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PREFACE 

A Symposium on Nonlinear Constitutive Relations for High Temperature 
Applications, under the joint sponsorship of the NASA Lewis Research Center 
and the University of Akron, was held at the University of Akron on May 19-20, 
1982. Some seventy-five attendees and participants representing NASA, other 
Government agencies, universities and industries were at the Symposium. The 
purpose of this Symposium was to review the state-of-the-art in nonlinear 
constitutive modeling of high temperature materials and to identify the needs 
for future research and development efforts in this area. 

One of the specific goals of the NASA Lewis Research Center is to foster 
technological development of gas turbine engine structures. In this 
connection, it was recognized that considerable research efforts are urgently 
needed in the development of nonlinear constitutive relations for 
high-temperature applications. This need is stimulated by recent advances in 
high-temperature materials technology and new demands on material and 
component performance. The demands for better material performance have come 
from not only the aerospace industry but also the stationary power and 
automotive industries. Therefore, the intent of this Symposium was to bring 
together both the developers and users of nonlinear constitutive relations for 
exchange and quick dissemination of recent research progress and new 
technology in this area. 

The Symposium was organized into the following five sessions: 

I. Material Behavior 
II. Constitutive Modeling I 
III. Constitutive Modeling II 
IV. Numerical Methods 
V. Panel Discussion and Recommendations 

There were a total of twenty-one papers presented in the first four sessions. 
The papers (extended abstracts or abstracts where papers were not available) 
and the authors are grouped by session and identified in the Table of 
Contents. Following the technical papers is a summary of the panelists' 
remarks focusing on the identification of required future research and 
development in nonlinear constitutive relations for high temperature 
applications. 

We, the Organizing Committee, wish to express our appreciation to the session 
chairmen, authors and speakers, and panelists whose efforts have contributed 
to the technical excellence and success of the Symposium. We are also 
grateful to the staff and Mrs. Mary E. Chesrown, Assistant Director of the 
Institute of Civic Education at the University of Akron, for their relentless 
help before and during the Symposium. 

D. A. Ross 
T. Y. Chang 
R. L. Thompson 
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CORRELATION OF RUPTURE LIFE, CREEP RATE, AND MICROSTRUCTURE 

FOR TYPE 304 STAINLESS STEEL* 

R. W. Swindeman 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37830 

and 

J. Moteff 
University of Cincinnati 
Cincinnati, Ohio 45221 

ABSTRACT 

The stress and temperature sensitivities of the rupture life (tRJ and 
secondary creep rate (e s ) were examined in detail for a single heat of 
type 304 stainless steel (9T2796). Assuming that the rupture life (tR) has 
a power law stress dependency, we observed relatively small differences in 
the stress exponent (nR) over a broad range of stress and temperature. In 
contrast, large changes were observed for equivalent parameter (ns ) for 
secondary creep rate (e s ). As a result of these differences, the Monkman
Grant correlation was sensitive to stress and temperature below 650°C. 
Metallurgical studies based on light and transmission electron microscopy 
suggested that the temperature and stress sensitivities of es at tempera
tures below 650°C were related to features of the substructure not present 
at higher temperature. Specifically, the presence of a fine dislocation 
network stabilized by precipitates altered the stress and temperature sen
sitivities relative to what might be expected from high-temperature studies. 

INTRODUCTION 

Structural components in high-temperature service usually experience 
variable loading conditions. Hence to assure that premature failure will 
not occur, the design analyst must use some parameter for summing damage. 
For nonreversing stresses time-under-stress,1,2 creep strain, 3 and strain 
rate 4 are sometimes used to sum damage; for fatigue loadings, cycles-to
failure related to stress,S strain, 6 and work energy7 are sometimes used; 
and for creep-fatigue two or more damage parameters are sometimes used. 8 

One of the difficulties in developing damage concepts for time-de~endent 
failure is the need to verify that methods are valid for 10 9 s (3 x 10 h). 
Since fracture by creep or fatigue can be measured only once in a test, 
there is no direct way to measure damage without destroying the test speci
men. Verification of a damage accumulation model therefore requires a large 
commitment of time and testing equipment. Crack growth rates can be 
measured under varying conditions, but the existence of cracks and the 
control of their growth in pressure boundary materials are not consistent 
with design to prevent crack initiation. In contrast, strain rate can be 
measured, does not require the preexistence of a crack, and on the basis of 

*Work performed under DOE/RRT 189a OH048, High-TempePatupe StpuctuPaZ 
Design Methods. 
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the Monkman-Grant 9 correlation between m1n1mum creep rate and rupture life 
seems to be related to fracture. Consequently, several cumulative damage 
models as proposed by Majumdar, 10 Ostergren, 11 and Manjoine 4 use the strain
rate response to estimate damage and predict fracture. 

To place confidence in predictions that are based on strain rate as a 
measure of damage, it is necessary to establish that the stress and tem
perature dependences of the secondary creep rate (e s ) and the rupture life 
(tR) are similar. Further, it should also be demonstrated that this simi
larly persists for conditions for which fracture data are meager. 

This paper examines the stress and temperature dependences of es and 
tR for a heat of type 304 stainless steel on which a very large data base 
exists. We also examine the validity of the Monkman-Grant correlation and 
show how stress and temperature influences this correlation. Finally, 
metallurgical factors that influence creep rate and rupture life are 
discussed. 

DATA BASE AND ANALYSIS METHODS 

The data base consisted of several hundred tensile and creep-rupture 
tests, which covered times in the range 1 to 1.4 x 10 8 s and temperatures 
from 427 to 871°C. Data included 25-mm plate and 16-mm bar of a reference 
heat of type 304 stainless steel (9T2796). Although not used directly in 
the correlations, data on 51-mm plate extending to 2.2 x 10 8 s were of con
siderable value in estimating the behavioral trends at long times. 

Most of the data on which calculations were based have been published 
elsewhere. 12

- 14 In some instances engineering stresses were reported, while 
in others true stresses were reported. Our tensile stress data represent 
the saturation flow stresses obtained from a fit of the Voce equation to the 
true stress vs true strain data. 14 The "rupture life" in tensile tests 
represents the time between the ultimate strength and fracture. 12 The creep 
stress data represent true stresses obtained by multiplying engineering 
creep stress by the factor 1 + ep where ep is the inelastic strain about 
halfway through the test. 12 Below 650°C e was dominated by the plastic 
loading strain, and the stress changed by ress than 10% during the creep 
test. Above 650°C ep was dominated by the creep strain, which was in the 
3~O% range. 

The stress sensitivities of es and tR were evaluated with the assump
tion that power relations existed between both ~s and a/E and tR and a/E. 
Thus, for any isothermal pair of points at (al/E es ) and (a2/E,~s ), the 

, 1 2 
stress exponent for creep rate, ns' was calculated: 

• • • • • • • • • • • • • (1) 

Similarly, the stress exponent for rupture, n& was calculated: 

"In( tRi t R1) 

"In(a2/ a l ) 

2 

• • • • • • • • • • • • • (2) 



Data pairs were read from visually smoothed curves through the experimental 
points. The two stresses, al/E and a2/E, were generally spaced about 0.15 
log cycles apart. 

RESULTS 

Contour Maps 

Figure 1 shows a contour map of the variation in the stress exponent 
for rupture (nR) with the modulus-compensated stress (a/E) and the tem
perature (T). Over most of the range where data are available nR falls 
between 6 and 8. A region also exists around 600°C for alE less than 10- 3 

where nR appears to increase above 8. The stress exponent for creep rate, 
ns ' exhibits a more complicated pattern as a / E and T are varied. This pat
tern is shown in Fig. 2. At temperatures above 600°C ns usually falls in 
the range 6 to 8. Thus, ns and ns agree. Higher ns values are observed 
for high alE, and this pattern is also consistant with the trend for nR' 
Below 650°C the ns values differ from the nR values. For example, between 
540 and 600°C the ns values are in the range 8 to 10 compared to ns values 
in the range 6 to 8. Below 540°C and at low stresses the ns values seem to 
decrease, but no data exist for nR; hence, no comparison is possible. 

Correlations Between Strain Rate and Rupture Life 

Comparison of data in Figs. 1 and 2 leads us to conclude that the 
stress and temperature dependencies of es and tR are similar above 650°C, at 
least over the range where data are available. Thus, it should be possible 
to use es as a parameter to sum damage for varying stresses. It is equally 
apparent that the stress and temperature dependencies of es and tR are 
dissimilar below 650°C. Even so, it might be possible to sum damage with 
es if we can understand the functional relationship between es and tR' If 
we assume that both es and l/tR can be represented by power law expressions, 
then we can eliminate stress and show that for isothermal conditions: 

t a: '-m R e s ••• • • • • • • • • • • • • • (3 ) 

where m is the slope of the Monkman-Grant plot and is equal to the ratio nR/ns' 
In Fig. 3 we plot log tR vs log 'es for temperatures of 816, 760, 704, 649, 
593, 538, and 482°C. Data at the two highest temperatures plot as a 
straight line with a slope close to -1.0 (Fig. 3, Curve A). This trend 
covers six decades of es and tR' Data for 704°C more-or-less follow a trend 
similar to data at higher temperatures (Fig. 3, Curve B). 

Data for 649°C fall near Curve C in Fig. 3. Here the data at high 
es follow the m = 1.0 trend, but for rates below 10- 5/s the slope decreases 
slightly and is closer to -0.97. The data base at 593°C is very extensive 
and covers approximately ten decades of e s (Fig. 3, Curve D). The curve 
starts out with a slope near -1.0 then shifts to a slope of near -0.88 until 
es is 10-8 /s. Below this es the slope decreases precipitously and around 
10-10 /s the value of m is 0.5 or less. The large scatter in the data is 
attributable to grain size variations in the material. Finer grain sizes 

3 



(80 J1 m) lead to greater rupture lives than coarser grain sizes (l80 J1m). 
Relative to the high-temperature Honkman-Grant Curve A, Curve D at 593°C has 
shifted downward by a factor of two at high strain rates and considerable 
more at very low strain rates. 

Data for 538°C are plotted in Fig. 3 and fall near Curve E. Here we 
see that m = 1.0 for high es and 0.83 for lower strain rates. If the 
trend continued the Honkman-Grant curve for 538°C would intersect the curve 
for 593°C at a strain rate around 10- 10/s. No data are available to verify 
this. Difficulties occur in defining the ~s values at 482°C because the 
creep curves have tertiary creep character. Hence, the data plotted 
along Curve F in Fig. 3 for 482°C should be considered as tenuous. Over 
much of the data range m is near 0.75 at 482°C. Compared to the high
temperature Honkman-Grant Curve A, the curve at 482°C is displaced toward 
lower tR by more than a decade at low strain rates. 

In summary, at high strain rates (10-4 to 10- 1/s) the log tR vs log 
es plots follow the m = 1. 0 trend for all temperatures, but there is a 
small decrease in tR with decreasing temperature for the same es' Assuming 
that nR = ns at high es values, it follows that the decrease in tR is asso
ciated with a decrease in the post-uniform strain in the tensile tests with 
decreasing temperature. At intermediate strain rates (10- 9 to 10- 4/s 
the log tR vs log e s plots fan out, with m decreasing and tR decreasing 
with decreasing temperature for the same es' This implies that nR is less 
than ns' which is consistent with the contour maps shown in Figs. 1 and 2. 
Very low-strain-rate data at 593°C exhibit low n values, but we do not 
know whether the other curves bend over. This is important from an engi
neering viewpoint since most of the creep-rupture damage is accumulated at 
strain rates in the range 10-11 to 10-8/s , while most fatigue damage is 
accumulated at rates in the range 10-6 to 10- 5/s. Thus, service conditions 
often enter into the region of poorly defined behavior. 

An alternative approach to the use of strain rate as a parameter in 
damage accumulation is the linear strain parameter. This is defined as the 
product estR and is sometimes called the "plasticity resource." 15, 16 
Whereas the Honkman-Grant approach attempts to "predict" rupture from the 
"known" strain rate, the linear strain parameter is not predictive since 
both the ~s and tR must be known to evaluate the parameter. The parameter 
estR is highly sensitive to differences in the stress and temperature sen
sitivities of es and tR' Assuming power law behavior: 

Hence, a plot of log ~stR vs log alE will define a curve with a slope that 
reflects the difference ns - nR' Data are plotted in Fig. 4. Here we see 
that at high temperatures the isothermal data fallon horizontal lines. 
This implies that ns = nR' At lower temperatures data fallon lines that 
exhibit slopes between 1 and 2. At low stresses the data trend is not well 
defined, but there is some evidence at 593°C of a very steep slope. The 
linear strain parameter is highly variable with stress and temperature, and 
its "predictive" capabilities for very low stresses are questionable. 
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Metallurgical Features 

The features of the metallurgical substructure (Figs. 5-8) are more-or
less consistent with the observed mechanical behavior. In the region of 
stress and temperature where ns = nR' subgrains form (Fig. 5) and precipi
tate when present consists of large and blocky particles. Matrix carbide 
particles exceed 0.1 ~m (Fig. 6), and grain boundary carbide particles are 
0.5 ~m in size (Fig. 7). Failure is always intergranu1ar and initiated at 
triple points and twin grain boundary intersections. At the lowest stresses 
we suspect that microvoid formation and coalescence are active, but we have 
not studied them quantitatively. Below 650°C the evolution of substructure 
is complex, and this complexity probably produces the variation of ns with 
stress and temperature. At high stresses cells generally form and grain 
boundary carbides are often present. These carbide particles quickly grow to 
a size in the range 0.1 to 0.2 ~m. Matrix carbides may be absent or rela
tively fine «0.05 ~m). Failure is predominantly intergranu1ar with wedge
type cracks nucleating at grain boundary triple points. When alE values 
fall below 0.001 no cells or subgrains form. Rather, the substructure con
sists of a fine network of dislocations perhaps stabilized b~ the fine 
distribution of carb~de, as suggested by Hopkin and Taylor. 1 The change in 
dislocation density appears to be about 50% higher than for comparable 
alE values at higher temperatures (Fig. 8). Large grain boundary carbide 
particles (0.1 ato 0.4 ~m) are present, and failure is intergranu1ar with 
wedge-type cracking. At stresses below the range where rupture data are 
available, the substructure consists of coarse dislocation networks 
decorated by a fine precipitate. This is essentially the same substructure 
that developed in simply aged material. 18 Below 510°C matrix carbides are 
not observed to 36 Ms, and even grain boundaries are relatively free of 
precipitates. Again, failure is initiated by wedge cracks at grain boun
daries, but often these cracks are blunted by additional plastic deformation 
in the final stages of creep rupture. Thus, the transgranu1ar creep rupture 
described by Ashby and coworkers I9 ,20 dominates. 

