164 -.016 +
-.204 .20 o

Figure 14, Creep responses in tension and compression at the stress levels shown for the in-phase
and out-of-phase thermomechanical tests.

40



10}p= l

+26.200 o3 | +21.500 pss
08
06

04

+ 14300 s

02
N a " ° + 7.200 ps:
° ¢ e 720008
4 a
Al
f 02 , = 14,300 ps:
04 1 ®
l -21 500 ps«
06 l
08 l
l
|

°
124 - 28 600 ps+
o |
- |
"6 ® CALCULATION (FUNCTIONAL THEORY) T
°r o EXPERIMENT
18 | | 1 1 1 1 1 | i 1

0 5 10 15 20 25 30 35 40 45 50 55
TIME IN seconds
Creep Response of Hastelloy-X at 1600°F

Figure 15. Creep responses in tension and compression of Hastelloy-X
at 1600°F for stress levels shown {from Ref. 3).

)' Replot of compression
P curve

STRESS , kel

time 4Ceec -
o 28 R
4

|

-

[ e %0

Figure 16. Creep strains plotted as a
function of stress at a given
time of 40 sec.

Figure 17. Variation of the ratio of tensile
to compressive creep strains shown
as a function of time.

41



L1} e

m
(c)

Figure 18. Ratio of the creep rates in tension to that in compression due to effective friction
at the grain boundary shown as a function of exponent ‘m'.

TENSION COMPRESSTON

i ! y

T =0On = MCn T =GCn +HMOn : 1

Figure 19, Grain boundary cavitation activated by net tensile Figure 20. Reduced cross-sectional area in tension due to opening
stress and absent or collapsed in compression. of the defects other than grain boundary cavitation in
tension and not affected in compression.

42



EVALUATION OF THREE CONSTITUTIVE MODELS FOR THE PREDICTION OF HASTELLOY X
ELEVATED TEMPERATURE CYCLIC RESPONSE

Vito Moreno
Pratt & Whitney Aircraft Group
United Technologies Corp.
East Hartford, Connecticut 06108

An evaluation of material constitutive models for the prediction of elevated tempera-
ture cyclic stress and strain response is presented. This activity is being conducted
under an ongoing NASA Contract (Ref. 1) to identify a procedure for predicting struct-
ural response (stress / strain) without the need for expensive and time consuming
non-linear finite element analysis.

The approach for the method development assumes that, for a thermally loaded structure,
the overall strain history can be defined by linear elastic analysis. The local stress
history at a fatigue critical location is then determined from a one~dimensional ma-
terial behavior model and the local strain and temperature conditions. Three material
models are currently being evaluated to assess theilr ability to predict relevant high
temperature cyclic material response characteristics. They are: (1) a time independent
classical plasticity and crcep representation, (2) a time dependent viscoplastic model
capable of predicting combined creep and plasticity effects, and (3) an approximate
elastic analysis approach that uses a series of stress-strain curves and a cyclic
hardening model to determine reverse plasticity.

Previous structural analyses and life prediction activity conducted on a representative
gas turbine high temperature component, i.e., combustor liner (Ref. 2), has indicated
that the local stress-strain response reflects several high temperature material cyclic
response characteristics. They include: (1) strain rate dependence, (2) creep-
plasticity interaction and (3) the interaction of properties associated with variable
temperature (thermomechanical) loading. In the current program, these characteristics
are being systematically investigated to aid in the material model evaluation.
Hastelloy X specimen constitutive test data developed in References 2 and 3, and

under the present program, is being used to establish a cyclic response data base.
Representative stress-strain data for continuous fully reversed cycling, fully re-
versed with creep and relaxation hold periods, and various thermomechanical loading
histories comprise the data base.

Preliminary results comparing two of the material models with the data base are shown
below. Figure 1 compares the predictions of the time-independent classical plasticity
model and the viscoplastic model with 1600°F continuous cycle testing. The classical
plasticity model shows a slightly greater stress amplitude, due primarily to the
differences in strain rates between the data used to generate the model and the test
(.008 min~1 vs. .0024 min-1). The prediction using the classical model also shows
the characteristic square corners associated with a distinct single yield surface.
The viscoplastic model predicts a more accurate stress amplitude for the test strain
rate of .0024 min-l and displays a smoother transition between elastic and plastic
response. A comparison of the two models for the combustor louver lip thermo-—
mechanical loading cycle (Ref. 2) is shown in Figure 2, Simulation of the combustor
1ip with a uniaxial test specimen produced the stationary stress-strain response
shown in the figure. Prediction with the classical plasticity and creep models
resulted in a continuous ratchetting of the response in the positive stress direction.
Shown is the 15th loading cycle., The prediction using the viscoplastic model does
not display the same degree of stress ratchetting and more closely predicts the ex-
perimental data. Shown is the 2nd loading cycle.

43



References:

1. Development of a Simplified Analytical Method for Representing Material Cyclic
Response, NAS3-22821.

2. Moreno, V.: Combustor Liner Durability Analysis. NASA CR 165250, 1981.
3. Walker, K.P.: Research and Development Program for Non-Linear Structural

Modeling with Advanced Time-Temperature Dependent Constitutive Relationships,
NASA CR 165533, 1981.

44



P
|

i1 lpateD
e
i
|
T
1
1
]
a
i
T

—_— —dg g T : e -
S e : USSR SSORRT - L i P A . i - ;
R T : i _W. U 2w i i : ] ﬁ _ TN
R : : - i ” I _ L ;
m NI BEE S o T e
R DG e R Ly m..:ﬂﬁ.s..,c B 5N ﬁJw. R S oo 17 o ! !
Nnﬂ.l : N ‘ P! Ly | IR ' : 1 ] “
Y TR g g i [ R m ; ! !
l#_ _Vl 1.@1 X “7 l~‘ i |.._v.! . _. m 3 £ -fl.w iy i »
oS p.w“ ey i m () ! b ; g : . 1 :
m '8 ! o BENEEEE P _
: . i _ - . .
= - T
: i

-l L
ki

@6 | a8 | .4

i o
.
4/ .
;:l

cyclic! £eg
I

1
|
i
i
—
i
d.

N
i

e

Lof

-

- iD
L 4
D
2
g0
]

N i
35
|70
At
1O
16

d
)L
A ZAN AV 4

ol
i
b 0]
e

¥
]
/~M

48 | "X oA |-a®

!
s e et et
o [ g 1
s ! L
______ e m : T
i j ! -
R i ~. T o
. i i i Q'
bt T T T ¥ O
: I : H H "]
: L ; SERNN R o
..... : : : P
& . : [
[ i : : [
i e |
il RS VNS S |30 1 =
[HESEN ! i
H I 1
L ! 1

45



-2 | -

o DA T T T . ! i : T

l.lh.luv ...Q.W»._.I.I.I ...ﬁl._. S S v J % |3 " -l . RNEED 8 e & B
I Gplg 8. & |- S| $ KA |1 T N s
) ; : o i e : i 0 { m |

S e T R T T
LI IR AR T I T gt g m _” m

SRS e e N e R e e R 8 50 e S
: .m” - AN /7/./! S ~ : :
i S h IS b O
T R - —r
S | N

A T7%6Rmomed

]
—
;

.! PR Ry
Respnse

-

!
!
T

4_‘ ——t ..._i_ —

S “. _ b S~
- B e O - e
L e e Ca : 5. e
R L S o . i
liﬁ( e et 41 /x//lllj o /-Ld b L et =
— 2~ L P Bt |

LR N : - |/T, S ST bt

ol

i

:]_'

oy

#1s)| [

ol

|| (Cormdustoe. [taluee. UP. papHrL

= - __%____J:_; _‘féu ]_

_ & F3 S | | | |
. LI JUREORS - W < RN N TSR SRS S PR S RSSO VR JOUO U T 1 : .
| I B ﬁ LD e N
w IR RERN ! . T T m : :
fof- R e e e e o e o ot B I S I A
TR s - B SN N

e S O 0 O O N Y 0

_g,..'.,-__*_

. H : m H N P = . 1 H
- ” | boler T et a1 e [ S
T | — - R R
ﬁ et l- S S O SN |_. -- - li.:,ﬁ.:_l. - - PO T fmlu. ek .JJ_.. 8

46



EXPERIMENTAL VERIFICATION OF THE NUMBER §ELATION
AT ROOM AND ELEVATED TEMPERATURES

Lonnie J. Lucas and John F. Martin

Michigan State University
East Lansing, Michigan 48823

ABSTRACT

The accuracy of the Neuber equation for predicting
notch root stress-—-strain behavior at room temperature
and at 650°C was experimentally investigated. Strains
on notched specimens were measured with a non-contacting,
interferometric technique and stresses were simulated
with smooth specimens. Predictions of notch root
stress-strain response were made from the Neuber Equation
and smooth specimen behavior. Neuber predictions gave
very accurate results at room temperature. However, the
predicted interaction of creep and stress relaxation

differed from experimentally measured behavior at 650°C.

INTRODUCTION

There has been a demand in recent years for the air-
craft industry to provide a more energy efficient turbine
propulsion system. Part of this task involves trying to
understand the limitations of the current materials and
structures being used, especially in the "hot section" of
the engine [1]. The hot section components include the

turbine blades, vanes, and combustors which operate under

*
This work was performed under NASA Grant NAG 3-51.
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severe stresses and temperatures. To make improvements in
these parts it is first necessary to compile test data
which describe the events leading up to failure. Theoret-
ical models can then be developed and compared with
experimental data until the failure modes and component
lives may be predicted.

The combustor, fabricated from the alloy Hastelloy X,
is one component which has gone through the initial
testing phase and is now being examined from a theoretical
stand-point. Failures in the combustor liner have been
attributed to thermal-mechanical fatigue which causes
cracking and buckling [2]. A number of constitutive
theories have been proposed for predicting the nonlinear
stress-strain behavior near holes which serve as cracking
sites in the liner [3]. When these theories are
incorporated into finite element codes, the final package
becomes very complex and requires a large computer facility.

The purpose of this study is to examine a more basic
theory, namely the Neuber relation, to see how well it
can predict local stress-strain behavior in notched speci-
mens of Hastelloy X. For cyclic loading the Neuber equation
is written,

2

(Ao) (ae) = (K (aS) (Ae) (1)

)
')
where: Ao and Ae are the notch root stress and strain ranges,

respectively;

AS and Ae are the remote stress and strain ranges,

respectively;
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Kt' is the elastic stress concentration factor.

Much of the work involving Neuber's relation has fo-
cused on stress redistribution near a notch [4] and the
accompanying variation in the stress and strain concentra-
tion factors throughout fatigue life [5,6,7]. One of
these researchers, Guillot [6], evaluated Neuber's equation
at moderately elevated temperatures (260°C) and found that
conservative results were obtained for life predictions
in 1018 steel and 7475 aluminum. Both Bofferding [5] and
Guillot [6] used an Interferometric Strain Gage (I.S.G.)
[8-11] to measure notch root strains.

Equation (1) by itself is indeterminate. Knowing the
remote stress or strain range leaves three unknowns. The
The relationship between stress and strain at both the
remote and local locations is needed. Crews and Hardrath
[12] assumed that the notch stress could be found by
reproducing measured notch strains in smooth samples.

This assumption was upheld by Stadnick [13] and other
researchers [14,15] who showed that the smooth specimen
simulation gave good results in predicting fatigue lives
of notched specimens. For this study it was assumed that
smooth specimens could be used to supply the needed
stress-strain relationship.

Stadnick and Morrow [16]'worked on automating the
techniques for performing tests on smooth specimens that
were controlled according to the Neuber Equation. They

evaluated various approaches for subjecting a smooth
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specimen to the same stresses and strains that theoretically
exist at a notch. This theoretical testing technique has
been called "Neuber Control". These methods consisted
of manual control, and analog or digital computer control.
Separate research efforts have been devoted to using
smooth specimens to simulate notch root response, developing
laser based measurement devices and estblishing high temper-
ature testing techniques. This study utilized all of these
tools to determine the accuracy of Neuber's equation for
cyclic loading of notches specimens at temperatures up to

650°C.

EXPERIMENTAL METHODS

1. Interferometric Strain Measurement Technique

The Interferometric Strain Gage (I.S.G.) is described
in detail in References [8-11]. This device was used to
measure strains both at the local and remote locations
in notched specimens. The I.S.G. is a non-contacting laser
based device capable of measuring strains over a very short
gage length, typically 50-200 microns. The gage length is
formed by making two small pyramidal shaped indentations
on a sample with a Vicker's hardness tester. These
indentations form the actual gage on the specimen and the
distance between them constitutes the gage length. Laser
light which reflects off the two indentations interacts to
form two interference patterns. Each pattern is composed

of bright and dark bands of light. The position of each
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bright fringe is a function of the wavelength of the laser
light, the distance between indentations, and the reflecting
angle of the indentations.

The I.S5.G. functions by using scanning mirrors to
reflect the interference bands onto photomultiplier tubes.
When a load is applied to the specimen, the distance between
the indentations changes, thereby causing the position of
each bright fringe to move. Since the change in position
of the fringes is proportional to the change in distance
between the indentations, a computer can be used to calculate
the strain in the specimen.

Two basic requirements must be met in order to utilize
this strain measurement technique. First of all, the path
of the incoming laser beam and the reflected fringe
patterns must not be obstructed. To accomplish this, specimens
were heated by an induction method for the elevated
temperature tests. Heating coils which surrounded the
specimen were designed so that they would not interfere
with the laser beam. Another problem was that the specimen
surface had to remain smooth and free of excess oxidation
during high temperature testing. This problem was solved
by depositing a 0.14 micron layer of 40% gold-60% palladium
onto the specimen after the indentations had been made.

The I.S.G. was used to measure strains at both the local
and the remote region of the notched specimen shown in
Figure 1. The local indentations for creating fringe patterns
were placed 50 microns from the edge of the notch. This was

as near to the edge of the notch as the indentations could
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be consistently made with the Vicker's hardness tester.
The remote indentations were made at a distance of 6.025 mm
from the notch edge.

When evaluating the Neuber equation, other investigators
[5,6] have restricted loading levels to insure that the
remote region remained linearly elastic. This allowed
the remote strain to be calculated by knowing the stress in
the net section and the modulus of elasticity. During
these experiments, the complications of defining a net
section stress were avoided by measuring the remote strains
directly. There were also no limitations on plasticity in
the remote region. This allowed the Neuber relation to be
evaluated for a greater range of loading conditions.

The loading pattern for this experiment consisted of
completely reversed loading with 100 second hold times in
both tension and compression. A servo controlled, electro-
hydraulic, closed-loop testing machine was used to perform
the tests. Many of the details concerning the experimental
procedure have not been included in this paper so that

the results and conclusions could be emphasized.

2. Stress Simulation

To determine the stresses that existed in notched
specimens, smooth specimens were subjected to the strain
histories which had been measured at the local and remote
locations. Strains that had been measured with the I.S.G.
were recorded in real time so that they could be played

back on a smooth specimen at the same strain rate that
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existed on the notched specimen. From this technique,
stress-strain hysterisis loops at different locations on a
notched specimen were produced.

This method of simulating stresses worked very well
from an experimental point of view. All parameters such
as strain rate, creep, and total strain were reproduced in
the smooth specimen just as they had occurred in the notched
plate. The plots of local notch root stress versus strain
were considered direct experimental data to which the Neuber

predictions could be compared.

3. Neuber Prediction

The Neuber equation, (Egn. 1), allows local behavior
in a notched specimen to be determined as a function of
remote stress and strain. In these experiments, a smooth
specimen was manually controlled in real time according to
Egqn. 1 with remote stress and strain as input parameters.

The measured remote strains and simulated stresses
had been recorded on a time scale. These stress and strain
values weremultiplied together at various points in time
and their product was then multiplied by the stress
concentration factor squared. These values were replotted
on the same time scale and constituted the Neuber prediction
curves.

The Neuber relation is evaluated on a reversal by
reversal basis. Therefore, the Neuaber prediction curves
were actually the product of the changes in stress and

strain which occurred starting from the beginning of each
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reversal. By following this procedure, a plot such as the
one shown in Figure 2 could be constructed. This plot
would allow six reversals of local behavior to be predicted.
The time scale was set at 5sec/cm when the loads were
applied and then slowed to 50 sec/cm for the 100 second
hold periods. During each test, the values of stress and
strain from a smooth specimen were multiplied together
on-line with an analog computer to represent the quantity
(Ac) (4e). The specimen was manually controlled in the
MTS system so that the product of stress and strain would
follow the Neuber prediction curve for each reversal. The
illustration in Figure 2 shows how closely the original
plot was followed during such a test. An additional analog
circuit was designed so that the changes in stress and
strain could be multiplied together starting from zero at
the beginning of each reversal.

By plotting (Kt')z(As)(Ae)and imposing the product
(Ao} (A€), the Neuber equation was satisfied for each
reversal. The resulting stress and strain values
constituted the predicted notch root behavior. The Neuber
predictions were then compared to the measured strain vs.

simulated stress data for local response.

RESULTS AND DISCUSSION

1. Determination of Stress Concentration Factor

An elastic stress concentration factor for the circular

notched specimens was found experimentally using the ISG.
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From Peterson (17), the stress concentration factor, Kt
was given as 2.37. The experimentally determined stress
concentration factor which is defined here as Kt‘ was found
to be equal to 2.27. Figure 3 shows where five sets of
indentations for the ISG were placed across the width of

a notched specimen. Room temperature strain measurements
were recorded at each of these locations while the specimen
was cycled well below the proportional limit. The actual
strain data and the calculated strain profile are both
shown in the figure. By taking the ratio of strains at
location #5 and location #1, the strain concentration
factor was determined. For elastic strains, the stress and
strain concentration factors are equal, therefore, Kt'
was also determined (Kt' = 2,27). This experimentally
determined value of Kt' as well as the designation for

the local and remote areas (locations #1 and #5) were used

throughout the test program.

2. Interferometric Strain Measurements

At room temperature, strains for a notched specimen
were recorded for the initial behavior and also for a
cyclically stable condition, i.e. when the material at
notch root was stable. Figure 4 shows I.S5.G measurements
of strain vs. applied load for a notched specimen during
the first three cycles of constant amplitude completely
reversed loading between + 14 KN. The most noticeable
effects in notch root behavior were caused by cyclic

hardening. The tensile peaks showed a large decrease in
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strain for each successive cycle due to strain hardening.
The compressive strains experienced much less variation
during the three cycle period. Creep effects were also
present in the room temperature data. The largest amount
of creep took place during the first 100 second hold time
and then diminished with each successive reversal.

For remote behavior, which is also shown in Fig. 4,
cyclic hardening again caused the total strain to decrease
for each plotted loop. The effects of creep were minimal
for the remote location. The amount of creep at both
locations in the specimen decreased as the material
stabilized.

When a sufficient number of cycles had been applied
to stabilize the material, the I.S.G. was used to record

data at the four cyclic load levels which are listed:

LEVEL # LOAD (KN)
1 + 14.0
2 + 14.5
3 + 15.5
4 + 16.0

Strain measurements were obtained at each of five locations
across the notched specimen as indicated in Figure 3.
Figures 5 and 6 show results for the lowest load amplitude
(Load Level 1) and the highest amplitude (Load Level 4).
These figures illustrate the effects of cyclic loading at
various distances from the notch. The plastic strain
diminished significantly as the distance from the notch
increased. Also, when the load was raised from Level 1 to
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Level 4, the strain at the remote location (#5)
increased by 21% while the local strain (#l1) experienced a
50% increase. This gives an indication of the strain
concentration near the notch.

Notch root and remote strains were also measured at
650°C in a specimen which had been cyclically stabilized.

Four load levels were again used which are as follows:

LEVEL # LOAD (KN)
1 + 10.5
2 + 11.3
3 + 12.3
4 + 13.3

Hysteresis loops showing applied load vs. local notch root
strain at four different load levels are shown in

Figures 7 and 8. At this temperature, small increases in
load produced large strains, especially strain due to creep.
During the 100 second hold time, the amount of creep strain
at each level of loading was as follows:

Level 1: 0.05% creep strain
Level 2: 0.10% creep strain
Level 3: 0.13% creep strain

Level 4: 0.18% creep strain

These values were approximately equal for tension and compression.

3., Stress Simulation & Neuber Predictions

Smooth specimen stress simulations produced the

experimental stress-strain behavior at both the remote and
local regions. Neuber predictions were also made. The

first three cycles of notch root stress-strain behavior at
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room temperature were plotted in Figure 9. Included in

this figure are both the experimental results and the

Neuber predictions. During the first cycle, the Neuber
prediction was slightly high on stress which caused lower
strain peaks. Actually, the tensile and compressive strains
were only 9% low for the first cycle. The predicted
tensile strain on the second cycle was low by 8% while the
compressive strain was 13% lower than the stress simulation.

The Neuber relation was also used to predict the notch
root response after the material had reached the cyclically
stable condition. In Figure 10, the room temperature
results from tne Neuber prediction and the stress simulation
have been superimposed for comparison. For the stabilized
notch root response at Load Levels 1 and 2, the Neuber
method was approximately 6% high in predicting tensile and
compressive strain. Load Levels 3 and 4 show nearly a
perfect correlation between the two sets of curves.

Neuber's rule was also studied at 650°C for the
cyclically stable condition. Figure 11 and 12 show these
stable results. The most noticeable trend at all four
levels was the amount of stress relaxation predicted by the
Neuber relation. For Load Levels 1 and 2, the stresses
at the end of the 100 second hold times were low by 23% and
27%, respectively. The stresses were predicted more
accurately at the higher load levels. At Load Level 3 the
stresses were 22% low and at Level 4 the stresses were 15%

lower than the stress simulation. In terms of strain range,
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the error in predicting Level 1 strains was 20% low while
the Level 4 strains were predicted within 10%.

The tendency of the Neuber relation to predict stress
relaxation rather than predominant creep during the hold
times was caused by the remote information which was used
to construct the Neuber plots. The remote location had
experienced almost no creep for the Load Levels 1 thru 3.
At Load Level 4, the creep accounted for about 12% of the
total strain. This caused the Neuber prediction to become

more accurate at the highest load level.

CONCLUSIONS

Neuber control of a smooth specimen predicted the
notch root stress-strain behavior of a circular center
notched plate that was made of Hastelloy X with excellent
agreement to direct experimentally measured notch root
strains and simulated stresses at room temperature. The
agreeement was good for initial behavior during cyclic
hardening and for the stable condition at four different
load levels. At 650°C and for the stable condition,
agreement with experimental data were acceptable with the
maximum error at 20%. At this higher temperature, the
direct experimental data showed primarily creep strain
during hold times. The Neuber prediction showed both
creep and stress relaxation. This difference in the
general behavior resulted in significantly larger errors
at this elevated temperature than those for room

temperature.

59



10.

11.

REFERENCES

Signorelly, R. A., Glasgow, T. K., Halford, G. R., and Levine

S. R., "Materials and Structures Technology," NASA
Conference Publication #2092, May 1979, pp. 150-162.

Avery, L. R., Carayanis, G. S. and Michky, G. L.,
"Thermal Fatigue Tests of Restrained Combustor Cooling
Tubes," Experimental Mechanics, Vol. 7, No. 6,

June 1967, pp. 256-264.

Walker, K. P., "Research and Development Program for
Nonlinear Structural Modeling with Advanced Time-
Temperature Dependent Constitutive Relationships,"
NASA Report No. CR-165533, Nov. 1981.

Blatherwick, A. A., and Olson, B. K., "Stress
Redistribution in Notched Specimens Under Cyclic Stress,'
ASD Technical Report 61-451, Aeronautical Systems
Division, Wright-Patterson Air Force Base, Dayton,

Ohio, 1961.

Bofferding, C. H., "@ Study of Cyclic Stress and Strain
Concentration Factors at Notch Roots Throughout Fatigue
Life," Master's Thesis, Michigan State University, 1980.

Guillot, M. W., "An Experimental Evaluation of Neuber's
Cyclic Relation at Room and Elevated Temperatures,"
Ph.D. Thesis, Louisiana State University, May 1981.

Leis, B. N., Gowda, C. V. B., and Topper, T. H., "Some
‘Studies of the Influence of Localized and Gross
Plasticity on the Monotonic and Cyclic Concentration
Factors," Journal of Testing and Evaluation, Vol. 1,
No. 4, July 1973, pp. 341-348.

Sharpe, W. N., Jr., "The Interferometric Strain Gage,"
Experimental Mechanics, Vol. 8, No. 4, April 1968,
pp. 164-170.

Sharpe, W. N., Jr., "Interferometric Surface Strain
Measurement," International Journal of Non-Destructive
Testing," Vol. 3, 1971, pp. 51-76.

Sharpe, W. N., Jr., "A Short Gage Length Optical Gage
for Small Strain," Experimental Mechanics, Vol. 14,
No. 9, 1974, pp. 373-377.

Sharpe, W. N., Jr., "Development and Application of an

Interferometric System for Measuring Crack Displacements,"
Final Report on Grant NSG 1148, June 1976.

60



12. Crews, J. H., Jr., and Hardrath, H. F., "A Study of
Cyclic Plastic Stresses at a Notch Root," Experimental
Mechanics, Vol. 6, No. 6, June 1966, pp. 313-320.

13. Stadnick, S. J., "Simulation of Overload Effects in
Fatigue Based on Neuber's Analysis," Department of
Theoretical and Applied Mechanics, University of
Illinois, Urbana, Report No. 325, 1969.

14. Leis, B. N., Gowda, C. V. B., and Topper, T. H.,
"Cyclic Inelastic Deformation and the Fatigue Notch
Factor," ASTM STP 519, 1973, pp. 133-150.

15. Wetzel, R. M., "Smooth Specimen Simulation of Fatigue
Behavior of Notches," Department of Theoretical and
Applied Mechanics, Report No. 295, University of
Illinois, Urbana, May 1967.

16. Stadnick, S. J., and Morrow, Jo Dean, "Techniques for
Smooth Specimen Simulation of the Fatigue Behavior
of Notched Members," ASTM STP 515, American Society
for Testing and Materials, 1972, pp. 229-252.

17. Peterson, R. E., "Stress Concentration Factors,"
John Wiley and Sons, Inc., 1974,, pp. 150-196.

61



(" h
} } T ] |
' ] 1 ]
! 1 ! l~—
Lo l'rs LT 5/8-18NF
Lt -

0.300 , t

I , 1.30

- — 0.75R —__#;" —L-

- 47 0,75 e
5,25 — 1 l' S .20 DIA.
' .700 NOM.,
. f
: : ALL DIMENSIONS IN INCHES.
1 | SPECIMEN WAS MACHINED TO
{ 1 ENGLISH SPECIFICATIONS.
] 1 (1.0 inch = 25.4 mm)
! '
H u

Ficure 1  NoTcHED SPECIMEN GEOMETRY

F 7Y LGNS i N B -z LANL IR I 5t i 5'1..11».(‘_'[‘!" ""‘il:‘WM'}‘”-‘A"-““'HT o5 BN
Plot (K')As Ae Impoae (&) (8¢) :
. Ll g eI

U RRNARRRR =R E A REAER

' lst Reversal 7

-
B Y R ) e I

(500 Mpa)x{.008)
4o ae
IRE - .
KRl
L
: | TITT ; Hold Time
AN NN RN RN EREN

Ficure 2 NeuBer Prepiction CURVES

62



LOAD VS. ELASTIC STRAIN AT FIVE LOCATIONS
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MULTIAXIAL CYCLIC THERMOPLASTICITY ANALYSIS
WLTH BESSELING'S SUBVOLUME METHOD

R. L. McKnight
General Electric Co.
Cincinnati, Ohio 45215
Abstract
In 1975, a modification was formulated to Besseling's Subvolume Method to
allow it to use multilinear stress—strain curves which are temperature
dependent to perform cyclic thermoplasticity analyses. This method
automotically reproduces certain aspects of real material behavior important
in the analysis of Aircraft Gas Turbine Engine (AGTE) components. These
include the Bauschinger effect, cross—hardening, and memory. This
constitutive equation has been implemented in a finite element computer
program called CYANIDE which has been in production usage since 1977.
Subsequently, classical time dependent plasticity (creep) was added to the
program. Since its inception, this program has been assessed against
laboratory and component testing and engine experience. The ability of this
program to simulate AGTE material response characteristics has been verified
by this experience and its utility in providing data for life analyses has
been demonstrated. In this area of life analysis, the multiaxial
thermoplasticity capabilities of the method have proved a match for the actual
AGTE life experience. This paper will explore the multiaxial,
variashle—temperature nature of the method and show examples demonstrating its

utility.
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BESSELING'S MATHEMATICAL MODEL

The relation between the deviatoric stresses and the deviatoric

strains is given by
- - "
13 ZG(eij eij) Q)

where

Sij is the deviatoric stress tensor

e is the total deviatoric strain tensor

i3

e'. is the plastic strain tensor

i}

G is the shear modulus

The yield strain, P, is given by the plastic potential function

" " 2 -
g = (eij - eij)(eij - e:lj) -P 0 )

The incremental plastic strains are given by

(e _ell )(e - ")
A & I & I e 1 SN

(3)
p2 hk

"
Geij

provided that

(ehk - e;k)Gehk >0 %)

The incremental stress-strain relation is
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r (e, - e} )( -eh)
- o R & 11’ ®hk ~ ®nk
Gsij 2G Geij 2 Gehk (5)

The new vield strain, eij + Geij, is determined from
= - " - " -
ég 2(eij eij)(éeij Geij) 0 (6)

Besseling then introduced the concept of elastic~perfectly plastic
subvolumes. The elastic potential, ¢1, of the subvolume of density p

after prior plastic flow is given by

where the e are the plastic strains due to ideal plastic yielding.

ij1
If this subvolume constitutes the fraction ¢ of the volume element

dv, its contribution to the total elastic potential of dV is

Vo(egy = egqp)(eyy = egqy)dV @)

If k subvolumes of the volume dV have exceeded their critical value of
elastic potential and undergone plastic flow, the total elastic

potential is given by
/ k k _ _
pédv = lceﬁeij(l -g wn) + G]an(eij - e:ljn) (eij - ei.jn)] v ©)

Now, the deviatoric stress tensor is given by

\
.

-5, +3 :
5,4 ZG; 1- ) wn e +i"‘_,wn(eij - em) ao)
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After yielding, the elasticity limit of subvolume k is given by

_ = - 2
By = (egy =~ egq(eyy —egqy) - B

=0 (11)

The subvolume incremental plastic strains are given by

— (o535 = €15k (Cap ~ qg!

feyk < ) 8e, 8k 12)
k
provided that
(eagk ™ Capi) %Capk > O 13)
The incremental stress-strain relations are
: k  (e,, ~e, d(e.~-¢e.)
i 1j iin’ *"aB afin 7
&8 = 2G;é -
13 L 49 ;“’n 22 GeaBJ @4)

n

DEVELOPMENT OF NONISOTHERMAL CAPABILITY

The equation relating the stresses and the subvolume sgtrains,

Equation (10), can be rewritten to give

- -we (15)
S:L1 ZG[eiJ Ewneijn]

Now these stresses must be the same as the stresses given by Equation (1).

Therefore, the two right-hand sides can be equated. When this

is done, we get
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wneijn - e;j (16)

M=

which gives a relationship between the subvolume plastic strains and

the total plastic strains.