Cracking patterns were studied in approximately 50 specimens. Data 
were obtained in several categories including crack density, ratio of the 
number of triple point cracks to total cracks, ratio of crack length to 
grain boundary length, and the orientation angle between the crack and the 
stress axis. ~~st of the data were obtained b~ Bhargava, who used proce
dures developed by Nahm, Michel, and Moteff. 2I , 2 

No cracks were observed in specimens with less than 3% total strain, 
and when cracks were present both the crack density and the crack length 
increased with creep strain. The orientation angle between the cracks and 
the stress axis increased with decreasing strain rate and was usually in the 
range 50 to 80°. Grain boundary migration was sometimes observed above 
593°C, while recrystallization was sometimes observed above 704°C. These 
observations are consistent with literature data. 22, 23 

DISCUSSION 

The strong stress and temperature dependencies of log tR vs log ~s and 
log 88 tR vs log alE are not unique to heat 9T2796. Indeed, we have analyzed 
data on two other heats of type 304 stainless steel and find similar trends 
at 593 and 649°C. To some extent the rupture life is influenced by the pre-
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cipitation of the M23C6 carbide, and this influence shows up as a slight 
cusp in the log tR vs log a curve. I2 However, the variations in the stress 
and temperature dependencies of tR are not nearly as severe as the 
variations for es. The reasons for high ns values around 600°C are not 
altogether clear. One possibility is that the precipitation-stabilized 
dislocation network acts in much the same way as precipitation hardening. 
If so, we could speak of an internal stress, ai, which is relatively 
constant for a given temperature. Then ~8 in terms of an effective stress 
is 

where [(a-oi){E] is the effective stress (Lagneborg,24 Wilshire, 25 and Nix 
and coworkers 6). As the carbide particles grow in size and particle 
spacing increases, 0i could change. If it does not, then when the applied 
stress is below ai' the secondary creep rate would be zero (if we ignore the 
contribution of grain boundary sliding, diffusional flow, and climb over the 
particles). Creep would then consist of only transient and tertiary 
components. However, at 649°C subgrains sometimes form and the matrix car
bide particle size is large. Thus, diffusion and thermal recovery proceed 
rapidly, and the possibility of hardening as outlined above is questionable. 
Tanaka and Shinoda 27 link the creep strength at 650°C to the carbide 
particle size and spacing, which suggests that the carbide con-
tinues to influence 0i. Our data on carbide particle sizes agree well with 
weak heats of 18-8 stainless steel studied by Tanaka and Shinoda 27 and 
Etienne, Dortland, and Zeedijk. 28 However, we emphasize that it is not the 
precipitate alone that produces the hardening. We say this because, as 
pointed out by Barnby29 and Sikka et al.,18 the results from creep tests on 
aged materials that develop precipitates show either a loss or no change in 
creep strength relative to the nonaged condition. Thus, dynamic precipita
tion gives rise to the strengthening effect of 0i. Precipitation kinetics 
with or without strain is qualitatively understood in type 304 stainless 
steel. We know, for example, that the matrix carbide develops more rapidly 
under monotonic and cyclic strains than under simple aging. We do not know 
whether the dislocation substructure produced by dynamic precipitation is 
different from the substructure developed by creep testing aged material. 
This would be of considerable interest. 

An alternative explanation for high ns values could be solid-solution 
strengthening, as proposed recently by Miller and Sherby.30 Here the solid 
solution is produced by a Cottrell atmosphere drag force on dislocations. 
The magnitude of the effect is a function of a temperature-compensated 
strain rate ·es/e, ",here e is given by exp(-Q/RT) and Q is the activation 
energy associated with the species that produces the Cott~ll atmosphere. 
Hiller and Sherby30 propose a "drag" rather than a "friction" strengthening 
effect. lIence, instead of Eq. (5) we have 

where 0D is the strengthening effect due to drag. This is a very powerful 
modification, since it is possible to let 0D(T,es ) reflect interstitial, 

6 



substitutional, and interaction solid-solution hardening effects. It is 
also possible to introduce a dependence of aD(T,es ) on the total deformation 
as well. With this much flexibility the complex variation of ns could be 
modeled to any degree of accuracy. If we restrict ourselves to only one 
solution strengthening mechanism, then by use of the treatment outlined by 
Miller and Sherby,30 ns should be a unique function of alE and not vary with 
temperature for constant alE. If we assume that more than one solution hard
ening mechanism is present and that Eq. (6) could be used to represent es ' 
then we would expect that the slope of log tRvs ~ might return to -1 at 
sufficiently low stresses. Similarly, the linear ~reep component 
estR should always exhibit nonzero values and perhaps even increase at low 
stresses. Eventually, new deformation mechanisms and failu£e mechanisms may 
enter the picture, as suggested by Ashby and coworkers. 19,2 However, it is 
beyond the scope of our experimental data to assess these new problems. 
Nevertheless, Morris and Harris 31 recently suggest that a deformation 
"mechanism based on dislocation locking by solute atom complexes" occurs in 
type 316 stainless steel around 525°C. Hence, apparently more data are 
being obtained for this temperature range. 

CONCLUSIONS 

1. Above 650°C the stress and temperature dependences of the secondary 
creep rate (~s) and the rupture life (tR) are similar. The product ~stR is 
relatively constant, and the exponent in the Monkman-Grant relation is 
close to 1.0. These observations apply to at least 4 x 10 6 s. 

2. Below 650°C the stress and temperature dependences of ~s and 
tR often differ. The product ~stR decreases stress and decreasing 
temperature. The exponent in the Monkman-Grant changes from 1.0 toward 
zero as temperature and es decrease. These observations apply in the range 
104 to 10 8 s. 

3. The fact that es-tR correlations are stress and temperature sen
sitive below 650°C is due primarily to changes in the es behavior rather 
than in the rupture mechanism. Changes in the ~s behavior could be attri
buted to either a high internal stress, ai, produced by the development or 
precipitation-stabilization dislocation network or to a somewhat complex 
solute hardening mechanism. 

4. Although grain boundary carbide particle sizes and crack densities 
change over our range of stress and temperature, there was no evidence to 
indicate that these features of microstructure greatly influence the stress 
and temperature dependence of the rupture life. 

5. Above 650°C es can be a parameter for a damage accumulation model. 
Below 650°C ~s can be used to sum damage over the range of stress and times 
where the relation between es and tR is known. 
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TENSILE AND COMPRESSIVE CONSTITUTIVE RESPONSE OF 
316 STAINLESS STEEL AT ELEVATED TEMPERATURES* 

S. S. Manson and U. Muralidharan 
Case Western Reserve University 

Cleveland, Ohio 44106 

G. R. Halford 
National Aeronautics and Space Administration 

Cleveland, Ohio 44135 

ABSTRACT 

It is demonstrated that creep rate in compression is lower by factors of 
2 to 10 than in tension if the microstructure of the two specimens is the same 
and they are tested at equal temperatures and equal but opposite stresses. 
Such behavior is characteristic for monotonic creep and conditions involving 
cyclic creep. In the latter case creep rate in both tension and compression 
progressively increases from cycle to cycle, rendering questionable the 
possibility of expressing a time-stabilized constitutive relationship. 

The difference in creep rates in tension and compression is considerably 
reduced if the tension specimen is first subjected to cycles of tensile creep 
(reversed by compressive plasticity), while the compression specimen is first 
subjected to cycles of compressive creep (reversed by tensile plasticity). In 
both cases, the test temperature is the same and the stresses are equal and 
opposite. Such reduction is a reflection of differences in microstructure of 
the specimens resulting from different prior mechanical history. If specimens 
of identical microstructure are tested in tension and in compression, large 
differences in creep rate are again evident, whether that microstructure was 
developed by prior loading in tensile creep/compressive plasticity or by 
tensile plasticity/compressive creep. The significance of the differences in 
creep rate under tension vs. compression, as related to the development of 
constitutive relationships for creep-fatigue problems, requires further study. 

Little research has been conducted to explain the physical basis for this 
behavior. Several speculative reasons are offered, but require verification. 

*This work was performed under NASA Grant NAG3-46. 
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INTRODUCTION 

It is common to assume that the creep characteristics of metals in 

compression are similar to those in tension. Such an assumption derives from 

the fact that the time-independent deformation characteristics in tension and 

compression are similar. Very few experimental programs have, however, been 

conducted to determine the validity of presupposing similarity of creep charac

teristics. 

In the course of our studies of Strainrange Partitioning over the past de

cade it has become clear to us that the differences between tensile and 

compressive creep rates at the same stress level can be appreciable, at least 

for 316 stainless steel, which we have investigated most extensively. The ear

ly tests in 1971 [lJ on cyclic creep were very revealing in this respect. 

These tests will be discussed later in this report. Loading was first in ten

sion, allowing creep to develop a pre-specified strain. The stress was then 

reversed to a compression of equal magnitude, and this stress was maintained 

until the compressive creep strain completely reversed the tensile strain. In 

many cases the time required to produce the compressive creep strain was as 

much as a factor of three or more higher than that to develop the tensile creep 

strain. This long time was, in fact, the basis for conducting what turned out 

to be the first cp test (in Strainrange Partitioning terminology [2J) when an 

attempt was made to reduce the unacceptably long times required to reverse the 

tensile creep by imposing much higher compressive stress which reduced the re

versal time essentially to zero. 

14 



In addition to the experience with the cyclic creep tests, we have ob

served in a number of other test programs that the compressive creep rate at a 

given stress level is lower than the corresponding creep rate at an equal ten

sile stress. It is the purpose of this paper to outline the results of some of 

these experiments. Though the difference between tensile and compressive creep 

strain rates is not necessarily of great importance in many aspects of formula

tion of the constitutive relations discussed in this Conference, it may be of 

significance in some cases, as will be illustrated later. 

The micromechanistic reasons for the differences in creep rates have not 

been extensively investigated; in this report we offer several speculations 

which, of course, require verification. 
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EXPERIMENTS INVOLVING DIFFERENCES BETWEEN TENSILE 

AND COMPRESSIVE CREEP RATES 

The following discussion relates to observations wherein appreciable 

difference was observed between tension and compression creep rates. Although 

most of the results shown involve AISI 316 stainless steel,·we have also ob

served the effect in a limited number of other materials, which leads us to 

speculate the phenomenon is a general one, the magnitude of the effect varying, 

of course, among materials. 
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A. CYCLIC CREEP RUPTURE TESTS 

a) Background 

Reference to these tests has already been made 1n the Introduct10n. 1 hey 

were 1nitiated in an effort to improve the time-and-cycle approach for treating 

creep-fatigue, as discussed in Ref. 1. In this approach creep damage is taken 

as the ratio of time at which a given stress and temperature is imposed divided 

by the creep-rupture time at the same stress and temperature. Because the use 

of monotonic creep-rupture tests often gives poor results when so applied, and 

in recognition that creep-fatigue tests involve cyclic variations of stress, 

our hypothesis was that cyclic creep rupture tests would produce improvements 

in predictions made by this method. Reference 1, in fact, demonstrates the 

validity of this hypothesis. 

The type of test adopted for obtaining cyclic creep rupture tests is shown 

schematically in Fig. 1. The loading was generally started in compression to 

insure that the stress level chosen would not immediately produce a run-away 

creep strain. As shown in Fig. l(a) the selected stress was held constant un

til a specified total strain was reached, usually of the order of 1 to 2%. The 

time required is shown as AB in Fig. l(a), and the strain pattern is shown by 

the curve DAB. At pOint B the stress was reversed to tension, and this stress 

was held constant until an equal tensile strain was reached. The stress and 

strain pattern during this period are shown as BCD in Figs. 1(a) and 1(b), 

respectively. The pattern of reversal of equal stresses and strains in tension 

and compression was repeated successively as shown in Figs. l(a) and l(b) for 

as many cycles as were required to rupture. The hysteresis loop followed in 

all cycles was essentially DABCDA of Fig. l(c). 
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The results of these tests are shown in Fig. 2, representing a plot of 

stress versus rupture time, as in conventional creep-rupture plots. Monotonic 

creep-rupture is shown by curve M. When only the tension time of the test is 

used (neglecting the reversal time in compression), the results are shown by 

curve N. In the analyses of Ref. 1 we found good agreement between predictions 

and experiments when several types of creep-fatigue tests were analyzed using 

,the creep rupture curve N in the "time-fraction" terms. The total time curve 

P, which includes the compression time, did not prove as useful as curve N in 

the analysis, and its development required excessively long times. 

As can be seen from Fig. 2, factors as high as 5 or more existed between P 

and N. In order to minimize the test time a type of loop shown in Fig. 3 was 

developed. The compressive stress pattern BCE was introduced, reversing the 

creep strain AB by only essentially instantaneous plasticity. Thus the loop 

ABCDA (essentially what was later termed a cc loop in SRP terminology) was re

placed by ABCEDA, later recognized as a cp loop (in the same terminology). 

While a small effect was produced on the tensile time creep-rupture curve N in 

Fig. 2, the curve so obtained for the cyclic creep rupture representation of 

the material was about equally suitable for creep-fatigue analysis by the time 

and cycle fraction method. Test time was, however, appreciably reduced. 

b) Comparison of tension and compression creep rates 

Since the tensile and compressive stresses were the same in the cc loops, 

and since the temperature was held constant, the results of these tests provide 

direct data for comparison of creep rates under the two loading conditions. 

Some of the data used are shown in Fig. 4 which is a scale plot analogous to 

the schematic of Figs. l(a) and l(b). Fig. 4 shows two effects on creep rate. 
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~irst, it is noted that both tension and compression creep rates vary as a 

function of time (or applied cycles). The time required to complete the first 

cycle is nearly a factor of 10 longer than the time required to complete the 

90th cycle in this test which ran 98 cycles to cause rupture. In each cycle 

the time required to complete the tension creep is considerably shorter than 

the time required to complete the compressive creep of equal magnitude. Thus 

there are two major effects: the relation between the tensile and compressive 

creep rates in any single cycle, and the relations among the tensile and 

compressive creep rates in successive cycles. 

The complete analysis of results shown in Fig. 4 is given in Fig. 5. Here 

both the tension and compression creep rates are plotted as a function of cycle 

ratio. It is clear from this figure that both the tensile and compressive 

creep rates increase as cycle ratio increases, varying by as much as a factor 

of 10 from the first cycle to the last few cycles. Similarly, it is clear that 

. the tensile creep rate is higher than the compressive creep rate in each cycle. 

lhe compressive creep rate is, on average, about 1/3 as high as the tensile 

creep rate. 

An addititonal test which shows similar results is shown in Fig. 6. This 

tigure also clarifies how creep rates were determined without introducing error 

associated with cross-sectional changes that are different in tension and in 

compression. Figure 6(a) shows the hysteresis loop. By measuring the tensile 

creep rate at point E where the strain is zero, and the compressive creep rate 

at point F where the strain is also zero, true creep rates are determined, 

since the cross-sectional areas were exactly the same at the two points in the 

cycle. The creep rates are shown in Fig. 6(b). The tensile creep rate is 
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again seen to be two to three times as high as compression. Although the 

steepness of rise in creep rate in the later cycles gives the illusion that the 

two curves are approaching each other, the difference by a factor of two to 

three persists until near-failure, as can be determined by measuring vertical 

distance between the two curves. Since the vertical scale is logarithmic, this 

constancy of vertical displacement implies a constant ratio between the two 

values. 

c) Significance of results 

These results show not only that creep rate in tension differs from that 

in compression, but that both rates vary significantly during the lifetime, 

even for this simple repetitive loading pattern. Attempts to develop constitu

tive equations that will be applicable throughout the life should be in harmony 

with this simple observation. 

On the other hand, it should be pointed out that stabilization has readily 

been achieved in many SRP strain cycling tests involving creep in only one 

direction. Thus \~hile some caution is required in seeking constitutive rela

tions involving reversed creep, the more practical applications in which the 

major creep component occurs only in one half of the cycle (tension or compres

sion) does not seem to involve this complication. 

B. CONSTANT LOAD TESTS 

Another series of tests we have conducted in which differences in tensile 

and compressive creep rates have been observed relate to ordinary static creep 

under constant load. The results are described below. 
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a) Specimen Stabilization 

In these tests the specimens were first stabilized relative to cyclic 

plastic strain by the scheme shown in Fig. 7. The strain amplitude was first 

gradually increased to 1% while cycling at a frequency of 0.20 Hz. Then 30-40 

cycles of the 1% strain amplitude was applied, after which the strain amplitude 

was reduced during cycling in a manner symmetrical to the forward-loading. The 

cycles at constant ~ 1% strain stabilized the material and established a re

petitive hysteresis loop, similar to the manner a material is normally stabil

ized in room temperature fatigue to establish a cyclic stress strain curve. 

Such curves do not significantly reflect the hardening or softening charac

teristic of the early loading cycles. The stabilization was initially intro

duced because the intended purpose was to develop a constitutive creep model 

for the material for later use in creep-fatigue analysis. Thus it was thought 

appropriate to decouple the cyclic creep effects from the cyclic plasticity ef

fects. In the present discussion we are concerned only with the static creep 

behavior of the stabilized material. 

Fig. 7(b) shows the hysteresis loops developed during the increasing am

plitude straining (continuous lines), the stabilized hysteresis loop (heavy 

line), and the decreasing amplitude straining (dotted lines). It is clear that 

in the final state the net stress and strain are both zero. Thus the creep 

tests which follow are on specimens which have neither residual stress nor 

residual strain nor do they have a memory of prior straining in one particular 

direction. Since the stabilization cycling is very rapid, there is essentially 

no creep damage on the test specimens. Also, since the specimen can withstand 

about 15 such blocks as shown in Fig. 7(a), the amount of fatigue damage is 
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also small. 

b) Correction for cross-sectional area changes 

Typical creep curves obtained are shown in Fig. 8 which are for a nominal 

18 ksi stress in tension and compression at 1300F. While the creep curve OAB 

in tension is clearly higher than that in compression, part of the difference 

is due to cross-sectional area changes rather than inherent differences in 

creep characteristics at the two stress states. In tension the cross-sectional 

area continuously decreases as the strain decreases. Thus, for the constant 

load (nominally 18 ksi for the original cross-sectional area) the true tensile 

stress is continuously increasing. 

The compression creep curve OA'B' involves an increasing cross-sectional 

area which reduces the true compressive stress. 

If we assume that creep rate at constant temperature is proportional to a 

power law of stress m we can correct the tensile creep rate at a st~ain £ ~ 

dividing by (1+£)m to obtain the rate that would have been observed if the 

stress had been kept constant by reducing the load progressively. Similarly, 

for the compressive strain the creep rate must be divided by (1_£)m to obtain 

the appropriate strain-independent creep rate. 

c) Test results 

Figure 9 shows the results for tension and compression for a number of 

creep tests conducted at several stress levels in both tension and compression. 

Approximate straight lines can be drawn through the test results when steady 

state creep rate is plotted against stress on logarithmic scales. Thus a power 

law exists between the two variables. As seen in the figure strain rate for 
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both tension and compression vary as approximately the 11th power of stress, 

the multipliers being different depending on whether the loading is tension or 

compression, and whether the cross-sectional area correction is applied or not. 

However, even \"hen the correction is applied, the creep rate in tension is 

about a factor of 5 higher than in compression. The "engineering" values, for 

which no correction is made, show differences of about a factor of 7. 

d) Significance of results 

These results show that, at least for 316 stainless steel at 1300F, it is 

inappropriate to develop constitutive relations based on the assumption that 

tensile creep rate and compressive creep rate are equal at the same stress and 

temperature. However, they also sho\'/ that creep rate varies as the 11th power 

of stress. Thus, to maintain a creep rate in compression equal to that in ten

sion it is necessary to increase the compressive stress by only a small amount. 

If, for example, the creep rate at a tensile stress of 40 ksi is to be repro

duced as an equal value under compression, the compressive stress need only be 

increased to 46.40 ksi. When tests are conducted which are strain-controlled, 

forcing equal tensile and compressive creep rates will cause the compressive 

stress to be higher than the tensile stress (16% in the present illustration). 

No reversed creep was involved in these tests. How the results would be 

affected by the presence of such creep requires further study. But from the 

results of Section A it is speculated that a significant effect could develop. 

Constitutive relationships for application to cyclic creep and plasticity might 

require appropriate recognition of this phenomenon. 
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C. THERMOMECHANICAL LOADING TESTS 

Applications involving simultaneous variation in stress, strain, and tem

perature, commonly called thermomechanical loading, are among the most impor

tant cases for which constitutive modeling is required. Because a cooperative 

program between Case Western Reserve Uni vers i ty and NASA-Lewi sis currently 

underway, it is appropriate to include here some of the results which are per

tinent to the question of the relation between tensile and compression creep 

characteristics. 

a) Tests in progress 

Figure 10 shows some of the control patterns of tests that are in pro

gress. These tests use AISI 316 stainless steel specimens, not, however, sta

bilized according to the pattern of Fig. 7. In one type of test, Fig. lOa, the 

strain and temperature are cycled in-phase, high temperature and tensile stress 

being achieved simultaneously. Such a loading usually develops cp type of 

strain because the highest tensile stresses occur while the temperature is 

high, causing creep, while the highest compressive stresses occur when the tem

perature is low so that no compressive creep occurs. In the second type of 

loading the strain and temperature are out of phase, producing net compressive 

creep because the temperature is high only when stress is compressive. 

b) Creep rates during actual cycling 

Ideally, it would be desirable to compare the creep rates of the specimens 

at the same temperatures and at equal but opposite stresses at appropriate 

pOints in the in-phase and out-of-phase cycling where such conditions develop. 

Unfortunately, such conditions do not develop for the very reason that compres-
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sive creep response differs from the tensile creep response. This fact can be 

seen in Fig. 11 which shows the stresses developed at each temperature during 

the in-phase and out-of-phase tests. If tensile and compressive creep response 

were similar, the two curves would be mirror images of each other with respect 

to the horizontal axis. The fact that the compressive stresses reached are 

higher than the tensile values, verifies that creep rates at a given stress and 

temperature are lower in compression than in tension. Thus, to maintain the 

equal strain rates imposed, a slightly higher stress develops during the out

of-phase loading tests, as is clear from Fig. 11. From this figure it can be 

seen, then, that it is not possible to compare directly specimens taken from 

each of these tests when they are at the same temperature and at stresses which 

are equal but of opposite sign. 

By writing analytical relations for creep rates in the two tests in terms 

of stress and temperature, it is possible, however, to calculate the creep 

rates at the same stress in tension and compression. Several forms of consti-

tutive relationships have been studied; we consider here only the Simplest type 

taken in the form of the Arhenius equation 

6H 
• A m - RT (1) E = a e 

Analyses were made using the in-phase data only, the out-of-phase data only, 

and combining all the data into one correlation. A complete discussion of all 

the results will be published when the program is completed; the tentative 

results pertinent to the current subject will be discussed only briefly. 
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Using the common formulation of all the data, including both the in-phase 

and out-of-phase results, the equation becomes: 

'55 • (123.832)010 
exp ( -18~633 ) 

where 0 = stress, ksi 

T = temperature, degrees R 

~ss= creep rate per sec. 

(2) 

Fig. 12 shows the correlation between the experimental creep rates measured in 

both the in-phase and out-of-phase tests and the computations based on Eq. (2). 

The agreement is quite good, suggesting a common constitutive relationship for 

both tension and compression creep rates as a function of stress and tempera

ture. While this result is very satisfying from the analyst's view of desiring 

to neglect differences between tensile and compressive constitutive behavior, 

it seems to negate the tindings about the differences discussed. In order to 

clarify the apparent discrepancy additional tests were conducted as discussed 

in the next section. 

c) Creep rates at approximately constant microstructure 

The microstructure of a specimen sampled at a point of tension during the 

in-phase loading can be considerably different from the microstructure of a 

specimen sampled from an out-of-phase test at the same temperature (and approx

imately equal and opposite stress). Thus, although it is fortuitous that the 

same equation can be used to determine the strain rate of both specimens, the 

equality of tensile and compressive creep rates does not negate our general 
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finding that compressive creep rate is lower than the tensile creep rate at the 

same temperature and equal but opposite stress. To determine if this finding 

is general, and still valid for material in thermomechanical loading, it is 

necessary to conduct tests in tension and compression of material in the same 

microstructural state. Ideally, a scheme such as shown in Fig. 13(a) would be 

suitable for this purpose. The hysteresis loop represents the path, for exam

ple, of in-phase loading. At point A the thermomechanical loading is discon-

tinued, and temperature and stress are "frozen" and maintained constant at the 

value achieved at this point. By holding the stress constant, creep strain oc-

curs along AB as a function of time as shown in Inset I of Fig. 13(a). The 

steady state creep rate which develops is then characteristic of the tensile 

creep behavior of the material in its microstructural condition at A. To ob-

tain the compressive creep characteristic we should, ideally, use a second 

specimen, stabilize the loading loop by applying the same number of cycles, 

stop again at pOint A, and then reverse the stress to an equal but opposite 

value, maintaining the temperature. The path A'B', both on the stress-strain 

diagram, and the strain-time diagram of Insert II then represents the compres-

sive characteristic of the material in its microstructure of point A. The 

creep curves of Inserts I and II provide the needed comparison of tension and 

compression for a material in the same microstructural condition. 

The scheme actually used in this program is shown in Fig. 13(b). A single 

specimen was first crept along AB, after which the load was reversed to an 

equal but opposite value, and the compressive creep characteristic A'B' was ob

tained. This procedure was used for two reasons: conservation of specimens, 

and avoiding the possibility of scatter resulting from using separate speci-
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mens. Actually, then, a small change in microstructure was introduced by the 

tensile creep AB tor the material subsequently tested along AIBI. However, the 

economy and efficiency of using a single specimen was deemed sufficient to jus

tify the alternate approach in the preliminary tests. Furthermore, our expec

tation was that the compressive creep rate would be lower than the tensile 

creep rate. 

would, if 

Since it is reasonable to assume that the prior tensile creep AB 

it had any effect, accelerate the compressive creep rate (in accor-

dance with the results of Figs. 1-3), any observed lower creep rate in compres

sion would in fact be accentuated were the prior tensile creep not imposed. 

A number of tests of the type described above were conducted, stopping at 

various points in the in-phase loading loop. Similarly, analogous tests were 

conducted by stopping at selected points of compressive stress in the out-of

phase loading, and conducting tests in both compression and tension for micros

tructures developed in these tests. Typical results shown in Fig. 14(a) relate 

to one of the tests for in-phase loading; Fig. 14(b) displays results for out

of-phase loading. It is clear that in both cases the creep rates in compres

sion are significantly lower than these in tension. The other tests corro

borated these observations. 

We can conclude from this study that the generality holds for material in 

thermomechanical tests, namely that if material is sampled from any point in 

its path and tested both in tension and in compression, the tensile creep rate 

will be considerably higher than the compressive creep rate. The two tests 

must, however, be conducted on material in the same microstructural state. 
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D. CYCLIC LOADING OF HASTELLOY X 

It is interesting to study the results of Walker [3] on Hastelloy-X to 

ascertain whether the general behavior observed on 316 SS also applies to his 

material. Some of his test results are shown in Fig. 15. Discussion of the 

results of his calculations based on the Functional Theory are beyond the scope 

of this paper. However, the experiments are amenable to analysis for the 

present purpose. 

Walker's tests \'/ere conducted on a specimen which was continuously cycled 

at a constant strain rate, stopping at various points to establish the creep 

rate for the material in its current metallurgical state. After each creep 

loading at constant stress, the loop was re-stabilized before proceeding to the 

next point. Thus the creep tests were on materials in different metallurgical 

states, and direct comparison of tension and compression involves the difficul

ties already discussed in connection with Fig. 2. However, it is still in

structive to make the comparison because the careful experiments do reveal 

differences in the two creep rates. 

The continuous curves of this figure show experimental creep curves at 

various stresses. Some are tension creep curves, others compression. While 

the comparison can be made by direct examination of the curves of Fig. 15, the 

cross-plots of Figs. 16 and 17 are more convenient for quantitative comparison. 

Fig. 16 shows the cross-plot of stress versus strain after 40 seconds. OA 

shows the strain developed after this time for tensile loading, OB the strain 

for compression loading, for each of the stress levels studied. The dotted 

curve OBi is a replot of OB, changing signs of both stress and strain. By com

paring OA to OBi it is clear that at any stress level the amount of strain in 
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tension is more than that in compression after the 40 sec. used as a parameter. 

The cross-plot of Fig. 17 shows the ratio of strain developed in tension to 

that developed in compression after various times for the 21.5 ksi tests. While 

these results are not as dramatic as those we have obtained for 316 SS, it is 

quite clear that tensile creep rate is higher than compression creep rate at 

the same temperature but equal and opposite stress. 

PARAMETERS THAT CAN AFFECT CREEP RATE 

AS A FUNCTION OF STRESS DIRECTION 

The reason for the differences in creep rate at equal tensile and compres

sive stress has not received much attention. In fact, the phenomenon is not 

sufficiently well recognized to have stimulated study. We can only speculate 

at this time why the phenomenon exists. Following are some possibilities. 

I. Effective Friction at the Grain Boundary 

One way of viewing the problem is by analogy to friction of masses in con

tact moving relative to each other. Since creep frequently involves grains 

sliding along their boundaries we can regard the individual grain motion and 

the "friction" between them. The treatment is complicated, of course, by the 

fact that there are numerous grains oriented at numerous directions relative to 

each other. A simplified analysis is shown in Fig. 18 which assumes an average 

orientation of 45 degrees. Drawing the analogy with the movement of a weight 

on a frictional surface, shown in Fig. 18(a), we can see in Fig. 18(b) that the 

net frictional force is larger when two grains are in compression than they are 

when in tension. If we choose R as the ratio of the two forces, and assume 
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that the relative creep rate varies as some power law of R, we get the results 

shown in Fig. 18(c). The plot shows the relationship for different choices of 

~ and m. It is seen that reasonable choices of ~ and m produce R values 

agreeing with our experimental results. 

II. Change of Lattice Parameter 

The size of the lattice increases in tension and decreases in compression. 

An effect can thus be produced on the creep rate according to the explanation 

given in Ref. 5: 

"For close-packed c~stals like fcc, hcp, the partial molar volume of va
cancies is an appreciable fraction of molar volume of the metal. Under 
hydrostatic pressure in tension, the specimen will lose vacancies in an 
effort to relieve the pressure increase. This decrease in the concentra
tion of vacancies will in turn decrease the self diffusion." 

If creep rate is influenced by self-diffusion, as is commonly accepted, 

the hydrostatic compression should reduce creep rates and hydrostatic tension 

should increase creep rates. 

III. Grain Boundary Cavitation: 

At high temperature, cavities are generated in the grain boundaries which 

are in tension, facilitating the movement of one atom over the other, increas

ing in creep rate. In compression, however, the cavities are absent or col-

lapsed even if activated previously in tension. This phenomenon is shown 

schematically in Fig. 19. Accordingly we can expect higher grain boundary 

creep when the net force across the grain boundaries is tensile than when it is 

compressive. 

30 



IV. Defects Other Than Grain Boundary Cavitation 

Any defects developed in the microstructure of the material would tend to 

be open in tension and closed in compression, Fig. 20. Hence there would be 

greater tendency for reduction of cross sectional area in tension. Therefore 

the creep rate would be higher in tension than in compression. 

CONCLUDING REMARKS 

In all of the various types of tests that we have studied, tensile creep 

rate has always been higher than compressive creep rate if the loading is on 

specimens that have the same microstructure. This similarity of microstructure 

may be the result of absence of significant prior straining history, or it may 

be the result of a complex history of thermomechanical loading. Differences in 

creep rate from 2 to 10 have been observed. However, if the microstructure of 

the specimen to be tested in tension is different from that used in compres

sion, the general pattern of behavior can be altered, although in the limited 

cases we have examined, there is still a bias toward lower creep rate in 

compression. Some of the effect is geometrical, -- tension producing a higher 

true stress because of decreases in cross-sectional area, while the area of a 

compression specimen increases. However, even when appropriate corrections are 

made for cross-sectional variations, the qualitative comparisons are not al

tered, although quantitatively the effect is somewhat smaller. 

Of special interest is that the microstructure that develops during hys

teresis cycling -- whether at constant strain rate and constant temperature, or 

whether the temperature variation is cycled in- or out-of-phase with the strain 

seems to be such as to bring closer together creep rates in the two direc-
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tions when the tension specimen is taken at a point in the tensile part of the 

hysteresis loop and the compression specimen is taken at a point in the 

compression part of the loop. Whether there is a natural tendency for micros

tructure to develop to produce such a bias remains to be determined by studying 

additional loading patterns. From an engineering point of view, the effect is 

fortuitous because it makes more accurate the assumption usually made that the 

two creep rates are equal. 

Even when there is an appreciable difference between the two creep rates 

at equal but opposite stresses, the error of engineering calculations based on 

the assumption of rate equality is mitigated by the fact that creep rate bears 

a high-exponent power law relationship to stress, so that only moderate changes 

in stress are needed to bring the actual creep rates to equality. Also, it is 

fortunate that in most of the important engineering problems involving stress 

and strain reversal, particularly thermal fatigue problems, the loadings are 

governed by imposed strains and strain rates. Thus the assumption that the 

stresses developed follow the same stress / strain / strainrate relationships 

in both tension and compression produces small error in the stress determina

tions. Were the loads specified, the errors in stress and strain rates would 

be much higher. The effect is further mitigated by the metallurgical tendency 

of microstructural development to more closely justify the usual engineering 

assumption. 