Squaring both sides of Equation (16) and multiplying by 2/3, we

get
k 2
3 o - - 3 " " 1
3\/¥“’n> ©14n ®14n " 3 ©1j ®43 (17)
\
Now
€ |/§ e;j ezj (18)
Therefore

(19)

ep = wlspl + wZEpZ + w35p3 + ... + wnepn

This gives a relationship between the total effective plastic strain

and the subvolume effective plastic strainms.

The following ratio can be formed between a subvolume effective

plastic strain and the total effective plastic strain:

2 22— -
<epn> _ 3 %in %140 (20)
ep %eij eij
or
(21)



By taking the square root of both sides, we obtain

€
o PO _u
€44n € €13 (22)

This gives a means of determining the subvolume plastic strains from

the total plastic strains if the effective plastic strains are known.

This then provides the tools to convert Besseling's isothermal

theory Into a nonisothermal theory. We note that for variable

temperature problems g and 9 will be functions of both strain and
temperature.

g*=g (elj»T)

(23)
9 = 9 le;peT) (24)
These functions can be specified by defining temperature dependent
stress-strain curves.
For incremental loading Including temperature changes, the
change in the plastic potential function Is given by
dg= 39— de . +-3E ar (25)
eIj 1j oT

There are three possible conditions that can occur due to this

load Increment and these are determined by the value of this differential.

For loading beyond the present yield surface

dg>0 (26)
2 g
sg-udeu + 5T dT > 0 (27)
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For the loading to place the point on the new yield

surface

39 ge.. + 84T =0
i ij oT

For the point to unload back into the elastic range
dg <0

3g de.. +3g dT< 0

Je. . J T
tJ

These last two conditions are used to accomodate
temperature variations. The solution to any load condition,
(N-1), is arrived at when

dg ., =29 de 2o

n-l o %e; /T o constant
In proceeding to the next load step, (N), the temperature
effects on the stress-strain curve are incorporated so as
not to vialate this condition while holding the strains
constant.

=29 41 =

d9(n-1),(n) =37 9T =0
Thus, we are requiring that the change of temperature alone
not effect the inelastic condition of the material. We

accomplish this by realizing that

3-9_ =—?——G— e p

i dr 3 deij deij
Therefore, by requiring that

deP. =0

ij

We force

0

5 dT =0
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(32)
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(34)
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This then gives us the mechanism for positioning our new yield
surfaces in step, N. The step, N, solution then proceeds by applying
the loads and boundary conditions and iterating to obtain

e,.

y ij (37)

within your specifled convergence tolerance.

CREEP ANALYSIS

The creep analysis utilizes one of two possible creep representationms.

When tertiary creep is not considered to be of importance, the equation used

is
e, - k%"t™ + q%"t (38)
where
@ = g /100000, ¢ = effective stress
e e e
k, m, n, q, r = material-dependent and temperature-dependent creep coef-
ficients.

When the material exhibits a significant amount of tertiary creep capa-
bility, an alternate representation is used. Primary creep is represented by

the Bailey-Norton law.

P - Ay A3
Cc = Al °e t (39)

Secondary creep is modeled with the expression proposed by Marin, Pao, and
Cuff (Reference 19)

& = A g t +A ¢ (L!O)
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Tertiary creep is represented with an equation of the form

T Ag _ Alo,

e = A8e g, (41)

Ay, A2, ... A]p = material-dependent and temperature dependent cre: ..

coefficients.

CYANIDE also contains an orthotropic creep formulation. The creep st:ain

rate is assumed to be given by

€ij © 8ijk1%%1 (42)
where

éij = strain rate tensor

=
okl stress tensor

gijk1'= Tensor whose components are functions of temperature, de, and

hardening rule and are derivable from input creep curves.

The user can select from time hardening, strain hardening, or life frac-
tion creep rule, depending upon the actual material characteristics. Strain
hardening is ordinarily adequate for describing hardening behavior, providing
that stress reversals do not occur. A stress reversal is considered to occur

when
e..0..< 0 (43)

Where gijc is creep strain measured from its current origin. When a ceversal

occurs, the origin is changed and the analysis proceeds (Reference 20) .

The combination of general creep equations and creep rule makes the pro-

gram very general In Its application to structures which undergo time-dependent

plastic flow In which transient effects are not significant.
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CYANIDE COMPUTER PROGRAM

Many of the steps in the CYANIDE nonlinear finite element
computer program are the same as those for a linear finite element
analysis. The nonlinear effects are introduced into the system of
finite element equations by adding vectors of pseudoforces to the
right hand side.

K| 6} = {F} + {F } + {F ) (44)
where

|K| is the elastic stiffness matrix.
{8} is the vector of nodal displacements.
{F} is the force vector including thermal terms.

{Fp} Is the plastic pseudoforce vector.

{Fc} is the creep pseudoforce vector.

For each increment of loading, the nonlinear pseudoforces are iterated
upon until the requirements of equilibrium, compatability, and the
constitutive equations are met within user specified tolerances. Since
this method does not require modification of the stiffness matrix during
iterations it is very economical. This economy is magnified during
cyclic analysis. The stiffness matrix need only be regenerated if the
material properties are revised by thermal variation or if elements have

been added or removed.

MULTIAXIAL, VARIABLE TEMPERATURE EXAMPLE

In a previous NASA contract, we investigated one of the common thermal
stress problems In AGTE's: turbine blade tip cracking. In that case, the
critical region was shown by analysis and confirmatory testing tb6 have the
cyclic stress-straln behavior noted In Figure 1. High temperature, time
dependent flow rapidly relaxes the compressive stress such that on cool-
down high tensile stresses are genrated. This process shakes down very
rapidly to an almost elastic hysteresis loop based on modulus changes.

In that case the problem was almost totally uniaxial in nature.
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A second type of thermal stress problem prevalent in AGTE's is the hot
spot. In this case, the stress strain response is definitely multiaxial. We
will investigate a hot spot on a combustor shingle as being typical of these
problems. Figure 2 shows a shingle segment. Taking advantage of its large
radius of curvature and thinness, it was modeled as a flat plate in a
condition of plane stress. The model is shown in Figure 3. Figures 4, 5 and
6 show the nature of the hot spot at peak temperature and Figure 7 shows the
heat-up cool-down temperature cycle at the center of the hot spot. This cycle
was analyzed assuming no time dependent effects occcurred during heat-up and
cool-down but that a one hour hold time was associated with the peak of the
hot spot.

The stress—strain results of the first cycle are shown in Figures 8, 9
and 10 for the center of the hot spot. Figure 8 shows effective stress versus
effective strain and Figures 9 and 10 show the biaxial stresses versus
strains. Once again the effect of plasticity and creep is to generate tensile
stresses during the cool-down portion of the cycle. The next series of
figures shows the shakedown stress-strain results for the center of the hot
spot. Figure 11 shows the effective stress versus effective strain shakedown
values and Figures 12 and 13 show the shakedown biaxial stress cycle at the
center of the hot spot. Thus this multiaxial thermal stress case, just as the
uniaxial case, shakes down to almost elastic cycling with a high tensile mean
stress. In addition, the stresses are almost proportional. These types of
analyses are important in indicating the types of response and life tests

needed.
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EVALUATION OF INELASTIC CONSTITUTIVE MODELS FOR
NONLINEAR STRUCTURAL ANALYSIS
Albert Kaufman
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
ABSTRACT

The influence of inelastic material models on computed stress-strain
states, and therefore predicted lives, was studied for thermomechanically
loaded structures. Nonlinear structural analyses were performed on a
fatigue specimen which had been subjected to thermal cycling in fluidized
beds and on a mechanically load-cycled benchmark notch specimen. Four in-
cremental plasticity-creep models (isotropic, kinematic, combined isotropic-
-kinematic, combined plus transient creep) were exercised using the MARC
program. Of the plasticity models, kinematic hardening gave results most
consistent with experimental observations. Life predictions using the com-
puted strain histories at the critical location with a Strainrange Parti-
tioning approach considerably overpredicted the crack initiation 1ife of the
thermal fatique specimen.

INTRODUCTION

Hot section components of aircraft gas turbine engines, such as combus-
tor liners and turbine blades and vanes, are subject to progressive creep-
fatique damage resulting from cyclic thermomechanical loading under extreme
gas pressure and temperature environments. A Strainrange Partitioning ap-
proach (ref. 1) to assess the durability of these components has been under
development at the NASA Lewis Research Center. In order to apply this or

similar methods, it is first necessary to determine the stress-strain-
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temperature history of the part at the critical location where cracks will
initiate.

As part of the life prediction studies at Lewis, wedge specimens have
been thermally cycled in fluidized beds as described in reference 2. In
these tests, two fluidized beds were used to rapidiy heat and cool prismatic
bar specimens of single or double edge wedge cross-section. Nonlinear
structural analyses were performed for these specimens using the MARC pro-
gram (ref. 3); the results are reported in references 4 and 5. These non-
linear analyses were for specimens of several alloys and used a combined
isotropic-kinematic hardening model in MARC in conjunction with monotonic
stress-strain properties taken from the literature.

Finite-element nonlinear analysis methods are becoming of increasing
interest for computing the cyclic stress-strain response of hot section com-
ponents (refs. 6 to 10). A major disadvantage of these methods, excessive
computing costs, is being alleviated by advances in computer technology.
Another deficiency is that current nonlinear analysis computer codes utilize
classical constitutive material models whose accuracies vary with the type
of material and the cyclic conditions involved. Furthermore, these class-
ical models simplify the analyses by uncoupling time independent (plas-
ticity) and time dependent (creep) effects, neglecting strain rate effects
on plastic flow, and defining specific yield surfaces. The NASA Lewis
Research Center has instituted programs to develop constitutive models which
would more realistically represent the inelastic material behavior and be
computationally practical for finite-element structural analysis. To verify
the nonlinear structural analysis methodologies, Lewis is also sponsoring
controlled cyclic experiments to provide strain data for benchmark notch

specimens (ref. 11).
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In this study existing constitutive models in the MARC computer program
were exercised in inelastic analyses of an IN 100 wedge specimen subjected
to thermal cycling and an Inconel 718 benchmark notch specimen subjected to
mechanical load cycling. The objective of the study was to evaluate the
effects on calculated hysteretic response, and therefore predicted 1ife, of
different inelastic constitutive models available in nonlinear analysis com-
puter codes.

Three dimensional elastic and nonlinear structural analyses were per-
formed on a thermally cycled double-edge wedge specimen. The nonlinear an-
alyses were conducted using isotropic, kinematic and combined isotropic-
kinematic hardening models and a combined hardening model in conjunction
with a strain hardening creep law to account for cyclic time-dependent ef-
fects. Strain histories computed at the critical location from the dif-
ferent constitutive models were used in conjunction with the Strainrange
Partitioning method to compare predicted lives against the observed crack
initiation life. Two dimensional nonlinear analyses were performed for a
mechanically load-cycled benchmark notch specimen; computed strain histories
at the notch root using various material models were compared against
measured notch strains.

PROBLEM DESCRIPTION

The primary structure considered in this study was an IN 100 alloy
double-edge wedge specimen as illustrated in figure 1. Cracking was ob-
served at the 1/4 span position on the leading edge after 38 cycles of test-
ing in the fluidized bed facility (ref. 2).

The physical properties of the cast IN 100 alloy are presented in

table I. Mean thermal coefficient of expansion data were converted to in-
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stantaneous coefficients of thermal expansion for input into the MARC pro-
gram. The modulus of elasticity was determined from monotonic stress-strain
tests of tensile specimens. Cyclic stress-strain curves were obtained using
the single specimen incremental step procedure and equipment described in
reference 12. A typical cyclic stress-strain curve, with the loci of the
curve tips represented by an exponential equation, is illustrated in figure
2. Also shown for comparison in figure 2 is a monotonic stress-strain curve
represented by an exponential equation. Short-time cyclic creep tests were
conducted on IN 100 specimens using the procedures and facilities described
in reference 13. Preprocessor programs expressed both the cyclic stress-
strain and creep data as functional relations in exponential form. These
equations were incorporated into MARC by means of user subroutines. The
constants of the cyclic and monotonic stress-strain equations are given in
table II for various temperatures. In table III the constants of the cyclic
creep equations are given for various temperatures.

The specimen was thermally cycled in fluidized beds maintained at 316°
and 1088° C with an immersion time of 3 minutes in each bed. Transient tem-
perature loading on the specimens was determined from thermocouple data as
described in reference 2. Curve fits of thermocouple data along the mid-
chord at the midspan at various increments after immersion into the fliui-
dized beds are presented in figure 3. The temperature gradient through the
thickness of the wedge was assumed to be negligible. Another set of thermo-
couple data was taken with thermocouples mounted along the leading edge over
half the span to obtain the longitudinal (along the span of the specimen)
temperature gradient for the different time increments.

Supplemental analyses to evaluate the constitutive material models were
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also performed for a benchmark notch specimen of Inconel 718 alloy which was
Toad cycled at a frequency of 0.167 Hz and a temperature maintained at
649° C. The material properties given in reference 11 were correlated in
the same way as the IN 100 alloy properties.

ANALYTICAL PROCEDURE

Stress and total-plastic-creep strain distributions in the wedge speci-
mens were calculated from the MARC nonlinear, finite-element computer pro-
gram. Computations were performed for 34 time increments (17 heating,

17 cooling) into which the thermal cycle was subdivided, as shown in fig-
ure 3. The analyses were terminated when stable stress-strain hysteresis
Toops were obtained or after three cycles if the hysteresis loops remained
unstable.

Plasticity computations were based on incremental plasticity theory us-
ing the von Mises yield criterion and normality flow rule. The yield sur-
face under reversed loading was determined from the stress-strain properties
and the selected hardening model. Three hardening models available in MARC
(isotropic, kinematic and combined isotropic-kinematic) were selected for
evaluation. Monotonic stress-strain properties were used in conjunction
with the isotropic and combined models because of their initial insta-
bility. Saturated cyclic stress-strain properties were used for the stable
kinematic model. A bilinear representation of the cyclic stress-strain
curve, as shown in figure 2, was applied to the kinematic hardening model.
The slope of the kinematic model was determined from energy considerations
so that the strain energy, as indicated by the enclosed area, would be iden-
tical with that of the actual cyclic stress-strain curve. Creep effects

during the cycle were considered for one case involving the combined model

93



by imposing four 30 second hold times during heating and two 6 second hold
times at the start of the cooling part of the cycle. These intervals were
selected because the combination of temperatures and stresses indicated a
possibility of the occurrence of significant creep at these times in the
thermal transient. The creep computations utilized the cyclic creep data in
conjunction with a strain-hardening rule. A subroutine which was inserted
into the MARC program in the form of yield strengths and work hardening
slopes as functions of temperature, was used to determine the stress-strain
properties for the local temperatures at the Gaussian integration points.
Similarly the creep properties and laws were coded into another user sub-
routine which was used to obtain the creep strains at the integration points.

A preprocessor program converted the thermal loading data from the wedge
specimen into the form of sixth-order polynomial equations. A subroutine,
which was inserted into MARC, interpolated from these equations for the
local temperatures at the Gaussian integration points.

The finite element model for the wedge specimen is illustrated in fig-
ure 4. Because of symmetry only one-fourth of the specimen needed to be
modelled; this model was bounded by the surface and intersecting midchord
and midspan planes of symmetry. The element used was a 20 node, isopara-
metric, three dimensional block with 8 corner nodes and 12 edge midpoint
nodes. This element had 27 Gaussian integration points. The model con-
sisted of 36 elements with a total of 315 nodes and 778 unsuppressed degrees
of freedom.

A11 nodes initially on the midspan and midchord faces of the model were
constrained to lie on the midspan and midchord planes respectively. In ad-
dition, one node at the leading edge was constrained chordwise (leading to

trailing edge) in order to prevent rigid body motion in that direction.
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The analytical procedure used for the benchmark notch specimen was ba-
sically the same as for the wedge specimen. Each cycle was subdivided into
30 load steps. One fourth of the specimen was modelled as shown in figure 5
using 592 plane strain, triangular elements with a total of 335 nodes.

RESULTS AND DISCUSSION

The critical location for crack initiation in the thermally cycled
double-edge wedge specimen is at the leading edge at a quarter of the speci-
men span from either end. Results of both elastic and inelastic structural
analyses determined that the critical location based on the region of the
finite element model with the largest total strain range during the cycle
was coincident with the observed crack initiation site. In the following
discussion, the stress-strain results for the critical location were actu-
ally computed at the closest Gaussian integration point which was 0.056 cen-
timeter from the surface at the quarter span.

The stress-total strain solutions at the critical location from the MARC
elastic and nonlinear analyses of the wedge specimen are shown in figure 6.
A1l stresses and strains in this figure were effective or equivalent values
which were originally computed as positive numbers. However, in order to
construct stress-strain hysteresis loops for life prediction purposes, the
stresses and total strains were assigned positive or negative signs depend-
ing on the signs of the highest magnitude principal stresses or strains.
Nonlinear stress-strain hysteresis loops afe presented for the second cycle
of the analyses. During heating the metal temperature at the critical loca-
tion increased from 343° C at the start of the cycle to 1077° C at the end
of heating. In all analytical cases, the minimum total strain occurred

after 30 seconds of heating when the temperature at the critfca] location
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was 888° C and the maximum total strain after 9 seconds of cooling or a
total elapsed time of 189 seconds when the temperature was 749° C.

Predicted stress-strain hysteresis loops from the elastic analysis and
the nonlinear analyses using combined and kinematic hardening models are
compared in figure 6(a). These results indicate that the total strain range
was not appreciably affected by the choice of constitutive model or type of
stress-strain data.and that an elastic analysis was adequate for the compu-
tation of the total strain range. The major differences between the elastic
and nonlinear hysteresis loops were in the stress levels, which shifted in
the tensile direction under inelastic straining with the largest peak and
mean stresses obtained with the combined hardening model. A measure of the
strain energy or plastic work is the area of the hysteresis loop. The
widest hysteresis loop and, therefore, the most plastic work is shown by the
kinematic hardening model in figure 6. There was no further plastic strain-
ing or work during or after the second cycle using the combined hardening
model and, therefore the area and shape of the combined and elastic hyste-
resis loops in figure 6 remained about the same.

The nonlinear analysis using the isotropic hardening model gave essenti-
ally the same stress-strain solutions as were obtained with the combined
model in figure 6(a) due to the use of the same monotonic stress-strain
properties and the absence of plastic strain reversal during cycling.
Therefore, the discussion of results for the combined hardening model is
also applicable to isotropic hardening and the latter will not be discussed
separately.

Figure 6(b) compares the stress-strain hysteresis loops from the non-

linear analyses using the combined hardening models with and without creep.

96



Inclusion of creep effects during the thermal transients had only a small
effect on the peak and mean stresses with combined hardening, but resulted
in substantially more strain energy per cycle as represented by the enclosed
areas of the stress-strain hysteresis loops. Although the hysteresis loops
for the combined-creep and kinematic models in figure 6 are shown as closed,
there was some inelastic strain ratchetting which was relatively minor and
therefore ignored in plotting the loops.

Stabilization of the stress-strain solution using the combined hardening
model is shown in figure 7(a) where it is seen that there was no further
plastic flow after the first 60 seconds of heating; this is an impossibility
since the specimen could not fail in 38 cycles without undergoing sub-
stantial plastic strain cycling. In contrast the kinematic hardening re-
sults in figure 7(a) exhibit plastic strain reversal and ratchetting with a
relatively constant plastic strain range per cycle. Figure 7(b) shows the
inelastic strain response for the combined-creep case. Accounting for tran-
sient creep effects resulted in creep strain ratchetting on every cycle and
smalier plastic strain changes with the combined hardening model. Only
slight changes in the maximum equivalent creep strain were obtained with
further cycling. However, the minimum equivalent creep strain increased,
and therefore the creep strain range decreased, although at diminishing
rates during cycling.

The computed strain histories at the critical location were used to pre-
dict crack initiation life based on the Strainrange Partitioning Life Pre-
diction Method. The material life relationships for this method are defined
in reference 14 for cast IN 100 alloy from isothermal fatigue and creep rup-

ture tests. For these analyses the response from the kinematic model con-
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tained only pp(tensile plasticity reversed by compressive plasticity) and
from the combined-creep model was conservatively assumed to contain cc(ten-
sile creep reversed by compressive creep) damage cycles. Crack initiation
lives of approximately 1400 cycles were predicted in both cases compared to
the observed 1ife of 38 cycles. The overpredictions in life are not neces-
sarily proof of the inadequacy of the structural analysis method since there
is evidence that thermal cycling produces damage at a faster rate than com-
parable isothermal, strain-controlled test data used in the life prediction
method.

In figure 8 analytical results using both combined and kinematic harden-
ing models are compared against the experimental load-notch strain cycle
from the benchmark notch test. Creep was not a significant factor under the
continuous cycling, isothermal conditions of this test. The experimental
results demonstrated that a stable load strain response occurred on the
first cycle with only minor strain changes due to subsequent cycling. A
plasticity analysis using the combined hardening model did not accurately
represent the experimental results; it predicted, after initial loading, an
elastic response with further cycling (fig. 8(a)). Another plasticity anal-
ysis using the kinematic hardening model demonstrated good agreement with
the experimental results. Kinematic hardening predicted ratchetting between
the first and second cycles and a stable notch strain cyclic response there-
after (fig 8(b)); except for slightly overpredicting the ratchetting, these
results are consistent with the experimental notch cyclic response.

SUMMARY OF RESULTS

The results of the evaluation of inelastic constitutive models available

in nonlinear, structural analysis computer programs can be summarized as

follows:
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1. Of the plasticity hardening models which were evaluated, the kin-
ematic model gave a predicted stress-strain response most consistent with
experimental observations. The combined (as well as the isotropic) model
predicted elastic response during cycling which obviously did not agree with
experimental results from both the thermal fatigue wedge and benchmark notch
specimen tests. Creep effects were shown to be significant during thermal
transients and failure to take them into account can affect the predicted
stress-strain response.

2. Of the structural analysis parameters used in low-cycle fatigue dam-
age models only the total strain range was relatively insensitive to the
choice of inelastic constitutive model. Other parameters such as inelastic
strain range, mean stress, and inelastic work were significantly affected by
the constitutive model. The elastically computed maximum total strain range
agreed well with that computed from the inelastic analyses. The elastic
analysis was also able to determine the critical location for crack initi-
ation and the cycle times when the total strain was maximum or minimum.

3. The life prediction analyses based on the structural analysis results
using the kinematic and combined-creep models in conjunction with iso-
thermal, strain controlled fatique test data overpredicted the observed
crack initiation 1ife of the thermally-cycled wedge specimen.
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TABLE 1. JH 100 ALLOY PHYSICAL PROPERTIES

Temperature, I HModulus of Elasticity, | Hean Coefficient of i1hermal EXpansion,
oC : MN/m? : n/m/°C
316 ] 193X1n3 1 13.1X10°¢
371 | 190 ! 13.3
%27 i 186 | 13.5
682 1 183 | 13.7
538 ! 179 |} 13.9
593 [ 176 ! 14.0
669 I 172 [ 16.4
704 ] 168 | 14.6
760 | 163 1 16.9
816 1 157 ! 15.6
871 | 152 I 15.8
927 | 145 | 16.4%

982 1 139 ] 16.7
1038 | 133 } 17.5
1093 ! 127 | 18.2

TABLE IT. IN100 ALLOY STRESS-STRAIN PROPERTIES

Temperature, ] Cyclic, | Monotonic,
ec : il g=K(e€p,7.1)0 | Ik 0=C(¢€,7.1)m

----------------------- | s s A ———— - -

! K { n I c ! m
------------------ Rl D e e L LDt e Dl BT e

316 | 1005 | .046 ] 731 | .078

427 i 964 | 066 1 731 1 078

538 i 869 I 086 ] 731 I .078

649 I 177 | 2113 | 731 I .078

760 I 665 I 147 { 731 ! 078

871 ! 528 | .187 I 676 i 078

982 | 361 I .236 i 255 I .1646

1093 1 157 | .297 1 173 1 .146

! Locus of cyclic curve tips (fig. 2)
! Stress (¢) in MPa, plastic strain (€,) in percent
k Not applicable for €, less than 0.02 percent

TABLE IIT. IN 100 All0Y CREEP PROPERTIES

Temperature, | Creep rate, A/min.,
oC | I €,=R(076.895)m(t)n
l —————————————————————————————————
| A | m i n
------------------ e Bt e
1 I 1
| | i
! | !
! ] ]
760 I .00062 i 0.717 I -0.881
871 1 .00012 I 1.709 I =-0.736
982 I .00010 1 2.172 I -0.654%
1093 i _.00058 1 2.103 | -0.634

Il Stress (o) in MPa, time (t) in minutes
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CONSTITUTIVE EQUATIONS FOR USE IN DESIGN ANALYSES
OF LONG-LIFE ELEVATED TEMPERATURE COMPONENTS*

Claud E. Pugh and David N. Robinson

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

EXTENDED ABSTRACT

This paper addresses design analysis needs and procedures relative to
elevated temperature components in liquid metal fast breeder reactor
(LMFBR) systems. Parts of LMFBR systems operate for significant portions
of their 30 to 40 year design lifetimes at temperatures that are suf-
ficiently high for time-dependent (creep) deformations to occur. Periodic
shut-down events cause the components to experience thermal transients
which combine with pressure loadings to produce complex inelastic behavior
at temperatures within the creep regime of the structural alloys. The
effects of the thermal transients on the pressure boundary components are
enhanced by the excellent heat transfer properties of the liquid sodium
coolant.

Design criteria for high-temperature nuclear reactor components
recognize the potential occurrence of inelastic structural response.
Specifically, criteria and limits, such as those in ASME Code Case N-47,
have been developed that reflect a recognition of this potential and
employ design-by-analysis concepts that can require that inelastic (elas-
tic-plastic and creep) analyses be performed to satisfy the criteria and
limits. However, the ASME documents have not included guidance on how
inelastic analyses should be carried out, leaving it to the component
owners to select the methods to be employed. Therefore, the Oak Ridge
National Laboratory (ORNL) has undertaken on behalf of the Department of
Energy, coordinated experimental and analytical efforts to establish
appropriate constitutive equations for representing multiaxial time-
dependent responses of LMFBR alloys. This presentation describes progress
that has been made in recent years. Special attention is given to activi-
ties relevant to the development of equations applicable under cyclic

loading conditions.

*Research sponsored by the Office of Reactor Research and Technology,
U.S. Department of Energy under contract W-7405-eng-26 with the Union
Carbide Corporation.
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The general process through which many of the present LMFBR struc-
tural analysis guidelines have been developed is discussed in Ref. 1.

This process has led to a framework that is in place for three alloys, and
aspects of the inelastic analysis capabilities have been discussed earlier
in Refs. 2 and 3. Most of the developments discussed here are given in
terms of constitutive equations that are based on theories of continuum
mechanics that separate elastic, plastic, and creep strains. However,
progress is being made in developing equations that are based on "unified
measures' of inelastic strains and 'state variables' that do not make such
a distinction. This progress is also addressed in this symposium by
Robinson. A discussion of overall progress in these areas is given in
Ref. 2.

The basic analytical framework is first to be discussed, but a major
focus is on improved representations of interactions between time-inde-
pendent (elastic-plastic) and time-dependent (creep) responses of mate-
rials. The elastic-plastic model is based on a modified linear kinematic
hardening model that permits the occurrence of limited isotropic harden-
ing. The creep model is based on an equation-of-state approach that uses
strain-hardening and stress as state variables. The strain-hardening
measure has been defined relative to history-dependent reference stresses
in order to be applicable to cyclic loadings. Both the elastic-plastic
and creep models are formulated in general multiaxial terms.

Although, it has been recognized for a long time that plastic and
creep deformations influence one another at elevated temperatures, it has
been difficult to understand the nature of these influences to the degree
where they can be incorporated into constitutive equations intended for
design use. The difficulties include identifying the potentially impor-
tant interactions, understanding their magnitude and longevity, represent-
ing them with mathematical models, and understanding the consequences of
interaction models for loading conditions other than the ones from which
they were initially developed. The concerns about interactions have been
from two perspectives. In the first, observations are made on the repre-
sentation of influences of cyclic plastic straining on subsequent creep
beahvior. In the second, representations of elastic-plastic behavior are

examined while considering influences of prior and interspersed creep
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straining or periods of stress relaxation. This presentation addresses
the former more than the latter. Further observations concerning the
latter can be found in Ref. 3 through 5.

Figures 1 and 2 show stress relaxation responses of a specimen of 2-
1/4 Cr—1 Mo steel subjected to successive loadings to illustrate one type
of interaction between creep and plastic deformations. In each sequence,
the specimen is subjected to repeated stress relaxation intervals that
start with approximately the same initial stress [103 MPa (15 ksi)] at
538°C (1000°F). 1In the first test sequence, the tensile load in the
specimen is increased directly to the maximum value at the end of the
constant strain (relaxation) hold period. In the second test, the speci-
men is loaded in the compressive direction to prescribed compressive plas-
tic strain values and then loaded to the maximum tensile stress. (The
loading histories are shown schematically in Figs. 3 and 4.) It is
clearly seen that the reversed plastic loadings influence the subsequence
resistance to creep deformation. The constitutive equations currently

employed in LMFBR design evaluations recognize this type of interaction.

120 7 T T T =T I 1 T
—~ 16
100
TEST SEGMENT -4 —114
1-1 1-2 1-3 1-5 1-6
-— \\\
o — 12 ~
Q -
E 80 -
W
3 — 10 3
w
[+ [+ 4
& 60 |- P
' — s
274 Cr-1Mo STEEL
(HEAT 3P5601)
40 - 538°C (1000 °F) —1 6
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TIME (hr)

Fig. 1. Stress relaxation response of a 2-1/4 Cr—1 Mo steel speci-
men repeatedly loaded to an initial stress of 103 MPa (15 ksi) at 538°C

(1000°F).
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Fig. 2. Relaxation response of the 2-1/4 Cr—1 Mo steel specimen
employed in Fig. 1 to successive loadings separated by reversed plastic
cycles.
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MICROMECHANICALLY BASED CONSTITUTIVE RELATIONS
FOR POLYCRYSTALLINE SOLIDS™

S. Nemat-Nasser and T. Iwakuma

Northwestern University
Evanston, Illinois 60201

ABSTRACT

A basic method is presented for the estimate of the overall mechanical
response of solids which contain periodically distributed defects (inhomogeneities,
regions undergoing inelastic flow, voids, cracks, etc.). This method is then
applied to estimate the shape and growth pattern of voids that are periodically
distributed over the grain boundaries in a viscous matrix. The interaction effects
are fully accounted for, and the results are compared with calculations for a
single void in an infinitely extended viscous solid, by Budiansky, Hutchinson, and
Slutsky. Then, for a polycrystalline solid that undergoes relaxation by grain
boundary sliding, the relaxed moduli are obtained, again fully accounting for the
interaction effects. Finally, the overall inelastic nonlinear response at elevated
temperatures is discussed in terms of a model which considers nonlinear power law

creep within the grains, and linear viscous flow in the grain boundaries.

*This work was performed under NASA Grant NAG 3-134.

113



1. INTRODUCTION

The inelastic response of polycrystalline solids stems from a variety of micro-
structural changes, depending on the temperature regime, as well as the stress
history. At temperatures sufficiently below 507 ‘melting point, the rate effects are
not dominant. The deformation consists of plastic slip om crystallographic planes,
accompanied by the accommodating elastic lattice distortion. At higher temperature
regimes the rate effects become significant, and the intracrystalline flow can be
modelled adequately by a power law. At higher temperatures, creep effects are the
major components in the overall response. In this case, adequate micromodelling
involves a power law flow within the grains, accompanied by linearly viscous grain
boundary sliding.

Various micromechanical defects that may arise in the course of deformation,
contribute differently to the failure mechanisms during different temperature
regimes. At low temperatures, voids are generated because of plastic flow at second
phase particles, and this may lead to a reduction in ductility. At higher tempera-
tures, on the other hand, voids are nucleated on grain boundaries, and grow in re-
sponse to the applied load, as the solid creeps. Depending on the load level and
the temperature regime, the mechanism of such void growth varies. For example,
cavity growth is essentially crack-like, when surface diffusion is much slower than
the grain boundary diffusion, whereas at a high stress level the cavity grows essen-
tially by intragranular power law diffusion.

Under NASA-Lewis sponsorship, theoretical and experimental work has been initi-
ated at Northwestern University on the micromechanical modelling of nonlinear con-
stitutive relations of superalloys at varidus temperature regimes, addressing all
the above-mentioned microscopic features. The present report summarizes some of the
theoretical results on the growth of voids in viscous metals, the effects of grain

boundary defects on the overall response of the polycrystal, and, finally, the over-
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all creep response of the polycrystal. Elasto-plastic (rate-independent) modelling
is discussed in a separate report; Iwakuma and Nemat-Nasser (1982).

The calculation of the overall response of the polycrystal is based on some
fundamental results on the effect of periodically distributed defects (inhomogenei-
ties, regions undergoing inelastic deformation, etc.) on the overall response of the
solid; Nemat-Nasser et al. (1982). These results are first briefly discussed, and
then applied to the estimation of the shape and growth pattern of voids that are
periodically distributed over the grain boundaries in a viscous matrix. The inter-
action effects are fully accounted for, and the results are compared with calcula-
tions for a single void in an infinitely extended viscous solid, by Budiansky,
Hutchinson, and Slutsky (1982). Then, for a polycrystalline solid that undergoes
relaxation by grain boundary sliding, the relaxed moduli are obtained, again fully
accounting for the interaction effects. Finally, the overall inelastic nonlinear
response at elevated temperatures is discussed in terms of a model which considers

nonlinear power law creep within the graims.
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2. FORMULATION OF THE BASIC PROBLEM

Consider a solid containing periodically distributed sets of inhomogeneities
such that it can be regarded as a collection of identical unit cells. Let D be a
typical cell of volume V and exterior surface S. For simplicity assume that D is a
parallelepiped of dimensions Ai’ measured along the rectangular Cartesian coordinate
axes Xx,, i=1,2,3., The results also apply to a single cell subjected on its bound-
ary to suitable displacement or velocity fields.

Neither the matrix nor the inhomogeneities are required to be linearly elastic
or rate-independent, but, for the intended applications, only small strains and
rotations are considered.

To be specific, let ¢ be the Cauchy stress and set

de (2.1)

15 = D1y %%’
where repeated indices are summed over 1, 2,3, dg is the stress increment, and D =
D(g) is the instantaneous compliance which may or may not depend on stress. For

rate-independent applications, € in (2.1) is the strain temsor. For rate-dependent
cases, on the other hand, ¢ is the strain rate tensor. For example, for non-linear
creep, the strain rate is ¢ = F(g). In this case we consider the incremental rela-

tion

oF
de = —— do, .. 2.2)
aoij 13

In particular, if power law creep is assumed, €' = ang', we obtain
noy .oy
R 1§k '
dej, = nJ {csikesj1+—-1rZJ }do! , (2.3)

where prime denotes the deviatoric part, and

3
J= (3 oijoij) (2.4)

is the effective stress; in (2.3) n is a positive number and n is a dimensional

parameter.. If an inhomogeneity is linearly elastic or linearly viscous, then D in

(2.1) would be a constant tensor with suitable usual symmetries.
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Let 9 be the inverse of D and rewrite (2.1) as

dcij = Cijkzdekl' (2.5)
Again, C may be a function of g.
Assume now that the displacement (velocity) field go is prescribed on S in

0

such a manner that the average strain (strain rate) field £° is obtained. Llet the

corresponding average stress field be §. Consider an incremental change, dgo, in
go, which produces the increments dgo and dE in the average strain (strain rate)

and stress fields, respectively. We seek to calculate the overall moduli C*, defined
by

- *
dogy = Cl jkgdeRy? 2.6)

where, in general, C* depends on the average stress E, as well as on the micro-~
. structure.
Within the unit cell, neither the stress increment nor the strain (strain rate)

increment is uniform. Let there be M inhomogeneities, Qr, r=1,2,...,M, and set

T - 0 -
dc1j Cijkz[dskl + dek£(§)] in D Qr

2.7
ijkz[ds +de, (®)] imQ., r=1,2,....M,
where de is the perturbation strain (strain rate) field due to inhomogeneities; C is
the modulus tensor of the matrix; and gr is that of the rth inhomogeneity.

As has been shown by Eshelby (1957) for an ellipsoidal inhomogeneity in a
linearly elastic, unbounded solid, the nonhomogeneous body may be replaced by a
homogeneous one, provided that suitable transformation strains are prescribed in the
ellipsoid. 1In this case, the transformation strain temnsor is constant. For period-
ically distributed inhomogeneities, or when the inhomogeneity is not ellipsoidal,
the transformation strain tensor is no longer constant. The basic concept, however,
still applies, and can be quite effective, as shown by Nemat-Nasser and Taya (1981)

and Nemat-Nasser et al. (1982).
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Hence, in place of (2.7), one writes

[def, + de - dext

T
do X kll’ (2.8)

15 © G4k

where dg*r is zero in D-Qr, and seeks to express this transformation strain (strain
rate) increment in terms of dgo. This is done by the use of the Fourier series
representation of the incremental fields, as has been discussed by Nemat-Nasser et

al. (1982). The final results for the present case are as follows:

de Aklmn mn(x) - de (x) in Qr, (2.9)
r -
Aklmn n [CkSqu - Ckﬂ.pq] 1 Cpqmn’ (2.10)
M
= 1 T . iE'(}f'{S') '
de,) (x) v Z ke (&) rZ1 é dex (x')e™: dx', (2.11)
r
2t
Ej = ———i-(no sum on j), i = /=1, (2.12)
j

and where k,%,m,n,j = 1,2,3. In (2.11), the fourth order tensor gjkmn(s) depends on

the matrix modulus tensor C. For an isotropic matrix,

) + AG .8 (2.13)

Ciqrg = Hyqp8s5p * 8484 3%k’

we have
- - - - - - 1 - e = - v -
Sijkl(g) = Ej(dilék-bﬁikil) + Ei(éjzékﬁ-djkéz) " 1= Eisjgkaz 1S €i€j5k2,
(2.14)

Ei = Ei/g’ E = (Ekgk)lﬁ) v = 2)\12].1 .

In (2.13) and (2.14), A, u, and v are material parameters for the matrix, which may
depend on stress g. For a linearly elastic matrix, these are the usual Lamé con-
stants and Poisson's ratio, respectively. In the general formulation that will fol-

low, we shall assume an anisotropic matrix. In Section 3, however, we assume an

isotropic matrix, and hence use (2.14). In Section 4, on the other hand, a non-

linear creep law is considered, and this makes the tensor C dependent on the current
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stress state; then (2.14) cannot be used, and hence a more general expression is ob~
tained.

Let f_ be the volume fraction of the rth inhomogeneity,
fr = Vr/V, (2.15)

where Vr is the volume of Qr’ and denote by dg*r the average value of dg*r taken over

Qs

=%

¥t = [ de*T(x)ax; (2.16)
Q

r

note that dg*r is zero outside of Q. Averaging (2.8) over D, and using (2.6) we

obtain
M
Cyie ~ ijk.?,)de Ciixe rzl Bkz (2.17)
where the notation
%I = Tr
f dekz Bkz (2.18)

is used. We now substitute from (2.11) into (2.9), average the resulting equation

over Qr to arrive at

M 1
. 2 By E,QTE) L [ dekixeEE gy, (2.19)
J n =0 - s=1 Qs
where
@ =g [ e ax (2.20)
rQ

It has been shown by Nemat-Nasser and Taya (1981) that good accuracy is obtained
if the transformation strain (strain rate) increment in the integrand in (2.19) is
replaced by its average value. This then leads to

0=rr
fr dejk A'jkmann

M
rs s
Zl Sjkmnsmn’ (2.21)

where

119



Sk = 20 1m0 ()T, (2.22)
n =

Equations (2.21) are now solved for B;n, results substituted into (2.17), and since
d§° is arbitrary, the following general result is obtained:

CIike = C1gke ~ Cigmm sZ1 £ 2 Arieg®° = Spoyg £21 (2.23)
where §°° is the Kronecker delta.

In (2.23) the tensors C, ér, and §rs may depend on the stress, 0, in the matrix
as well as in each corresponding inhomogeneity. The estimate of the stress variation
throughout the solid is indeed a formidable task. For our purposes, it seems ade-
quate to use the overall average stress E instead. Then the overall stress-strain
(strain rate) relation can be obtained incrementally with the aid of (2.23) and
(2.6). Some specific results are presented in subsequent sections. On the other
hand, when necessary the local strain (strain rate) increment in, say, Qr can be

obtained from (2.9),

0 = AT 9
dskz + dekz(f) Aklmn demn(g), (2.24)
and hence the local stress increment can be estimated from (2.7),

*
(x) in Q_. (2.25)

T -
oy s () = Ciipg Aeomn 3Epn & r

ij°~

In a similar manner, the stress increment within the matrix can be obtained from

(2.11) and (2.7).
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3. GROWIH OF PERIODICALLY DISTRIBUTED VOIDS IN VISCOUS METALS
3.1 Background

At elevated temperatures, voids are nucleated at grain boundaries in polycrys-
talline solids. Depending on the deformation and temperature histories, the arrange-
ment of these voids relative to the orientation of the principal applied stresses
can vary considerably. For example, experiments show that voids can be concentrated
on grain boundaries perpendicular to the direction of maximum tension, see, e.g.,
Garofalo (1965). For superalloys that are plastically deformed at room temperature,
on the other hand, Dyson et al. (1976) have shown and Kikuchi and Weertman (1980) and
Saegusa et al. (1980) have conclusively verified that after amnealing, voids are
generated at grain boundaries parallel to the direction of maximum tension. The
mechanisms giving rise to the formation of these cavities are different, but their
presence has similar adverse effects on the life expectancy of the structural com-
ponents. An account of diffusive cavitation in polycrystalline solids is given by
Chuang et al. (1979) and by Argon et al. (1981); see also Rice (1981). Here, how-
ever, a different approach is used, which considers the growth of periodically dis-
tributed cavities within a viscous metal. We make contact with the work by
Budiansky et al. (1982) who examine the growth of a single cavity in an unbounded
viscous medium, as well as with an earlier contribution by McClintock (1968) on the

same subject.

3.2 Formulation

For a linearly viscous matrix, we have

- 3.
93 = Cijkabie’ G.1)
where
Vv
- v 3.2
Coje = 2 Cygpe ¥ To70 S45%ke7 (3.2)
=1 1 v
- -1 oy 3.3
Dyjke ™ Ciike = ZlTagke ~ THv S13%ke)- (3.3)
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In (3.2), I is the fourth order identity temsor; in (3.1) € is the strain rate.

1ike
Consider a unit cell of dimensions Ai, and let it include an ellipsoidal void of

(principal) semi-axes ass, oriented along the coordinate axes x,, 1 = 1,2,3. Define

i’
az as Ay A 4o 331333
o 31 ’ B‘;’ 'Y"ET: C"A_l's f -3_A1A2A3. (3.4)

Since (3.1) is linear, all the incremental relations in Section 2 can be re-

placed by the total ones, i.e. all the relations apply if dgo, dé,..., are replaced

by e?, 0,.+., respectively.

From (2.8) it follows thatf

E* = EO + e (3-5)

-~

within the void, and from (2.21) we obtain

O = - P .
€55 = [Tiqueg = Sigxel S (3.6)
where, in view of (2.22) and (2.14),
1 2-v _ 1 v
S1111 = ~ 1= Sy 1Ty S1e S1133 = " T-v Se T 1-5 Si»
1 2-v 1 v
S2222 = = 7= Ss + T, S2» S1122 = = 7o Se t 7= S1»
1 2-v _ 1 v
53333 " " 1=y 56 T 1-% S S2211 T " 1-5 59 +_1- v S22 (3.7)
1 v = 1 - 1
Sp233 " “ 1=y 57 ¥ 1=y S2° Sp323 = 2(5, ¥ 850 - T35,
1 v = 1 -1
83322 = ~ 1=y S7 Y 1o Sa» S313; = 3(5; + 8)) 1-vo8’
- 1 v = 1 -
83311 =~ 1=y S * 1=y Sao S1212 = 3(5; + 5,0 = 125,
The infinite series S, = Sz(a,s,y,c,f) in (3.7) is defined by
+co
S, = 1 P(Mh(E), 2= 1,2,...,9, (3.8)

n =0
P

where

Tsince M = 1, the superscript r = 1 1is dropped.
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(3.9)

and, for an ellipsoidal inhomogeneity,

2
JOREES o D, n4o, (3.10)

an. 2 gn 2 L
o=z (2 + (3]
Y : (3.11)

2 n, 2 n, 2%
e = hze B QT

In view of (3.5), the shape change can be defined by

a
-% 2 _ =% 3 . =k

2. £ ok
822’ a 833’ VQ Ekk ’

€110 a (3.12)
2

e
n

Rle-.
(]
o

*
1
*
wlme
n

0 £_-x _ o
€11 F T &Kk T %kk ¢

<.
[}
o
|
bt
n
[}

To obtain the current dimensions and other geometric variables, we integrate (3.12)

and (3.13) with respect to time. This, for example, yields

t t
a, —% a -% —%
n === = f gy dty «v., N — = f (7 - ¢~ .)dt,..., (3.14)
(al)0 0 11 o 0 22 11

where the subscript 0 denotes the initial value.

Since the transformation strain rate tensor, E*, characterizes the rate of
change of the void geometry in accordance with (3.12) and (3.13), Eq. (3.6) relates
the void change parameters to the overall strain rate tensor §°. To make contact
with results of Budiansky et al. (1982), we relate the overall strain rates to the

average stresses by

= o 0 3.15
995 = Cijkz kg’ (3.15)
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and note that, unlike the case of a single void in an infinitely extended solid con-
" sidered by Budiansky et al. (1982), here C* does not equal the matrix modulus tensor
C. The overall modulus in the present case is obtained by specializing (2.23) or,
equivalently, by equating the overall rate of energy loss per unit volume with the

average rate of loss. This results inf

£ 0 g* (3.16)

% 0 .0 0 .0 _
Ciike®14%ke ™ C14ke®11%ke €1 ke 43 5Ke
which, for M = 1 and because of (3.6), implies (2.23). Since go is arbitrary,

(3.16) and (3.15) yield

- 0 ek
Uij Cijkl[skz f Ekﬂ.]' (3.17)
In the present case C is isotropic, Eq. (3.2), and if we introduce
0 o=
Sij oij/Zu (3.18)
and eliminate go between (3.17) and (3.6), we obtain
- - 0 -f - _ - e
1 v v S 1-£-5111 51122 S1133 11
LN 1 -v [$s0. % = -5 1-£f-5 -s e
I+v 22 2211 2222 2233 22J ’
- - 0 - - -f = er
v v 1185, S3311 S3322 1-£-5,3330185;
0 = - f - s (3.19)
Sjp = L~ £ =25),,,)e7,s
0 . - _ %
Sp3 = (L - £ - 25,5,3)¢€55,
0 . - £ - %
§3; = (X = £ = 255,3,)¢3,-
From (3.19) it follows that
1-2v .0 0 0y = - - - - f£}E*
1+ (811 + Szz + 533) {l s1111 S2211 S3311 £ 11
_ elTk
+ {1 - 8,505 = 51125 = S350, — fle3,
-%
- - - - R 2
+ {1 = 83333 = 51133 = Sya4 f}eaa (3.20)

TThe calculation is essentially the same as in Nemat-Nasser et al. (1982).
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For the incompressible matrix, v = 1/2, and for (3.19) and (3.20) to yield non-
trivial results, the matrix in the right-hand side of the matrix expression in (3.19)
and the coefficients in the right-hand side of Eq. (3.20) should vanish.f With
v = 1/2, this leads to

l1-3, -5,-5;+ 2(54 + S5 + Ss) = f,
l-8 =35 -8; +2(5; +5, + Sg) = £, (3.21)

1- 5, =5, - 383 + 2(S6 + 5, + 58) = £,

and, if only the infinite series Sl’ SZ’ and S3 are retained, from (3.7) we deduce

that
1= 51111 = 82211 = 833y £ = %d 2:){1 £ -5 +5,+5;5},
1= 8500 = Sy100 = Sgapp, = £ = é(z_?v){l £+58 -5, +5.}, (3.22)
1 - 83333 = 51133 " 8533 "= %_(%-2_3){1 - £+58 +5, -5.}.

With these and with v = 1/2, (3.19) yields

[Eﬁ % T 3 592" 3 323]
B9 e [Tij] "l:-xscl)l"' 5 592" 15 S3ap (3.23)
1-33 ’135(1)1' % ng+ % SgaI
where [Tij] is the inverse of the matrix
1-£-5mn ~51122 51133
=S5211 1-£-55,,, =S3233 . (3.24)

1-£-5,+S,+8; 1-f+S5 -5,+S; 1-f+5 +5,-5,

Equations (3.23) relate the void growth parameters to the overall stress components.

In terms of the stress ratios

+Numerical tests for spherical, cylindrical, and ellipsoidal geometries show
that to within the accuracy of the estimate of the infinite series, these conditions
are almost satisfied.
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s

ag
22 22 33 33
¢ =-—-°-—-=__- R ‘P = n—-—- ’ (3-25)
S sU
11 011 11 011
one obtains
32’;1
30 = (2'1‘11 -T12-+2T13) + (-T11-+2T124-2T13)¢ + (-Tll-T124-2T13)w,
11
3e3,
EYI—-H (2'1‘21 -T22-+2T23) -+ (-T21-+2T22-+2T23)¢ + (-T21-T22-+2T23)w, (3.26)
3el,
30 = (2T31 -T32-+2T33) + (—T31-+2T32-+2T33)¢ + (-Tsl-T32-+2T33)w.
11

Finally, the components of 50 are obtained from (3.6) and (3.26).

3.3 Numerical Results

Table 1 lists the initial and the loading conditions for eight different cases
which are reported here for illustration. It should be noted that even in high
strength metals which undergo very small overall deformations, the local deformations
close to inhomogeneities or at the tip of cracks can be quite large. For this reason
in Fig. 1, results for rather large strains are included. This figure shows the void
volume change as a function of the overall deformation measure, L/LO or LO/L, for the
indicated cases associated with Table 1. For comparison, an asymptotic and addition-
al results of Budiansky et al. (1982) are also shown. [These are read off the fig-
ures in the published paper. 1In the final version of the present report, these will
be recalculated in order to obtain a more accurate estimate of the effect of perio-
dicity as compared with a single void in an extended solid.] Figure 2 shows the void

shape changes for the indicated cases.
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4. EFFECT OF GRAIN BOUNDARY SLIDING ON NONLINEAR STEADY CREEP

At elevated temperatures, creep of polycrystals involves nonlinear flow within
grains accompanied by grain boundary sliding which can be modelled by a linearly
viscous relation; see Ké (1947), Zener (1948), and McLean (1957). The problem of
estimating the overall creep properties of a polycrystal on the basis of different
constitutive relations for the grain and the grain boundary has been examined by a
number of researchers using various models; see, e.g., Zener (1948), Budiansky and
0'Connell (1976), and Chen and Argon (1979). Recently, Ghahremani (1980a,b) has
studied a two-dimensional model of creep using a numerical approach. Except for his
work, other studies do not include the full effect of the essentially periodic
structure of the grain boundary geometry, and hence the corresponding interaction
effects.

In this section we shall examine the creep of polycrystals on the basis of non-
linear transgranular and linear intergranular creep laws, using a two-dimensional
(plane) model.

Figure 3 shows a typical unit cell of dimensions A1 and AZ‘ Within the matrix,
the flow is governed by constitutive relations (2.3) which, in conjunction with a

linear creep in bulk, de k=K dcmm, K = constant, yield

k

1 n_ %1% _ 1
Cijkl an[Iijkz n+l 27 2 Gijékl + 2¢ Gijakz’ (4.1)

so that doij = holds for the incremental stress, strain-rate relation

Cy5xe9KK
within the grains. 1In view of (4.1), Eq. (2.14) must be replaced by

o1 .
Eigmm = 2Py * Niaf 0 Coumn®y (4.2)

where, now, Njk is
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171 (1 n 54599090
N, == ——{-5% + (1 -6 5)}
jk D Lan 2 k  n+l 232 jkmm jk mn
A TR I 4.3
2« jk 73’k *
where
1 |
pa—l_ [Lev. g EkokicilEZ]

znZJZn 2 n+l ZJZ

o' o!

+—1— (78 - B2, - e 55—33—1—5&] :
2Kan 2 n+l ij | 232

To apply Eq. (2.23), we must calculate the quantity Qr(s) for the typical rth
grain boundary segment. For a two-dimensional model, this is easily dome and, if _g
denotes the center of the segment, and 6° its orientation relative to the x,-axls,

see Fig. 3, then we obtain

r

1z,
= =0 h(g,er),

Qr(g) = e

T r
h(:g,er) . Sin z sin v

2T 5 (4.5)

r
2 T r
z = 7r[51 cos 6 + £, sin 6 1,
tr r r
y° = ?r[_gl sin 8" + £, cos @ ], =no sum on r,

where g° is the length and t* the thickness of the rth grain boundary segment. Note

that Eq. (2.21) now becomes

M 2
0 = r -*r - ! r s r e r— S -*S. 4.6
deiy = Aigietie szl fs Zo 814100 ()D(E,0 I (E,07)c0s (g  (xy ~ % ) ey, . (4.6)
P

r
Note also that when the thickness tr is small relative to the length 2~ of a segment,

then sin yr/yr =1 in (4.5)2 4
?
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The unit cell shown in Fig. 3 includes a total of 9 grain boundary segments,
so that M = 9 in Eq. (4.6) and in Eqs. (2.21). For each stress increment (or the
strain rate increment), we first solve (2.21) to obtain qg*r, r =1,2,...,9. Then
we calculate the stress increment and update the overall total stress. With this
stress, we calculate the instantaneous moduli of the matrix from the nonlinear creep
law (2.3). Equation (2.23) finally yields the overall instantaneous moduli.

Table 2 shows the geometrical data for the considered unit cell. It is easily

seen that, in this case,

2f =m RF [nl cos 8° +/3 n, sin er] s
.7
r ' t0 T r
y =u3 [- n, sin 6 +/3 n, cos @ ],
where t, = 3t/A1; note that
9 2t
f=zlfr=73—=-to. (4.8)
For the numerical calculations, we have assumed
" -
— = 1.001 so that wu >#x ,
M
w =0 so that 7> 1, (4.9)
i EéZ
n=3, and p =—" =0 (uniaxial tension).
11

Detailed results are obtained for two cases: (1) to = 0.1 which implies that
f >~ 5.8%. We note that the model considers the linear viscous flow in a rather
thick band about the grain boundary, and a nonlinear power law with n = 3 (in Eq.
(2.3)) outside of this band. This model appears reasonable when we observe that
instead of the local stress we have used the overall average stress in calculating
the instantaneous moduli for the grains.

The results are presented in terms of the following nondimensional quantities:
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1/n 1/n
S = (n) o e = (.ﬂ_) e
15 1j ° ij = L ij°
Sy Cipg 99y > 5o = G 911
which together with
1/n (1+p)S. n
_l-8 o on - P70
J =T S and v = (ntl) [ — A (4.11)
leads to
- =1, 1
"Cooa2 %031 T2ty 0
(4.12)
= = -]-'- - .]"—
M Ciypp % Cop13 T3 " %y
_ _nt+1l
# Cig12 =% Co101 Ty

In Fig. 4, results are plotted in terms of non-dimensional axial stress and
strain measures, instead of the effective stress and strain. At stress levels near

S, =1, the lateral strain, ¢

0 is positive (extension) and larger than €11 and

22°

”01122 is negative for smaller SO‘ This anomalous result stems from the assumed
power law creep for the matrix. Another peculiar phenomenon at this stress level
is that some of the overall moduli are negative; the shear modulus remains positive.
Another anomalous behavior for power law constitutive relations has been obsgerved
by Budiansky et al. (1982), in connection with void growth. These authors report
examples in which, under axial tension larger than the lateral ones, a void in a
power law matrix is predicted to extend more rapidly laterally than in the axial
directionm.

The results in Filg. 4 are tentative, as we are now examining this problem in

more detail.
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Table 1:

Initial and loading conditions

for considered cases of void growth problems;
a, = By = 1.0, and £, = .005.

0 o] o] Q 20
Case Yo %o 5227811 | S3/51, ‘1
1 10 2 0 0 .05
11 1 1 0 0 .05
111 10 2 .5 .5 .05
v 1 1 .5 .5 .05
v 10 2 -.5 -.5 .05
Vi 1 1 -.5 -.5 .05
VI 10 2 0 0 -.05
VIII 1 1 0 0 -.05
Table 2: Geometrical data for grain boundary
configuration in a unit cell,
xr x T
. A01 Aoz of /T £
1 2 r
N 3 T 1 ‘o
24 8 3 6 673
t
5 1 1 0
LN V) " 0 3 136}
t
1 w 1 0
3 -7 0 3 3 73
P I R | T 1 ‘o
24 8 3 6 673
t
1 1 0
3 0 "% ° 3 73
6 S| .3 T 1 ‘o
24 8 3 6 673
t
1 b 1 0
7 7 0 3 3 373
t
5 1 1 0
8 12 4 0 6 673
9 2 3 L 1 ‘o
24 8 3 6 673
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A THEORY FOR THERMOVISCOPLASTICITY
FOR MECHANICAL AND THERMAL LOADING

E. Krempl
Rensselaer Polytechnic Institute
Troy, New York 12181

and

E.P. Cernocky
University of Colorado
Boulder, Colorado 80302

Abstract

A coupled isotropic thermoviscoplasticity theory for small strain
is proposed. The theory consists of a mechanical constitutive equation and
a constitutive assumption for the heat equation. These equations are sepa-
rately postulated but are coupled through their common linear dependence upon
stress rate and the mechanical strain rate tensors and the time rate of tem-
perature. The equations depend nonlinearity on the stress and strain tensors
through the overstress tensor which is the difference between the stress
tensor and the equilibrium stress tensor (obtained as the loading rate approaches
zero) and on the absolute temperature. The concept of a yield surface is not
used and the transition from linear thermoelastic behavior to nonlinear inelas-
tic behavior is smooth. Extensions of the theory to cyclic loading are under
development.

The theory is first applied to conditions of homogeneous deformation
where the temperature changes in the material are induced by deformation alone.
For adiabatic conditions numerical experiments (the integration of the coupled
nonlinear differential equations for the conditions employed in materials test-
ing using postulated material functions) show that the theory reproduces initial
thermoelastic behavior (cooling (heating) in uniaxial tension (compression),
isothermal behavior in torsion) followed by inelastic heating in any state of
stress during monotonic loading. The amount of deformation induced temperature
change is negligible unless the loading is very fast. During cyclic plastic
loading the temperature increase can be considerable and it is shown that the
predictions of the theory compare very well with experiments performed at room
temperature on Type 304 Stainless Steel and on a 3.5 Ni-Mo-V steel.

When large temperature changes are imposed the deformation induced
temperature changes can be neglected. The numerical experiments involve in this
case the uniformly changing temperature and the mechanical loading as inputs
(no heat conduction is allowed). Although other possibilities exist only the
elastic modulus is assumed to be a function of temperature. The response of
the model is shown for heating and thermal cycling under mechanical constraint
(thermal fatigue) and for combined thermal and mechanical cycling of a uniaxial
bar. It is shown that the response depends on the rate of temperature applica-
tion and on the temperature at which clamping occurs.
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ON THE APPLICATION OF DEFORMATION KINETICS
TO NONLINEAR CONSTITUTIVE RELATIONS
AT HIGHER TEMPERATURES

K. C. Valanis and C. F. Lee
University of Cincinnati
Cincinnati, Ohio 45221

ABSTRACT

A single phenomenological constitutive equation is derived theoretically from
first principles and applied to aluminum, tin and lead. The theory is based on
deformation kinetics of steady creep in which the fundamental mechanism is atomic
transport over potential barriers whose conformation is distorted by the applica-
tion of a stress field.

The form of the functional dependence of barrier distortion and stress over
the entire tempetrature range is found to be a sigmoidal curve which tends to
straight lines of a unit slope in the small and high stress regions. With this
form of barrier distortion, the constitutive equation can predict very well the
steady creep behavior of aluminum, tin and lead over a wide range of temperature
and stress.

1. Introduction

Experimental results on high temperature creep of pure metals and solid solution
alloys during past decades, [1,2,3] fall into two main categories: those establishing
a relationship between steady-state creep rate and stress under constant temperature
on one hand and a relationship between constant creep rate and temperature under
constant stress, on the other. The functional dependence of the constant creep rate
és on the stress ¢ under constant absolute temperature T may be divided basically into
three regions whose boundaries depend on the material itself. 1In the low stress
region, és is almost linearly proportional to g. Hence it is called a newtonian-
like viscous flow region. In the intermediate stress region, és appears to be
proportional to Oﬁ’ where n is a temperature dependent material parameter. The value
of n lies predominatly between 4 and 7 for pure metals and between 3 and 5 for solid
solution alloys. In the high stress region, és is proportional to the exponential

function of Bo, here B is a temperature dependent material parameter. The functional
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dependence of és on T under constant ¢ is assumed to be governed by a type of
Arrhenius relation. As a result the activation energy of creep can be found by a
temperature cycling technique or the slope of the line in the Arrhenius plot of
loglo és vs T-l. The values of activation energy thus found are very close to those
of self diffuysjon in pure metals or the diffusion of one of the predominant elements
in solid solution alloys. However, the slope of the Arrhenius plot is, in general, a
function of stress and temperature. In addition the activation energy calculated
from temperature cycling technique 1s, in general, a function of stress and strain.
Various theories of creep have been proposed in.recent times. These fall

basically into two broad categories: phenomenological and micromechanical, the final

aim being, of course, a macroscopic constitutive equation. The first category
includes theories that are strictly empirical {2-4], others that are mathematical [5],
and others still which are 'quasi" physical such as the internal state variable
theories, a typical example being reference 6. In the second category fall theories
in which the underlying micromechanisms are vacancy diffusion, dislocation climb and
microcreep [7]. In the latter category belong also the absolute reaction rate theory
by Eyring [8] and the very recent deformation kinetics theory of creep by the

authors [9].