Thus, while the effect of the phenomenon is somewhat suppressed in some 

practical engineering problems, its presence cannot be negated. As illustrated 

in this report at least some applications can better be understood in terms of 

the characteristic differences between creep rates in tension and compression. 
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Further experience may reveal other important applications. In any case it is 

an interesting phenomenon, both from mechanistic and analytical viewpoints, and 

it merits recognition, if not further study. 

Finally, this study has led to a closer focus on a long-held observation 

that a combination of tensile and compressive creep produces an anomalous ef

fect, at least on 316 SSe When creep is either absent or monotonic -- i.e. in 

pp, pc, or cp loading, we have usually found that after a few cycles of loading 

a stable hysteresis loop develops. Stress, strain become repetitive with 

respect to time as measured from some arbitrary point on the hysteresis loop. 

When reversed creep is present, i.e. involving cc loading, the temporal aspects 

of the loop are not repetitive. In the cases we have studied, extreme soften

ing takes place, and an attempt to apply a single constitutive relationship to 

characterize all cycles could lead to significant error. The mechanistic ef

fect here, as well as the mechanisms that cause creep rate in tension to be 

much higher than that in compression justify further study. Such study should 

lead to an improved understanding of the nature of creep in engineering materi

als and provide a useful input toward determination of appropriate time

dependent constitutive relations for handling reversed creep. 
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Figure 1. Schematic diagram of the cyclic creep experiment. 
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EVALUATION OF THREE CONSTITUTIVE MODELS FOR THE PREDICTION OF HASTELLOY X 
ELEVATED TEMPERATURE CYCLIC RESPONSE 

Vito Moreno 
Pratt & Whitney Aircraft Group 

United Technologies Corp. 
East Hartford, Connecticut 06108 

An evaluation of material constitutive models for the 
ture cyclic stress and strain response is presented. 
under an ongoing NASA Contract (Ref. 1) to identify a 
ural response (stress / strain) without the need for 
non-linear finite element analysis. 

prediction of 
This activity 
procedure for 
expensive and 

elevated tempera
is being conducted 
predicting struct
time consuming 

The approach for the method development assumes that, for a thermally loaded structure, 
the overall strain history can be defined by linear elastic analysis. The local stress 
history at a fatigue critical location is then determined from a one-dimensional ma
terial behavior model and the local strain and temperature conditions. Three material 
models are currently being evaluated to assess their ability to predict relevant high 
temperature cyclic material response characteristics. They are: (1) a time independent 
classical plasticity and cr~ep representation, (2) a time dependent viscoplastic model 
capable of predicting combined creep and plasticity effects, and (3) an approximate 
elastic analysis approach that uses a series of stress-strain curves and a cyclic 
hardening model to determine reverse plasticity. 

Previous structural analyses and life prediction activity conducted on a representative 
gas turbine high temperature component, i.e., combustor liner (Ref. 2), has indicated 
that the local stress-strain response reflects several high temperature material cyclic 
response characteristics. They include: (1) strain rate dependence, (2) creep
plasticity interaction and (3) the interaction of properties associated with variable 
temperature (thermomechanical) loading. In the current program, these characteristics 
are being systematically investigated to aid in the material model evaluation. 
Hastelloy X specimen constitutive test data developed in References 2 and 3, and 
under the present program, is being used to establish a cyclic response data base. 
Representative stress-strain data for continuous fully reversed cycling, fully re
versed with creep and relaxation hold periods, and various thermomechanical loading 
histories comprise the data base. 

Preliminary results comparing two of the material models with the data base are shown 
below. Figure 1 compares the predictions of the time-independent classical plasticity 
model and the viscoplastic model with 16000 F continuous cycle testing. The classical 
plasticity model shows a slightly greater stress amplitude, due primarily to the 
differences in strain rates between the data used to generate the model and the test 
(.008 min-l vs •. 0024 min-I). The prediction using the classical model also shows 
the characteristic square corners associated with a distinct single yield surface. 
The viscoplastic model predicts a more accurate stress amplitude for the test strain 
rate of .0024 min-l and displays a smoother transition between elastic and plastic 
response. A comparison of the two models for the combustor louver lip thermo
mechanical loading cycle (Ref. 2) is shown in Figure 2. Simulation of the combustor 
lip with a uniaxial test specimen produced the stationary stress-strain response 
shown in the figure. Prediction with the classical plasticity and creep models 
resulted in a continuousratthetting of the response in the positive stress direction. 
Shown is the 15th loading cycle. The prediction using the viscoplastic model does 
not display the same degree of stressratchetting and more closely predicts the ex
perimental data. Shown is the 2nd loading cycle. 
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EXPERIMENTAL VERIFICATION OF THE NUMBER RELATION 
AT ROOM AND ELEVATED TEMPERATURES* 

Lonnie J. Lucas and John F. Martin 
Michigan State University 

East Lansing, Michigan 48823 

ABSTRACT 

The accuracy of the Neuber equation for predicting 

notch root stress-strain behavior at room temperature 

and at 650°C was experimentally investigated. Strains 

on notched specimens were measured with a non-contacting, 

interferometric technique and stresses were simulated 

with smooth specimens. Predictions of notch root 

stress-strain response were made from the Neuber Equation 

and smooth specimen behavior. Neuber predictions gave 

very accurate results at room temperature. However, the 

predicted interaction of creep and stress relaxation 

differed from experimentally measured behavior at 650°C. 

INTRODUCTION 

There has been a demand in recent years for the air-

craft industry to provide a more energy efficient turbine 

propulsion system. Part of this task involves trying to 

understand the limitations of the current materials and 

structures being used, especially in the "hot section" of 

the engine [1]. The hot section components include the 

turbine blades, vanes, and combustors which operate under 

* This work was performed under NASA Grant NAG 3-51. 
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severe stresses and temperatures. To make improvements in 

these parts it is first necessary to compile test data 

which describe the events leading up to failure. Theoret

ical models can then be developed and compared with 

experimental data until the failure modes and component 

lives may be predicted. 

The combustor, fabricated from the alloy Hastelloy X, 

is one component which has gone through the initial 

testing phase and is now being examined from a theoretical 

stand-point. Failures in the combustor liner have been 

attributed to thermal-mechanical fatigue which causes 

cracking and buckling 12J. A number of constitutive 

theories have been proposed for predicting the nonlinear 

stress-strain behavior near holes which serve as cracking 

sites in the liner [3]. When these theories are 

incorporated into finite element codes, the final package 

becomes very complex and requires a large computer facility. 

The purpose of this study is to examine a more basic 

theory, namely the Neuber relation, to see how well it 

can predict local stress-strain behavior in notched speci

mens of Hastelloy X. For cyclic loading the Neuber equation 

is written, 

(Lla) (Ad = (Kt ') 2 (LlS) (Lle) (1) 

where: Lla and LlE are the notch root stress and strain ranges, 

respectively; 

LlS and Lle are the remote stress and strain ranges, 

respectively; 
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K ' is the elastic stress concentration factor. 
t 

Much of the work involving Neuber's relation has fo-

cused on stress redistribution near a notch [4] and ~he 

accompanying variation in the stress and strain concentra-

tion factors throughout fatigue life [5,6,7]. One of 

these researchers, Guillot [6], evaluated Neuber's equation 

at moderately elevated temperatures (260°C) and found that 

conservative results were obtained for life predictions 

in 1018 steel and 7475 aluminum. Both Bofferding [5] and 

Guillot [6] used an Interferometric Strain Gage (I.S.G.) 

[8-11J to measure notch root strains. 

Equation (1) by itself is indeterminate. Knowing the 

remote stress or strain range leaves three unknowns. The 

The relationship between stress and strain at both the 

remote and local locations is needed. Crews and Hardrath 

[12J assumed that the notch stress could be found by 

reproducing measured notch strains in smooth samples. 

This assumption was upheld by Stadnick [13] and other 

researchers [14,15] who showed that the smooth specimen 

simulation gave good results in predicting fatigue lives 

of notched specimens. For this study it was assumed that 

smooth specimens could be used to supply the needed 

stress-strain relationship. 

Stadnick and Morrow [16J worked on automating the 

techniques for performing tests on smooth specimens that 

were controlled according to the Neuber Equation. They 

evaluated various approaches for sUbjecting a smooth 
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specimen to the same stresses and strains that theoretically 

exist at a notch. This theoretical testing technique has 

been called "Neuber Control". These methods consisted 

of manual control, and analog or digital computer control. 

Separate research efforts have been devoted to using 

smooth specimens to simulate notch root response, developing 

laser based measurement devices and estblishing high temper

ature testing techniques. This study utilized all of these 

tools to determine the accuracy of Neuber's equation for 

cyclic loading of notches specimens at temperatures up to 

650°C. 

EXPERIMENTAL METHODS 

1. Interferometric Strain Measurement Technique 

The Interferometric Strain Gage (I.S.G.) is described 

in detail in References [8-11]. This device was used to 

measure strains both at the local and remote locations 

in notched specimens. The I.S.G. is a non-contacting laser 

based device capable of measuring strains over a very short 

gage length, typically 50-200 microns. The gage length is 

formed by making two small pyramidal shaped indentations 

on a sample with a Vicker's hardness tester. These 

indentations form the actual gage on the specimen and the 

distance between them constitutes the gage length. Laser 

light which reflects off the two indentations interacts to 

form two interference patterns. Each pattern is composed 

of bright and dark bands of light. The position of each 
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bright fringe is a function of the wavelength of the laser 

light, the distance between indentations, and the reflecting 

angle of the indentations. 

The I.S.G. functions by using scanning mirrors to 

reflect the interference bands onto photomultiplier tubes. 

When a load is applied to the specimen, the distance between 

the indentations changes, thereby causing the position of 

each bright fringe to move. Since the change in position 

of the fringes is proportional to the change in distance 

between the indentations, a computer can be used to calculate 

the strain in the specimen. 

Two basic requirements must be met in order to utilize 

this strain measurement technique. First of all, the path 

of the incoming laser beam and the reflected fringe 

patterns must not be obstructed. To accomplish this, specimens 

were heated by an induction method for the elevated 

temperature tests. Heating coils which surrounded the 

specimen were designed so that they would not interfere 

with the laser beam. Another problem was that the specimen 

surface had to remain smooth and free of excess oxidation 

during high temperature testing. This problem was solved 

by depositing a 0.14 micron layer of 40% gold-60% palladium 

onto the specimen after the indentations had been made. 

The I.S.G. was used to measure strains at both the local 

and the remote region of the notched specimen shown in 

Figure 1. The local indentations for creating fringe patterns 

were placed 50 microns from the edge of the notch. This was 

as near to the edge of the notch as the indentations could 
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be consistently made with the Vicker's hardness tester. 

The remote indentations were made at a distance of 6.025 rom 

from the notch edge. 

When evaluating the Neuber equation, other investigators 

{5,6J have restricted loading levels to insure that the 

remote region remained linearly elastic. This allowed 

the remote strain to be calculated by knowing the stress in 

the net section and the modulus of elasticity. During 

these experiments, the complications of defining a net 

section stress were avoided by measuring the remote strains 

directly. There were also no limitations on plasticity in 

the remote region. This allowed the Neuber relation to be 

evaluated for a greater range of loading conditions. 

The loading pattern for this experiment consisted of 

completely reversed loading with 100 second hold times in 

both tension and compression. A servo controlled, electro

hydraulic, closed-loop testing machine was used to perform 

the tests. Many of the details concerning the experimental 

procedure have not been included in this paper so that 

the results and conclusions could be emphasized. 

2. Stress Simulation 

To determine the stresses that existed in notched 

specimens, smooth specimens were subjected to the strain 

histories which had been measured at the local and remote 

locations. Strains that had been measured with the I.S.G. 

were recorded in real time so that they could be played 

back on a smooth specimen at the same strain rate that 
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existed on the notched specimen. From this technique, 

stress-strain hysterisis loops at different locations on a 

notched specimen were produced. 

This method of simulating stresses worked very well 

from an experimental point of view. All parameters such 

as strain rate, creep, and total strain were reproduced in 

the smooth specimen just as they had occurred in the notched 

plate. The plots of local notch root stress versus strain 

were considered direct experimental data to which the Neuber 

predictions could be compared. 

3. Neuber Prediction 

The Neuber equation, (Eqn. 1), allows local behavior 

in a notched specimen to be determined as a function of 

remote stress and strain. In these experiments, a smooth 

specimen was manually controlled in real time according to 

Eqn. I with remote stress and strain as input parameters. 

The measured remote strains and simulated stresses 

had been recorded on a time scale. These stress and strain 

values were multiplied together at various points in time 

and their product was then multiplied by the stress 

concentration factor squared. These values were replotted 

on the same time scale and constituted the Neuber prediction 

curves. 

The Neuber relation is evaluated on a reversal by 

reversal basis. Therefore, the Neuber prediction curves 

were actually the product of the changes in stress and 

strain which occurred starting from the beginning of each 

53 



reversal. By following this procedure, a plot such as the 

one shown in Figure 2 could be constructed. This plot 

would allow six reversals of local behavior to be predicted. 

The time scale was set at 5 sec/cm when the loads were 

applied and then slowed to 50 sec/cm for the 100 second 

hold periods. During each test, the values of stress and 

strain from a smooth specimen were multiplied together 

on-line with an analog computer to represent the quantity 

( 1I a) ell e:) • The specimen was manually controlled in the 

MTS system so that the product of stress and strain would 

follow the Neuber prediction curve for each reversal. The 

illustration in Figure 2 shows how closely the original 

plot was followed during such a test. An additional analog 

circuit was designed so that the changes in stress and 

strain could be multiplied together starting from zero at 

the beginning of each reversal. 

2 By plotting (K t ') (As) (Ae)and imposing the product 

(lIa) (LIE), the Neuber equation was satisfied for each 

reversal. The resulting stress and strain values 

constituted the predicted notch root behavior. The Neuber 

predictions were then compared to the measured strain vs. 

simulated stress data for local response. 

RESULTS AND DISCUSSION 

1. Determination of Stress Concentration Factor 

An elastic stress concentration factor for the circular 

notched specimens was found experimentally using the ISG. 
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From Peterson (17), the stress concentration factor, K
t 

was given as 2.37. The experimentally determined stress 

concentration factor which is defined here as Kt ' was found 

to be equal to 2.27. Figure 3 shows where five sets of 

indentations for the ISG were placed across the width of 

a notched specimen. Room temperature strain measurements 

were recorded at each of these locations while the specimen 

was cycled well below the proportional limit. The actual 

strain data and the calculated strain profile are both 

shown in the figure. By taking the ratio of strains at 

location #5 and location #1, the strain concentration 

factor was determined. For elastic strains, the stress and 

strain concentration factors are equal, therefore, Kt ' 

was also determined (Kt ' = 2.27). This experimentally 

determined value of Kt ' as well as the designation for 

the local and remote areas (locations #1 and #5) were used 

throughout the test program. 

2. Interferometric Strain Measurements 

At room temperature, strains for a notched speClmen 

were recorded for the initial behavior and also for a 

cyclically stable condition, i.e. when the material at 

notch root was stable. Figure 4 shows I.S.G measurements 

of strain vs. applied load for a notched specimen during 

the first three cycles of constant amplitude completely 

reversed loading between + 14 KN. The most noticeable 

effects in notch root behavior were caused by cyclic 

hardening. The tensile peaks showed a large decrease in 
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strain for each successive cycle due to strain hardening. 

The compressive strains experienced much less variation 

during the three cycle period. Creep effects were also 

present in the room temperature data. The largest amount 

of creep took place during the first 100 second hold time 

and then diminished with each successive reversal. 

For remote behavior, which is also shown in Fig. 4, 

cyclic hardening again caused the total strain to decrease 

for each plotted loop. The effects of creep were minimal 

for the remote location. The amount of creep at both 

locations in the specimen decreased as the material 

stabilized. 

When a sufficient number of cycles had been applied 

to stabilize the material, the l.S.G. was used to record 

data at the four cyclic load levels which are listed: 

LEVEL # LOAD (KN) 

1 + 14.0 

2 + 14.5 -
3 + 15.5 

4 + 16.0 -
Strain measurements were obtained at each of five locations 

across the notched specimen as indicated in Figure 3. 

Figures 5 and 6 show results for the lowest load amplitude 

(Load Levell) and the highest amplitude (Load Level 4). 