Micromechanical theories, where vacancies or dislocation are the building blocks,
need more than one mechanism to describe the experimental phenomena over a wide range
of temperature and stress. while for practical purposes this is not a disadvantage,
one wonders if a single appropriate atomic mechanism cannot be found which describes
steady creep phenomena over the entire range of stress and temperature.

In reference 9, we found reason to believe that this might be possible. One

single constitutive equation was shown to predict very well the steady creep behavior
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of AISI 316 stainless steel, pure polycrystalline aluminum and copper over a wide
range of temperature and stress, above about lOOkgémZ. The vehicle for this specific
constitutive equation is deformation kinetics. The fundamental mechanism is the
transport (diffusion) of atoms over potential barriers whose conformation is distorted
by the application of a stress field.

In the case of one~dimensional flow, of interest here, the central element of the
theory is the relation between the barrier distortion  and the free energy gradient
- %% where 4 (an internal variable) 1is the statistical average of the displacement of
atoms in motion facing a specific -barrier. In the application of the theory [9] to
uniaxial stress fields where the stress was above circa lOOkgém2 a linear relation
between  and - %% sufficed but proved inappropriate for lower stress levels.
Evidently the task at hand is to find an appropriate relation that applies to all
stress levels but the form of the relation does not negate the fact that we are
dealing with a single mechanism of atomic diffusion over energy barriers. This is

done in Section 3.

2. Brief Review of the Theory

Particle Equations

Let N be the number of particles whose motion is impeded by a barrier of height
€, and w the distortion of the barrier due to the application of the stress field.
See reference 9 for details. Then the number of particles N’ partaking in the net
motion is given by equation (2.1)
N = 2Nexp(—eo/kT)sinh(m/kT) (2.1)
where k is the Boltzmann constant and T the absolute temperature. Assuming a ''square
sinusoidal" barrier shape the average time T taken by the atoms to climb the barrier

is given by equation (2.2)
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Fé,san%) (2.2)

where a is the barrier width, F is the complete elliptic integral and

E,mw 15
ko = < - ) (2.3)

o}

Rate (Evolution) Equation for gq

The average velocity q of the atoms crossing the barrier is given by equation

(2.4)
§ == (2.4)

Use of equations (2.1), (2.2) and (2.4) gives the desired relation between the

average velocity and the barrier distortion:

. _xJzeo
9 =7

exp (-go/kT) sinh (w/kT) (2.5)

A convenient representation for F is the following
F =2 log (16e /u (2.6)
2 o

For osw/so<0.35 the maximum error is less than 5% [9]. If there exists n barriers to
the motion, each of height Sg with distortion W then equation (2.5) applies to each
such barrier.

However in steady creep only the highest barriers come into play, the lowest ones
having already been climbed by the atoms in the course of the deformation. Thus one
internal variable suffices (approximately) to represent the effect of these barriers,

if, indeed more than one 1s actual active. Otherwise the representation is exact.
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Free Energy Representation

In general
v = y(c,q,T) (2.7)

where in the present work T is constant. The free energy is the potential energy
stored by virtue of atoms being displaced within potential wells. The mean
displacement generated as a result is directly related to the elastic strain. For
instance in the case of a unidirectional equispaced atoms the elastic strain is
exactly equal to the atomic displacement divided by the lattice spacing. Assuming
parabolic wells, the potential energy is proportional to a quadratic function of the
displacement, leading to the conclusion that the free energy is a quadratic function
of the elastic strain [9].

To relate the above discussion to equation (2.7) we write y in the quadratic form

2 2
= 1/ 1
1] 5 All £ + A12 eq+ & A22q (2.8)

and insist that it is a perfect square, so that the squared linear term can then be
2 _

12 - 11 %20
of thermodynamic stability requires that ¥ be positive definite. This implies

Aiz -A22All< 0. However, the last inequality can be relaxed and set

identified with the elastic strain. This is possible if A The principle

A..> 0, A

>
11 0,

22
into equality for the purpose of steady state creep in which the metal exhibits a
fluid equilibrium configuration [9]. As a result, equation (2.8) becomes

b= YA(e - Ba)® (2.9)
where A = All and B = —A12/A. Thus since equation (2.9) is the mathematization of the
statement at the end of the last paragraph e -Bq must be identified as an elastic

strain. Note that A and B may be and are, in general, functions of temperature.

To obtain the desired analytical expression for creep we appeal to a
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fundamental relation of irreversible thermodynamics according to which the stress is
the gradient of free energy with respect to the strain i.e., 0 = 9y/ 3¢, Thus

0 = A(e- Bq). Furthermore, as a result of equation (2.9), 3y/3q =-Bo. Since

during creep the stress is constant, it follows that € = B §. The strain rate can

then be obtained from equations (2.5) and (2.6), i.e.,

-£ /KT
. o sinh(w/kT)
£ = 2/250 TBe log(16€0 ) (2.10)

where wis now a function of gand T.

In the next section we will use equation (2.10) to predict the steady creep of
aluminum, tin and lead, particularly under very high temperature and low stress.
However before this can be done the relation between the internal force - 3Y/3q and
w must be established. As noted above - 9Y/3q = Bo. The problem is therefore reduced
to finding the relation between 0 and w, in this particular case.

3. Application of the Theory to Aluminum

Let the relation o(w) between ¢ and w or conversely, w(o) be known. Specifically
let
0 =32W); w=_0 () (3.1a,b)
Substitution of equation (3.1b) in equation (2.10) gives a constitutive relation
-¢ /KT
t=e ° F.m (3.2)
In an inverse fashion, given the experimental relation between ¢ and ¢ at constant T,
one may then use equation (2.10) to deduce the relation between o and w, i.e., the
function 3 (w).
The function of 3 (w) in the case of aluminum can be found from figures 1 and 2.

It may be seen that for higher values of stress the relation of o and log10 és is
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linear. Thus, in this range, the linear relation implies that

0»)
o]
w = kTKz 0(1 _W> (3.3)

where c; is a threshold stress below which equation (3.3) is not applicable, and K2
is the slope of the straight portion of the curve. Equation (3.3) was the basis of
the study in reference 9, where it was shown that the linear relation persists over

a wide range of temperature with the proviso that K, and o’

are temperature
2 o

dependent. In this case‘}kc,T) has the form

K° sinh K, (o- c’)
Flom) =g —— (3.4)
1og[—ET2-/ K, (- c;)

1

where Ko = 2V2€o TB. The determination of the constants Ko, K, and 00 was discussed

1 2
at length in reference 9. Note that equation (3.3) implies that the distortion is

linearly related to the internal force, i.e.,

w = kTC (Q-Q°) (3.5)

where Q is defined as - 3¢ /3q and thus equal to Ba, Qo

= BOJ and C (=K2/B) is the
coefficient of proportionality.

As shown in figures 1 and 2, equations (3.2) and (3.4) predict quite well the
experimental data in references 10 and 11, except the temperature at 920°k. The
corresponding values of Ko, KZ’ C and cé are shown in figures 3 and 4; € = 34
KCal/mole which is the value of activation energy of self diffusion. It is seen
that serious deviations begin to arise below a stress level of about OJ‘ of
course this is to be expected in view of equation (3.3). Below cé, equation (3.3)

no longer holds.

To determine Q(o) is this region we recall equation (2.10), which because of
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the smallness of w/kT we can write in the approximate form

~€o/KT w/kT

€g K1 € log(l6eo7w) (3.6)

and note that insofar as this region is concerned the experimental data at 920°k
"

indicate a linear relation between log10 és and log10 (o - 06)’ when the net stress
o - 0:), is very small [11,12]}. As indicated in reference 11, os = 3psi., below
which creep was not measurable. Since log log (16EB/°9 is an insensitive function of
w in this small net stress region, the above observation suggests the following
relation between w and o:
log10 Bw = loglo Ao + 1og10 (o - 0:) (3.7)

where Ao and o; are at most functions of temperature; B = 1/kT. These parameters
were determined respectively from the intercept and the constraint of a unit slope
of the curve. In the present case Ao is a constant (4.6x10—5) and o;’ is a
decreasing function of temperature (see figure 4). Indications are that as the
temperature approaches the melting point (ﬁm),og' goes to zero at which point the
metal exhibits a truly newtonian behavior.

The form of the functional dependence of w on 0 over the entire temperature
range is shown in figure 5. The relationship is sigmoidal tending to a linear form
in the small and high stress regions (see.equations (3.7) and (3.3)). The

theoretical predictions based on figure 5 are shown in figure 2.

4. Application of the Theory to Tin and Lead

The procedure of Section 3 is repeated here without change. 1t has been shown
by a three-dimensional argument [13] that the constitutive equation (2.10) applies
to pure shear without change in form. A comparison between theory and experiment

is shown in figures 6 and 7. A further treatment will be the subject of a more
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extensive article to appear at a later date.

5.

Conclusions

In this paper we apply the theory of deformation kinetics to aluminum, tin and

lead and show that equation (2.10) suffices to predict accurately steady creep

behavior over a wide range of stress and temperature. We may conclude that one

micromechanism, that of atomic transport over potential barriers whose conformation

is distorted by the application of a stress field, is sufficient to account for the

steady creep process in the entire range of temperature and stress.

10.
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A POTENTIAL FUNCTION DERIVATION OF A "
CONSTITUTIVE EQUATION FOR INELASTIC MATERIAL RESPONSE

Donald C. Stouffer and Nader Abu El1 Foutouh
University of Cincinnati
Cincinnati, Ohio 45221

ABSTRACT

Physical and thermodynamic concepts are used to develop a potential function
for application to high temperature polycrystalline material response. Inherent
in the formulation is a differential relationship between the potential function
and constitutive equation in terms of the state variables. Integration of the
differential relationship rroduces a state variable evolution equation that
requires specification of the initial value of the state variable and its time
derivative. Analysis of these conditions showed that the initial loading rate,
which is directly related to the initial hardening rate, can significantly
influence subsequent material response. This effect is consistent with observed
material behavior on the macroscopic and microscopic levels, and may explain the
wide scatter in response often found in creep testing. The material used for
the study, cast and wrought IN10O at 732°C2 was tested in tension at different

strain rates, creep, stress relaxation, and reversed inelastic flow.
INTRODUCTION

The research presented in this paper is directed toward developing a state
variable constitutive model for metals in high temperature environment where
rate effects are important. The underlying concept used in the model is to
develop a consistent system of equations to predict the inelastic strain rate
and evolution of the state variables that are derivable from a potential
function. The essential structure of the theory is based on the maximum
plastic work inequality, the rate of work hardening inequality, and dislocation
dynamics.

The maximum plastic work inequality, expressed using the concept of a yield
surface, can be written as (refs. 1 and 2)

(o} I
(0,5 = 93,)deg; > 0. (1.1)

* This study was supported in part by the Air Force Wright Aeronautical Labora-
tory under contract number F33615-78-C-5199 with the University of Cincinnati.
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The quantity deij is the inelastic strain increment due to the stress step
oij - sz. The stress 04 is on the current yield surface and ozj is any other
stress either inside or on the yield surface. The inequality requires that the
inelastic strain increment is normal to the yield surface and that all yield
surfaces are convex. Eq. (1.1) is an axiom resulting from observed plastic
behavior of metals. It is not derivable from thermodynamics and is not
necessarily valid for all materials. It does, however, capture the essence of
how many metals behave.

The property of work hardening, as identified with a large class of metals,
can be further characterized. In these materials it has been consistently

observed that the stored energy of cold work, Wh, increases with deformation at

a decreasing rate during a continuous deformation history. This can be expressed

by
h h
sz - dWl_i 0o, 1.2)
where dWh and dwh are the increments of stored energy associated with identical

1 2
. , . , h h
strain (or stress) increments in two different stored worked states Wl and w2

such that Wg > W? (ref. 3). The exact structure of a cold worked state is not
fully understood, however, it is generallyeaccepted that the energy is stored
through the development of a system of dislocations (ref. 4 and 5).

In the initial state of deformation dislocations multiply and tend to
arrange themselves into groups or clusters occupying only a small fraction of
the material volume, Most of the deformed material is dislocation free. As
deformation increases the dislocation clusters form continuous walls separating
relatively perfect cells. With further strain, secondary slip systems are
activated and the density of dislocations increases with other point defects
appearing. The cell size decreases at a decreasing rate as strain increases
and tends to stabilize. The cell size and dislocation density at any time are
influenced by the initial microstructure, temperature and loading history up
to that time. In addition, it is important to recognize that a substantial
portion of the character of the microstructure is established early in the load
history when the observed macroscopic inelastic strain is very small.

In some cases, the stored energy is partially recovered in time at elevated
temperature or fully recovered through recrystalization. This effect could be
important for metals at high. temperature that have been work hardened in the
initial configuration. This situation is typical of cast and wrought super-

alloys. 1In the case of recovery, Wg < W?, and the stored energy increments dW?
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and dwg are both negative. In this case, eq. (1.2) requires the rate of
change of recovery to be positive. That is, softening occurs at an increasing
rate; conversely, hardening occurs at a decreasing rate, and both hardening
and softening tend to stabilize.

The maximum plastic work inequality and the rate of work hardening
inequality satisfy most observed response in metals at high temperature under
continuous load histories. However, the essence of the theory can be easily
extended by a broader class of materials and load histories by requiring the
two inequalities hold together rather than individually; that is

(o,. - O?.)d€¥.
1] 1] i3

- @y - W) > 0 : (1.3)
A similar relation was suggested by Ponter (refs. 5 and 6) and the consequences
are extensive. First, siuce the stored energy is generally small compared to
the total plastic work during a typical deformation history, the restriction
on the hardening or softening rate (eq. (1.2)) can be softened in some cases.
This allows, for example, a jump in the rate plastic working to produce a jump
in the rate of work hardening that is not restricted by eq. (1.2), The effect
appears possible in situations where there are jumps in strain rate early in the
development of microstructure.

Another essential feature of the constitutive model is to use the result
of Rice (ref. 7) showing that the components of an inelastic strain rate tensor,
éij’ are derivable, at each instant during the deformation history, from a-
potential function, 2, of the stress, i.e.

é?, _ 9QCY9, history]

ij 30, ., . (1.4)
1]

This result is based on the physical notion of conventional crystalline deform-
ation: At a given slipped state, the rate of permanent shearing on a particular
slip system depends on the stress at that point only through the shear stress
acting on the slip system. Thus, for a given prior history, eq. (1.4) was
shown to give time dependent stress strain equations consistent with both
plausible macroscopic and microscopic idealizations. More recently, Ponter

and Leckie (ref. 8) extended the formulation to polycrystalline metals at high
temperature., Following the methods in ref. 6 they established a potential
function for a constitutive equation of the Baily (ref. 9) and Orowan (ref. 10)

type that contains one state variable, s, to describe the hardness or stored
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energy of the material. In the Ponter-Leckie development the assumption of a
local (microscopic) potential was essential to establish a macroscopic potential
that can be used to derive both the inelastic flow equation and state variable
evolution equation. The Baily-Orowan the macroscopic flow equation contains

an aver stress argument of the type ¢ - s, where ¢ is a scalar function of the

stress tensor.
Another state variable constitutive equation that uses a single state

variable to describe the hardness or resistance to inelastic flow was developed
by Bodner and Partom (refs. 11 and 12). Inherent in the representation is the
absence of a yield surface. That is, the inelastic strain rate is non-zero

for all non-zero values of stress. This is a continuous flow equation without
separate loading and unloading conditions. It has been used to successfully
predict the response of two superalloys at high temperature (refs. 13 and 14).
In part, the success may result from using the entire load history rather than
excluding the load history inside the yield surface. For example, recall that
the character of the dislocation substructure is established very early in the
deformation history prior to classical yield.

Another key feature of the Bodner-Partom modél is that the specific form
of the flow equation was motivated by dislocation dynamics. Both of the well
accepted representations for dislocation velocity, developed by Gilman (ref. 15)
and Vreeland (ref. 16) are émbodied in the Bodner-Partom formulation., One
shortcoming of the Bodner-Partom representation is that the basic structure
of the evolution equation for the hardness state variable is developed by
phenomenological methods. The evolution equation is consistent with the observed
properties of stored energy (eq. (1.2)) but does not possess a formal

mathematical or physical derivation.

Specifically, in this paper it is shown that the concept of a macroscopic
inelastic potential function is compatible with the essential features of high
temperature material response expressed in eq. (1.3) . A potential function
concept is then used to derive a state variable evolution equation directly from
the inelastic flow equation. A specific example is developed using the Bodner-
Partom representation. It is shown that the Bodner-Partom evolution equation
has a mathematical structure very similar to the derived evolution equation.
However, the derived evolution equation has a new important property. The
derived representation depends on the initial hardening rate that can vary from

test to test for the same initial material microstructure. The representation
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is used to predict the response of IN10O at 732°C. The material constants are
determined from tensile response data and the experimental response in, creep,

stress relaxation and reversed inelastic flow is analyzed.

II DEVELOPMENT OF A POTENTIAL FUNCTION FORMULATION

Let us introduce a state variable Z as a macroscopic measure of the effect
of the dislocation microstructure on deformation. It is designated as the
hardness or resistance to Inelastic flow and the units are that of stress.
Similarly a macroscopic strain state variable, eh, is defined as a measure change
in geometry associated with the development of dislocation microstructure.

The variables Z and eh are scalar functions of tensor valued arguments and

defined so that an increment of stored energy of cold work can be calculated as

ai® = zde® = aglae (2.1)
It is required that the stored energy increment, dwh, and hence the valuables
Z and sh, satisfy the conditions outlined in the Introduction. The increment of

inelastic work associated with an increment of inelastic deformation is

I LI
dW = Gijdsij = cijeijdt (2.2)

In a constant hardness state the maximum plastic work inequality (eg. (1.1))
can be written as

-1

Eijdoij > 0, Z = const. (2.3)
Similarly, the rate of work hardening inequality, for constant stress eq. (1.2)

can be rewritten as

éhdz <0, oij = const. (2.4)

and the combined inequality (eq. (1.3)) 1is

€399 5 - ¢ |dz > 0. (2.5)

Z = const. o,, = const.

ij

Using the result of Rice (eq. (1.4)) there exists a potential function ¢(0,2)
such that

oI _ 3¢(g, 2)
ij 30, ., (2.6)
ij
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Further, using the egs. (2.5) and (2.6) , and the result of Ponter (ref. 17),

let us assume that for ¢ to exist and be physically acceptable, that

-h _ _ 3¢Lg, 2]
€ — (2.7)

and

2 4o, +22 4z =44 > 0.
0, ij oZ -
ij
Therefore, ¢ exists and it is convex in the space {g,Z} (ref. 16). The existence
of the potential function ¢(o, Z) is consistent with the essential structure of
work hardening or softening metal plasticity. As a result of the existance of

¢ and from eqs. (2.6) and (2.7) it follows that

ach %y
80. ) = - az . (2-8)
1]
Using the idea of an instantaneous tangent modulus in one dimensional
plasticity, the stress rate state variable Z can be related to the strain
rate variable éh by the function h; i.e.
7= nel =op 22, (2.9)

That is, h is the instantaneous slope of the é ~ éh response curve., For the

following analysis let h = h(Z,...) be independent of the current stress.
Finally, eq. (2.8) can be used to derive the state variable evolution

equation directly from the flow equation. Let us assume éij = éij(g, Z) is

specified, then from eq. (2.8) and (2.9)
. Bei.
dZ = - h *521 dcij + df(Z,...) (2.10)

where f is independent of stress. Integrating on the time interval [0,t], the

evolution equation for the hardness can be written as

. . cij(t) Bei. .
z(t) - 2, =-hfcij(0) _“laz dog 5+ CE@Z,.00) - £(Zg,..07 (2.11)

The integral can be evaluated for any specific choice flow law involving only

one state variable.

158



Embodied in eq. (2.11) is an important property that is not widely

recognized. The parameters 20 = 2(0) and Z_. = Z2(0) are initial conditions. The

0

parameter Z . describes the initial state of the microstructure that, for example,

0

would be the same for all specimens from the same heat of material. However, Z0

is the initial rate of hardening of the microstrucutre and would be expected to

vary from test to test, depending on the initial loading conditioms.

III Bodner-Partom Constitution Equations

The Bodner-Partom constitutive equation (refs. 11, 12, 18) is a fully
developed three dimensional theory that has even been extended to anisotropic
materials (refs. 19 and 20). Since the main purpose of the paper is to evaluate
the properties of the evolution equation, it is convenient to restrict the
analysis to a one dimensionz2l form of the constitutive equation. This is
consistent with the accompanying experimental program.

The isotropic constitutive theory of Bodner and Partom is based on the
assumption that the total strain rate, é(t), can be separated into elastic,
ée(t), and inelastic, éI(t), components. Let E represent the elastic modulus,
then the Bodner-Partom equation can be written in a one dimensional form as

g (t)
E

t(t) = + ¢t (3.1)

where o(t) is the current value of the stress. Inherent to the theory is that
the inelastic strain rate is non-zero for all non-zero values of stress. The
specific representation used by Bodner and his co-workers for the inelastic
strain rate is given by
2

Iy = Dolg—fz—}l exp [~ {ZHL) ((—i-z-)“:l . (3.2)
The constant D0 represents a limiting wvalue of the inelastic strain rate and is
generally taken at 2x104//§ sec'_l unless the strain rates are very high. The
constant n controls the strain rate sensitivity and Z(t) is the hardness state
variable. The general mathematical structure of eq. (3.2) is based on dis-
location dynamics expressed in the context of continuum mechanics and has proven
consistent with the observed response for many metals. The formulation is
similar to the classical yield surface theory. The structure of the Prandtl-Reuss

formulation is preserved, but a yield surface itself is not part of eqs. (3.1)
and (3.2).
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Necessary for the use of the above equations is a representation for the
state variable Z. The specific representation proposed by Bodner et. al.
(ref. 18) and used for superalloys (refs. 13, 14 and 21) is based on the concept

that only the inelastic rate of working WI and the current hardness control the

rate of hardening. The representation is written as

YAVA
7 = m(z, - W - AZ (2T (3.3)
1 1 Z1
with Z0 designated as the inital value of Z. The two terms in eq. (3.3) are

defined so that AZ]_E(Z-ZZ)/ZIJr is negligible during rapid load histories.
Thus, during a tensile test that is fast compared to creep test, eq. (3.3)
reduces to the first term alone. The constant Z1 corresponds to the maximum
value for Z and m is an exponential coefficient controlling the rate of harden-
ing., For a long time response, such as creep, a second term corresponding to
hardening recovery is necessary. During the minimum creep rate both éP and ©
are constant, thus Z is constant (i = 0) and the rate of hardening must equal
the rate of recovery. The coefficient Z2 corresponds to the minimum recoverable
value of hardness, and A and r are the coefficient and exponent, respectively,
controlling the rate of hardening recovery.

At this point in the paper it is now possible to carry out one specific

objective: Derive an evolution equation for z by using eq. (3.2) in

eq. (2.11) and to compare the result to eq. (3.3). To begin, let us define

1/2n
_ n+l _ntl Z.2n
B = D, GEE-) and R = o (c) (3.4)
so that the integral in eq. (2.11) can be written as
1=3[r M2 Ry, (3.5)

For continuous histories eq. (3.5) can be integrated by parts N times to

obtain a series representation. Letting p = 1/2n, the series can be written as
2 3

- -R_-p R R R
I® =3 Ry ey R e (3.6)

which converges for all R on (0,%). The function I(R) is almost constant for
large values of R (small values of stress) and decays with decreasing R (increas-
ing stress). In this application of eq. (3.6) the constants D0 and n are
generally known so eq. (3.6) is totally defined.

Finally, since eq. (3.5) could be integrated to obtain eq. (3.6), then

eq. (3.6) 1is an exact differential. This implies that the contribution of
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I(R) to the current hardening rate depends only on the current value of the
state, Z, and the current stress. Thus, for all histories producing the same
state and stress the integral term will have the same contribution to the

hardening rate.

IV PROPERTIES OF THE TWO EVOLUTION EQUATIONS

The derived evolution Equations, (eqs. (2.11) and (3.6)), can be put in a
form similar to the Bodner-Partom eq. (3.3). Noting from eqs. (3.2) and (3.4)

that I(R) can be written as

1®) = get (4.1)
where
2 3
oy _ n+l,1/2n -p_. R R R
8@ “0G ) R tay T @p e T awen ey Tt @

and RC%) is given by eq. (3.4). Thus, the derived evolution Equation,
(eq. (2.11)), becomes

Z =z, - hEg(—E—) - go(g)]él + LE(Z,.0) = £(2g,...)0. (4.3)

The Bodner-Partom Evolution Equation (eq. (3.3)) can be rewritten for convenience

as
(Z—_er)r
1 Zl

Z=m(z, - Z)oel - Az (4.4)
Direct comparison of eqs. (4.3) and (4.4) shows a very strong mathematic

similarity. Both equations have two terms of similar type. One term is linear

in the inelastic strain rate, éI, and the other term is independent of the stress

0. The derived evolution equation has the initial hardening rate term z The

coefficient of the strain rate term in the derived equation is a productoof a
modulus h and a non-linear function of (%); whereas, the corresponding term in
the Bodner-Partom is linear in both o and Z. The function £(Z,...) in the
derived equation is consistent with logarithmic function of Z in the Bodner-
Partom equation. In general, eq. (4.4) can be considered almost a special case
of eq. (4.3).

To evaluate the properties of the derived evolution equation further it is

convenient to develop a representation for the function f(Z,...). A power series

expansion of f in Z would produce a series of exponential time terms when
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eq. (4.3) is solved. Since the general solution is exponential in nature, a
reasonable approximation is to use a single exponential term. Thus, let us

assume a linear representation, namely

£(z2) - f(ZO) = -a(Z - zo) (4.5)

where ¢ is a parameter that is independent of Z and 0. Further, in order for
the representation for Z to approach a stable asymptotic value it is necessary
for o > 0. It is expected that this representation should contain many of the
essential features.

Even though the mathematical structure of eqs. (4.3) and (4.4) is similar,
the physical interpretation of the terms is different. First notice that t = 0,
Z =0 in eq. (4.4) whereas 7 = 20 in eq. (4.3). It is expected that the initial
hardening rate should depend on the initial loading conditions, that is
éO = 20(é0) = io(éo/E) where éO and &O are the initial strain and stress rates.
This adds considerable flexability to the model and is consistent with the
initial formation of dislocation microstructure as described earlier. Next, the
strain rate term in the third term of eq. (4.3) produce basic tensile response
properties and the stable value for Z. The strain rate term of eq. (4.3) and
the second term of eq. (4.4) characterize the long time recovery response

properties of the model.

V EXPERIMENTAL PROGRAM

Sixteen mechanical tests have been conducted on IN10O at 732°C (1350°F) at
the Air Force Wright Aeronautical Laboratory, Ohio and Mar-Test Inc., Cincinnati,
Ohio. The material was obtained at different times from different heats resulting
in five groups of specimens designated as series C, G, T, GT and ENTEN. The
experimental program, summarized in Table 1, includes eight tensile tests, seven
creep tests and one combined test. The controlled experimental variable is
shown in Table 1 and the observed stable values for stress or secondary creep
rate is also given for the tensile and creep tests, respectively.

The results of seven tests conducted under constant strain rate control

ranging from l.4x10m3 sec_l to 1.6x10—6 sec_l and one test under constant head

-4 - . .
rate control at 8.3x10 ~ sec 1 are shown in fig, 2. There is significant
variation in the level of the stress response due to the imposed variation in
strain and head rate. Note, however, the total accumulated strain in these tests

is not important since several of the specimens were not failed, For four

162



different values of strain rate (Tests 2, 4, 6 and 8) the response obtained a
maximum stress and maintained that value of stress for all subsequent values of
strain. However for Tests 5, 7 and 9 a different response was obtained. 1In
these experiments the value of the stress decayed from the maximum value obtained
at about one percent strain. In test 5 the amount of reduction in stress to a

lower stable value was small. In Test 7, at a lower strain rate, the reduction

in stress to a stable value was larger; and in Test 9, the stress did not
stabilize at a lower level. This wide variation in response might arise since
the eight specimens are from four different heats. Since both types of
response were observed at both AFWAL and Mar-Test Inc., it cannot be accepted
as an experimental problem.

The results of six creep tests are shown collectively in fig. 6b for
up to 100 minutes. The variation in the creep stress was almost twofold 496
to 896 MPa (72 to 130 KSI), and the corresponding minimum creep rates are given
in Table 1., Although not shown, Test 10, 14 and 15 obtained tertiary creep at
times ranging from 100 minutes to about 1200 minutes. The response curves do
not exhibit a significant primary creep phase and most of the response is
dominated by tertiary creep. This is typical of other superalloys. Test 20,
creep at 896 MPa (130 KSI) shown in fig. 6b, is not ordered with respect to
the other tests; however, this could result from speciments variation or loading
conditions as discussed later,

If the deformation mechanism controlling the tensile tests and creep tests
are the same, then the controlled and observed variables from the two types of
tests shown in Table 1 correspond to the same deformation process. That is, the
stable value of stress obtained in a strain rate controlled tensile tests should
correspond to the creep stress with the same constant (secondary) creep rate as
the tensile test. A plot of the observed and controlled variables for both the
creep at tensile tests is given in fig. 1. Considering the data is over five
decades of strain rate, there appears to be reasonable consistency between both
types of tests. Tensile Tests 7 and 8 correspond very closely to creep Tests 19
and 18, respectively, as shown in fig. 1 and table 1. Thus, it does appear that
the same basic deformation mechanisms control both creep and tensile behavior

between 482 and 1100 MPa (70 and 164 KSI) at 732°C (1350°F).
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VI APPLICATION TO IN10O

The next step in predicting the response of IN10O at 732°C is to determine
the remaining material parameters in the evolution equation. This exercise is
divided into two steps. First, constant strain rate histories are analyzed and
then the results are extended to piecewise constant strain rate histories,

Constant strain rate histories. The evolution equation that is derived

from the potential function can be written as

Z = éo - a(z-2,) + RLI(0)-I(t)] (6.1)
for continous deformation histories using eqs. (4.5) and (4.1) in eq. (4.2).
During each constant strain rate tensile test the last term approaches a step
to the steady value, Ass' An approximation of the behavior can be made by
replacing the integral term in eq. (6.1) by a step function. Thus, assume

eq. (6.1) can be approximated by

AN - - (6.2)

VA ZO a(Z ZO) + Assuct tnj

where t is the time of the unit step u[t—th. The solution of eq. (6.2) for

the hardness variable yields
Z_+aZ

0

A
-at 0 -at ss _ —-a(t-t_)
-—?;———)(l—e ) +'-?;- u[t-tn](l e n

Z=2e + ) (6.3)

0
which is expected to be a reasonable approximation for times up to tn and at
times much larger than tn.

Since a significant change in response occurs early in the history, let us
define t, as the time to reach the ultimate stress under a hypothetical elastic

loading conditions using the initial strain rate; ie,

R T (6.4)

where ou and éO are the ultimate stress and constant strain rate during each
tensile test. The elastic modulus is denoted by E. Thus, .the response up to
time tncharacterizes the ievelopment of the microstructure before the onset of
significant macroscopic inelastic deformation. The value of hardness, Zn,
expressed from eq. (6.3) as

%9

-0t )
Zn = ZO + = (1-e ) (6.5)
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and the steady state value (Long time) value is

Z_+azZ, + A » _
7 - 0 0 ss . (6.6)

SSs a

Equations (6.5) and (6.6) can be used to evaluate the parameters in the evolution

equation at three points: the initial condition Z0 and io; the onset of

significant inelastic flow, Zn; and in the fully saturated condition, ZS

The values of Zn and Zss can be calculated directly from the tensile data

for each test. Inverting eq. (3.2) and evaluating at time t, gives

- =2n , 0 l/2n
Zn = 0 = +1 n )] (6.7)
O
likewise at saturation
_ -2n 1/2n
Zss - 0ssEn+l (DO)] (6.8)

Comparing eq. (6.1) to eq. (6.2) and using eq. (6.8) yields
Z

A = hl1(0) - I( =AY (6.9)
ss SS

which can be used with eq. (6.6) to define the parameter h as

a(z =2 )-2
h = S3 Oz o (6.10)
[I(0)-I (O—SE)J

SS

The parameter h, as, expected, is a function of history noting from eq. (6.8)
that (ZSS/GSS) is dependent only on the imposed constant strain rate éO' The
initial hardening rate can also be determined from eq. (6.5)

. a(Z -Z.)

Zy = o 07 (6.11)

-0t
1-e n

noting that Zn can be determined from eq. (6.7).

The time parameter o can by estimated from the time required to obtain the
. -0 . .
steady state response. Assuming e t vanishes at at = 5 and using saturation

strain €_, then asm/léol = 5. In this example

= ¢, l5] (6.12)
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where C0 = 10 sec-1 and the time response is also dependent upon the applied

strain rate. The remaining parameter Z. is choosen by interactive computation

0
to obtain the best fit for the lowest strain rate response curve. The permits
including the recovery effect as well as strain hardening. This, analysis

produced a, = 3275MPa(475 KS1). The representations derived directly from the

0
tensile data for use with eq. (6.7) and (6.8) are

-0.77934 -2.9144

o, = 6.8948(218.79 x - 58.65 x )

and

o, = 6.8948(162.048 < 0-31697 _ 4 047656 %o+ 0381y (6.13)

where x = log é/log D0 and stress is in MPa(KSI). The representations were
established to account for two different deformation mechanisms above and below
approximately 900 MPa (see fig. 6). The other constants for IN10O used in the

study were taken from ref. 14, They are

E = 1.50x10° MPa, n = 0.70 and Dy = 2x10%/V3 sec”t.

Piecewise Constant Histories. The representation for constant strain rate
histories can be summarized by substituting eq. 6.10 into eq. 6.2 and identifying
Zss/oSs from eq. (6.8) as a function of the applied strain rate, éO’ to get

. 7 10163

Z=2_ - oa(z-2.) + La(z -2 )~ 7 (6.14)
0 ss 0 [T(0)-1(¢ )]

0

Let us consider a step change in strain rate from éO to €, at time tl.

From eq. (3.1) it is seen that this produces a jump in the stress rate,

I I

AG, = Et(él-éo)-(él-eu>3 (6.15)

1

but not a jump in the stress. Further it is expected that the 1nelastic strain
rate would remain the same; therefore, from eq. (3.2), the value of the hardness
Z is the same immediately before and after the jump in the strain rate., This
implies that the microstructure does not change instantaneously. Note that

eq. (6.15) also shows that separate unloading conditions are not required.

If él = -.O’ then A&l = -ZEéo, which is very large compared to a stress rate
near zero before the jump if the material is in the plastic range. Also, note
that since the one test with reverse plastic flow does not indicate a significant

amount of Bauschinger Effect, it is reasonable to assume an "isotropic hardening

166



rule" and use the same hardening rate equation for loading in both tension and
compression.
It is expected, however, that a jump in strain rate would produce a jump

in the hardening rate, Z. From eq. (6.14), a jump in the value of éO to él
should produce a jump in I(éo), ZSS and ¢. It is necessary to update I(éo) to
I(sl) to maintain the asympotic value for Z. 1In this case, as time becomes
large, é approaches zero for any choice of Zss and a. Thus, ZSs and a define
the new microstructure corresponding new strain rate and time required to
arrive at the new structure. For IN100,it was found that updating ZSS,
especially after several strain rate steps, produces erroneous results and
estimating ZSs from the initial strain rate produced much better results.
Thus, due to the lack of more specific information, ZSs was determined from
the initial value of strair rate. This implies that the microstructure
generated during the initial load secquence establishes some of the major
features of the microstructure for all subsequent deformations. This appears
to be reasonable for the simple deformation histories used in current study;
but, may not be valid for all materials and all deformations. Finally, from
the lack of better data during creep and stress relaxation testing, as
fully explained later, it was decided to use the same value for a the entire
history as a first approximation. Thus, for step changes in strain rate, the
hardening rate described in eq. (6.14) is used with the values of a and ZSS
determined by the initial strain rate.

Extension to continuously varying strain rate histories could perhaps
be modelled by using the current value for strain rate as described above.
However, in the current paper only piecewise constant strain rate histories
were used in the experimental program so it is difficult to test this
hypothesis. Extension to other histories and materials requires additional
development along with a better experimental description of microstructural

changes.
VII CALCULATED AND PREDICTED RESULTS
The observed and calculated tensile response curves are shown in fig. 2.

The calculated curves match the observed response with remarkable detail. The

constants were determined with only two parameters, Z0 and CO, being determined by

computational techniques. This was done using Curve 9 only. Further only
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tensile data was used to determine the constants in eq. (6.13). All other
predictions were made using only these constants.

It is interesting to note that the shape of both the observed and calculated
response curves are not uniform. Curves 5, 6, 7 and 9 show elements of softening
and hardening effects. Notice that there is the same ordering of the softening
in curves 7 and 9, with almost no softening in curve 8. The value of
G = EI(O)—I(Z/c)]/EI(O)—I(éU)J in eq. (6.14) for the tensile curves is shown in
fig. 3. The effect of this term becomes important at about the yield strain.
Thus, it is responsible for describing the majority of the macroscopic plastic
flow. Further, shape of the curve is consistent with the step function approx-
imation used in eq. (6.2) for determining the material parameters. The initial
hardening rate term, 20 in eq. (6.11) is responsible for characterizing the
initial microstructure and influences the subsequent inelastic response. The
transistion, from one term to the other, depends on strain rate and produces
the various responses in calculated curves. This effect arose as a direct
result of the potential function formulation.

If the initial hardness, ZO’ is lowered to near zero, the response becomes
unstable between cycles of strain hardening and recovery as shown in fig. 4a.
This effect has been observed in chemical lead at 29°C by Morrow and Halford
(ref. 22) as shown in fig. 4b). They documented the effect as cyclic hardening
and recovery. The calculated response in fig. 4a underscores the importance of
the Z, and Z

0 0
The predicted and observed response to a hysteresis loop with a 25 second

terms.

hold in compression is shown in fig. 5. The overall dimensions on the observed
and predicted response are close including the compressive stress relaxation
response. The shape of the predicted curve near yield on loading in compression
and reloading in tension reflects the assumption of isotropic hardening.
Obviously, there is a small element of kinematic hardening being observed in the
response.

Next, let us investigate the effect of initial load history on the sub-
sequent creep response. This was done for the four initial strain rate histories
and one creep stress as shown in fig. 6a. The predicted response curves have
1

a very pronounced variation. Increasing the initial strain rate from 1.33x10°

Sec_l to 8.33xl0_4 in four steps produces increases in creep strain rate.
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The observed creep response for IN10QO for six levels of creep stress is
shown in fig. 6b. It was expected that increasing stress would produce creep
curves ordered with increasing creep rates. However, creep curve 20 is not
ordered with respect to the other curves. If the increase creep stress of
21 MPa beﬁween curves 19 and 20 is accompanied by a decrease in the initial
strain rate, the observed response could be predicted.

Further evidence of the effect of initial strain rate on the subsequent
response is shown in fig. 7 for Rene” 95 at 649°C. All four tests were run
using the creep stress of 1034.3 MPa. Two tests were run on a creep frame
with the weights placed, one at a time, on a load pan. This produced a "slow"
initial strain rate. The other two tests were run in a hydraulic closed loop
testing system with the initial load applied rather rapidly producing a "'fast"
initial strain rate. There is significant variation in the observed creep
response that might be attributed to the variation in initial strain rate.
However, the two sets of tests were run in different laboratories on different
heats of the material.

The effect of initial strailn rate on stress relaxation was also investigated.

Shown in Fig. 8 are four. stress relaxation curves that were calculated using
four different initial strain rates to a strain of 0.0l1. The initial strain
rate has a dramatic influence on the initial stress as might be expected from
the tensile curves. The initial rateof stress relaxation and the final stress
level both appear to depend on the initial strain rate. The observed stress
relaxation from 0.0l strain is also shown. This curve is part of a creep and

recovery history with a subsequent deformation to 0.0l strain.
VIII SUMMARY

The potential function formulation for the state variable evolution

equation was based on a combined inequality that allowed for both strain hardening
and recovery. The resulting evolution law demonstrated both of these properties.
In particular the derived evolution equation required initial values for both the
state variable, Z, and its rate, Z. Ina given heat of material, with a fixed
initial microstructure, the corresponding initial value for the state variable,
Z, is assumed constant for all tests., However, the initial hardening rate, é,
depends on how the specimen is initially loaded. This permits: the equation to

account for the formation of different initial microstructures with different

properties that can effect the subsequent macroscopic inelastic flow.
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This effect was investigated and the results can produce response curves
that are not similar or even ordered under various loading conditions. These
effects were observed in 1IN100, Rene” 95 and chemical lead at high temperature.
Thus, it is possible that the variations in the initial loading condition could
account for atleast some of the variations observed high temperature tests. This
could be particularly useful for explaining the large amount of scatter observed

in creep tests.
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TABLE 1. SUMMARY OF THE EXPERIMENTAL PROGRAM

Test Type of Spec. Control Observed
No. Test No. Variable Variable Comments
. noia=3.~1
2 Tensile Gl e = 1.42x10 s o = 1116 MPa
. . -4 -1
3 Tensile Tl X = 8.33x10 s Const. Hd. Rate
. -4 -1
4 Tensile T3 £ = 8.33x10 s o = 1068 MPa
5 Tensile G2 ¢ = 6.33x10 s L o = 951 MPa
6 Tensile ENTEN 1 & = 5.5x10 s 1 o = 978 MPa
. . -5 -1
7 Tensile GT7 e = 1,33x10 s o = 889 MPa
8 Tensile ENTEN 4 ¢ = 6.67x10 %71 o = 841 MPa
. . -6 -1
9 Tensile G3 € =1.67x10 s
10 Creep c1 o = 496 MPa ¢ = 1.8x10 571
. -8 =1
14 Creep GT6 o = 627 MPa e = 5.0x10 s
15 Creep GTS o = 620 MPa e = 1.2x10 /st
16 Creep C4 0 = 696 MPa Relax., Obs
. -6 -1
18 Creep GT4 o = 827 MPa e = 4,5x10 s
_ . -6 -1
19 Creep C5 o = 875 MPa € = 7.74x10 s
20 Creep ENTEN 2 o = 896 MPa € = 4.17x10m65-1
. ° -3 -1
21 Combined C3 e = 4.0x10 "s Hyst. Loop
History
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Stable values of stress and strain rate from both tensile and
Test number refer to table 1.
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A UNIFIED CONSTITUTIVE RELATIONSHIP FOR THE TIME-DEPENDENT
BEHAVIOR OF FAST BREEDER ALLOYS*

D. N. Robinson

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

EXTENDED ABSTRACT

Constitutive equations based on classical concepts of creep and
plasticity generally rest on the assumption that the inelastic strain
can be decomposed into two distinct and additive contributions, one time-
dependent (creep) and the other time-independent (plastic). Experimental
data collected on structural alloys at high temperature (500 to 600°C),
however, suggest that an improved approach is to adopt a unified represen-
tation in which creep and plasticity are characterized as occurring simul-
taneously and interactively and time is an essential ingredient throughout.

Examples of the inherent time dependency exhibited by some fast breeder
alloys (particularly 2-1/4 Cr—1 Mo steel) at elevated temperature are rate-
dependency under monotonic and cyclic straining, thermal recovery (Fig. 1),
and strong creep-plasticity interaction. One manifestation of the latter
is illustrated in Fig. 2 which shows the strong influence of the recent
history of plastic straining on stress relaxation. Account of such be-
havior is important in structural problems related to the design of fast
breeder components.

A creep-plasticity-recovery constitutive model has been under develop-
ment at Oak Ridge National Laboratory (ORNL) in recent yearsl,Z2,3 that
allows for some of the more important nonclassical features observed in
the behavior of fast breeder alloys. The ORNL model is based on the
Bailey-Orowan theory of competing hardening and recovery mechanisms and
incorporates some aspects of the work of several authors, e.g., Rice,"
Ponter and Leckie,® and Lagneborg.® A notable distinction between this
constitutive model and the related state-variable theories of Krieg7 and
Miller® 1lies in an accompanying set of inequalities that, in effect,
delineate analytically different regions of the ''state space.'" This

approach in so structuring the state space follows the work of Onat?®

*Research sponsored by the Office of Reactor Research and Technology,
U.S. Department of Energy under contract W-7405-eng-26 with the Union
Carbide Corporation.
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and Larrson and Stoakers!C® and admits a representation of analytically dis-
continuous response such as that observed before and after reductions or
reversals of stress and exemplified in Figs. 1 and 2.

Figures 3 through 6 provide a qualitative demonstration of the abil-
ity of the ORNL unified model to represent key features of high temperature
uniaxial response. Figure 3 illustrates creep behavior (in arbitrary non-
dimensional units) under constant stress conditions, indicating satura-
tion of the state variable a at steady state creep. Figure 4 shows the
predicted response in an interrupted creep test and is characterized by
the occurrence of state recovery with zero creep strain recovery (cf.

Fig. 1). The state variable a is seen, in this case, to decrease during
the period at zero stress. Figure 5 illustrates the capability of the
model, coupled with linear elasticity, to represent rate-dependent plas-
ticity. Shown are several monotonic stress strain curves corresponding to
different strain rates. Finally, Fig. 6 demonstrates the ability of the
unified equations to model the complex behavior depicted in Fig. 2. A
saturated hysteresis loop predicted on the basis of the ORNL unified
equations is shown in Fig. 6a, the numbers indicating points from which
the stress is relaxed. The corresponding predictions of stress relaxa-
tion are given in Fig. 6b. Figure 6¢c depicts the limit cycle in state space
corresponding to the saturated hysteresis loop of Fig. 6a and shows the
trajectories followed by the state points during stress relaxation. The
relaxation behavior is seen to be strongly dependent on the initial in-

elastic state even for points of equal starting stress.
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APPLICATION OF AN UNCOUPLED ELASTIC-PLASTIC-CREEP
CONSTITUTIVE MODEL TO METALS AT HIGH TEMPERATURE

Walter E. Haisler

Texas A&M University
College Station, Texas 77843

Abstract

A uniaxial, unccupled constitutive model for predicting the
response of thermal and rate dependent elastic-plastic material be-
havior is presented. The model is based on an incremental classical
plasticity theory extended to account for thermal, creep, and transient
temperature conditions. Revisions to the combined hardening rule of
the theory allow for better representation of cyclic phenomenon in-
cluding the high rate of strain hardening upon cyclic reyield and
cyclic saturation. Also, an alternative approach is taken to model
the rate dependent inelastic deformation which utilizes hysteresis
loops and stress relaxation test data at various temperatures. Evalua-
tion of the model is performed by comparison with experiments involving
various thermal and mechanical load histories on 5086 aluminum alloy,
304 stainless steel and Hastelloy-X.

The uncoupled model assumes that there is a temperature below
which the total strain consists essentially of elastic and rate
independent inelastic strains only. Above this temperature, the rate
dependent inelastic strain (creep) dominates. Experimentally, Bradley

has shown for Hastelloy-X that such an uncoupling appears feasible.

185



The rate independent inelastic strain component is modelled in
an incremental form with a yield function, flow rule and hardening
law. However, the model is able to predict kinematic-isotropic
hardening behavior, cyclic saturation, asymmetric stress-strain
response upon stress reversal, and variable Bauschinger effect. The
rate dependent inelastic strain component is modelled using a rate
equation in terms of back stress, drag stress and exponent n as
functions of temperature and strain. A sequence of hysteresis loops
and relaxation tests are utilized to define the rate dependent in-
elastic strain rate (see Bradley).

Numerical testing of the constitutive model against experiment
has thus far centered primarily at the low temperature range where
the rate dependent component is negligible. Figure 1 presents results
for 5086 Aluminum subjected to a cyclic thermomechanical loading. Nu-
merical results are in excellent agreement with experiment. Figure 2
shows the cyclic response of 304 stainless to strain-controlled cycling
at 1000°F. The model uses a variable hardening ratio and accounts for
the asymmetry in tension-compression response exhibited by the exper-
imental data. Figures 3 and 4 show the room temperature experimental
and model results, respectively, for Hastelloy-X during strain-controlled
cycling at several strain rates. Cyclic saturation is modelled reason-
ably well as shown in Figure 4. Numerical comparison of model pre-
dictions and experiment at elevated temperature where rate dependent

inelastic strain is significant are currently being obtained.
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SOME RECENT DEVELOPMENTS IN THE ENDOCHRONIC THEORY
WITH APPLICATION TO CYCLIC HISTORIES

K. C. Valanis and C. F. Lee

University of Cincinnati
Cincinnati, Ohio 45221

ABSTRACT

Constitutive equations with only two easily determined material constants
can predict with computational ease the stress (strain) response of normalized
mild steel to a variety of geheral strain (stress) histories, without a need
for special unloading-reloading rules that are otherwise so evident in the
literature.

These equations are derived from the endochronic theory of plasticity of
isotropic materials with an intrinsic time scale defined in the plastic strain
space. Agreement between theoretical predictions and experiments are excel-
lent quantitatively in cases of various uniaxial constant strain amplitude
histories, variable uniaxial strain amplitude histories and cyclic relaxation.
The cyclic ratcheting phenomenon is also predicted by the present theory, in

routine fashion.
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INTRODUCTION

In recent years, cyclic plasticity, which deals with the rate-independent

inelastic response of materials to cyclic stress or strain histories, has be-
come an important subject of research in applied mechanics and engineering
design. Past experimental work, theoretical studies and engineering analysis
are well documented in the literature. For details see, typically, References
/1-16/.

On the basis of existing experimental results, one concludes that gene-
rally, when subjected to symmetric stress or strain cycles, annealed or soft
materials will harden and will tend to a stable response, while cold-worked
or hard materials will soften. When a stable response is reached, hysteresis
loops in the stress-strain space become stable, closed and symmetric. Also
stable loops at various strain (or stress) amplitudes are similar in shape.
This has led to the definition of a cyclic stress-strain curve which is the
locus of the tips of stable hysteresis loops. It is found that some metals,
e.g. 7075-T6 aluminum, follow the Masing rule. However, some metals, e.q.
normalized mild steel, do not follow this rule at all 4—8~7.

In the presence of a history of unsymmetric stress cycles, the material

response involves a progressive increase of plastic (or total) strain in the
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direction' of mean stress. This is called cyclic "creep" or "ratcheting".

©

On the other hand, a history of unsymmetric strain cycles, will result in
"cyclic s£ress relaxation" toward zero mean stress. Both phenomena occur
whether the material response is stable or not.

Under variable amplitude cycling, metals have a strong memory of their
most recent point of reversal.

If the number of cycles is large enough, then effects of prior plastic
history tend to disappear. More precisely a material has a "fading" memory,
in terms of the intrinsic time scale r, of the history of plastic deformation
that preceded the cvclic history 4-7_7, as the latter progresses.

Attempts to describe the above phenomena analytically in terms of con-
stitutive laws have been tried. However, so far, an elegant, simple but real-
istic constitutive law is still not at hand.

In this paper, we use a recent model of endochronic theory in the study
of cyclic plasticity of stable materials. This model, proposed by Valanis
£i§7, has been applied to metals by authors 4127. In the case of normalized
mild steel, it is shown that the constitutive equations derived from the theory
can predict quantitatively stable hysteresis loops pertaining to various strain
amplitudes. The broader capability of the theory is critically tested by
demonstrated agreement with the observed cyclic response of normalized mild
steel to variable uniaxial strain amplitude histories. In the final section
we show that cyclic ratcheting and cyclic relaxation are phenomena which are

readily predicted by the present theory.
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1. A BRIEF REVIEW OF THE ENDOCHRONIC THEORY

In the late 1960's, the formulation of constitutive theories of visco-
elastic materials from concepts of irreversible thermodynamics and internal
state variables reached an advanced level of development. It was natural to
inquire if a similar approach could be used to establish a theory of plasticity,
and the attempt by Valanis to explore this question led to the development of
the endochronic theory in 1971 /Is/.

In its early stages of development, the theory rested on the notion that
the stress response of dissipative materials is a function of the deformation
(strain) path. When the material behavior considered is rate-independent, the
path in question must also be rate independent. The early version of the
endochronic theory was constructed in terms of a path in the strain space Eij'
In this space, every point represents a deformation (strain) state. A sequence
of strain states traces a path in this space (Figure 1). The distance along
the path between the two strain states P and P' is denoted by dg. If P, a

fourth order positive definite tensor, is the metric of the space, then

dcz = Pijkl deij dskl (1.1)
The tensor P is a material property in the sense that in general it will vary
from material to material. Since successive strain states on a strain path
are distinct and dr is always positive, the latter can serve as a time measure
which is a property of the material at hand, since E is such. The length of
the path ¢ is then an intrinsic time scale where "time" is used here in a very

general sense. The stress at point P is not determined simply by the strain
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at P, but by the history of the strain along the path OP. Materials for
which the stress is a function of the history of strain with respect to an
intrinsic time scale, have been called "endochronic" by the first author
and the theory of the mechanical response of such materials is called
"endochronic theory".

In the applications, it was found that it is appropriate to define an
intrinsic time scale z which is related to the intrinsic time measure g, by

the relation:
= 4z
dz = F (1.2)

where £ is a function of the history of strain. The function f, generally
considered to be a function of f, is of thermodynamic origin and is related
proportionally to the degree of internal friction in a material. If a material
hardens, f£(g) increases with g; if it softens, £ decreases with Z and is constant
otherwise.

The power of the thermodynamic development that follows lies in the fact
that it does not depend on an explicit definition of z. Thus one can envision
a thermodynamic framework, applicable to a large class of materials, from
which an explicit constitutive equation, pertaining to a sub-class, can be
obtained by simply choosing the appropriate form of =z.

The intrinsic time defined by equation (1.2) leads to a so-called simple
endochronic theory. In the case of linear isotropic theory the constitutive
equations so derived can be decomposed into deviatoric and hydrostatic parts.
The deviatoric stress s is related to the history of the deviatoric strain e

by the linear functional relation:
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s =2 ulz = z2') — (1.3)

where in the reference configuration, s is zero, z = 0, and the shear modulus,

u{z), is given by a Dirichlet series, i.e.,

(z) = A_ + 2 A e -8,z (1.4)

n
r=1

where Aw, Ar and Br are positive constants. The hydrostatic stress, OH’ is
related to the history of volumetric strain, 6, in a similar fashion by the

linear functional relation:

— ] é.e_ '
Oy = K(z z') g dz (1.5)

in the usual notation where the summation con-

where OH = okk/3 and 6 = ¢

kk'’
vention is employed. The bulk modulus, K(z), is given by a Dirichlet series
of the form of equation (1.4). Note again that Oy = 0 in the reference
configuration.

For further details of the derivation of equations above see £i§7, where
it is shown that both p(z) and K(z) are composed of finite sums of positive
exponentially decaying terms: In particular, u(0) and K(0) are the shear
and bulk elastic moduli, respectively.

The simple endochronic theory has been applied with success to a number
of problems of practical interest {7,15,1§7.

Despite this fact, it failed to predict closed hysteresis loops for

"small" unloading-reloading processes in one-dimensional conditions. For
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such deformation histories, the theory predicted a slope at the reloading point
that was smaller than the unloading slope at the same point. This feature of
the theory is at odds with the observed behavior of most metals.

It was shown that the openness of the hysteresis loops is thermodynamic
in nature and has to do with the fact that the intrinsic time rate of dissi-
pation at the onset of unloading is equal to the intrinsic time rate of dissi-
pation upon continuation of loading. However, from experience, most rate-
insensitive materials initially unload in an elastic manner and, therefore,
with essentially zero rate of dissipation. In view of this, the discrepancy
between prediction and observation was bound to arise 4127.

It was subsequently demonstrated, however, that if the measure of intrinsic
time is redefined in terms of the increment of plastic strain, the rate of
dissipation at the onset of unloading and reloading is, in fact, zero. There-
fore, it was appropriate to adopt the plastic strain increment as the measure
of intrinsic time. Moreover, the constitutive equations (1.3) and (l1.5) are
recast in a form whereby the stress is related to the history of plastic strain.
This was done by the first author recently éiz7. This model was used to prove
mathematically the existence of yield surface and that the kinematic hardening
rule is a consequence of the theory. Of greater theoretical and practical
consequence, however, is the fact that new measure of intrinsic time makes
feasible the complete elimination of the yield surface by shrinking its size
to zero and thereby reducing the surface to a point. This is done by intro-
ducing weakly singular kernel functions in the linear functional representation
of stresses in terms of history of plastic strain by allowing the kernel
functions to possess an integrable singularity at the origin (i.e. z = 0). On

the basis of the above considerations, endochronic constitutive equations of
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isotropic materials, which exhibit yielding immediately upon application of

loading, are as follows

z
D 26P
s =2 P (zD - zr’)) Sl dzé, p (0) = = (1.6)
D
0
z, p
aekk
= - ' [ =
Okk 3 K(zH ZH) .y dzH, k. (0) o (1.7)
H
0
and
%y “p
' ' . ' v < ini
K(zH)dz g <= p(zD)dz p <% for all flnlte_zH and z_,
o 0]

where D and H denote the deviatoric and hydrostatic state, respectively. Also

P as
de® = de - — (1.8)
- < 7 2p
1
do
P _ _ %k
dekk = dekk K (1.9)

where ul and Kl are the appropriate elastic moduli. The intrinsic time scale

increments dzH and dzD are related to the intrinsic time measures by the

equations:
dzD = ch/fD(cD) (1.10)
dzH = ch/fH(cH) (1.11)
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where

P p |k
= |aef, de’., .
dc l el ei;' (1.12)
— 4P
dz, ldekk (1.13)

Here I-l denotes the absolute value. Other more general definitions are

possible, see reference 4i§7. The kernels p and ¢ are given by the series

(2]
- ZD
z o e © | | (1.14)

p(ZD) =
r=1
-w z
r
< (z,) = 2 c e ° (1.15)
r=1

which must be convergent for all values of z > 0, but should diverge at z = 0.

The above equations summarize the new model of the isotropic endochronic theory.
In conclusion, two significant results are accomplished: (1) The slope of

the deviatoric (or hydrostatic) stress-strain curve at points of unloading and

reloading or strain rate reversal is always elastic, i.e., equal to the slope

at the origin of the appropriate stress—~strain curve. (2) The hysteresis loops

in the first quadrant of the stress-strain space are always closed. For

details see reference 4127.

Constitutive Relations in Tension-Torsion
The constitutive equations that apply in this specific case are found from

equations (1.6) and (1.7) and are given below.
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T =2 p(z_ - z') gﬂf-dz' (1.16)
D 326 D :
0
%y
9 p p
= - 1 — - dz! .
o) 2 K(zD zD) ey (el 52) 20 (1.17)
D
0
z
D
9 p P
=3 -2') — + dz' 1.18
o) »<(zH zH) vy (el 282) z ( )
H
0
where e? and oi are the axial plastic strains and stresses, respectively,
along the axes xi and eg = s§ to satisfy the condition of isotropy. Also 1

and np stand for s and ep

12 12° respectively, in the notation of equation (l1.6).

Because in the experiments to be investigated the hydrostatic strain was
not measured we shall proceed to make the usual (approximate) assumption of
elastic hydrostatic response, in which case equation (1.7) does not apply,

but instead the plastic incompressibility condition
€, + 2. =0 (1.19)

is used. In the following, we will omit the subscripts D and H.

In light of the above hypotheses and in view of equations (1.16) and
(1.19) the appropriate constitutive equations in tension-torsion are the
following:

z

P
T =2 o(z - 2') g—;‘,—dz' (1.20a)
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where

E(z

dz

dag

z Bep
= E{z - z2") -a?dz'
0
o}
1
+ 2 = ——
2 3Kl
) = 3 p(2)
- - dz_
=9 T @
= ch =

2
02 @®-ah + 2] |

(1.20b)

(1.20c)

(1.21)

(1.22)

(1.23a)

Alternatively, 4 can be expressed in terms of the engineering shear strain

YP - 2nP
dg

Here sp
In

study of cyclic response to a variety of test conditions.

, in which case, upon using equation (1.19),

3 P 2 1 2
I[ 5‘(ds )+ 5‘(dyp) ]

p
€1°

L

(1.23Db)

the applications that follow we will use the above equations in the
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2. APPLICATIONS TO STEADY CYCLIC RESPONSE

In subsequent applications, it is expedient to rescale dz by a constant

/5'50 that

2 2%
dg = |[3@®) + @D ] | (2.1)

The values of p(z) and E(z) are rescaled by the same constant.

Cyclic Shear Response

It follows from equation (2.1) that in pure shear

dag = ldypl (2.2a)

In addition, if the cyclic response is steady, then f(c) is a constant, which

we set equal to 1. Thus equation (1.22) becomes

dz = |ayP| (2.2b)

In reference 4127, we let p(z) be a function of the form

-
plz) = oo 2 (2.3)

where Oo and o are material constants and 0 < o < 1. This type of kernel

satisfies the constraint imposed by equation (1.6) and leads to the Ramberg-

Osgood equation for the tensile response. In view of these remarks, we use

equation (2.3) for the present study.
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Upon substitution of equation (2.3) in equation (1.20a), the shear

stress is expressed.as a function of the history of plastic strain as follows:

P
= , ° dYE') dz* (2.4)
o dz
(z - 2')

At the completion of n reversals and by virtue of equations (2.2a, b) and (2.4),

the following relation applies,

- P P
T = z -1t —2 _gpr 4 (-1y” —2——dz' (2.5a)
(z - 2") (z - z")
. z
i-l n
where zi denotes the value of z at the point where the ith reversal has been

completed and z, def 0. By simple analysis, the above equation leads to the

result

n

Po l-a i 1-o

t==[z +2 z -1)7 (z - z)" ] (2.5b)
i=1

Equation (2.5b) is suitable for the prediction of the stress response, once
the functional relationship between z and the (plastic) shear strain history

is known.