These figures illustrate the effects of cyclic loading at 

various distances from the notch. The plastic strain 

diminished significantly as the distance from the notch 

increased. Also, when the load was raised from Levell to 
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Level 4, the strain at the remote location (#5) 

increased by 21% while the local strain (#1) experienced a 

50% increase. This gives an indication of the strain 

concentration near the notch. 

Notch root and remote strains were also measured at 

650°C in a specimen which had been cyclically stabilized. 

Four load level$ were again used which are as follows: 

LEVEL # LOAD (KN) 

1 + 10.5 -
2 + 11.3 

3 + 12.3 -
4 + 13.3 -

Hysteresis loops showing applied load vs. local notch root 

strain at four different load levels are shown in 

Figures 7 and 8. At this temperature, small increases in 

load produced large strains, especially strain due to creep. 

During the 100 second hold time, the amount of creep strain 

at each level of loading was as follows: 

Level 1: 0.05% creep strain 

Level 2: 0.10% creep strain 

Level 3 : 0.13% creep strain 

Level 4 : 0.18% creep strain 

These values were approximately equal for tension and compression. 

3. Stress Simulation & Neuber Predictions 

Smooth specimen stress simulations produced the 

experimental stress-strain behavior at both the remote and 

local regions. Neuber predictions were also made. The 

first three cycles of notch root stress-strain behavior at 
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room temperature were plotted in Figure 9. Included in 

this figure are both the experimental results and the 

Neuber predictions. During the first cycle, the Neuber 

prediction was slightly high on stress which caused lower 

strain peaks. Actually, the tensile and compressive strains 

were only 9% low for the first cycle. The predicted 

tensile strain on the second cycle was low by 8% while the 

compressive strain was 13% lower than the stress simulation. 

The Neuber relation was also used to predict the notch 

root response after the material had reached the cyclically 

stable condition. In FigurelD, the room temperature 

results from tne Neuber prediction and the stress simulation 

have been superimposed for comparison. For the stabilized 

notch root response at Load Levels 1 and 2, the Neuber 

method was approximately 6% high in predicting tensile and 

compressive strain. Load Levels 3 and 4 show nearly a 

perfect correlation between the two sets of curves. 

Neuber's rule was also studied at 650°C for the 

cyclically stable condition. Figure 11 and 12 show these 

stable results. The most noticeable trend at all four 

levels was the amount of stress relaxation predicted by the 

Neuber relation. For Load Levels 1 and 2, the stresses 

at the end of the 100 second hold times were low by 23% and 

27%, respectively. The stresses were predicted more 

accurately at the higher load levels. At Load Level 3 the 

stresses were 22% low and at Level 4 the stresses were 15% 

lower than the stress simulation. In terms of strain range, 
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the error in predicting Level 1 strains was 20% low while 

the Level 4 strains were predicted within 10%. 

The tendency of the Neuber relation to predict stress 

relaxation rather than predominant creep during the hold 

times was caused by the remote information which was used 

to construct the Neuber plots. The remote location had 

experienced almost no creep for the Load Levels 1 thru 3. 

At Load Level 4, the creep accounted for about 12% of the 

total strain. This caused the Neuber prediction to become 

more accurate at the highest load level. 

CONCLUSIONS 

Neuber control of a smooth specimen predicted the 

notch root stress-strain behavior of a circular center 

notched plate that was made of Haste110y X with excellent 

agreement to direct experimentally measured notch root 

strains and simulated stresses at room temperature. The 

agreeement was good for initial behavior during cyclic 

hardening and for the stable condition at four different 

load levels. At 650°C and for the stable condition, 

agreement with experimental data were acceptable with the 

maximum error at 20%. At this higher temperature, the 

direct experimental data showed primarily creep strain 

during hold times. The Neuber prediction showed both 

creep and stress relaxation. This difference in the 

general behavior resulted in significantly larger errors 

at this elevated temperature than those for room 

temperature. 
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Abstract 

MULTIAXIAL CYCLIC THERMOPLASTICITY ANALYSIS 
WITH BESSELING'S SUBVOLUME METHOD 

R. L. McKnight 
General Electric Co. 

Cincinnati, Ohio 45215 

In 1975, a modification was formulated to Besseling's Subvolume Method to 

allow it to use multilinear stress-strain curves which are temperature 

dependent to perform cyclic thermoplasticity analyses. This method 

automotically reproduces certain aspects of real material behavior important 

in the analysis of Aircraft Gas Turbine Engine (AGTE) components. These 

include the Bauschinger effect, cross-hardening, and memory. This 

constitutive equation has been implemented in a finite element computer 

program called CYANIDE which has been in production usage since 1977. 

Subsequently, classical time dependent plasticity (creep) was added to the 

program. Since its inception, this program has been assessed against 

laboratory and component testing and engine experience. The ability of this 

program to simulate AGTE material response characteristics has been verified 

by this experience and its utility in providing data for life analyses has 

been demonstrated. In this area of life analysis, the multiaxial 

thermoplasticity capabilities of the method have proved a match for the actual 

AGTE life experience. This paper will explore the multiaxial, 

vari?~le-temperature nature of the method and show examples demonstrating its 

utility. 
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BESSELING'S MATHEMATICAL MODEL 

The relation between the deviatoric stresses and the deviatoric 

strains is given by 

(1) 

where 

Sij is the deviatoric stress tensor 

eij is the total deviatoric strain tensor 

e" ij is the plastic strain tensor 

G is the shear modulus 

The yield strain, P, is given by the plastic potential function 

g ( II )( ") p2 0 • eij - eij eij - eij - • (2) 

The incremental plastic strains are given by 

(3) 

provided that 

(4) 

The incremental stress-strain relation is 
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(5) 

The new yield strain, eij + 6eij , is determined from 

(6) 

Besseling then introduced the concept of elastic-perfectly plastic 

subvolumes. The elastic potential, '1' of the subvolume of density p 

after prior plastic flow is given by 

where the eijl are the plastic strains due to ideal plastic yielding. 

If this subvolume constitutes the fraction '" of the volume element 

dV, its contribution to the total elastic potential of dV is 

(7) 

(8) 

If k subvolumes of the volume dV have exceeded their critical value of 

elastic potential and undergone plastic flow, the total elastic 

potential is given by 

(9) 

Now, the deviatoric stress tensor is given by 

(LO) 
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After yielding, the elasticity limit of 8ubvolume k is given by 

(11) 

The subvolume incremental plastic strains are given by 

(eij - eijk) (eaB - ea EDt) 
oe

ijk 
c: --..:=---....=..L..:.:...-p-=-2-=..:::...-~~~ oe

aBk 
k 

(12) 

provided that 

(13) 

The incremental stress-strain relations are 

(14) 

DEVELOPMENT OF NONISOTHERHAL CAPABILITY 

The equation relating the stresses and the subvolume strains, 

Equation (10), can be rewritten to give 

(15) 

Now these stresses must be the same as the stresses given by Equation (1) • 

Therefore, the two right-hand s ides can be equated. When this 

is done, we get 
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e" 
ij (16) 

which gives a relationship between the subvolume plastic strains and 

the total plastic strains. 

Squaring both sides of Equation (16) and multiplying by 2/3, we 

get 

Now 

e" ij 

Therefore 

This gives a relationship between the total effective plastic strain 

and the subvolume effective plastic strains. 

The following ratio can be formed between a subvolume effective 

plastic strain and the total effective plastic strain: 

or 

(
£P£pn)2 _ 1 eijn eijn 

2 e" e" 3" ij ij 
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(J 8) 

(19) 

(20) 

(21) 



By taking the square root of both sides, we obtain 

£ 
• ...E.!!. e" eijn £ ij 

P 
(22) 

This gives a means of determining the subvolume plastic strains from 

the total plastic strains if the effective plastic strains are known. 

This then provides the tools to convert Besseling's Isothermal 

theory into a nonisothermal theory. We note that for variable 

temperature problems 9 and 9k will be functions of both strain and 

tempe rat ure. 

g c 9 (elj,T) 

gk Ie gk (elj ,T) 

These functions can be specified by defining temperature dependent 

stress-strain curves. 

For tncremental loading tncludrng temperature changes, the 

change In the plastic potential function Is given by 

There are three posslbJe conditions that can occur due to this 

(23) 

(24) 

(25) 

load Increment and these are determined by the value of this differential. 

For loading beyond the present yield surface 

dg > 0 

!a de +.2E. dT > 0 
aetj tj aT 
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For the loading to place the point on the new yield 

surface 

dg = 0 

fa de.. + ~Tg dT = 0 
Cle.. IJ CI 

IJ 

For the point to unload back into the elastic range 

dg <0 

~ de .. + ~ dT< 0 
IJ T ae. . a 

IJ 

These last two conditions are used to accomodate 

temperature variations. The solution to any load condition, 

(N-I), is arrived at when 

dg = ~ de.. ~ 0 
n-l ae ij IJ/T = Constant 

In proceeding to the next load step, (N), the temperature 

effects on the stress-strain curve are incorporated so as 

not to vialate this condition while holding the strains 

constant. 

- ~ dT dg(n-l),(N) - aT = 0 

Thus, we are requiring that the change of temperature alone 

not effect the inelastic condition of the material. We 

accomplish this by realizing that 

~dT = 2G e p at - T de ij de ij 

Therefore, by requiring that 

de~j = 0 

We force 

it dT = 0 
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(33) 

(35) 
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This then gives us the mechanism for positioning our new yield 

surfaces In step, N. The step, N, solution then proceeds by applying 

the loads and boundary conditions and iterating to obtain 

d 2L d ~O g .. e
iJ

• 
elj 

within your specified convergence tolerance. 

CREEP ANALYSIS 

(37) 

The creep analysis utilizes one of two possible creep representations. 

When tertiary creep is not considered to be of importance, the equation used 

is 

(38) 

where 

- /100000 = effective stress (Te - CI e ' O'e 

k, m, n, q, r = material-dependent and temperature-dependent creep coef

tic-! ents. 

1~len the material exhibits a significant amount of tertiary creep capa

bility, an alternate representation is used. Primary creep is represented by 

the 83i ley-Not-ton law. 

p - A2 A3 
e ::a Al O'e t c 

Sr.conJary creep is modeled with the expression proposed by Marin, Pao, and 

Cuff (Reference 19) 

E S 
c 
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Tertiary creep is represented with an equation of the form 

(41) 

= 
AI, A2, ••• AIO c material-dependent and temperature dependent cr~1 ," 

coefficients. 

CYANIDE also contains an orthotropic creep formulation. The creep s~"l"ain 

rate is assumed to be given by 

where 

~ •• a strain rate tensor 
1J 

0kl - stress tensor 

(42) 

gijkl = Tensor whose components are functions of temperature, de, and 

hardening rule and are derivable from input creep curves. 

The user can select from time hardening, strain hardening, or life frac

tion creep rule, depending upon the actual material characteristics. Strain 

hardening is ordinarily adequate for describing hardening behavior, providing 

that stress reversals do not occ~r. A stress reversal 1s considered to occur 

when 

c . 
e .. 0 •• < 0 

1J 1J 

Where eijc is creep strain measured from its current origin. When a ~ev~rsal 

occurs, the origin is changed and the analysis proceeds (Reference20) . 

The combination of general creep equations and creep rule makes the pro

gram very general In Its application to structures which undergo time-dependent 

plastic flow In which transient effects are not significant. 
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CYANIDE COMPUTER PROGRAM 

Many of the steps In the CYANIDE nonlinear finite element 

computer program are the same as those for a linear finite element 

analysis. The nonlinear effects are Introduced Into the system of 

finite element equations by adding vectors of pseudoforces to the 

right hand side. 

I KI {oJ = {F} + {F } + {F } 
p c 

where 

IKI is the clastic stiffness matrix. 

{oJ Is the vector of nodal displacements. 
{F} is the force vector including thermal terms. 

{F } 
p Is the plastic pseudoforce vector. 

{F } Is the creep pseudoforce vector. c 

(44) 

For each Increment of loading, the nonlinear pseudoforces are Iterated 

upon until the requirements of equilibrium, compatabillty, and the 

constitutive equations are met within user specified tolerances. Since 

this method does not require modification of the stiffness matrix during 

iterations it Is very economical. This economy is magnified during 

cyclic analysis. The stiffness matrix need only be regenerated If the 

material properties are revised by thermal variation or if elements have 

been added or removed. 

MULTIAXIAL, VARIABLE TEMPERATURE EXAMPLE 

In a previous NASA contract, we investigated one of the common thermal 

stress problems In AGTE' s : turbine blade tip cracking. In that case, the 

critical region was shown by analysis and confirmatory testing tb have the 

cyclic stress-strain behavior noted In Figure 1. High temperature, time 

dependent flow rapidly relaxes the compressive stress such that on 0001-

down high tensile stresses are genrated. This process shakes down very 

rapidly to an almost elastic hysteresis loop based on modulus changes. 

In that case the problem was almost totally uniaxial In nature. 

78 



A second type of thermal stress problem prevalent in AGTE's is the hot 

spot. In this case, the stress strain response is definitely multiaxial. We 

will investigate a hot spot on a combustor shingle as being typical of these 

problems. Figure 2 shows a shingle segment. Taking advantage of its large 

radius of curvature and thinness, it was modeled as a flat plate in a 

condition of plane stress. The model is shown in Figure 3. Figures 4, 5 and 

6 show the nature of the hot spot at peak temperature and Figure 7 shows the 

heat-up cool-down temperature cycle at the center of the hot spot. This cycle 

was analyzed assuming no time dependent effects occcurred during heat-up and 

cool-down but that a one hour hold time was associated with the peak of the 

hot spot. 

The stress-strain results of the first cycle are shown in Figures 8, 9 

and 10 for the center of the hot spot. Figure 8 shows effective stress versus 

effective strain and Figures 9 and 10 show the biaxial stresses versus 

strains. Once again the effect of plasticity and creep is to generate tensile 

stresses during the cool-down portion of the cycle. The next series of 

figures shows the shakedown stress-strain results for the center of the hot 

spot. Figure 11 shows the effective stress versus effective strain shakedown 

values and Figures 12 and 13 show the shakedown biaxial stress cycle at the 

center of the hot spot. Thus this multiaxial thermal stress case, just as the 

uniaxial case, shakes down to almost elastic cycling with a high tensile mean 

stress. In addition, the stresses are almost proportional. These types of 

analyses are important in indicating the types of response and life tests 

needed. 
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EVALUATION OF INELASTIC CONSTITUTIVE MODELS FOR 

NONLINEAR STRUCTURAL ANALYSIS 

Albert Kaufman 

National Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 44135 

ABSTRACT 

The influence of inelastic material models on computed stress-strain 

states, and therefore predicted lives, was studied for thermomechanically 

loaded structures. Nonlinear structural analyses were performed on a 

fatigue specimen which had been subjected to thermal cycling in fluidized 

beds and on a mechanically load-cycled benchmark notch specimen. Four in-

cremental plasticity-creep models (isotropic, kinematic, combined isotropic

-kinematic, combined plus transient creep) were exercised using the MARC 

program. Of the plasticity models, kinematic hardening gave results most 

consistent with experimental observations. Life predictions using the com-

puted strain histories at the critical location with a Strainrange Parti

tioning approach considerably overpredicted the crack initiation life of the 

thermal fatigue specimen. 

INTRODUCTION 

Hot section components of aircraft gas turbine engines, such as combus-

tor liners and turbine blades and vanes, are subject to progressive creep-

fatigue damage resulting from cyclic thermomechanical loading under extreme 

gas pressure and temperature environments. A Strainrange Partitioning ap

proach (ref. 1) to assess the durability of these components has been under 

development at the NASA Lewis Research Center. In order to apply this or 

similar methods, it is first necessary to determine the stress-strain-

89 



temperature history of the part at the critical location where cracks will 

initiate. 

As part of the life prediction studies at Lewis, wedge specimens have 

been thermally cycled in fluidized beds as described in reference 2. In 

these tests, two fluidized beds were used to rapidly heat and cool prismatic 

bar specimens of single or double edge wedge cross-section. Nonlinear 

structural analyses were performed for these specimens using the MARC pro

gram (ref. 3); the results are reported in references 4 and 5. These non

linear analyses were for specimens of several alloys and used a combined 

isotropic-kinematic hardening model in MARC in conjunction with monotonic 

stress-strain properties taken from the literature. 