Cyclic Uniaxial Response --
In this case, we use equations (2.1) and (2.2a, b) to obtain the essen-

tial relation.

dz = ag = V3 |ae| (2.6)
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In the fashion outlined above, the steady cyclic uniaxial response is found

from equations (1.20b), (1.21), (2.3) and (2.6) and is given by the relations,

3 po 1-o - i l-a
o= T [z + 2 :5: (-1)" (z - zi) j (2.7)
i=1

If, instead of using equation (2.6), we use
dz = |def| (2.8)

then equation (2.7) becomes

n
3p .
o 1 1-0 i 1-o
0 =1 ez lz *2 E -1 (z -z)" ] (2.9)
i=1

1-a
3
The scaling of the intrinsic time by a constant is a matter of convenience
and may be done at will, without interference with the theory. We observe
that equations (2.5b) and (2.9) obey the linear homogeneous transformation

between indicated stresses and strains given below:
t=0/V3, " =/3 6 (2.10a,b)

To test the validity of the theory, we appeal to the experimental results

on normalized mild steel obtained by Jhansal and Topper 4—6_7.

Constant Uniaxial Strain Amplitude --
We consider the class of metals whose asymptotic stress response to sus-

tained cyclic strain excitation at constant strain amplitude is a periodic
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stress history with constant amplitude. Specifically in a uniaxial test of
this type, the axial stress amplitude Ac is constant and therefore the axial
plastic strain amplitude Aep is also constant, following equation (1.8).
Thus

Ae”™ = de - — (2.11)
where Ae is the axial strain amplitude and El is Young's modulus. As a
result, the value of z during cyclic tension and compression can be found by
integrating equation (2.8). After an odd number n of reversals has been com-
pleted, the value of z - zn can be calculated by integrating the relation

P with Aep as the lower limit of integration. If n is even, then the

dz = -de
relation dz = def applies with -Ae® as the lower limit of integration. The

results are as follows:

Pp_ P

z = 2nle” F e (2.12a)
and

z = (2n - 1) ac® (2.12b)
where in equation (2.12a) "-" is used for n = odd and "+" for n = even.

Equation (2.12b) applies to both cases.
Upon substitution of equations (2.12a, b) in equation (2.9), one obtains

the result
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P 390 1 P 1-a
o €)= 1=, KXYz (Ac™) F_(ax) (2.13)
X = sp / Aep (2.14a)
n
F o (a,x) = (2n % )1 42 2 -1)% (2n - 21 + 1017 (2.14b)
i=1
where the "+" and "-" signs correspond to n even and n odd, respectively.

The'algebraic value of the peak stress (i.e., stress amplitude) is found from

equation (2.14b) by choosing n odd and setting x = 1 in equation (2.14b), i.e.,
n

F_ () = (2n - DR z 1% (2n - 20)'7® (2.14c)

i=1

where n =1, 3, 5, * - -, The peak stress at n = even is given by the same

equation, i.e., equation (2.l4c). Thus equation (2.14c) is applicable for

all n. It can be shown that, in the limit of n-—, Fn converges to a constant

Fw(a), where F°° varies with o but is essentially close to unity. For instance,

for @ = 0.864, F_ is equal to 1.03 £i§7. Thus the asymptotic value of Ag as

n tends to infinity is given by the equation

3p
_ Q 1 p, l-a
Ao = e ——36/2 (Ae™) F_(a) (2.15)

This is the equation of the cyclic stress-(plastic) strain curve.
Cyclic steady response in shear can be found in a similar fashion or

by using equations (2.10a, b).
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To test the validity of the theory, we use experimental data on normalized
mild steel 4_6_7. In reference 4-6_7, a set of stable uniaxial hysteresis
loops corresponding to various constant strain amplitudes was presented in the
stress-strain space. A propos of the ensuing theoretical predictions we note

that the geometric shape of the loops is given by equation (2.13), whereas

the peak stresses are given by equation (2.15). We also note that there are

only two undetermined parameters in these equations, o and po. The form of
equation (2.15) was corroborated in reference 4I§7 where a semi-logarithmic
plot of the experimental values of Ag vs AeP gave rise to a linear relation.
The plot also determines « and po which were found to be 0.864 (a pure number)
and 48.4 MPa (7.02 ksi), respectively. These values are then used in equation
{(2.13), and the shape of the hysteresis loops is thereby calculated. Agree-
ment between theory and experiment is excellent as shown in Figure 2.

We wish to devote a few lines to these powerful results. The reader will
note that two constants are sufficient to define the cyclic stress- (plastic)
strain response as well as the hysteretic behavior of normalized mild steel.
It is also pertinent to mention that the analytical expressions involved

(equations (2.13) and (2.15)) are not empirical formulae but closed forms

derived from a general constitutive equation pertaining to three-dimensional
histories. Also of importance is that the prediction of unloading and reload-
ing behavior did not necessitate special rules or special treatment but was
dealt with routinely, as part of the total experimental history of interest.
Specifically, the celebrated Bauschinger effect is predicted quantitatively
and correctly from one and the same constitutive equation.

We make in passing, an observation of historical interest. Equation

(2.15) agrees with the empirical relationship proposed by Landgraff et al. / 2 /
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for steels, i.e.,

1-a
Agn (Aep)

where l-a ranges from 0.12 to 0.17. 1In our case, l-o = .136.

Variable Uniaxial Strain Amplitudes =--

To extend the experimentally verified domain of validity of the theory
and to broaden our view of its capabilities, we test it under conditions of
variable uniaxial strain amplitude histories. The stress response to such
histories is found by using equations (2.13) and (2.14b). The analytical
results are compared with the experimental data on normalized mild steel 4-6_7.
The experiment consists of a constant uniaxial strain amplitude cvclic test
(until stable hysteresis loops are reached) followed-by a variable uniaxial
strain amplitude test. The experimental data are shown in Figure 3. Despite
the complexity of the history, agreement between theory and experiment is
obtainéd and shown in Figure 3. Again the theory predicts the stress history
routinely without the use of special rules present in other theories [3,5,6,10,
137. At this point, we may reasonably conclude that the theory as expressed
by equation (2.5b) (or equation (2.9)) is suitable for the prediction of the

stress response to cyclic straining, in the case of normalized mild steel.

Cyclic Relaxation =--

Here we address the case where the plastic shear strain is increased

b

+ ! and is followed by a cyclic shear strain history

monotonically to a value y

p -

with amplitude Ayp about a mean value Yo
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To calculate the stress response we use equation (2.5b). The cyclic
shear strain history is shown in Figure 4. With reference to Figure 4, to

make the following definitions

P_.P AP
Ye Yo Ay (2.16a)
Yg = YS - ayP (2.16b)

The value zg of z at ith reversal, is found from equation (2.2b). Thus

z, = yi +(2i ~MP, i=1,2,...n. (2.17)

After n reversals have been completed, the value of z at the current shear

strain Yp is
(2.18)

where

Y =Y -Y (2.19)

and the minus and plus signs correspond to n odd and even respectively. The
shear response, after n reversals is found upon using equations (2.5b),
(2.17) and (2.18). Specifically,

p o l—(!

= 2. p '
T =1, (AY™) Fn(a, X x) (2.20)
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where

F (¢, x , X) = (2n + x ;x)l'a
n O O
n
+ 2 Z -1)% (2n - 2i +1 % T7¢ (2.21)
i=1
and
_.p p
xo Yo / Ay (2.22a)
x =y~ /7 &F (2.22b)

If n = odd, then x varies from 1 to =1; while if n = even, then x varies
from -1 to 1.

Equations (2.21) and (2.14b) differ only in the first term on their right-
hand side. It is xo which allows cyclic relaxation to take place. The results
are shown in Figure 4 where the material constants, found previously, were used.

We notice that as n is very large, the effect of xo in equation (2.21)
disappears as a result of the relation gig Fn(a, xo, x) = F_(a, x). The
hysteresis loops then become stable and symmetric with respect to Yg and have

exactly the same shape as those with zero mean shear strain.

Other Complex Histories

A strain history of practical importance is shown in Figure 5, where a
cyclic strain history at a fixed strain amplitude is followed by another at a

lower strain amplitude. The experimental results are shown in Figure 5. 1In
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order to predict the stress response, we use the numerical scheme developed
in the section on variable uniaxial strain amplitudes. The theoretical
results obtained are also shown in Figure 5. Again agreement between theory
and experiment is demonstrated.

It is important to observe that the decreasing effect of the previous
history on the stress response to a periodic strain history (cyclic test at
constant strain amplitude) is the natural consequence of the monotonically
decaying kernel function used in the present theory, i.e., in equation (2.3).
This type of kernel does indeed impart to the material a fading memory with

respect to the endochronic time scale.

3. CYCLIC RATCHETING

In this case the cyclic stress history is given. The numerical scheme
developed in the previous sections is still useful. In addition, an iterative
method is used to ensure the correct value of the stress at the point of
reversal. Such schemes are easy to implement in the computer program. For
purposes of theoretical study, the constitutive equations for shear under
symmetric and unsymmetric stress cycles were used. Specifically, equation
(2.5b) with material constants of normalized mild steel found previously, pre-
dicted the cyclic ratcheting phenomena shown in Figures 6(A) - 6(D). It is
clear that, under unsymmetric stress cycles, the increment of plastic shear
strain per cycle 67§ is positive and decreasing but not equal to zero, as
shown in Figure 6(D). This indicates that, whether the material response is
stable or not, the direction of progressive (plastic) shear strain is in the

"direction" of mean shear stress. However, in the case of symmetric stress
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cycles, the first stress cycle gives rise to a hysteresis loop which lies

toward the right-hand side in the stress-strain space. The subsequent cycles

will then cause the hysteresis loops to move toward the left-hand side until

a stable symmetric hysteresis loop is reached. Due to the effects of the first

stress cycle, the center of stably symmetric hysteresis loops does not lie

at the origin of the stress-strain space. We find that the sign of the "off-

center" value of the strain is the same as the sign of the strain at the

point of first reversal. This phenomenon is essentially the counterpart of

the cyclic relaxation after initial loading as indicated in Figure 4.
Comparisons between theoretical predictions and experiments must await

further experimental information.

4. CONCLUSIONS

On the basis of the results presented in this paper, we conclude that the
constitutive equations derived from the endochronic theory are very suitable
for the analytical prediction cyclic response of stable materials under a
variety of conditions. Moreover, the theory has its origins in irreversible
thermodynamics of internal variables shown to be a powerful tool in the deri-
vation of constitutive theories for several classes of materials (e.g.
viscoelastic, plastic and viscoplastic materials).

Also noteworthy is the fact that a constitutive equation with two
material constants, which are easily determined, can predict with computational
ease the stress (strain) response of a material to a variety of general strain
(stress) histories, without a need for special rules that are otherwise so

evident in the literature.
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A NEW UNCOUPLED VISCOPLASTIC
CONSTITUTIVE MODEL*

Walter L. Bradley and Shik Yuen

Texas A&M University
College Station, Texas 77843

INTRODUCTION

A new uncoupled viscoplastic model has been developed which
assumes a portion of the inelastic strain is rate independent (or
at least rate insensitive). Unlike earlier uncoupled models, this
model recognizes that some of the inelastic strain which occurs
during a load change is rate sensitive (or thermally activated).

To separate the rate dependent and rate independent contributions,
hysteresis loops are run in strain control at temperatures that

are sufficiently low that essentially identical loops are obtained
for a 408, 120s, and 1200s period. This o -¢€¢ loop is assumed to
define the stress/rate-insensitive, inelastic strain behavior for
all temperatures. Subsequent tests at higher temperatures will
include rate-sensitive and rate—insensitive components of inelastic
strain. However, since the magnitude of the rate—insensitive inelastic
strain at each stress and temperature is already known from the

low temperature hystersis loop measurements, the rate sensitive in-
elastic strain component can be determined by subtraction. The
stress/rate—-sensitive, inelastic strain is then modelled using
standard viscoplastic models.

At higher temperatures, and therefore, lower stresses, the rate
independent inelastic strain contribution is found to be negligible
and the predictions of the model are exactly those of standard
viscoplastic models. However, at lower temperatures and the re-
sultant higher stresses, the rate independent, inelastic strain
is significant and accounts for the rounded corners that are
currently a problem for viscoplastic models which assume all inelastic
strain to be rate sensitive,.

In this paper we will present the physical basis for the un-
coupled viscoplastic model, describe the various experiments used
to evaluate the material constants, and compare predictions of
stress relaxation behavior by the model to experimental results
where the material constants have been determined using hysteresis
loop data.

PHYSICAL BASIS FOR MODEL

Deformation of metals and alloys occurs by dislocation glide,
cross-slip and climb. Additional flow may result from grain
boundary sliding, though some dislocation deformation in the grains

* This work was sponsored by NASA under direction of Dr. Robert Thompson
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is required even here for compatibility. In the low temperature
regime (0-0.20T, , the yield strength and flow stress are found to
vary significantly with temperature. This is particularly true
for materials with a body centered cubic lattice structure. The
fairly small activation energy for thermally assisted dislocation
motion at these low temperatures is usually associated with
dislocations overcoming lattice friction (Peirels stress) or
possibly dislocation intersections,

Betwveen 0,20-0.40T , the thermal assistance to overcoming such
barriers is nmore than a?equate, allowing dislocation glide to occur
equally easily at various temperatures and/or strain rates in this
temperature range. Here, the flow stress depends more on the in-
elastic strain and the resultant strainm hardening it produces than
on the strein-rate. While short range barriers to glide such as
Peirels stress are easily overcome with thermal assistance at these
temperatures, the thermal energy is relatively small and generally
ineffective in giving much thermally assisted recovery via dis-
location cross-slip, climb, etc. The activation barriers for such
processes are relatively large compared to the phonon energies
(thermal energy), making these processes quite sluggish; thus,
their contribution to the overall deformation is quite small. 1In
summary, between 0.20 and 0.4T , thermally activated processes are
either so rzpid (e.g., overcoﬁ&ng Peirels stress) or so slow(e.g.,
dislocation climb) that very little rate sensitivity observed over this
temperature range. We may say the deformation behavior in this
temperature range 1is rate insensitive and over a range of strain-
rates of 50-100X will be essentially rate independent. It will
be shown later that Hastelloy-X specimens tested under fully
reversible strain conditions over a temperature range of 298K to,

533K (0.2 to 0.35T ) and over a 30X strain-rate range (9.70 x10°
to 3.23 x 107 s‘ln at each temperature have essentially identical

hysteresis loops and material constants for Q and K. At 755K
(0.49T,), the hysteresis loop is changing slightly, though rate
dependence over the strain-rate range (30X) we have studied is
still not significant.

As the specimen deformation temperature is raised above O.STm.
rate sensitive, inelastic deformation becomes apparent. Hysteresis
loop size (and shape to a degree) changes with changing strain-rate.
At these higher temperatures, thermally activated cross-slip and
clinmb now becomes possible, particularly at the slower strain-rates,
which lowers the peak stress achievable in the hysteresis loop. Ve
will associate our rate sensitive, inelastic strain with the add-
itional increments of deformation made possible by the thermally
assisted overcoming of these larger barriers to deformation, i.e.,
dynamic recovery, or softening. The rate sensitivity is seen
principally in the circumventing of various barriers by cross-slip
or climb rather than in the subsequent glide to the next barrier.
Nevertheless, all of the inelastic strain that results from the
combined cross-slip (or climb) and subsequent glide will be
included in the rate sensitive, inelastic strain.

We have implicitly divided our inelastic strain into a
component which results in strain hardening and a component which
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does not. Even during the portion of the hysteresis loop where
strain hardening is occuring, the inelastic strain may contain rate
dependent (no strain hardening) as well as rate independent (strain
hardening) components. It should be emphasized that net strain
hardening continues until the back stress reaches a level where re-
covery and strain hardening are balanced. Ideally, the stress is
dependent on the rate insensitive, inelastic strain and the rate
sensitive, inelastic strain-rate. A transient dependence of stress
on the rate sensitive, inelastic strain (as well as strain-rate)

is sometimes observed and is equivalent to primary creep. Since

we are initially interested in modelling hysteresis loop behavior for
saturated loops, such transients are not expected to be significant.
They do probably play a role in the initial "shakedown" where
dislocations are gradually being rearranged into more stable cell
structure configurations.

In summary, we believe that the inelastic strain may be un-
coupled into two components, one associated principally with dis-
location glide resulting in strain hardening and a second associated
with dynamic recovery processes Including dislocation cross-slip
and climb. To a first approximation, the flow stress should depend
on the rate insensitive, inelastic strain and the rate dependent,
inelastic strain-rate. The stress/rate- sensitive inelastic strain-
rate relationship can be modelled using viscoplastic models. The
stress/rate-insensitive, inelastic strain relationship is determined
from hysteresis loops taken at a suitably low temperature (0.2-0.3T ).
At higher temperatures, the flow stress 1is relatively low and the m
inelastic strain is essentially all rate-sensitive, resulting from
dynamic recovery processes. At lower temperatures and the resultant
higher flow stresses, a significant portion of the total inelastic
strain will be rate insensitive deformation. The more gently rounded
corners of the hysteresis loop observed at these temperatures are
a consequence of this rate~-insensitive, inelastic strain,

In this next section, the constitutive model will be defined
in mathematical equations and the experiments required to characterize
the various constants will be described.

CONSTITUTIVE MODEL

The total strain-rate 1is assuged to be divisible into three
components; an elastic component ee, a rate-insensitive inelastic
component Eii’ and a rate-sensitive inelastic component eir; 1.e.
€. = £ + €.. + €.

t e e11 €ir (1

The rate-sensitive strain rate éir is modelled using the relationship
typically used in unified theories for inelastic strain rate (note
unified theory assumes all inelastic strain 1s rate sensitive);
namely,

. ~ n
€5 ¢ ~(0;9) (2)

where ¢ 1is the applied stress, @ is the back stress and K is the
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drag stress. The elastic strain-rate is modelled in the usual
way as

¢ = o/E

e 7 9/ (3)
Finally, the rate-insensitive, inelastic strain is modelled with
an empircally determined strain hardening function f(0,0pax) as
follows:

e.. = f(o, 0__) @ (4)
ii max
where f(o,omax) = d0 as measured from hysteresis loops for different

strain ranges, and therefore, op,, values, as shown in Figure 1.

It should be noted that the hystersis loops even at these lower
temperatures are slightly asymmetric so the sign of the cp,x before
the stress reversal as well as its magnitude must be specified

to define the particular f value for a given value of 0 in a stress
reversal. The results for f(0,0;,5x) determined from the data in
Figure 1 1s summarized in Table 1. The stress-rate may be calculated
from Bquations (l)-(4) for a given axial strain-rate of €, as follows:

. ag- n
% g - X (5)
E + f(o, 9 na )
or
n
o~
o = Bey - () At (6

1
— +

SRR RN ‘
The evaluation of pg is8 given by ¢ At where the total axial strain-

rate for a constant HUiametral strain rate dD/dt is

e = -2 4 (7
t Dy dt
1 do

1 - 530 (1-2v)

It should be noted that the appropriate time step At is selected
by monotonically decrcasing the value of At until the simulated
g-¢ hysteris loops for two successive choices of At are essentially

identical.

The material constants which must be determined empirically
in Equation 5 are Q(o,T,N), K(6,T,N), E(T), f(o,omax) and n(T)
where N and T refer to the cycle number and temperature respectively.
For the initial phase of this program, we chose to evaluate only
saturated hystersis loop behavior, eliminating for the moment "N"
as a variable. It was further assumed that for a saturated hystersis
loop, "K" would retain a constant value around the loop whereas
 was assumed to vary with o around the loop. The rational for
this assumption is that the drag stress 1s physically associated
with the dislocation cell structure, or dislocations in stable
configurations while Q@ 18 associated with the metastable dislocation
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arrangements such as pileups, multiple loops around particles,
etc. Once a stable dislocation cell structure is formed (i.e.,
at saturation), it is reasonable to assume it does not change appreciably

as we traverse a strain cycle. It may also be reasonably expected
that the cycle to cycle changes leading to saturation will be asso-
ciated with an N dependence of K, with  independent of N, at least
to a first approximation.

Stress relaxation tests were made in an attempt to determine
"au'" and "Q" over the entire range of temperatures studied (755K-
1144K). Using an analysis first suggested by J.C.M. Li (1), 1t
was determined that the back stress decreased significantly during
the stress relaxation tests for temperatures of 978K (1300°F) and
above, giving erroneous results for both "n" and "Q". This was
subsequently confirmed by drop stress/strain transient tests used
to measure the back stress. Thus, stress relaxation tests were
only used over the temperature range of 755K-922K to determine
"n" and "Q". At higher temperatures (978K-1144K), stress drop/
strain transient tests were used to determine the back stress i
Then abrupt strain-rate change tests were used to determine the
value of "n". The strain-rate was decreased by a factor of 3x
and by a factor of 30x with the resultant flow stress measured.
It was assumed that "K" remained constant during these strain-
rate changes but that "Q" changed to a new value during 0.5s tran-
sient that occured before a new "steady-state" flow stress was
attained. The plotting of (0-0) vs. éir allowed the stress exponent

"n" to be evaluated.

At all temperatures, "K" was subsequently evaluated using
Equation 2 at the same stress where "0'" and "Q" had previously
been evaluated (usually on the plateau of the hysteresis loop or
near o . at lower temperatures where no plateau was reached). With

n, , and K determined for one o-¢€ position on the hysteresis loop
and assuming n and K are constant for a saturated loop at a given

temperature and strain-rate, one may then calculate  for other
points around the hysteresis loop using Equation 2. Typical results

for Q vs. €(org) are shown in Figure 2.

EXPERIMENTAL PROCEDURES AND DATA REDUCTION

Round tensile bars with a ga§e section 4 cm long by 1 cm in
diameter were prepared from Hastelloy-X. They were then inserted
into a 100 Kip MTS materials testing system with special water
cooled grips and a diametral extensometer which utilizes quartz
rods. Induction heating was used with an Ircon optical controller
to heat the specimens. The temperature variaton at 1144K was *1.1lK.
An absolute accuracy of #*3K was attained by calibrating the optical
controller using Hastelloy-X in a conventional furnace. High purity
thermocouple wires and a precision digital thermometer were used

to establish the actual temperature. Several thermocouples were
used to verify the absence of significant temperature gradients

in the small Hastelloy-X specimen used in calibration as well as

in the tensile specimens' gage length during temperature maintenance
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by 1induction heating. The calibration of the optical controller is
checked every three months and recalibrated as needed.

Special alignment procedures were used to reduce an initial
variation in axial strain measurements at three equally spaced
positions around the circumference from 30%Z to 5% maximum. This
was verified on several successive specimens and then was not checked
thereafter. Only one specimen was buckled in testing, and this
specimen had a fatigue crack which had grown across about 20%Z of
the cross-section.

Specimens were tested at ten temperatures ranging from 298K
(O.ZOTm) to 1144K (0.75Tm). At each temperature, specimens were

tested at three diametral Strain-rates viux_aga%e axial strain-
rates of approximately 10,3.3 and 0.33 x 10 S™ ", the instanta-
neous strain-rate varying slightly around these values depending on
the relative amounts of elastic and 1inelastic strain. The strain
range used was *1XZ axial strain and the specimens were cycled until
the loop saturated, whic¢h required as few as two cycles at higher
temperatures but as many as 40-50 cycles at lower temperatures.

Diameter measurements were converted into total axial strain
using the easily derived relationship
e, = % (1 - 2v) - 2%9—
o} (8)

where E and v are the elastic modulus and Poisson's ratio, D, is the

initial diameter and AD is the change in diameter., The axial in-
elastic strain 1s easily calculated as the difference in the total
strain and the elastic strain,

or € = -

-2v0 2AD
i E - D, (9)

Equations for the total strain rate € and the inelastic strain
rate €, are also easily derived in terms of the measured load/
diametér relationships and give

. =2 dD
e, = Dg dt (10)
1l do
l_E_d—E (1—2\))
t
-, - 1 do 1
¢ = 224D E de, (11)
i D dt
o}
1 - (1-2v) do
de
E t
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where do 1

(12)

_E_ﬂ)
D do

(o)

Since dD is specified in programming the MTS function generator

dt
gnd dDIgo is eas{ly measured, the total and inelastic strain-rates

et and ei are also easily determined from load/diameter measurements.

With the strain hardening function f(o0,0 ) defined from hys-
teresis loops at lower temperatures where allmigelastic strain is rate
insensitive, Equation 4 can be used to quantify the rate insensitive
inelastic strain-rate for any temperature and stress rate, 0. Since
the total inelastic strain-rate may be calculated from Equatien (11)
and the rate insensitive strain-rate calculated through using
Equation (4), the rate sensitive strain-rate is easily calculated
as the differnce in these two quantities. Thus, the elastic, in-
elastic rate-insensitive and inelastic rate-sensitive contributions
to the total strain-rate may all be evaluated from the experimentally
measured load-displacement curves. Once the rate-sensitive component
of strain-rate is evaluated, the 2 can be calculated for various

measured values of o0 and calculated values of '"n" and "K".

_ The stress relaxation tests were run under constant diameter
conditions 1imposed by Interrupting the diametral strain cycling

at various points on the hysteresis loop. The stress-time response

during the interruption of strain cycling is measured using a second

recorder so as to not interfere with the load-diameter measurements,

The axial, rate-sensitive strain-rate is determined from the load

time record using the relationship

(13)

derived assuming stress relaxation under constant diameter conditions.
Load versus dP/dt is taken and used to evaluate éir . The value for
" "

n" in Equation 2 may be determined by plotting jn ¢ vs. ln (0=.).
assuming 2 does not change during the test. ir

Experimental Results and Discussion

Typical stress/total strain and stress/ rate-sensitive inelastic
strain results are seen in Figures 3 and 4 respectively. Results
at room temperature (0.20T_ ) and 533K(0.35T ) at three strain-rates
gave essentially identicalmhysteresis loopsT indicating the inelastic
strain over this temperature range is all rate insensitive.
Additional hystersis loops were run at room temperature for strain
amplitudes of * 0.05%, 0.1%Z, 0.2%, 0.3%, 0.4%, 0.6%, 0.8%, with the * 1%
having been run previously. These results are presented 1n Figure 1
with the f(0,0pax) values tabulated in Table 1.
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The various material constants required for characterization of
the rate sensitive, inelastic strain are summarized in Table II.
The elastic constants as a function of temperature are summarized 1in
Table III. It should be noted in Table II that "n" varies from 3.63
to 5.57. This 1is in sharp contrast to unified models where the "n"
value at lower tewmperatures may be as high as 60-100., We too
found "n" wvalues of 50-100 if we ran strain-rate cycling tests at
lower temperatures and analyzed the results assuming all of the
inelastic strain was rate sensitive (or rate dependent) as the
unified theory does.

The back stress is seen to increase with increasing stress as one
might expect. At higher temperatures, the slower strain-rate gives
the lower back stress. At temperatures below 978K, the back stress
does not seem to be a sensitive function of strain-rate. At 978K
and above '"K" is seen to systematically decrease with increasing
temperature. This indicates an increasing mobile dislocation
density, possibly resulting from an increased cell size which is
both the source of mobile dislocations and a place where thev may
be entrapped. At lower temperatures "K" increases with decreasing
strain-rate, again indicating the expected lower mobile dislocation
density at lower strain-rates. These differences in calculated "K"
are a result of stress relaxation data for different prior strain-
rates being displaced vertically in a {ne. vs. £€n (0-Q) plot.

The constant "K" values at various straini%ates at higher tempera-
tures are assumed in the analysis, this assumption being justified
by a careful analysis of the strain-rate cycling tests.

Table IV summarizes the results of analysis of the inelastic
strain-rate just before and just after the strain cycling is inter-
rupted for a stress relaxation test. The inelastic strain is given
from equations (1), (2) and (4) as

+ €. =f (o, o__ ) a + (°‘Q)n (14)

ii ir max
K

Since o goes from positive to negative as one interrupts the strain
cycling for stress relaxation and since f (o, o } is essentially
zero just after a load reversal, the rate insenfifive strain-rate
experiences a discontinuous change from a positive value to zero.
Since the stress is continuous at this time, one would expect the
rate-sensitive inelastic strain-rate to be continuous. Thus, a
large decrease in inelastic strain-rate as one interrupts the strain
cycling indicates that the inelastic strain-rate during strain
cycling is principally rate-insensitive. If the inelastic strain-
rate before and after the interruption is essentially the same,

this indicates that the inelastic strain during cyclic straining
must have been essentially all rate sensitive. Thus, inelastic
strain-rate continuity is a good measurc of to what degree the
inelastic strain is rate sensitive. A large discontinuity indicates
significant rate-insensitive strain. Table IV summarizes such rTe-
sults over a wide range of strain rates and temperatures. The
trends as expected show a greater degree of rate-dependent inelastic-
strain (smaller discontinuity) for higher temperatures and slower
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strain-rates. These results show a gradual transition from about
100% rate insensitive flow at high strain-rates and lower temp-
eratures (as in classical plasticity) to 100% rate sensitive flow
as in the unified theories. It should be noted that our consti-
tutive model will cover this entire range as it explicitly accounts
for both types of inelastic strain.

PREDICTIONS

The constitutive model as described in Equations 1-4 and
reformulated into Equations 5-7 may be used to predict strain
cycling, stress relaxation or other phenomena if used with the
approximate material constants. Such constants for Hastelloy-X
are summarized in Tables I, II and III. To first see if the model
is self consistent in being able to predict the original strain
cycling curves from which Tables I, II and III were determined,
all of the input strain cycling curves were simulated using Equa-
tions 6 and 7 and the material constants in Tables I, II and III.
The original curves and the simulated curves were found to be in
excellent agreement over the whole range of temperatures and
strain-rates, as seen in the selected examples presented in Figure
5. Gently rounded corners are well simulated at the lower temp-
eratures using this uncoupled approach. The unified theory with
its high "n" values always gives square corners at lower temp-
eratures.

Stress relaxation simulations are presented in Figure 6.
At the lower temperature, the results are reasonable; however,
at the higher temperature the actual asymptotic stress value is
much lower than the predicted one. This is because we have not
yet accounted for thermal recovery of our state variables Q and
K. The back stress does decrease during stress relaxation at
higher temperatures as has been previously noted. We are still
assuming a constant value for @ and K during stress relaxation.