Finite-element nonlinear analysis methods are becoming of increasing 

interest for computing the cyclic stress-strain response of hot section com

ponents (refs. 6 to 10). A major disadvantage of these methods, excessive 

computing costs, is being alleviated by advances in computer technology. 

Another deficiency is that current nonlinear analysis computer codes utilize 

classical constitutive material models whose accuracies vary with the type 

of material and the cyclic conditions involved. Furthermore, these class

ical models simplify the analyses by uncoupling time independent (plas

ticity) and time dependent (creep) effects, neglecting strain rate effects 

on plastic flow, and defining specific yield surfaces. The NASA Lewis 

Research Center has instituted programs to develop constitutive models which 

would more realistically represent the inelastic material behavior and be 

computationally practical for finite-element structural analysis. To verify 

the nonlinear structural analysis methodologies, Lewis is also sponsoring 

controlled cyclic experiments to provide strain data for benchmark notch 

specimens (ref. 11). 
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In this study existing constitutive models in the MARC computer program 

were exercised in inelastic analyses of an IN 100 wedge specimen subjected 

to thermal cycling and an Incone1 718 benchmark notch specimen subjected to 

mechanical load cycling. The objective of the study was to evaluate the 

effects on calculated hysteretic response, and therefore predicted life, of 

different inelastic constitutive models available in nonlinear analysis com

puter codes. 

Three dimensional elastic and nonlinear structural analyses were per

formed on a thermally cycled double-edge wedge specimen. The nonlinear an

alyses were conducted using isotropic, kinematic and combined isotropic

kinematic hardening models and a combined hardening model in conjunction 

with a strain hardening creep law to account for cyclic time-dependent ef

fects. Strain histories computed at the critical location from the dif

ferent constitutive models were used in conjunction with the Strainrange 

Partitioning method to compare predicted lives against the observed crack 

initiation life. Two dimensional nonlinear analyses were performed for a 

mechanically load-cycled benchmark notch specimen; computed strain histories 

at the notch root using various material models were compared against 

measured notch strains. 

PROBLEM DESCRIPTION 

The primary structure considered in this study was an IN 100 alloy 

double-edge wedge specimen as illustrated in figure 1. Cracking was ob

served at the 1/4 span position on the leading edge after 38 cycles of test

ing in the fluidized bed facility (ref. 2). 

The physical properties of the cast IN 100 alloy are presented in 

table I. Mean thermal coefficient of expansion data were converted to in-
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stantaneous coefficients of thermal expansion for input into the MARC pro

gram. The modulus of elasticity was determined from monotonic stress-strain 

tests of tensile specimens. Cyclic stress-strain curves were obtained using 

the single specimen incremental step procedure and equipment described in 

reference 12. A typical cyclic stress-strain curve, with the loci of the 

curve tips represented by an exponential equation, is illustrated in figure 

2. Also shown for comparison in figure 2 is a monotonic stress-strain curve 

represented by an exponential equation. Short-time cyclic creep tests were 

conducted on IN 100 specimens using the procedures and facilities described 

in reference 13. Preprocessor programs expressed both the cyclic stress

strain and creep data as functional relations in exponential form. These 

equations were incorporated into ~~RC by means of user subroutines. The 

constants of the cyclic and monotonic stress-strain equations are given in 

table II for various temperatures. In table III the constants of the cyclic 

creep equations are given for various temperatures. 

The specimen was thermally cycled in fluidized beds maintained at 316 0 

and 1088 0 C with an immersion time of 3 minutes in each bed. Transient tem

perature loading on the specimens was determined from thermocouple data as 

described in reference 2. Curve fits of thermocouple data along the mid

chord at the midspan at various increments after immersion into the flui

dized beds are presented in figure 3. The temperature gradient through the 

thickness of the wedge was assumed to be negligible. Another set of thermo

couple data was taken with thermocouples mounted along the leading edge over 

half the span to obtain the longitudinal (along the span of the specimen) 

temperature gradient for the different time increments. 

Supplemental analyses to evaluate the constitutive material models were 
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also performed for a benchmark notch specimen of Incone1 718 alloy which was 

load cycled at a frequency of 0.167 Hz and a temperature maintained at 

649 0 C. The material properties given in reference 11 were correlated in 

the same way as the IN 100 alloy properties. 

ANALYTICAL PROCEDURE 

Stress and tota1-plastic-creep strain distributions in the wedge speci

mens were calculated from the MARC nonlinear, finite-element computer pro

gram. Computations were performed for 34 time increments (17 heating, 

17 cooling) into which the thermal cycle was subdivided, as shown in fig

ure 3. The analyses were terminated when stable stress-strain hysteresis 

loops were obtained or after three cycles if the hysteresis loops remained 

unstable. 

Plasticity computations were based on incremental plasticity theory us

ing the von Mises yield criterion and normality flow rule. The yield sur

face under reversed loading was determined from the stress-strain properties 

and the selected hardening model. Three hardening models available in MARC 

(isotropic, kinematic and combined isotropic-kinematic) were selected for 

evaluation. Monotonic stress-strain properties were used in conjunction 

with the isotropic and combined models because of their initial insta

bility. Saturated cyclic stress-strain properties were used for the stable 

kinematic model. A bilinear representation of the cyclic stress-strain 

curve, as shown in figure 2, was applied to the kinematic hardening model. 

The slope of the kinematic model was determined from energy considerations 

so that the strain energy, as indicated by the enclosed area, would be iden

tical with that of the actual cyclic stress-strain curve. Creep effects 

during the cycle were considered for one case involving the combined model 
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by imposing four 30 second hold times during heating and two 6 second hold 

times at the start of the cooling part of the cycle. These interva15 were 

selected because the combination of temperatures and stresses indicated a 

possibility of the occurrence of significant creep at these times in the 

thermal transient. The creep computations utilized the cyclic creep data in 

conjunction with a strain-hardening rule. A subroutine which was inserted 

into the MARC program in the form of yield strengths and work hardening 

slopes as functions of temperature, was used to determine the stress-strain 

properties for the local temperatures at the Gaussian integration points. 

Similarly the creep properties and laws were coded into another user sub

routine which was used to obtain the creep strains at the integration points. 

A preprocessor program converted the thermal loading data from the wedge 

specimen into the form of sixth-order polynomial equations. A subroutine, 

which was inserted into MARC, interpolated from these equations for the 

local temperatures at the Gaussian integration points. 

The finite element model for the wedge specimen is illustrated in fig

ure 4. Because of symmetry only one-fourth of the specimen needed to be 

modelled; this model was bounded by the surface and intersecting midchord 

and midspan planes of symmetry. The element used was a 20 node, isopara

metric, three dimensional block with 8 corner nodes and 12 edge midpoint 

nodes. This element had 27 Gaussian integration points. The model con

sisted of 36 elements with a total of 315 nodes and 778 unsuppressed degrees 

of freedom. 

All nodes initially on the midspan and midchord faces of the model were 

constrained to lie on the midspan and midchord planes respectively. In ad

dition, one node at the leading edge was constrained chordwise (leading to 

trailing edge) in order to prevent rigid body motion in that direction. 
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The analytical procedure used for the benchmark notch specimen was ba

sically the same as for the wedge specimen. Each cycle was subdivided into 

30 load steps. One fourth of the specimen was modelled as shown in figure 5 

using 592 plane strain, triangular elements with a total of 335 nodes. 

RESULTS AND DISCUSSION 

The critical location for crack initiation in the thermally cycled 

double-edge wedge specimen is at the leading edge at a quarter of the speci

men span from either end. Results of both elastic and inelastic structural 

analyses determined that the critical location based on the region of the 

finite element model with the largest total strain range during the cycle 

was coincident with the observed crack initiation site. In the following 

discussion, the stress-strain results for the critical location were actu

ally computed at the closest Gaussian integration point which was 0.056 cen

timeter from the surface at the quarter span. 

The stress-total strain solutions at the critical location from the MARC 

elastic and nonlinear analyses of the wedge specimen are shown in figure 6. 

All stresses and strains in this figure were effective or equivalent values 

which were originally computed as positive numbers. However, in order to 

construct stress-strain hysteresis loops for life prediction purposes, the 

stresses and total strains were assigned positive or negative signs depend

ing on the signs of the highest magnitude principal stresses or strains. 

Nonlinear stress-strain hysteresis loops are presented for the second cycle 

of the analyses. During heating the metal temperature at the critical loca

tion increased from 3430 C at the start of the cycle to 1077 0 C at the end 

of heating. In all analytical cases, the minimum total strain occurred 

after 30 seconds of heating when the temperature at the critical location 
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was 888 0 C and the maximum total strain after 9 seconds of cooling or a 

total elapsed time of 189 seconds when the temperature was 749 0 C. 

Predicted stress-strain hysteresis loops from the elastic analysis and 

the nonlinear analyses using combined and kinematic hardening models are 

compared in figure 6(a). These results indicate that the total strain range 

was not appreciably affected by the choice of constitutive model or type of 

stress-strain data and that an elastic analysis was adequate for the compu

tation of the total strain range. The major differences between the elastic 

and nonlinear hysteresis loops were in the stress levels, which shifted in 

the tensile direction under inelastic straining with the largest peak and 

mean stresses obtained with the combined hardening model. A measure of the 

strain energy or plastic work is the area of the hysteresis loop. The 

widest hysteresis loop and, therefore, the most plastic work is shown by the 

kinematic hardening model in figure 6. There was no further plastic strain

ing or work during or after the second cycle using the combined hardening 

model and, therefore the area and shape of the combined and elastic hyste

resis loops in figure 6 remained about the same. 

The nonlinear analysis using the isotropic hardening model gave essenti

ally the same stress-strain solutions as were obtained with the combined 

model in figure 6(a) due to the use of the same monotonic stress-strain 

properties and the absence of plastic strain reversal during cycling. 

Therefore, the discussion of results for the combined hardening model is 

also applicable to isotropic hardening and the latter will not be discussed 

separately. 

Figure 6(b) compares the stress-strain hysteresis loops from the non

linear analyses using the combined hardening models with and without creep. 
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Inclusion of creep effects during the thermal transients had only a small 

effect on the peak and mean stresses with combined hardening, but resulted 

in substantially more strain energy per cycle as represented by the enclosed 

areas of the stress-strain hysteresis loops. Although the hysteresis loops 

for the combined-creep and kinematic models in figure 6 are shown as closed, 

there was some inelastic strain ratchetting which was relatively minor and 

therefore ignored in plotting the loops. 

Stabilization of the stress-strain solution using the combined hardening 

model is shown in figure 7(a) where it is seen that there was no further 

plastic flow after the first 60 seconds of heating; this is an impossibility 

since the specimen cou1d not fail in 38 cycles without undergoing sub

stantial plastic strain cycling. In contrast the kinematic hardening re

sults in figure 7(a) exhibit plastic strain reversal and ratchetting with a 

relatively constant plastic strain range per cycle. Figure 7(b) shows the 

inelastic strain response for the combined-creep case. Accounting for tran

sient creep effects resulted in creep strain ratchetting on every cycle and 

smaller plastic strain changes with the combined hardening model. Only 

slight changes in the maximum equivalent creep strain were obtained with 

further cycling. However, the minimum equivalent creep strain increased, 

and therefore the creep strain range decreased, although at diminishing 

rates during cycling. 

The computed strain histories at the critical location were used to pre

dict crack initiation life based on the Strainrange Partitioning Life Pre

diction Method. The material life relationships for this method are defined 

in reference 14 for cast IN 100 alloy from isothermal fatigue and creep rup

ture tests. For these analyses the response from the Kinematic model con-
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tained only pp(tensile plasticity reversed by compressive plasticity) and 

from the combined-creep model was conservatively assumed to contain cc(ten

sile creep reversed by compressive creep) damage cycles. Crack initiation 

lives of approximately 1400 cycles were predicted in both cases compared to 

the observed life of 38 cycles. The overpredictions in life are not neces

sarily proof of the inadequacy of the structural analysis method since there 

is evidence that thermal cycling produces damage at a faster rate than com

parable isothermal, strain-controlled test data used in the life prediction 

method. 

In figure 8 analytical results using both combined and kinematic harden

ing models are compared against the experimental load-notch strain cycle 

from the benchmark notch test. Creep was not a significant factor under the 

continuous cycling, isothermal conditions of this test. The experimental 

results demonstrated that a stable load strain response occurred on the 

first cycle with only minor strain changes due to subsequent cycling. A 

plasticity analysis using the combined hardening model did not accurately 

represent the experimental results; it predicted, after initial loading, an 

elastic response with further cycling (fig. 8(a)). Another plasticity anal

ysis using the kinematic hardening model demonstrated good agreement with 

the experimental results. Kinematic hardening predicted ratchetting between 

the first and second cycles and a stable notch strain cyclic response there

after (fig 8(b)); except for slightly overpredicting the ratchetting, these 

results are consistent with the experimental notch cyclic response. 

SUMMARY OF RESULTS 

The results of the evaluation of inelastic constitutive models available 

in nonlinear, structural analysis computer programs can be summarized as 

follows: 

98 



1. Of the plasticity hardening models which were evaluated, the kin

ematic model gave a predicted stress-strain response most consistent with 

experimental observations. The combined (as well as the isotropic) model 

predicted elastic response during cycling which obviously did not agree with 

experimental results from both the thermal fatigue wedge and benchmark notch 

specimen tests. Creep effects were shown to be significant during thermal 

transients and failure to take them into account can affect the predicted 

stress-strain response. 

2. Of the structural analysis parameters used in low-cycle fatigue dam

age models only the total strain range was relatively insensitive to the 

choice of inelastic constitutive model. Other parameters such as inelastic 

strain range, mean stress, and inelastic work were significantly affected by 

the constitutive model. The elastically computed maximum total strain range 

agreed well with that computed from the inelastic analyses. The elastic 

analysis was also able to determine the critical location for crack initi

ation and the cycle times when the total strain was maximum or minimum. 

3. The life prediction analyses based on the structural analysis results 

using the kinematic and combined-creep models in conjunction with iso

thermal, strain controlled fatigue test data overpredicted the observed 

crack initiation life of the thermally-cycled wedge specimen. 
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TABLE 1. IH 100 ALLOY PHYSICAL PROPERTIES 

TC!mpera~ure. Oc : Modulus of ~last1c1ty. 
MHl'mz 

Mean Coeff~c1ent ot ~tletma.1 f;Hpans~on. 
ml'ml'°C 

316 
371 
ft27 
482 
538 
593 
6ft9 
704 
760 
IU6 
871 
927 
982 

10311 
1093 

TABLE II. 

Temperature, 
DC 

316 
427 
538 
649 
760 
871 
982 

1093 

193XI1J3 
190 

13.1XlO-' 
13.3 

186 13.5 
183 13.7 
179 13.9 
176 1ft.O 
172 14.4 
168 14.6 
163 14.9 
157 15.1t 
152 15.8 
145 16.1t 
139 1f,.7 
III 17 .5 
127 18.2 

IHI00 ALLOY STRESS-STRAIH PROPERTIES 

CY~~1C, 1 Monoton1c. 
I J a=K( f, / .U n 1 J k a=C( f. / .Um 

-----------------------1---------------------
Kin 1 C 1 m 

-----------1-----------1-----------1---------
1005 1 .046 1 731 1 .078 

944 1 .064 1 731 1 .078 
869 1 .086 1 731 1 .078 
777 1 .113 1 731 1 .078 
665 1 .147 1 731 1 .078 
528 1 .187 1 676 1 .078 
361 1 .236 1 255 1 .146 
157 1 .297 1 173 1 .146 

I Locus of cyclic curve ti~s (fig. 2) 
J Stress (0') in MPa, plast1c strain (e,) in percent 
k Hot applicable for e, less than 0.02 percent 

TABLE III. 

Temperature, 
°C 

IH 100 AllOY CREEP PROPERTIES 

9reep rate. :'./m1n., 
1 I ~~=A(a/6.895)m(t)n 

1---------------------------------1 Aim 1 n 
------------------1-----------1-----------1---------

760 
871 
982 

1093 

1 1 1 
1 1 1 
1 1 1 
1 1 1 1 .00062 1 0.717 1 
1 .00012 1 1.709 1 
1 .00010 1 2.172 1 
1 .00058 1 2.103 1 

I Stress (a) in MPa, time (t) in minutes 
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-0.881 
-0.736 
-0.654 
-0.634 



Trailing
edge radius, 
0. 102 """'. L 635 

""" t:lfJ:635 

3rfJ -t::::.'<::E::>~ 
~ 1-3.17-1 1-_! 

0.894..., t-I t-LOO -'~leading-edge 

,STRESS, 0 
I 

(0', E'pl 
;,' 
\.MONTONIC STRESS

STRAIN CURVE, 
o • C(Eplm 

-lOCUS OF CYClIC CURVE 
TIPS, 0 • K(Epln T ,.,;"' "" 

10. 16 

! 

PLASTIC STRAIN, Ep 

''-KINEMATIC HARDENING 
SLOPE· (o'{E'p)(2n{(l + nll 

I 

I 
-'-

Figure 1. - Double-edge wedge. IAlilinear dimensions 
in centimeters, I 

Figure 2, - Representation of stress-strain curves. 

+ Thermocouple locations 
lading Leading 

r Trailing edge, r Trailing edge "\ 
I edge \ I edge \ 

I \ I , 

~ __ M.!.~h~~ __ ~ E ___ M_id~~~ __ ~ 
± + .. Time after Immersion ~ + +-

into heating bed, Time after immersion 
sec into cooling bed, 

sec Heating bed ------------150 
---~7Al~ -- ~ 

o 

60 

45 

Xl 

15 
12 

.}' 9 
~. 

" -;;; 
8. 6 
E 
~ 3 

___ ~~i~~ ____ _ 

Figure 3. - Temperature of mldchord at midspan at various times after Immenlon In\:) fluidized beds. 

103 



600 

400 

200 

-400 

-600 

Trailing 
edge; . 

Midspan 

, Leading 
ledge 

/' 
/' 

/' 
,/ 

Figure 4. - Model and typical element used for MARC 
analysis with coordinate convention. 

--- COMBINEDt2ND CYCl£I 
------ KINEMATIC t2ND CYCl£I 
--ELASTIC 

-8lX!sooo -4000 -3000 -2000 -lOCO 
TOTAL MICROSTRAIN 

tal Comparison 0/ combined. kinematic models and elastic results. 

600 

200 

-400 

-600 

Figure S. - Benchmark notch specimen finlle 
element model (all dimensions in cm!. 

---- COMBINED-CREEP (2ND CYCl£) 
-- COMBINED (2ND CYCl£) 

-800 '--_...I..-__ -'-_.......L_--"'--_-'--_-'-_--' 
-SOOD -4OOD -lOOD -2OOD -100D 0 lOOD 200D 

TOTAL MICROSTRAIN 

(bl Comparison of combined and COI'lblned-creep models. 

Figure 6. - Effect of Inelastic constitutive model on stress-strain response 
of wl!<tje specimen tcrlllcal location). 

104 



z 
;;: 
a: 
>-

'" 0 

"" u 
~ 
u 
;::: 
'" 5 ... 
§ 
"" > 
§ 

z 
o· 

"" 9 

COMBINED 
r-"" CRUP STRAIN 

1200 I n rl 
1200 I 

I I KINEMATIC I -, I I I Il I I I I I I I l(XXl I I I I I 
I \ r-l I I z I I I \ ;;: I I I I \ a: 

I I 

I >-
800 '" __ r 

0 I "" I I \ 
u 
~ I 

PLASTIC STRAIN I r.J u 

I I ;::: I 
600 I '" I 

I ~ 
L.. ___ ~ 

I \ 
I 

I I I ~ 
I !Z I I I 

I I «Xl L_-.l ~ 

"" I 

200 

o 200 

30000 

0 
20000 

10000 

0 

-10000 

-20 000 
-5000 

> 
I S L ___ -J I 8 I 
I 

L-

«Xl 600 800 o 
TIME, sec 

lal Combined and kinematic models. Ibl Combined-creep model. 

ANALYSIS 

0 5000 
TOTAL MICROSTRAIN 

lal Combined model. 

Figure 7. - Inelastic strain response at critical location of wedge 
specimen. 

30000 
0 EXPERIMENTAL 

ISTABlE CYCl[) 
20000 -- ANALYSIS 

z 10000 
C 
"'" 9 0 

-10000 

10000 

Figure 8. - Comparison of benchmark notch specimen experi
mental and analytical results. 

105 

Ibl Kinematic model. 





CONSTITUTIVE EQUATIONS FOR USE IN DESIGN ANALYSES 
OF LONG-LIFE ELEVATED TEMPERATURE COMPONENTS* 

Claud E. Pugh and David N. Robinson 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37830 

EXTENDED ABSTRACT 

This paper addresses design analysis needs and procedures relative to 

elevated temperature components in liquid metal fast breeder reactor 

(LMFBR) systems. Parts of LMFBR systems operate for significant portions 

of their 30 to 40 year design lifetimes at temperatures that are suf

ficiently high for time-dependent (creep) deformations to occur. Periodic 

shut-down events cause the components to experience thermal transients 

which combine with pressure loadings to produce complex inelastic behavior 

at temperatures within the creep regime of the structural alloys. The 

effects of the thermal transients on the pressure boundary components are 

enhanced by the excellent heat transfer properties of the liquid sodium 

coolant. 

Design criteria for high-temperature nuclear reactor components 

recognize the potential occurrence of inelastic structural response. 

Specifically, criteria and limits, such as those in ASME Code Case N-47, 

have been developed that reflect a recognition of this potential and 

employ design-by-analysis concepts that can require that inelastic (elas

tic-plastic and creep) analyses be performed to satisfy the criteria and 

limits. However, the ASME documents have not included guidance on how 

inelastic analyses should be carried out, leaving it to the component 

owners to select the methods to be employed. Therefore, the Oak Ridge 

National Laboratory (ORNL) has undertaken on behalf of the Department of 

Energy, coordinated experimental and analytical efforts to establish 

appropriate constitutive equations for representing multiaxial time

dependent responses of LMFBR alloys. This presentation describes progress 

that has been made in recent years. Special attention is given to activi

ties relevant to the development of equations applicable under cyclic 

loading conditions. 

*Research sponsored by the Office of Reactor Research and Technology, 
U.S. Department of Energy under contract W-740S-eng-26 with the Union 
Carbide Corporation. 
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The general process through which many of the present LMFBR struc

tural analysis guidelines have been developed is discussed in Ref. l. 

This process has led to a framework that is in place for three alloys, and 

aspects of the inelastic analysis capabilities have been discussed earlier 

in Refs. 2 and 3. Most of the developments discussed here are given in 

terms of constitutive equations that are based on theories of continuum 

mechanics that separate elastic, plastic, and creep strains. However, 

progress is being made in developing equations that are based on "unified 

measures" of inelastic strains and "state variables" that do not make such 

a distinction. This progress is also addressed in this symposium by 

Robinson. A discussion of overall progress in these areas is given in 

Ref. 2. 

The basic analytical framework is first to be discussed, but a major 

focus is on improved representations of interactions between time-inde

pendent (elastic-plastic) and time-dependent (creep) responses of mate

rials. The elastic-plastic model is based on a modified linear kinematic 

hardening model that permits the occurrence of limited isotropic harden

ing. The creep model is based on an equation-of-state approach that uses 

strain-hardening and stress as state variables. The strain-hardening 

measure has been defined relative to history-dependent reference stresses 

in order to be applicable to cyclic loadings. Both the elastic-plastic 

and creep models are formulated in general multiaxial terms. 

Although, it has been recognized for a long time that plastic and 

creep deformations influence one another at elevated temperatures, it has 

been difficult to understand the nature of these influences to the degree 

where they can be incorporated into constitutive equations intended for 

design use. The difficulties include identifying the potentially impor

tant interactions, understanding their magnitude and longevity, represent

ing them with mathematical models, and understanding the consequences of 

interaction models for loading conditions other than the ones from which 

they were initially developed. The concerns about interactions have been 

from two perspectives. In the first, observations are made on the repre

sentation of influences of cyclic plastic straining on subsequent creep 

beahvior. In the second, representations of elastic-plastic behavior are 

examined while considering influences of prior and interspersed creep 
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straining or periods of stress relaxation. This presentation addresses 

the former more than the latter. Further observations concerning the 

latter can be found in Ref. 3 through s. 
Figures 1 and 2 show stress relaxation responses of a specimen of 2-

1/4 Cr-l Mo steel subjected to successive loadings to illustrate one type 

of interaction between creep and plastic deformations. In each sequence, 

the specimen is subjected to repeated stress relaxation intervals that 

start with approximately the same initial stress [103 MPa (15 ksi)] at 

538°C (lOOO°F). In the first test sequence, the tensile load in the 

specimen is increased directly to the maximum value at the end of the 

constant strain (relaxation) hold period. In the second test, the speci

men is loaded in the compressive direction to prescribed compressive plas

tic strain values and then loaded to the maximum tensile stress. (The 

loading histories are shown schematically in Figs. 3 and 4.) It is 

clearly seen that the reversed plastic loadings influence the subsequence 

resistance to creep deformation. The constitutive equations currently 

employed in LMFBR design evaluations recognize this type of interaction. 
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Fig. 1. Stress relaxation response of a 2-1/4 Cr-l Mo steel speci
men repeatedly loaded to an initial stress of 103 MFa (15 ksi) at 53SoC 
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MICROMECHANICALLY BASED CONSTITUTIVE RELATIONS 
FOR POLYCRYSTALLINE SOLIDS* 

S. Nemat-Nasser and T. Iwakuma 
Northwestern University 
Evanston, Illinois 60201 

ABSTRACT 

A basic method is presented for the e!timate of the overall mechanical 

response of solids which contain periodically distributed defects (inhomogeneities, 

regions undergoing inelastic flow, voids, cracks, etc.). This method is then 

applied to estimate the shape and growth pattern of voids that are periodically 

distributed over the grain boundaries in a viscous matrix. The interaction effects 

are fully accounted for, and the results are compared with calculations for a 

single void in an infinitely extended viscous solid, by Budiansky, Hutchinson, and 

Slutsky. Then, for a polycrystalline solid that undergoes relaxation by grain 

boundary sliding, the relaxed moduli are obtained, again fully accounting for the 

interaction effects. Finally, the overall inelastic nonlinear response at elevated 

temperatures is discussed in terms of a model which considers nonlinear power law 

creep within the grains, and linear viscous flow in the grain boundaries. 

*This work was performed under NASA Grant NAG 3-134. 
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1. INTRODUCTION 

The inelastic response of polycrystalline solids stems from a variety of micro

structural changes, depending on the temperature regime, as well as the stress 

history. At temperatures sufficiently below 50%'melting point, the rate effects are 

not dominant. The deformation consists of plastic slip on crystallographic planes, 

accompanied by the accommodating elastic lattice distortion. At higher temperature 

regimes the rate effects become significant, and the intracrystalline flow can be 

modelled adequately by a power law. At higher temperatures, creep effects are the 

major components in the overall response. In this case, adequate micromodelling 

involves a power law flow within the grains, accompanied by linearly viscous grain 

boundary sliding. 

Various micromechanical defects that may arise in the course of deformation, 

contribute differently to the failure mechanisms during different temperature 

regimes. At low temperatures, voids are generated because of plastic flow at second 

phase particles, and this may lead to a reduction in ductility. At higher tempera

tures, on the other hand, voids are nucleated on grain boundaries, and grow in re

sponse to the applied load, as the solid creeps. Depending on the load level and 

the temperature regime, the mechanism of such void growth varies. For example, 

cavity growth is essentially crack-like, when surface diffusion is much slower than 

the grain boundary diffusion, whereas at a high stress level the cavity grows essen

tially by intragranular power law diffusion. 

Under NASA-Lewis sponsorship, theoretical and experimental work has been initi

ated at Northwestern University on the micromechanical modelling of nonlinear con

stitutive relations of superalloys at various temperature regimes, addressing all 

the above-mentioned microscopic features. The present report summarizes some of the 

theoretical results on the growth of voids in viscous metals, the effects of grain 

boundary defects on the overall response of the polycrystal, and, finally, the over-
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all creep response of the po1ycrysta1. E1asto-p1astic (rate-independent) modelling 

is discussed in a separate report; Iwakuma and Nemat-Nasser (1982). 

The calculation of the overall response of the po1ycrysta1 is based on some 

fundamental results on the effect of periodically distributed defects (inhomogenei

ties, regions undergoing inelastic deformation, etc.) on the overall response of the 

solid; Nemat-Nasser et a1. (1982). These results are first briefly discussed, and 

then applied to the estimation of the shape and growth pattern of voids that are 

periodically distributed over the grain boundaries in a viscous matrix. The inter

action effects are fully accounted for, and the results are compared with calcula

tions for a single void in an infinitely extended viscous solid, by Budiansky, 

Hutchinson, and Slutsky (1982). Then, for a po1ycrysta11ine solid that undergoes 

relaxation by grain boundary sliding, the relaxed moduli are obtained, again fully 

accounting for the interaction effects. Finally, the overall inelastic nonlinear 

response at elevated temperatures is discussed in terms of a model which considers 

nonlinear power law creep within the grains. 
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2. FORMULATION OF THE BASIC PROBLEM 

Consider a solid containing periodically distributed sets of inhomogeneities 

such that it can be regarded as a collection of identical unit cells. Let D be a 

typical cell of volume V and exterior surface S. For simplicity assume that D is a 

parallelepiped of dimensions Ai' measured along the rectangular Cartesian coordinate 

axes xi' i - 1,2,3. The results also apply to a single cell subjected on its bound

ary to suitable displacement or velocity fields. 

Neither the matrix nor the inhomogeneities are required to be linearly elastic 

or rate-independent, but, for the intended applications, only small strains and 

rotations are considered. 

To be specific, let cr be the Cauchy stress and set 

(2.1) 

where repeated indices are summed over 1,2,3, dg is the stress increment, and D = 

~(~) is the instantaneous compliance which mayor may not depend on stress. For 

rate-independent applications, f in (2.1) is the strain tensor. For rate-dependent 

cases, on the other hand, f is the strain rate tensor. For example, for non-linear 

creep, the strain rate is € - ~(~). In this case we consider the incremental rela-

tion 

n In particular, if power law creep is assumed, E' - nJ cr', we obtain 

ncr' cr' 
d ' n{ ~ ~ + ij kR.}d ' 

Eij - nJ uikujR. 2J2 okR.' 

where prime denotes the deviatoric part, and 

k 
Ja (10' 0')2 • ij ij 

(2.2) 

(2.3) 

(2.4) 

is the effective stress; in (2.3) n is a positive number and n is a dimensional 

parameter.' If an inhomogeneity is linearly elastic or linearly viscous, then D in 

(2.1) would be a constant tensor with suitable usual symmetries. 
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Let C be the inverse of D and rewrite (2.1) as 

(2.5) 

Again, ~ may be a function of q. 

Assume now that the displacement (velocity) field 1;! 0 is prescribed on S in 

such a manner that the average strain (strain rate) field EO is obtained. Let the 

corresponding average stress field be~. Consider an incremental change, d~O, in 

~O, which produces the increments dE O and dq in the average strain (strain rate) 

and stress fields, respectively. We seek to calculate the overall moduli ~*, defined 

by 

d;; = C* d 0 
"ij ijkR. EkR.' (2.6) 

where, in general, c* depends on the average stress £, as well as on the micro-

structure. 

Within the unit cell, neither the stress increment nor the strain (strain rate) 

increment is uniform. Let there be M inhomogeneities, Or' r .. 1,2, ••• ,M, and set 

in D- ° r 

in ° , r 

(2.7) 

r:: 1,2, ••. ,M, 

where dE is the perturbation strain (strain rate) field due to inhomogeneities; C is 

the modulus tensor of the matrix; and Cr is that of the rth inhomogeneity. 