SUMMARY

A new uncoupled viscoplastic model has been proposed along
with experiments and analysis to define the various material
constants. Distinguishing between rate sensitive and rate in-
sensitive strain allows the rate sensitive strain to be modelled
over a wide range of temperatures with very little variation in
the stress component '"n'. Furthermore, it allows the rounded
corners on stress-strain hysteresis loops to be achieved very
naturally.
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Table I. Values for Rate Independent,Inelastic Strain Function f(c.cnax)

ofMPa f(o, Mpa-? -1
elifa) (% ax) ofMPa) 7(0, Gy IMP2 o(MPa) Flo, g, HPa”
for Oax = 149 MPa ——————
Loading for %ax = 467 MpPa
-149 0 for o = 562 MPa
-106 0 Loading max
106 0 -477 0 .
149 0 108 0.145E-6 Unlcading .
0.113£-5
Unloading 106 0.255E-5 ‘Og 0.783E-6
149 0 212 0.559€-5 106 0.174E-5
106 0 318 0.880E-5 212 0.388¢-5
-106 0 424 0.187E-4 S8 PRI
-149 0 461 0.455E-4 b 0.120E-4
467 0.134E-3 o o e
. L
for o_._ = 286 106 0.145E-7 -530 0.565E-4
max 0 0. 104E-5 -546 0.796E-4
Loading -106 0.294E-5 'gg; 0.132€-3
286 0 -212 0.546E-5 - 0.388¢-3
0 0 iy R
- . - :
106 0-187E-6 459 0.329E-4 fOF gy = 610 P
212 0.406E-6 i 0.913E-4 )
286 0.161E-5 : Lg?gmg 6
UnToading for o, = 520 MPa _mg 8;3185'2
28 0 Loading o 106 0.429E-5
-106 0.275E-6 106 0.681E-6 §}§ R
212 0.580E-6 0 0.164€-5 3 0.175E-4
-286 0.148E-5 106 0.330E-5 424 0.232E-4
212 0.732€-5 477 0.307E-4
318 0.114E-4 530 0.448E-4
424 0.197€-4 562 0.629E-4
for Yax = 392 MPa 417 0.333t-4 583 0.868E-4
3x 209 0.754E-4 €05 0.162E-3
Loading 520 0.196€-3 €10 0.229E-3
=403 0 Unloadin .
" e W T :
06 .165E- 105 0.127€-6
212 0.259E-5 0 0.135E-5 10 0-681E-6
318 0.435E-5 -106 0.383E-5 106 0.367E-5
392 0.124E-4 =212 0.723E-5 ‘2]2 0'630E:5
s 0.110¢-4 318 0.103E-4
Unloading -424 0.177¢-4 :3” 0'159E:4
o ooy
0 0.232E-6 -477 0.274€-4
-106 0.186E-5 -530 0.157E-3 -530 0.416E-4
-2]2 0.270E'5 _562 0.572E_4
-318 0.417E-5 -583 0.894E-4
-403 0.107e-4 for o = 562 MPa -605 0.186E-3
max -615 0.372E-3
for © = 435 MPa :
Loading max Loading
-446 0 -567 0
0 0.652E-6 -106 0.986E-6
106 0.258E-5 0 0.225E-5
212 0.432E-5 106 0.394E-5
318 0.620E-5 212 0.658E-5
392 0.126E-4 265 0.862E-5
424 0.246E-4 318 0.126E-4
435 0.680E-4 3N 0.164E-4
424 0.220E-4
Unloading 477 0.328E-4
435 0 509 0.461E-4
0 0.551E-6 530 0.600E-4
-106 0.214E-5 552 0.111E-3
-212 0.441E-5 562 0.291E-3
-318 0.694E-5
-392 0.108E-4
-424 0.184E-4
-446 0.522E-4
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Table I1. Values for Back Stress(for o=0_ x).n.[)rag Stress(K) and K"

a

Q K % Kn
(MPa) (MPas™) (MPans)

T?E?' {s?g' strain-rate n strain rate strain rate

(10-*s"%) (16-*s~1) (10-4s-1)

10 3.3 0.33 10 3.3 0.33 10 3.3 0.33

755 900 468 468 474 [5.50 [390 513 1045 [V.78 x 10** B.05 x 10°* &4.03 x 10°°¢
810 {1000 252 265 318 [4.96 {1186 1260 1704 1.77 x 10'° 2,39 x 10'* 1.07 x 10'¢
866 11100 255 226 237 5.57 905 978 1274 2.94 x 10%® 4.53 x 10'¢ 1.98 x 10%°
922 1200 161 164 163 |4.31 {1690 1829 2597 8.17 x 10*? 1.15 x 10'* 5.20 x 10!~
978 N300 141 136 115 |5.57 {800 800 300 [1.48 x 10" 1.48 x 10%¢ 1.48 x 10
1033 N1400 118 111 82 14.75 [ 672 672 672 |2.69 x 10'? 2.69 x 10'® 2.69 x 10}°?
1089 [1500 76 66 43 [4.70 | 488 488 488 ]4.32 x 10%? 4.32 x 10! 4.32 x 10'"
1144 600 41 38 28 3.63 532 532 532 7.85 x 10° 7.85 x 10° 7.85 x 10°

900°F - 1200°F: €, n & K obtained from stress relaxation tests.
1300°F - 1600°F: n obtained from strain rate change test

Q obtained from stress drop tests.
K assumed to be constant for all strain rates

Table II1. Values for Young's Modulus and Poisson's Ratio

szg. | Is?g. Igfg. T/Ty* (10%psi) E(GPa)
294 70 21 0.19 28.6 197
533 500 260 0.35 26.3 182
755 900 482 0.49 24.0 166
810 1000 538 0.53 23.4 162
866 1100 593 0.57 22.8 158
922 1200 649 0.60 22.3 154
978 1300 704 0.64 21.7 150
1033 1400 760 0.67 211 146
1089 1500 816 0.71 20.5 142
1144 'IGQO 871 0.75 19.9 137

V= 0.32 (assumed constant for all temp.)

*melting range is 1260-1255°C
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Table 1V. 1Inelastic Strain Rate Continuity at Various Temperatures

& =1 x 107371 (10875 cyere)
&, = 3.3 x 10771 (305/% cycle)
t = 3.3 x 107577 (3008/% cycle)
A f =1 x107%
Temp.  |Temp. o f% - Eg ) :p*/ED-
(x) (°F) (MPa ) (107"s™) (1077's" ) (%)
755 900 434 8.76 .21 2
558 9.57 .10 1
810 |1000 492 9.51 1.22 13
gs6 1100 8 ¢ 9.18 2.12 i 23
455 L 8.57 1.01 | n
922 {1200 405 9.34 2.34 25
458 9.59 1.95 20
978 [1300 330 P 9.40 9.01 96
1033 1400 277 9.80 9.£0 100
1089 1500 185 9.61 9.61 100
1144 1600 19 9.83 9.83 100
ep” = plastic strain rate before the beginning of stress relaxation
test
Ep+ = plastic strain rate after the beginning of stress relaxation
test
B) ,ét = 3.3 x 1074s™?
Terp. | Tewp. | o - RS RSy
() (°F) (Pa) (10-4s"1) (10-+ s1) (%)
755 900 450 2.95 A1 14
- 568 3.19 .24 8
| 810 1000 394 2.98 .40 13
: an 3.16 .69 22
. 866 1100 376 3.10 .68 22
; 439 3.20 .54 17
i 922 1200 381 3.14 1.21 39
i 43 3.22 1.38 43
| o978 1200 327 3.19 3.09 97
i 1033 1400 236 3.27 3.27 100
1089 1500 154 3.2 3.21 100
1144 1600 96 3.29 3.29 100
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5e-1

€ = 3.3x1077s”

C) .

Temp. Temp.

[o] ep
(K) (°F) (MPa) (1075571)

755 900 592 3.19 .82 26
810 1000 373 2.97 .80 27
e ]

! 866 1100 354 3.05 1.84 60

322 1200 352 3.15 2.3 76 |

978 1300 246 3.20 3.9 100

1033 1400 163 3.27 3.27 100

1089 1500 100 3.22 3.22 100

1144 1600 59 3.29 3.2 | 100

o 8 88 8 8
\
\\%

-1, -6 -2 .2 e 1.
STRAIN()

Figure 1. Saturated stress-strain results for Hastelloy-X at
room temperature for total strain amplitudes of 0.052,0.12,0.22,
0.32,0.42,0.52,0.62,0.82,1.02.
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Figure 3. Saturated hysteresis loops of stress vs. total strain
for Hastelloy-X at various temperatures.
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Figure 4. Saturated hysteresis loops of stress vs. rate dependent
inelastic strain for Hastelloy-X at various temperatures.
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Figure 5. Stress/total strain hysteresis loops as measured and as
calculated for Hastelloy-X at several different temperatures and
strain rates.
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.Figure 6. Stress relaxation behavior of Hastelloy-X as predicted
by model and as measured experimentally.
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CORRELATIONS BETWEEN METALLURGICAL CHARACTERIZATION STUDIES,
EXPLORATORY MECHANICAL TESTS, AND CONTINUUM MECHANICS
APPROACHES TO CONSTITUTIVE EQUATIONS*

J. Moteff
University of Cincinnati
Cincinnati, Ohio 45221

and

C. E. Pugh and R. W. Swindeman
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

Austenitic stainless steels, such as types 316 and 304, are widely
used as pressure vessel materials in the temperature range of 425 to 650°C.
Depending on the loading rate, the deformation behavior may fall into cate-
gories classified in continuum mechanics as either time-dependent plasticity
or time-dependent creep. Ad hoc rules are sometimes needed to accommodate
interaction effects. Some of the rules for interaction effects can be bet-
ter understood by taking into account the dynamic nature of the dislocation-
dislocation and dislocation-precipitate substructure and how it responds to
transient stress, strain, and temperature conditions. The variation in this
structure includes changes in mobile dislocation density, dislocation link
lengths, cell sizes and misorientation angles, and precipitate sizes and
distributions.

Although somewhat limited in its use for understanding kinematic harden-
ing behavior, microscopy is a valuable tool in the study of isotropic harden-
ing, especially as it is affected by the Orowan-Bailey concept of strain
hardening versus thermal recovery and acceleration of aging phenomena due
to cyclic strain. Indeed, a better understanding of metallurgical phenome-
na needs to be developed in order to establish the useful range of accumu-
lated strain as a state variable.

In considering type 304 stainless steel that exhibits a creep behavior
characterized by a relatively high stress exponent of creep rate and the

development of subgrains during creep deformation of recrystallized material,

*Research sponsored, in part, by the Office of Reactor Research and

Technology, U.S. Department of Energy under Contract W-7405-eng-26 with
the Union Carbide Corporation.
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and for tests conducted under constant stress (o), temperature (7), and

environments (£), the creep rate, €, may be given as:

¢(0,T,E,5) = £(S) .

o, T,F

Here S is a parameter that describes microstructure, which for dislocation

creep is characterized by the following parameters:

S = S[A,D,S,F(e):f(p)] 2

where A is the subgrain size, p the dislocation density, 6 is the average
misorientation angle between subgrains, F(9) is the distribution function
of the misorientation angle, and F(p) is some function of dislocation-
second phase interactions.

Figures 1 through 3 show creep curves (strain-time) of some explora-
tory mechanical tests performed at temperatures 704, 650, and 593°C. Speci-
mens were tested to rupture at two different stress levels o; and oy
(01 > 0p) to establish the normal strain-time behavior. A subsequent test
was performed in which the specimen was crept at the higher stress (o;) to
the beginning of the secondary stage of creep, presumed to be the strain/time
conditions at which a steady state microstructure is developed, and then
the stress was reduced to the lower level (¢02). In most of the conditions
studied, it was observed that some incubation time period (At) would pre-
vail at which the strain, other than elastic strain recovery, would show
no measurable change. In some cases, such as a stress change to 48 or 33
percent of the initial stress for tests conducted at 650°C and an initial
stress, o;, of 207 MPa, a negative strain would prevail for a period of time.
As the test temperature is decreased, the incubation period is significantly
increased such as the 160 hours observed at the 593°C with a stress drop of
about 25%.

The associated microstructure, S, and significance of this microstruc-
ture on the creep strain-hardening model for variable uniaxial loads were
assessed and found to be consistent with the use of creep-recovery models
at high stresses and temperatures and strain-hardening models at low

stresses and temperatures.
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A NONVOLUME PRESERVING PLASTICITY THEORY
WITH APPLICATIONS TO POWDER METALLURGY*

Brice N. Cassenti
United Technologies Research Center
East Hartford, Connecticut 06108

ABSTRACT

A plasticity theory has been developed to predict the mechanical
response of powder metals during hot isostatic pressing. The theory
parameters were obtained through an experimental program consisting of
hydrostatic pressure tests, uniaxial compression and uniaxial tension tests.
A nonlinear finite element code was modified to include the theory and
the results of the modified code compared favorably to the results from

a verification experiment.

INTRODUCTION

In the Hot Isostatic Pressing (HIP) process a sheet metal container
is fabricated in the approximate shape of a component to be manufactured.
The container is evacuated, filled with a powder metal and sealed. The
container is then placed in a HIP facility where it is subjected to high
temperatures and pressures. For powder metals consisting of nickel base
superalloys typical HIP temperatures are 1150C at pressures of 1000 atm.
During the HIP all the void space is squeezed out from between the particles.

After HIP the container is removed and the solid component remains.

* Work performed as a part of AFOSR Contract F49620~78-C-0090

239



The HIP process 1is ideally suited to the manufacture of turbine and
compressor disks in jet engines and is cost competitive with forging.
Unfortunately the final shape of the hot isostatic pressed component is not
a photographic replica of the original container shape. Non-photographic
distortions are introduced by several sources. Some of these include: dintrin-
sic differences in the stiffness of the container at different locations, and
distortions due to gravitational loading. The cost for constructing components
by HIP could be substantially reduced if the final shape of the component
resulting from a given container shape could be predicted.

The permanent volume reductions inherent to the HIP process, of about
35 percent, cannot be predicted by classical plasticity theory, which assumes
no permanent volume changes. Therefore classical plasticity theory must be
modified to include permanent volume changes. Additiomnally, volume reductions
of 35 percent imply linear strains of 10 to 15 percent and therefore large
strain measures must be employed.

There have been previous attempts, Refs. 1-9, to describe the
deformation mechanics of powder metals, but none of these has been
successfully applied to the prediction of the final shape of hot isostatic
pressed components.

A nonvolume preserving plasticity theory has been developed for this
purpose. The parameters for the theory were found through the execution of
an experimental program. The theory was added to the MARC* computer code.

The computer code was used to model a simple verification experiment and the

* MARC Analysis Research Corporation
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results predicted by the code compared favorably to the results of the exper-

iment. Each of the above topics will be discussed in the following sections.
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PLASTICITY THEORY

A finite strain plasticity theory requires: (1) specification
of a yield surface to delineate regions of elastic and plastic response,
(2) a hardening rule for the expansion of this yield surface, and (3) a
flow rule for relating stress and strain increments. This flow rule must
be formulated using large strain, stress and stress rate measures. Each of

these topics will be considered separately below.

Yield Surface Formulation
A yield surface can be developed based on heuristic arguments. Since
the powder particle orientation is random, the powder aggregate should
initially respond isotropically. Thus the yield function must be an
isotropic function and depend on only the stress through its three invariants.
Also, yielding must occur under hydrostatic pressure and the yield function

must approach that of a metal as densification progresses. Since invariant
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Il is a linear multiple of the hydrostatic component of stress, and yield
surfaces for metals are usually defined in terms of invariant Jy, which is
the second invariant of the deviatoric stress tensor, both of these invariants

must appear in the yield function

f = f(Il, Jz, J3, ha) =0 @9

where the third invariant,J3,of the deviatoric stress tensor has been included

for completeness, and

Il = Ogk

J, =1/28_.S,.
2 ij ij

J

- e . , .
3 l/6siJk lmnsllsjmskn is the determinant of the deviatoric
stress tensor

S;: = cij—l/3ﬁijo

ij is the deviatoric stress tensor, and

kk

°ij is the stress tensor

5ij is the Kronecker delta

€14k is the permutation tensor

The parameters h, were determined experimentally and depend on deformation
measures, TNy.

Assume that a HIP powder metal has unequal responses in tension and

compression, and that the yield surface has no sharp corners. A simple yield

function satisfying the above assumptions is
1 2
2 1+a 2
8(3)”2‘%’3 (2)

A yield function of the form of Eq. (2) has previously been proposed by Green

in Ref. 4, Shima and Oyane in Ref. 7, and Kuhn and Downey in Ref. 8. Equation
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(2) is an ellipse in Il, JE; space (Fig. 1), with deformation dependent
parameters, a, B and e The yield surface is plotted in principal stress

space with o4 zero in Fig. 2, for the case a = 0.
A large strain theory of plasticity based on Eq. (2) can be developed by

decomposing the symmetric part of the velocity gradient tensor, Dij into elastic

and plastic parts, or
1l fovy  dvs\_ e p
P1y = 5(-‘5—xj * —lxi)‘ Pij * Py (3)

The plastic deformation rate Dij is assumed to be given by an associated

flow rule

(4)

Where A is a scalar function greater than zero. The choice of the deformation
parameters, Ny’ and the specification of the flow rule will be discussed in
the following two sectionms.
Choice of Hardening Deformation Parameters

In this section, strain hardening of a compacting metal powder is discussed
and parameters to characterize hardening are identified. This is necessary
to complete the specification of the plastic deformation. Initially, the yield
surface of the powder aggregate will be small. During the compaction and sintering
process yield strength will grow and the yield surface will expand. Compaction
alone will cause growth of the yield surface along only the I1 axis (Fig. 1) with
a theoretical limit corresponding to full densification. Yield stress in shear

will be less affected by compaction. Additionally, yield strength will grow
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in all directions of stress space with increased sintering time. Thus, there
exists a time dependent hardening phenomenon unique to powder metallurgy. Since
plastic deformations are assumed to occur instantaneously, time enters the plas-
ticity theory as a parameter defining yield surface size at the time of plastic
deformation.

The process of strain-hardening in triaxial pressure will primarily be a
geometric effect on the microscopic scale. There could also be a contribution
to the apparent macroscopic hardening due to real strain hardening of the particles
as they experience large plastic shearing deformations. Such an effect could
raise the effective yield strength of the metal particles. The separate contrib-
utions of matrix hardening and void reduction can be determined from systematic
experiments using different initial volume fractions.

Initially, powder particles contact each other at isolated points. As pressure
is applied, the contact areas and the powder stiffness increase. The macroscopic
result is strain hardening of the powder due to macroscopic shrinkage. In the
limit the powder is completely compacted and the response to further pressure
increments is elastic dilation; the plastic bulk molulus has become infinite.

An obvious choice for a deformation measure, n is the void volume fraction.

l’
The void volume fraction is a measure of the macroscopic shrinkage and should
reflect an increase in stiffness due to an increase in contact area between

the individual particles, or
Ny =V
1 (5)
The void volume fraction does not represent any permanent changes that occur

during plastic deformation. If as in classicial plasticity theory the effective
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plastic strain is used this would not represent all of the permanent deformations
since permanent volume changes would not be represented. A third deformation
measure, the plastic volume change would then be required.

Rather than use the permanent volume change and the effective plastic strain
as two independent deformation measures, a single measure, the plastic work,
would be sufficient to represent both effects. Therefore, let

- wP = rt P (6)
W '!; o3 Dijdt

Mo

In classicial volume preserving plasticity theory using either the plastic work
or the effective plastic strain produces exactly the same resylt. The plastic
work, or equivalently the inelastic energy dissipation has been used previously
to describe nonlinear material response, for example, in Refs. 9 and 10,
Development of Flow Rule
It is now possible to describe the symmetric part of the velocity gradient
tensor, Dij in terms of the stress rate, for small strains, using Hooke's Law for

the elastic response and Eq. (4) for the plastic response in the form

-1 &P (7

d - e.p
Liska Pxe = Lisk1 Skg

O’ij =

where for small strains

= ¢ 8
Dy, €y (8)

In general the yield function is of the form

flo,, b)) =0 9

o}
ij, o
where elastic deformations occur when f < 0 and plastic deformations occur

when £ = 0 and where hu are parameters in the yield surface dependent on de-

formation history measures nB, or
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Assume that the plastic deformations are given by an associated flow rule

P of
€55 = * 301,
J ij

Using Hooke's law for the elastic deformations

-e

e 1
ij  E
the total strain rate can be written as

- P

. ‘e
€45 = €4y + eij

Equation (9) can be equivalently written as

. 3 . oh
15 b oh, an8 8
In Ref. 11, Parks has shown that
n, = Ak
g 8

wvhere

(") = 3( )/t

The quantity kl can be determined from

n
1

and k2 can be found from

n

7P = P = 3

For the yield surface of Eq. (2), from Ref. 11
n 2 2
ky v 3 @Q-v) B (I +a)

2
k, = 5‘ o

2 0

3

Equations (7) through (13) can be solved to give

246

v = (l--v)Dkk = Akl

I
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- aB (L__a_,

(10)

(11

12)

(13)

(14)

(15)

(16)

(17)

(18)
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E 045 %
Lk = T% 141 -
13kl v J f  Bf _ [1tv) g
W Opn E
af f of &f
T 90 90 8o
5 _ mm ij s _ nn kl (20)
ij kl
of  of _(1+v . _of Bf (1+v H
E
N 30mn 30n | 90 n 90 E
* (&)
E
 8f 8f
1-2v + [v_ §Omm Sonn
E E
of  af [ 1+v "
L aomn acmn E
where
oh
H=2L 2y
aha aﬂe (21)
aha
The quantities 5;—'are hardening parameters which are determined from the
B

mechanical test results and described in the section on Material Property
Determination. A more detailed discussion of the plastic flow rule can be

found in Ref. 12.

Large Strain Flow Rule Considerations
Following McMeeking and Rice, Ref. 13, when using the current deformed state
as the reference configuration, all stress measures coincide. However, the
rates associated with these stress measures do not coincide. A stress rate which
is useful for expressing large deformation consitutive laws is the Jaumann, or

corotational rate (Ref. 14). The Jaumann rate of Cauchy stress is
v

.
= o -

O,. .. c, Q. +Q o .
1j ij ip 'pj ip “pj (22)
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where o,, is the material time rate of Cauchy stress cij and
i

-1 -
The constitutive law of interest is of the form
v D
933 © L 1jk1 kil (23)

where L denotes the rate moduli, Dij is the symmetric part of the velocity
gradient tensor.
Lijkl is developed in Ref. 15 for large strains as

e-p 1
= - = + . K1
Lijkl Lijkl > Gikcjl ijcil + Gilojk + 631°1k + oiJG (24)

and Li;il is the small strain elastic-plastic stiffness in Eq. (21). The

tensor Li' is not symmetric due to the presence of the last term, or

jkl
Lija * Lasj

For a hydrostatic pressure

the tensor is symmetric and since this should be the primary part of the loading
during the HIP process, the last term should produce a nearly symmetric stiffness.
It, therefore, was decided to separate the last term into symmetric and un-
symmetric parts, and add the symmetric part to the stiffness matrix and transfer

the unsymmetric part to the loading side of the governing equatioms.
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MATERIAL PROPERTY DETERMINATION

To predict the mechanical response of metal powder subjected to the HIP
process it is necessary to know the mechanical properties of the metal during
the HIP cycle. These mechanical properties can be obtained by removing test
specimens from the HIP facility at various stages in a HIP cycle. The partial
HIP samples would represent the powder at various stages for a pressure-tem-
perature history. A complete description of the mechanical properties can
then be obtained by postulating yield surfaces, flow rules, hardening laws
and creep properties and comparing these predictions to the results of

mechanical tests on the partial HIP samples.

Partial HIP Tests

The UTRC HIP facility has been utilized to process powder metals through
temperature-pressure-time profiles closely paralleling the procedure used to
fabricate full size turbine disks to near net shape.

The HIP facilities allow several partial HIP samples to be preheated
simultaneously. Since the powder is initially weak a container is required
to retain the powder shape for temperatures exceeding 2000 F (1100 C). There-
fore, all specimens were preheated at 2000 F (1100 C) and 1 atm for 12 hr.
During the preheat cycle the powder is encapsulated in quartz and attains
sufficient strength from sintering to be handled. During the preheat the den-
sity changed from 60 to 65 percent of full density initially to 65 to 70 per-

cent of full density upon completion of the cycle.
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After the completion of the preheat cycle the samples have the quartz
container removed and a glass contalner substituted. At HIP temperatures the
inside surface of the glass container fuses with the outer powder metal parti-
cles and forms a gas tight seal about the powder metal, and the glass has no
strength or stiffness. Consequently, a uniform hydrostatic stress is trans-
mitted to the powder metal. The glass container with the preheated or sintered
powder metal is next placed in the HIP facility and subjected to a specified
temperature, pressure time cycle.

A set of tests was performed at 1800 F (982 C) and various pressure, with
the maximum temperature and pressure acting for 10 minutes only. These tests
successfully produced partially dense samples. The test regime was expanded
to include 1600 F (871 C), 1900 F (1638 C) and 2000 F (1093 C) at appropriate
pressures and again the time at maximum temperature and pressure was held to
10 min.

Some understanding of the compaction process can be obtained by applying
the hydrostatic pressure plastic compaction model (Ref. 16), where the yield

pressure was represented by

p 2
Y= 2 -In{-Y \ - 1-!—> lnvi+a(y—x-1‘)]
cy 3 Vi vi vi vi (25)
a = C vy -1
(1-v4) tan?e (26)

and

cos 8 =P1i + '(2})( 1+ D;)
4 2 8 , and (27)



where v; = the initial void volume fraction
Py = l—vi is the initial relative density, and
cC % 2.75
In order to apply the model the yield stress of the powder particle

material must be known. This data does not exist and therefore the short time
partial HIP data has to be reduced to determine the yield stress. For each

of the temperatures, 1600 F (871 C), 1800 F (982 C) and 2000 F (1093 C), the
yield stress was estimated and Eq. (25) was applied to determine the relative
density for various applied pressures. Figure 3 presents the results of the
calculations and demonstrates good agreement for the yield stresses given by

T -T

T 120.7 R 67 K

o = (1.1 x 10° ksi )e = (7.58 x 1012 nt/mz)e (28)

y

Equation 28 results in yield stresses that are somewhat low for superalloys.
Three facts could account for this: (1) the yield stress for the pre-HIP pow-
der metal is generally lower than for the fully consolidated power, (2) the
strain rate during a partial HIP cycle is relatively slow and therefore pro-
duces a somewhat lower effective yield stress, and (3) the creep rates at high

temperatures are relatively high, producing an apparently lower yield stress.

Mechanical Tests
To determine the shape of the yield surface several types of mechanical
tests are required. Each type of test produces one point on the yield sur-

face. There is one point on the surface that is known: the hydrostatic
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pressure of the HIP process. A compression test performed at temperature will
provide a second point on the yield surface and will also provide some infor-
mation on the elastic, hardening and plastic flow of the material. Tension
tests performed at:temperature, when compared to a compression test performed
at temperature, will determine the symmetry of the yield surface. The compres-
sion tests are the most important tests to be performed since they produce

a hydrostatic pressure which is the predominant loading feature during a HIP
cycle. Two deformation measures will be used to characterize the yield sur-
face; the void volume fraction and the plastic (nonrecoverable) work. There-
fore, the measurement of the axial length change is not sufficient to deter-
mine the mechanical response and a measurement of the volume will also be re-
quired. The final volume of a compression specimen was measured after a com-
pleted test but this does not provide a complete description of the path to the
final state.

More than thirty compression tests were performed. Three of these tests
were used to size the compression specimens and determine the test conditions.
The remaining tests were all completed in a similar manner, The specimens
consisted of a right circular cylinder 0.5 in (.127 cm) lomg by 0.2 in. (0.51
cm) in diameter. Each specimen was placed in a furnace in an inert gas and
brought up to the temperature at which the specimen was hot isostatically
pressed. At temperature the specimen was subjected to compression crosshead
displacement rate of 0.0025 in./min (0.00635 cm/min) and the load was recorded.
After the load leveled out, the crosshead rate was doubled to 0.005 in./min

(0.00127 cm/min).
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The average values for the height, diameter, and volume change measurements
are presented in Table 1 along with the standard deviations. From the last
column in Table 1 it can be seen that over all the samples there was a sig-
nificant decrease in the height and a significant increase in the diameter,
while there was essentially no change in the volume.

A total of 14 tensile tests were completed and resulted in significantly
lower yield stress values than the compression tests, especially at 2000 F
(1093 C). The low tensile yield stresses could be a result of the presence
of voids which would be adjacent to the particle interfaces. Tensile stresses,
which are amplified at the void, would tend to separate the particles producing
a smaller apparent yield than compression stresses which would tend to close
the voids. Microscopic examination and room temperature tensile tests (Ref.
14), indicated the powder was not contaminated.

The uncertainty associated with the tensile test results necessitated the
use of the experimental observation that the volume was conserved during com-

pression,

Interpretation of Mechanical Test Results
The mechanical tests indicated that there is little or no volume change
in compression. Coupling this fact with the hydrostatic pressure yield stress,
Py, and the compressive yield stress o, will determine all of the yield param-

eters in Eq. (9) as

a=0 (29)
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B = > (30)

q
o, =0, (31)

where
3 Py
= -1
q o (32)
c

The experimental results for the tensile yield stress, Ops Were mnot reliable

but can be determined from Eq. (2) as

2
=fa -1
T (q2+1) e (33)

Normalizing the compressive yield stress data, 0., with respect to the

initial powder particle yield stress, g , shows that this ratio is approxi-

mately a linear function of relative density as shown in Fig. 4, or

e = bf{Vi~V
ay (l—vi) (34)

where P is evaluated from Eq. (61) by setting P equal to Py
v 1is void volume fraction
vy is initial void volume fraction, and
b can be determined by requiring the tensile yield stress to vanish
at the initial void volume fraction, or

Op =0 at v =yvy

From Eqs. (32) and (33), the above condition on b is
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P
11 2
m L= (35)
vy o 3
c
Then from Eqs. (25) and (34)
C
b = (36)
2
tan 6

where 8 is given by Eq. (27) and C ~ 2.75.
The temperature, T, and strain rate, ¢, dependence have been included

in the initial particle yield stress, o A good fit occurs when

)

O,

y*
- T
= T
oy Oy,e 10 l14+aln

for uniaxial stress conditions.

. lm.

™

A good fit to the specimens partially densified in the HIP facility
occurs if
¢ ¥ 0.00315/min.
The parameters in Eq. (37) are

= 1.074x1010 kis (7.41x1013 nt/m?)

oyo =

To = 120.7 R (67.06 K)
a = 0.03403, and

. 8 .

€, = 8.148x10 /min.

Equations (29) through (37) are the plastic formulation added to the MARC code,
and are compared to the experimental measurements in Figs. 3, 4, and 5. The
agreement is good if the volumetric creep under hydrostatic pressure is included

(Fig. 3). Volumetric creep will move points subject to HIP for more than 10
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min (the solid symbols in Fig. 3) to the right of the line representing
instantaneous plastic deformation.

Although little work hardening was observed during the compression tests,
it may have an influence on the final deformations, and therefore an approxi-

mate hardening law of the form of Eq. (38) below was assumed.

o, =b :)o 1-2aje (38)

l1-vi;) Y
where WP is the plastic work, a;, a, are constant work hardening parameters.
From the uniaxial compression tests it was noted that the compressive
yield stress seems to level off at about 1.4 times the initial compressive

yield stress and therefore the constant a; is given by

a, = 0.286 (39)
The constant a, was found to vary with temperature approximately by the
relation
T.-T
1. Cz(—C—AT )T:TC
ap ° (40)
0 T>T.
= . 6 nt
where C, = 9090 psi (6.26 x 10 —7-)
m
Tc = 2020 F (1104 C)
AT, = 420 F (216 C)

A more complete discussion of the work hardening evaluation is given in
Ref. 14.
The elastic constants are required to complete the formulation but only

Young's modulus can be derived from the compression test data. The Young's
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Modulus, E, was assumed to be linear function of void volume fraction, v,

and an exponential function of temperature, T, given below

where vy is the initial void volume fraction, and Eq» T0 and T1 were chosen

to provide a good fit to the data, as
E; = 1.5 x 10 psi

T
(o]

1900 F (1038 C)

T, = 163 F (72.8 C)

Figure 6 compares the analytical expression with the resulting mechanical
test data. The comparison is within the experimental error. Since it was
not possible to measure radial deflections during the testing, Poisson's ratio
could not be determined.

It should be noted that if the temsile strengths were accurately measured,
a yield surface utilizing: the hydrostatic yield pressure, the compression
yield stress, the tension yield stress and the fact that volume was preserved

during compression, could have been taken as

2 Il+a 2 9 J3 002
g5 | — + J 1+ [1+ ——— —-—5— =0 (42)

3 2
2v3 323/2

where B, a, and o, are given by Eqs. (29-31), and
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(o}
2 = 43
0c oT
=1

O

(43)

-l
1
N[
I
J

and J3 is the third invariant of the deviatonic stress tensor
Note that if Or is given by Eq. (33) the parameter y vanishes.

With the experimental specification of the parameters the yield surface

is completely determined.

MODEL VERIFICATION

Verification Criteria

The validation tests were designed to avoid duplication of the uniform
hydrostatic stress state of the partial HIP tests. The experiments must
therefore result in a nonvanishing shear stress within the sintered material.
A nonhydrostatic stress state can be achieved with the application of the
uniform external pressure if the material has nonhomogenous properties.
This may be achieved by imbedding in the metal powder a different material,
for example, steel spheres or fully compacted powder spheres or cylinders,
Such an experimental configuration will produce a nonhydrostatic stress
state and will make use of existing hardware and techniques. Metal foil
could be placed tangent to a steel sphere and the resulting displacements

measured and compared to the predicted displacements,

Plastic Analysis for Spherical Inclusions

Before proceeding with the verification experiments, a finite element
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model of the experiment was analyzed using a version of the MARC code modified
to include the powder metal constitutive properties of 7 axisymmetric
elements illustrated in Fig., 7. Constraints were set to insure only
spherically symmetric radial displacement would result, The steel sphere
was modeled as rigid, and therefore the radial displacements were fixed

in the powder at the surface of the steel sphere. The analysis considered
only the plastic deformations that would result in raising the external
pressure to 1000 atm. In Fig. 8, the model resulted in predictions that the
void volume fraction decreased near the sphere or the density is highest
near the sphere. At an applied external pressure of 1000 atm all points

in the specimen are more than 90 percent of full density. The deflections
of the foil can be easily calculated using the radial displacements and

are presented as a function of the distance from the center of the foil,

as shown in Fig. 8. At about 8 ksi (533 atm) the edge of the foil should

be nearly flat. These conditions had been run during the partial HIP tests
and produced a relative density of about 0.85, which agrees with the

predicted results presented in Fig. 8,

Verification Results
The specimen design consists of a steel sphere imbedded in a sintered
rod. A layer of nickel foil is placed tangent to the sphere. One, two,
or three sphere and nickel foil configurations are placed within the
sintered bar., Figure 9 illustrates a typical configuration. The first
verification experiment consisted of a test to insure the configuration

would HIP properly and was successfully completed,
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Two sintered bars were hot isostatic pressed, based on the above
success and the finite element results for a maximum of 10 min at 1800 F,
(982 C) and 8 psi (533 atm). These bars contained a total of five 0.25

(0,63 cm) diameter spheres.

Foil displacement measurements were successfully obtained from three
of the five spheres and the results of these measurements are presented in
Fig. 10, along with the prediction from the finite element model.

The lack of agreement near the center may be due to either the relative
elasticity of the sphere and powder including thermal effects, which were
not modeled, or due to the weight of the sphere. The rapid decrease in
error with position indicates the error may be due to the elastic effects.
Another source for the difference can be attributed to the fact that the
foil and the upper and lower bar segments may not have been in contact and
gradually brought into contact as the HIP progressed. The numerical
predictions and the experimental measurements agree to within the accuracy
of the experiment, and verify that an accurate mechanical description of

the powder response has been developed,

CONCLUSIONS

In the analysis developed, classical plasticity theory has been extended
to include the large permanent changes in volume of about 30 percent that are
incurred during HIP. The theory developed assumes an isotropic yvield surface
and uses an associated flow rule. The assumed yield surface includes all

three invariants of the stress tensor although presently the yield surface
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only uses the first invariant of the stress tensor, and the second invariant
of the deviatoric stress tensor.

The parameters in the theory were obtained through an experimental program
consisting of hydrostatic pressure tests, uniaxial compression and uniaxial
tension tests. From the hydrostatic pressure tests a simple analytical expres-
sion was developed that predicted the change in density as a function of pres-
sure and temperature. Results of the compression tests indicated that there
is no measurable change in volume in compression and that the compression yield
stress is a linear function of void volume fraction. The uniaxial tension tests
were inconclusive and the results were used for comparison with prediction from
the theoretical model only.

Isotropic hardening of the yield surface was assumed to depend on void
volume fraction and plastic work accumulated. Experimental results showed
that the primary dependence was on void volume fraction.

A nonlinear finite element code was modified to include the plasticity
theory and an experiment was run to verify the theory and the code modifications.
The verification experiment consisted of steel spheres imbedded in partially
dense bars of powder metal. Each of the spheres had a layer of foil placed
tangent to the sphere. The bar, with spheres and foil, was placed in a
furnace and subjected to a pressure loading of 8 ksi (533 atm) at 1800° F.

The resulting distortion of the foil was measured and compared to the results
of a finite element analysis using the modified code. The numerical
prediction and the experimental measurements agreed to within the accuracy

of the experiment.
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As a result a modified finite element code exists capable of predicting

the mechanical reponse of powder metals and is now being applied to predict

the final shape of components manufactured by the HIP process.
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TABLE 1

STATISTICAL GEOMETRY CHANGES FOR

COMPRESSION TESTS

RESULTS OF ROOM AND HIGH TEMPERATURE TENSILE TESTS

Mean std. Dev. m-1
Ratio, Final/Initial m 5 3
Height 0.9345 0.029 -2.25
Diameter 1.0330 0.010 3.31
Volume 0.9975 0.015 -0.17
TABLE 2

Room Temperature Room
Specimen Rela!f ive Yield Stress (ksi) Tﬁgi;:t:re Yield Stress (ksi)
No. Density 0.2 Percent Stress Eksi) at 1800 deg. F
1004 0.9%0 144 168 0.022
1098* 0.900 - 82.4 0.126
1114 0.977 102 156 2.30
1115 0.984 138 164 -
* Failed in grip
2
2
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Fig. 1. Assumed ylald surface in iy, J21’2 stress space fora=0
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CONSTITUTIVE MODELS BASED ON
COMPRESSIBLE PLASTIC FLOWS

A. M. Rajendran
University of Dayton Research Institute
Dayton, Ohio 45409

1. INTRODUCTION

The need for describing materials under time or cycle dependent
loading conditions has been emphasized in recent years by several investigators
(Ref. 1 through 4). In response to the need, various constitutive models
describing the nonlinear behavior of materials under creep, fatigue, or other
complex loading conditions were developed. The developed models for describing
the fully dense (non-porous) materials were mostly based on uncoupled plasti-
city theory. The improved characterization of materials provides a better
understanding of the structural response under complex loading conditions.
However, the constitutive models describing the fully dense materials will
be inadequate for characterizing the regions of the material where voids
(porosity) develop due to various complex micromechanisms. For instance,
voids may nucleate under high temperature loading conditions due to inter-
granular cavity formation around the second phase particles (Ref. 5). The
necked portion of a tensile specimen and the ductile material at the crack
tip are the few examples where the initially non-porous material becomes a
porous aggregate due to debondiﬁg of the hard particles from the matrix.
In these regions, the stress-strain relationship of the porous aggregatc

starts deviating from the matrix material behavior.

Several authors considered this aspect of the problem. Among therm,
Gurson (Ref. 6) presented a continuum theory of ducztile rupture by void
nucleation and growth and he came up with a constitutive equation for wvcid
containing materials, which explicitly considered the void volume fract:ion

and the matrix stresses.

The constitutive models for compressible porous materials based on
Gurson's yield criterion, was employed by Yamamota (Ref. 7) and also by
Needleman and Triantafyllidis (Ref. 8) in a study of shearband localization
in metal sheets and the influence of void growth on forming limit diagrams,
respectively. These authors, while describing the porous aggregate, used an
idealized simple rate-independent power-law type constitutive model to

describe the incompressible matrix material. Their main purpose was to
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predict the onset of localized necking or shearband localization through an

approximate description of the porous aggregate and the matrix material.

However, it is important to describe the matrix material behavior more
accurately in order to properly characterize the porous region of the solid

material under complex loading conditions.

The present paper provides a simple methodology to introduce void
nucleation and its growth into the nonlinear incompressible constitutive
equation through Gurson's yield criterion which is based on compressible
plastic flow. This yield criterion is combined with the state variable flow
theory of Bodner and Partom (Ref. 4), for the incompressible solid. Stouffer
and Bodner (Ref. 9), have demonstrated the predictive ability of the state
variable theory by applying it to high temperature nickel base super-alloys,
such as IN100 and Rene' 95. Since the matrix material behavior is well
characterized, this will result in an improved description of the porous

material under complex loading conditions.

The usefulness of the present approach is its capability for
establishing meaningful stress-—strain behavior of a localized damage zone
in which void initiation and growth is occurring and also of the surrounding

zone of void free material.
2. CONSTITUTIVE MODEL FOR COMPRESSIBLE SOLID

To describe the void containing aggregate, the slightly modified
version of Gurson's yield criterion as proposed by Tvergaard is considered
(Ref. 10).. The corresponding yield criterion used in the present paper is

P = Eig + 2q, £ cosh(EgEl) - qgq,f°-1=0 (1)
v 2 1 2Ym 3
m

where J2 is the second invariant of the stress deviator, Il is the first
stress invariant, Ym is the equivalent stress of the matrix material, f is
the current void volume fraction, and d1s 9ps and qq are the void shape
factors. The yield function, based on the spherically symmetric deformation
of a rigid perfectly plastic body around a spherical void, as derived by
Gurson (Ref. 6) can be retrieved by setting 4 =94y =45 = 1 in equation 1.
Since the plastic work done by the aggregate is equal to the plastic
work done by the matrix material, the plastic strain-rates in the aggregate

(éij) and the matrix (ﬁg) are related by the following expression
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2P _ _ <D
Oij Eij (1 £) Ym Dm . (2)

where Oij is the aggregate stress and the dot represents the time

derivative.

The plastic strain-rates of the aggregate can be expressed in terms of

the flow rule of the yield function as,

P _ ad
€13 = Mg (3)

ij

where 8@/80ij is the partial derivative of the yield function with respect
to the aggregate stresses. The proportionality factor, A, can be obtained
by combining the equations (2) and (3) and the plastic strain-rates of the

porous aggregate can be shown as

- HP
1 £ Ym Dm o

P _
15 20 _ 30 (4)
aokl k1

where repeated indices k and 1 mean summation.

The nonlinear constitutive relationship for the porous aggregate can
expressed in terms of total strain-rate as sum of the elastic and plastic

components. The corresponding relationship is given by,

P
(1-£) Ym Dm a0

i %% T T30 O 30
Bokl k1l

_(d+y) . v
= 6 7 $

I Y (5)

where v and E are poisson's ratio and elastic modulus, respectively. The
above equation describes the porous aggregate for a given stress-strain

behavior of the matrix material.

The void volume fraction rate (f) of the aggregate consists of two
parts. The nucleation rate of voids (En) at various stages of the deforming
solid contribute to the current void volume fraction rate as the first part.
The second part is due to the growth (fg) of the already nucleated voids.
The growth law is easily obtained by equating the volume change of the voids
to the dilation as

o _ P P 2P
fg = (1 - £) (Ell + &, + 833) (6)
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There are few models at present, available in the literature to
approximately model the nucleation rate of the voids at room temperatures.
However, for high temperature applications, it is important to consider a
nucleation model based on an appropriate micromechanism, such as the inter-
granular cavitation around an inclusion (Ref. 5). For completion, in the
present work, the plastic strain controlled void nucleation model as proposed
by Goods and Brown, (Ref. 11) is arbitrarily considered. The particular form

used by Chu and Needleman (Ref. 12) is given by

. v 9 .
e S L )
sV2T

where s is the standard deviation of the distribution and ¥ is determined so
that the total void of volume nucleated is consistent with the volume fraction
of second phase particles. en is a mean equivalent plastic strain for

nucleation.

The total void -olume fraction rate is then expressed as

Y_pP o THm 1y (8)

= (1- f)(ep + ep + &Py +
33 /o7 ® s

To complete the description of the voided aggregate, it is now
necessary to describe the matrix material with an appropriate constitutive
model. For this purpose, the model developed by Bodner and Partom (Ref. 4)
based on state variable theory is considered. The main advantage of this

theory is its ability to describe the material response under various

loading conditions. The following equation describes the constitute
relationships in terms of second invariant of the strain-rate (Dg) to the

second invariant of the stress deviator (JZ)’ as

2 +1
D} = D’ exp[~(a5— ) =] (9
o
where DP = 1/2 &P &P, Here, &P, are the plastic strain-rate tensors of the
2 ij ij ij

matrix material, n is the strain-rate sensitivity parameter, Z is the
inelastic state variable, and Do is the limiting value of the plastic strain-

rate in shear.
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The evolution equation for Z is given by Bodner as

’ Z -1
. - Zy (pP1y* ___ 2
= =2 (1 =29 (D3J)7% - A (—5—)

1 1

2 (10)

where m, Zl’ Z2, r, and A are material constants. M is a parameter that
controls the rate of work hardening, Z1 and 22 are saturation values of Z,
and the value of Z corresponds to the complete non-work hardened conditiom,
respectively. The constants A and r are needed to describe the recovery

process of the material.
The main equation (9) can be written in terms of equivalent stress and

strain of the matrix material and it is given by

5P -
m

w|s

Dg Z.2n n + 1

exp[-({) " )] (11)
m

The equations (10) and (1l1) together complete the description of the matrix

material.

The nonlinear constitutive relationships for the compressible (porous)
material are described by equations (5) through (11), along with the
consistency condition for plastic loading (é’= 0). However, to demonstrate
the stress—-strain behavior of the aggregate, uniaxial stress-strain
relations can be obtained from the already derived governing equations. The
following section describes the aggregate and the matrix stress-strain

relations explicitly under uniaxial stress state.

3. UNIAXTAL CASE

The necessary equations to describe the voided aggregate under
uniaxial stress state condition can be deduced from the governing equations
(equations (1) through (11)). Uniaxial matrix plastic strain-rate (ég) can

be obtained from equation (11) as

2D
P _ o B 2n, n
e =~ x5/ D)) (12)
The corresponding matrix stress-rate can be obtained from the

definition of total strain-rate as sum of the elastic and plastic components

and it is given by
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. .p
Ym = E(em - em) (13)

The aggregate plastic strain-rates in the principal directions can be

written using equation (5) as

o @-D Y e
== — (14)
S A éi (H-0)
&2 G(20+H) (15)
P _ P
&y = &, (16)
where H=gq;q, £ Y Sinh £ and & = qZO/ZYm' 7
Here, O represents the uniaxial aggregate stress.
An expression for the void volume fraction rate can be obtained by
combining equations (14) through (17) with equation (8) as
P _
3(1-£)%H y_ &P L om” %ny2
L m m Y 5 (—)° .p
oCzor) T e s & (18)
sY2T

The aggregate stress-rate (J) can be obtained from the consistency condition
(4 = 0) for loading and it is expressed as

3 .
_—ZYm(qlcosh E—fq3)f + 0(20+H) Ym

= (20HH) Y (19)
m

The uniaxial stress-strain relationships for the aggregate can be
expressed through the total strain-rate as the sum of elastic and plastic

components and they are given by

5 (-0 Y ég
él=§+————-—5———— (20)
- <P (H-
e v, (70 Yy Oy (9 (21
2 E g(2c+H)
é3 = é2 (22)
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The equations (12) through (22) can be simultaneously solved through
numerical integration and the aggregate stress-strain response can be

computed for various matrix stress or strain-rate conditions.
4. RESULTS

The stress-strain behavior of the aggregate with voids is computed by
simultaneously solving the uniaxial equations through an appropriate numerical
integration. The computations are made for an imposed matrix under constant
stress or strain-rate conditions to facilitate comparing the reduced strength

(or stiffness) of the aggregate to that of the fully dense matrix material.

Since the material constants for describing the materials Rene' 95 and
IN100 at 650°C and 730°C, respectively, under complex loading conditions are
readily available, the stress-strain response of the porous aggregate is
calculated assuming that these materials represent the matrix materials in
this study. Apart from the arbitrarily chosen nucleation model as explained
in Section 2, for illustrative purposes, a simple nucleation criterion based
on voids being nucleated at the onset of plastic deformation, is assumed in
these calculations. The assumed value for the void volume fraction repre-

sents the initial void constant of the aggregate.

The void shape factors 41> 49> and dq that appear in the yield function
described by equation 1, can be determined based on (a) the values already
available in the literature and (b) the results obtained from the experiments
on sintered materials. The effect of various values of these constants on

the yield function is shown in Figure 1, for f = 0.15. As can be seen in

the figure, the yield function is shown as the variation of /53;/Ym with
respect to (Il/Ym) for a given value of f and the other constants. For

f = 0, the yield criterion becomes obviocusly independent of the hydrostatic
pressure (Il) and represents the von-mises yield criterion for an incompres-
sible solid. Whereas for f # 0, the yield functions represented by the
curves A or B show the dependency on the level of void contents. The curve
A represents the Gurson's yield function (q1 =4, = qqg = 1) while the curve
B is the yield function used by Tvergaard (Ref. 10) with q; = 1.5, qy = 1.0,

and q5 = 2. The experimentally obtained single point as shown in the

Experiments Conducted in Air Force Materials Laboratory, Wright-Patterson
Air Force Base, Dayton, Ohio.
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figure, represents the results of an uniaxial compression test on a sintered
material of void volume fraction, f, equals 0.15. It can be seen from these
results that the yield criterion based on the values of 93> Qo> and 3 which
are available in the literature, is significantly off from the experimental
result. However, when improved wvalues for ql, q2, and q3, obtained by trial
and error, were used, the theoretical predictions for f = 0.15 and £ = 0.25
were quite compatable with the experimental values at least for the case of

uniaxial stress state as :shown in Figure 2.

To demonstrate the effect of the various 475 99> and q3 on flow stress,
the uniaxial stress-strain curves of the porous aggregate for a constant
matrix strain-rate of 1.4 x lO'.3 sec“l are shown in Figure 3. These curves
clearly show the differences in the predictive stress levels by the three
sets of values chosen for these constants. However, in the present calcula-
tions, the improved values of 41> dp» and qq are used to describe the

porous material behavior under uniaxial stress-state.

The various levels of flow stress of a porous aggregate with IN100 as
the matrix material for different void contents are shown in Figure 4 using
the simple nucleation criterion. The dotted line corresponds to the flow
stress level of fully dense matrix material. The reduced strength of the
material due to the presence of ten percent void content can be seen from

this figure. The initially nucleated voids grow during the plastic

deformation according to the growth law represented by equation (6). The
increasing void volume fraction (f) normalized by the initial value fo is
shown in Figure 5 for the three values of fo’ corresponding to the earlier
Figure 4. It can be seen from the figure that the growth levels are almost
the same in these cases. Since the plastic strain levels under uniaxial
stress conditions are of the same order, the plastic strain-rate based growth

law predict the same order of growth.

To demonstrate the effect of void nucleation model on the flow stress,
solutions were obtained for the nucleation model discussed in Section 2.
The results for various nucleation strains are shown in Figure 6. For
Y = 0.05 and s = 0.01 (narrow range of nucleation strain), the curve
corresponds to e = 0.01 shows the entire nucleation to occur between A and
B. The rapidly reducing strength of the material due to the entire void

nucleation occurring in the narrow range, stabilizes beyond point B. The
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steady drop in the flow stress level later on depends mainly on the void

growth in the material.

For e = 0.05, the nucleation process starts at point C and the stress-
strain behavior of the aggregate is the same as that of the matrix due to
the absence of any void up to point C. The stress-strain curve for the
aggregate and the matrix material are identical for the case e = 0.1 due to
the absence of void nucleation up to the strain cerresponding to point D,
The variations of void volume fraction with respect to the aggregate strain
for e, = 0.01 and e = 0.05 are shown in Figure 7. The rapid increase in
f as shown by the curves between AB and CD are due to the nucleation of new
voids and the growth of existing voids. When the nucleation process is
completed over the narrow range of strain, the increase in void volume
fraction, later is due to the growth of the nucleated voids alone. The

rate of increase stabilizes beyond the points B and D as shown in the figure.

As an additional exercise, the effect of the standard deviation, s,
of the nucleation strain distribution on the flow stress for e = 0.01 and
Y = 0.05 is shown in Figure 8. It can be seen from the figure as the
distribution takes place over a broad range of strain (s = 0.05 and 0.1)
the decay in strength due to void nucleation and growth is less pronounced
with a steady decline. The corresponding increase in the void volume

fractions are shown in Figure 9.

The effect of strain-rate on the stress~strain response using the
simple nucleation model is shown in Figure 10. The response of the fully
dense matrix material (IN100) and also of the porous aggregate are obtained
through the numerical solutions for various matrix strain-rates (ﬁm). The
reduced strength of the material due to the presence of a low void content

(two percent) can be seen from this figure.

As an additional description of the modeling procedure the creep
response of the voided aggregate with a Rene' 95 matrix is demonstrated in
Figure 11, when the matrix material creeps at different stress levels
(Ym = 1206 and 903 MPA). The aggregate stresses are calculated for two
different creep stress levels applied to the matrix material. For the higher
matrix stress level, the stress in the aggregate is reduced due to five
percent voids in the material. However, for the lower stress (Ym = 903 MPA),

since the plastic flow has not yet initiated within the time shown in
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Figure 11 (1200 seconds), voids are not nucleated. Thus, both the matrix
and the aggregate with no voids creep at the same stress. Also, the
corresponding strain responses are obviously the same as shown in Figure 12.
Whereas the responses corresponding to higher stress, show the distinct
difference for two different values of void volume fraction (£ = 0.05 and
0.10).

Thus, it can be seen from these results that the response of a porous
aggregate to rate or time dependent loading conditions can depend on various
material parameters that appear in the yield function and as well as in the

nucleation model.
5. SUMMARY

The accuracy of modeling the porous aggregate behavior depends mostly
on the (a) yield function which characterizes the compressible yield behavior,
(b) description of the matrix material, and (c) nucleation model. It is
demonstrated in the present studies that an approximate yield function to
describe the porous aggregate can predict significantly different stress
levels which may be inaccurate. It is important to test the yield function

and its validity through carefully designed experiments under various stress

conditions. As an example, it is shown that the values of the shape factors
which appear in the yield function can be improved based on the experimentally
obtained stress state at yielding. However, the values selected in this
report based on two experiments may not be unique. Nevertheless, under
uniaxial stress state conditions, these values may better characterize the

yield function.

The improved characterization of the matrix material behavior under
complex loading conditions through various nonlinear constitutive theories
has been successfully achieved by several investigators. 1I1f the well defined
and accurately described matrix material models are appropriately built into
the constitutive models for the porous aggregate, that would substantiously
improve the characterization of the porous solid as demonstrated in the

present studies.

The description of the porous material through an improved yield
function and the matrix material model, may be accurate for a homogeneous,

isotropic material with randomly distributed voids, such as the sintered
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materials. However, for materials which were initially non-porous but
developed porosity at some stage of the deformation due to various micro-
mechanisms operating at the void nucleation site, the improved characterization
of the porous aggregate will then also depend on the models for describing
the nucleation process. The dependency of the flcw stress on the parameters
that describe the nucleation process is demonstrated for a model which was
arbitrarily selected for illustrative purposes. For high temperature
applications, it is important to select a model on a sound fundamental basis.
Unfortunately, a continuum mechanics approach in this area is still lacking
and needs more rigorous research efforts to model the complex nucleation
process. The growth process of the nucleated voids seemed to be more or less
temperature independent and also it is reasonably well established as a

process which depends on the plastic strains (Ref. 13).

In summary, the present studies demonstrate that the rate or time
dependency of the response of a porous aggregate can be incorporated into the
nonlinear constitutive behavior of a porous solid by appropriately modeling
the incompressible matrix behavior. It is also shown that the yield function
which was determined by a continuum mechanics approach must be verified by
appropriate experiments on void containing sintered materials in order to

obtain meaningful numbers for the constants that appear in the yield function.
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f 1s the Initial Value of f.

Dy is the Strain-Rate

in the®IN100 Matrix.



Fig. 5.

VOID VDLUME FRACTICON

1233,
1.2¢ T T T ) 1 T !
A C D
_%e_ = 0.1
n
1000, b N=0.05:
1. 16— — B
P e = 0.01
thi n
E o) 753, —
z 1. 12k — g i N
2 s
2
w
z (43
<} g
- - S20. -
u 1. 08— — v
o
w
e
o
> a. &
1.04 — 2sa. 7]
Y = 0.05
i s = 0.01
1.ac ! . B. 02 Lz é:7 Ls cs
e.co .02 .04 .06 .08 .10 ) ° ° °
STRAIN STRAIN
Variation of Void Growths With Respect to the Strain Fig. 6. Effect of Void Nucleation Model on the
in the Porous Aggregate for Different Initial Void Flow Behavior of the Voided Aggregate
Volume Fraction Levels. for D = 1.4 x 10-3 sec-l.
m
.03 T T I
1230, T T T
.05 -
s = 0.10
s = 0.05
1393, =
- s = 0,01
23 S 758. -1
Z
w
I
4
.g2— @ sea- 7]
.ot 250, =3
e, = 0.01
Y = 0,05
@. oo o. 1 1 1
¢ B.CO .02 « 84 .05 .C8 0. @ e2 .04 . C6 .08
STRAIN STRAIN
7. Effect of Nucleation Strain (e,) on the Fig. 8. Effect of Standard Deviation (s) of the

Growth of Void Volume Fraction with Respect
to Strain.

280

Nucleation Strain Distribution on the
Voided Aggregate Flow Stress for a Constant
Matrix Strain-Rate (D = 1.4 x 10-3/sec).
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TIME-INDEPENDENT ANISOTROPIC PLASTIC BEHAVIOR BY MECHANICAL SUBELEMENT MODELS™
Theodore H. H. Pian

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

The paper describes a procedure for modelling the anisotropic elastic-plastic
behavior of metals in plane stress state by the mechanical sub-layer model. In this
model the stress-strain curves along the longitudinal and transverse directions
are represented by short smooth segments which are considered as piecewise linear
for simplicity. The model is incorporated in a finite element analysis program

which is based on the assumed stress hybrid element and the viscoplasticity-theory.

1. INTRODUCTION

For time-independent elastic-plastic behaviors a very convenient model to
represent kinematic hardenfng is to use an assembiedge of elastic-perfectly-plastic
elements to represent the stress-strain relation which is approximated by a curve
with several piecewise linear segments. This model, which has been widely used
for numerical analysis of multiaxial elastic-plastic behavior is named mechanical
sublayer or overlay models [refs. 3,4,5]. For more general case including three-
dimensional solid, the method should perhaps be called mechanical sub element
method.

For plane stress problems the corresponding mechanical model is a laminated
plate with layers of elastic-perfectly-plastic materials of different yield
stresses. Differential equations for the solutions of plane stress elastic-plastic
and isotropic stress-strain relations has been obtained for model with two layers,

one of which is elastic and the other is elastic-perfectly-plastic [ref. 6]. The

*WOrk performed under NASA Grant NAG 3-33.
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equations are non-linear and for the case of uniaxial loading the resulting strain
hardening behavior will not be a straight line. Thus, for a material with uniaxial
stress-strain relation approximated by straight line segments, it is, strickly
speaking, not possible to obtain exact representation by a mechanical sublayer
described above. In Ref. 6, a relationship has been obtained between the ratio

of the initial tangant modulus and the elastic modulus and the thickness ratio of
the two layers. It is however, reasonable to assume that by using sufficiently
small segments a piecewise Tlinear model can be adopted.

Hunsakier et al. [ref. 5] have also obtained a corresponding relationship for
three-dimensional isotropic solids. In that case, for a material represented by one
elastic subelement and one elastic-plastic subelement, the resulting uniaxial stress-
strain relation will have Tlinear strain hardening behavior. The proportion of the

volume of the elastic-plastic element to the total volume V]/V is expressed simply as

vV T1-2v
By -3

Es

where E] is the elastic modulus and E2, thg tangent modulus. In this case, when
the uniaxial stress-strain relation is represented by linear segments a corresponding
subelement model can be constructed exactly.

The present paper is to extend the mechanical sublayer model to materials
with anisotropic plastic behavior. Again the plane stress problem is considered.
Finite element method for elastic-plastic analysis based on the viscoplasticity
theory and the stress hybrid model is used in conjunction with the present mechanical
subelement model. An example solution of a time-independent elastic-plastic problem

is presented.
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2. Mechanical Sublayer Model for Anisotropic Plasticity Problems

Figure 1 is a plate with two Tayers under plane stress loading. Layer 1 is
elastic-perfectly-plastic and is considered tranversely isotropic with yield stresses
Yx and Yy respectively along the longitudinal and transverse directions. Layer 2 is
elastic. The elastic constants E and Poisson's ratio v for both layers are identical.
The yield condition for layer 1 is governed by the Hill's generalized yield criterion

2

Crefe N2 ar N2 w2 _
f = [F(oX] Oy]) + G(Gy] oz]) + H(crz_l 0x1) + K cxy]]1/2_ S =0 (1)

where o = Yx under uniaxial loading along x direction. With yield stresses under
uniaxial loading along y and z direction equal to Yy, we can express the constants
F, H etc. in terms of the yield stresses and obtain the following yield conditions

for the plane stress problem

_ 2 2-1/2
f—[O -0 o] + a0 +a. 0 ] -Y_ =0 (2)
X Xy ¥ 2 S XYy X
where a= (Y /Y )2
Xy
= 2 3
ag = (Y /) (3)
The flow rule is
op_ ] 3
et =(o, -5 o)A
Xq X 2 ¥y
-p_ ] .
e = (a0, -50,)A (4)
Yy yio2 X
tp:
€xy1 o ny]
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Now, consider the behavior of the laminated plate under inplane loading
conditions. From testing tension coupons cut along the x and y directions, the
elasticmodulus for both direction is given as E] while the initial tangent moduli
are represented, respectively, by EX2 and Ey2 as shown in Figure 2. Let o and Oy
represent the average in-plane stresses, then the stress rate oy is

t

t
. _c _] . —2_=
o, =0, T *+O0 % 0 (5)

y N Yo
where t is the total thickness and t1 and t2 are the individual thickness. The

thickness ratio then is,

t Oy
%l = - _:__2_ (6)
2 g,
4
Here, layer 2 is elastic hence,
. E] . .
qyz = 1—v2 (ey +\)ex) (7)
From % = 0, we obtain,
5 (20 -0 )+0o (200, =0_)=0 (8)
X1 N N 1. X
Thus, at initial yield when Oy = Oy] = Gy2 =0
oy]
> =2 (9)
Xy
and from Eq. (4),
e P 2’ (10)
€ = =2
X1 4
We also have
. p _ . ] . -
£ = g, -+=