As has been shown by Eshe1by (1957) for an ellipsoidal inhomogeneity in a 

linearly elastic, unbounded solid, the nonhomogeneous body may be replaced by a 

homogeneous one, provided that suitable transformation strains are prescribed in the 

ellipsoid. In this case, the transformation strain tensor is constant. For period-

ically distributed inhomogeneities, or when the inhomogeneity is not ellipsoidal, 

the transformation strain tensor is no longer constant. The basic concept, however, 

still applies, and can be quite effective, as shown by Nemat-Nasser and Taya (1981) 

and Nemat-Nasser et ale (1982). 
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Hence, in place of (2.7), one writes 

(2.8) 

where dE*r is zero in D-n , and seeks to express this transformation strain (strain 
r 

rate) increment in terms of dEO. This is done by the use of the Fourier series 

representation of the incremental fields, as has been discussed by Nemat-Nasser ~ 

al. (1982). The final results for the present case are as follows: 

Orr in n , (2.9) dEki D AkimndE:n(~) - dEki(~) r 

r Cr ]-1 Ak ... [C --imn kipq k.2.pq c pqmn' (2.10) 

1 ±co M 
d *r ( ') i~. (x-x' ) d ' dEjk (~) -= - I' gjkmn (P I J E X e _ - - x (2.11) 

V n =0 r=1 nr 
mn - - , 

p 

_ 21Tnj 
- (no sum on j), 

Aj 
i = 1=1, (2.12) 

and where k,.Q"m,n,j = 1,2,3. In (2.11), the fourth order tensor gjkmn(~) depends on 

the matrix modulus tensor C. For an isotropic matrix. 

(2.13) 

we have 

gijk.2.(P a ~j(Oii~k+Oik~.2.) + ~i(Oji~k+Ojk~i) - 1':- V ~i~j~k~i + 1~ \) ~i~jOk.Q,· 
(2.14) 

A V c: -=-.;.;......".--
2A +2~ • 

In (2.13) and (2.14), A, ~, and V are material parameters for the matrix, which may 

depend on stress £. For a linearly elastic matrix, these are the usual Lam~ con-

Btants and Poisson's ratio, respectively. In the general formulation that will fol-

low, we shall assume an anisotropic matrix. In Section 3, however, we assume an 

isotropic matrix, and hence use (2.14). In Section 4, on the other hand, a non-

linear creep law is considered, and this makes the tensor S dependent on the current 
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stress state; then (2.14) cannot be used, and hence a more general expression is ob-

tained. 

Let f be the volume fraction of the rth inhomogeneity, 
r 

f = V lV, 
r r (2.15) 

where Vr is the volume of nr , and denote by d~xr the average value of dExr taken over 

dEXr(x)dx· - - -, (2.16) 

note that d~*r is zero outside of n. Averaging (2.8) over D, and using (2.6) w~ 
r 

obtain 

(2.17) 

where the notation 

(2.18) 

is used. We now substitute from (2.11) into (2.9), average the resulting equation 

over n to arrive at 
r 

where 

M 

L f 
s=l n s 

s -i;·x' dE* (x')e - - dx' mn - - ' 
(2.19) 

(2.20) 

It has been shown by Nemat-Nasser and Taya (1981) that good accuracy is obtained 

if the transformation strain (strain rate) increment in the integrand in (2.19) is 

replaced by its average value. This then leads to 

M 
f d 0 - Ar Sr \ Srs Ss 

r EJ"k - J"kmn mn - l. jkmn mn' 
s=l 

(2.21) 

where 
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Srs = 
jkmn (2.22) 

Equations (2.21) are now solved for ar , results substituted into (2.17), and since 
mn 

dEC is arbitrary, the following general result is obtained: 

M 
f { ~ [Ar ors _ srs f }-1 

s 1.1 mIlk.£. mnk.£. r ' r= 
(2.23) 

where ors is the Kronecker delta. 

r ,..rs In (2.23) the tensors g, ~ , an~ ~ may depend on the stress, ~, in the matrix 

as well as in each corresponding inhomogeneity. The estimate of the stress variation 

throughout the solid is indeed a formidable task. For our purposes, it seems ade-

quate to use the overall average stress a instead. Then the overall stress-strain 

(strain rate) relation can be obtained incrementally with the aid of (2.23) and 

(2.6). Some specific results are presented in subsequent sections. On the other 

hand, when necessary the local strain (strain rate) increment in, say, n can be 
r 

obtained from (2.9), 

o 
de: k £ + de:k £ (~) = A.

r 
n dE,.~r (x) , 

-lc ... mn mn-

and hence the local stress increment can be estimated from (2.7), 

in n 
r 

(2.24) 

(2.25) 

In a similar manner, the stress increment within the matrix can be obtained from 

(2.11) and (2.7). 
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3. GROWTH OF PERIODICALLY DISTRIBUTED VOIDS IN VISCOUS METALS 

3.1 Background 

At elevated temperatures, voids are nucleated at grain boundaries in polycrys-

talline solids. Depending on the deformation and temperature histories, the arrange-

ment of these voids relative to the orientation of the principal applied stresses 

can vary considerably. For example, experiments show that voids can be concentrated 

on grain boundaries perpendicular to the direction of maximum tension, see, e.g., 

Garofalo (1965). For superalloys that are plastically deformed at room temperature, 

on the other hand, Dyson ~ ale (1976) have shown and Kikuchi and Weertman (1980) and 

Saegusa et al. (1980) have conclusively verified that after annealing, voids are 

generated at grain boundaries parallel to the direction of maximum tension. The 

mechanisms giving rise to the formation of these cavities are different, but their 

presence has similar adverse effects on the life expectancy of the structural com-

ponents. An account of diffusive cavitation in polycrystalline solids is given by 

Chuang et al. (1979) and by Argon et ale (1981); see also Rice (1981). Here, how-

ever, a different approach is used, which considers the growth of periodically dis-

tributed cavities within a viscous metal. We make contact with the work by 

Budiansky et al. (1982) who examine the growth of a single cavity in an unbounded 

viscous medium, as well as with an earlier contribution by McClintock (1968) on the 

same subject. 

3.2 Formulation 

For a linearly viscous matrix, we have 

where 

Qij Qki) , 

" - 1+ " QijQki)· 
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In (3.2), Iijk~ is the fourth order identity tensor; in (3.1) f is the strain ~. 

Consider a unit cell of dimensions Ai' and let it include an ellipsoidal void of 

(principal) semi-axes ai' oriented along the coordinate axes xi' i = 1,2,3. Define 

a ... -
11.2 

Y = -11.-
1 

' (3.4) 

Since (3.1) is linear, all the incremental relations in Section 2 can be re-

placed by the total ones, i.e. all the relations apply if d~O, dQ, ••• , are replaced 

o -by € , a, ••• , respectively. 

From (2.8) it follows thatt 

€* = €O + € (3.5) - - -
within the void, and from (2.21) we obtain 

(3.6) 

where, in view of (2.22) and (2.14), 

(3.7) 

The infinite series 51 a S~(a,B,y,~,f) in (3.7) is defined by 

~ c 1,2, ••• ,9, (3.8) 

where 

tSince M "" 1, the superscript r = 1 is dropped. 
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h ... (c: c: )2 
7 "'2"'3' 

h :a (c: c: ) 2 
8 "'3"'1' 

and, for an ellipsoidal inhomogeneity, 

pen) = f 9(sin n - n cos n)2 
n6 ' 

n ,. 0, 

n 

In view of (3.5), the shape change can be defined by 

and we also note, from (3.4), that 

. 
Ct. -* -* Ji e -* -* _ a 

e:22 - e:ll e: 33 
e:
ll Ct. B 

. 
f -* ::L,.. ° - 0 .1 ... e:0 - 0 e:22 e:ll 

, e: 11 f= ~k-Y r,; 33 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

~k 
To obtain the current dimensions and other geometric variables, we integrate (3.12) 

and (3.13) with respect to time. This, for example, yields 

... , (3.14) 

where the subscript 0 denotes the initial value. 

-* Since the transformation strain rate tensor, ~ , characterizes the rate of 

change of the void geometry in accordance with (3.12) and (3.13), Eq. (3.6) relates 

the void change parameters to the overall strain rate tensor e:0. To make contact 

with results of Budiansky ~ a1. (1982), we relate the overall strain rates to the 

average stresses by 

(3.15) 
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and note that, unlike the case of a single void in an infinitely extended solid con-

sidered by Budiansky ~ _a1. (1982), here C* does not equal the matrix modulus tensor 

C. The overall modulus in the present case is obtained by specializing (2.23) or, 

equivalently, by equating the overall rate of energy loss per unit volume with the 

average rate of loss. This results int 

(3.16) 

which, for Mal and because of (3.6), implies (2.23). Since EO is arbitrary, 

(3.16) and (3.15) yield 

(3.17) 

In the present case ~ is isotropic, Eq. (3.2), and if we introduce 

S~j .. 0 ij/2lJ (3.18) 

and eliminate EO between (3.17) and (3.6), we obtain 

1 -v -v S~l 1-f-Sll11 -Sl122 -S1133 
1 1 Sg2 -S2211 1- f - S2222 -v -v '" 1 +v -S2233 

-v -v 1 S~3 -S3311 -S3322 1- f - S3333 

SO c (1 - f -* 12 - 2S1212)E12' 
(3.19) 

SO II: (1 - f -* 23 - 2S2323h23' 

SO ft (1 - f -* 31 - 2S3131)e:31' 

From (3.19) it follows that 

1- 2" (50 + SO + SO ) II: {1 - S - 5 - 5 - f}e*ll 
1 +" 11 22 33 1111 2211 3311 

(3.20) 

t The calculation is essentially the same as in Nemat-Nasser ~ a1. (1982). 
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For the incompressible matrix, v = 1/2, and for (3.19) and (3.20) to yield non-

trivial results, the matrix in the right-hand side of the matrix expression in (3.19) 

t and the coefficients in the right-hand side of Eq. (3.20) should vanish. With 

v - 1/2, this leads to 

1 - 3S1 - S2 - S3 + 2(S4 + Sa + S9) = f, 

1 - SI - 3S2 - S3 + 2(Ss + S7 + S9) = f, 

1 - SI - S2 - 3S3 + 2(S6 + S7 + Sa) :1:1 f, 

(3.21) 

and, if only the infinite series SI' S2' and S3 are retained, from (3.7) we deduce 

that 

1 - Sllll - S2211 - S33ll - f 1 - 2v 1 = 1 -2 (1- v) 
f - S 1 + S2 + S3}' 

1 - S2222 - Sl122 - S3322 - f 1 - 2v 1 - f SI - S + S3}' = 2 (1- v) 1 + 2 

1 - S3333 - S1l33 - S2233 - f = 1 - 2v { 
2 (1- v) 1 - f + SI + S2 - S3}· 

With these and with v :1:1 1/2, (3.19) yields 

r-* ~ Sa - 1 Sa 1 SO 1 Ell 3 11 3" 22 - 3" 33 

-* = [Tij ] 1 a 2 Sa - !. S~3J 1"2 -- S +-3 11 3 22 3 

-* 1 a I Sa + 2 S~3 E33 - 1Sll- ~ 22 ~ 

where [T
ij

] is the inverse of the matrix 

1 - f - Slll1 

-S2211 

1 - f - SI + S2 + S3 

-S1l22 

1 - f - S2222 

1- f + Sl - S2 + S3 

-S1133 

-S2233 

1- f + SI + S2 - S3 

(3.22) 

(3.23) 

(3.24) 

Equations (3.23) relate the void growth parameters to the overall stress components. 

In terms of the stress ratios 

tNumerical tests for spherical, cylindrical, and ellipsoidal geometries show 
that to within the accuracy of the estimate of the infinite series, these conditions 
are almost satisfied. 
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(3.25) 

one obtains 

(3.26) 

Finally, the components of EO are obtained from (3.6) and (3.26). 

3.3 Numerical Results 

Table 1 lists the initial and the loading conditions for eight different cases 

which are reported here for illustration. It should be noted that even in high 

strength metals which undergo very small overall deformations, the local deformations 

close to inhomogeneities or at the tip of cracks can be quite large. For this reason 

in Fig. 1, results for rather large strains are included. This figure shows the void 

volume change as a function of the overall deformation measure, L/LO or LOlL, for the 

indicated cases associated with Table 1. For comparison, an asymptotic and addition-

al results of Budiansky et ale (1982) are also sho~~. [These are read off the fig-

ures in the published paper. In the final version of the present report, these will 

be recalculated in order to obtain a more accurate estimate of the effect of perio-

dicity as compared with a single void in an extended solid.] Figure 2 shows the void 

shape changes for the indicated cases. 
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4. EFFECT OF GRAIN BOUNDARY SLIDING ON NONLINEAR STEADY CREEP 

At elevated temperatures, creep of polycrystals involves nonlinear flow within 

grains accompanied by grain boundary sliding which can be modelled by a linearly 

viscous relation; see Ke (1947), Zener (1948), and McLean (1957). The problem of 

estimating the overall creep properties of a polycrystal on the basis of different 

constitutive relations for the grain and the grain boundary has been examined by a 

number of researchers using various models; see, e.g., Zener (1948), Budiansky and 

O'Connell (1976), and Chen and Argon (1979). Recently, Ghahremani (1980a,b) has 

studied a two-dimensional model of creep using a numerical approach. Except for his 

work, other studies do not include the full effect of the essentially periodic 

structure of the grain boundary geometry, and hence the corresponding interaction 

effects. 

In this section we shall examine the creep of polycrystals on the basis of non-

linear trans granular and linear inter granular creep laws, using a two-dimensional 

(plane) model. 

Figure 3 shows a typical unit cell of dimensions Al and Az. Within the matrix, 

the flow is governed by constitutive relations (2.3) which, in conjunction with a 

linear creep in bulk, dEkk = K domm , K = constant, yield 

so that dOij = CijktdEkk holds for the incremental stress, strain-rate relation 

within the grains. In view of (4.1), Eq. (2.14) must be replaced by 

(4.1) 

(4.2) 

where, now, Njk is 
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where 

F; 0' 0' F; 
+ 1 [1 ~4 _ n~l (~20 - ~ ~) k ri j ~J 

2KnJn 2 ij i j 2J2 

(4.3) 

To apply Eq. (2.23), we must calculate the quantity Qr(~) for the typical rth 

grain boundary segment. r 
For a two-dimensional model, this is easily done and, if ;0 

denotes the center of the segment, and er its orientation relative to the xl-axis, 

see Fig. 3, then we obtain 

r sin y 
r 

y 

r 
r t [ r rJ y -:r -~l sin e + ~2 cos e , 

(4.5) 

no sum on r, 

where 1r is the length and t r the thickness of the rth grain boundary segment. Note 

that Eq. (2.21) now becomes 

M -+= 
r -*r ~ -\' ) r ( s) {. (r s)}d-*s 

-Aijk,q,df:kR. - L fs L gijkR,(~ h(~,e)h §,6 cos!· ~o-~o e:k1 • 
s=l n -0 

(4.6) 

p 

Note also that when the thickness t r is small relative to the length R,r of a segment, 

then 
... r 

sin y"/y = 1 
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The unit cell shown in Fig. 3 includes a total of 9 grain boundary segments, 

so that M = 9 in Eq. (4.6) and in Eqs. (2.21). For each stress increment (or the 

~r 
strain rate increment), we first solve (2.21) to obtain d! ' r = 1,2, •.• ,9. Then 

we calculate the stress increment and update the overall total stress. With this 

stress, we calculate the instantaneous moduli of the matrix from the nonlinear creep 

law (2.3). Equation (2.23) finally yields the overall instantaneous moduli. 

Table 2 shows the geometrical data for the considered unit cell. It is easily 

seen that, in this case, 

zr = n Rr [n
l 

cos e r +/3 n
2 

sin erJ , 
(4.7) 

r to [_ r r 
y = n 3 nl sin e +/3 n2 cos e ] , 

where to = 3t/A
l ; note that 

9 2t 

f = ~ fr = /3
0 ~ to • (4.8) 

For the numerical calculations, we have assumed 

K 1.001 that K~K -= so , 
K 

~ = 0 so that ~» 1 , (4.9) 

~ a22 n = 3 and p = --- = 0 (uniaxial tension). , 
all 

Detailed results are obtained for two cases: .(1) to = 0.1 which implies that 

f ~ 5.8%. We note that the model considers the linear viscous flow in a rather 

thick band about the grain boundary, and a nonlinear power law with n = 3 (in Eq. 

(2.3» outside of this band. This model appears reasonable when we observe that 

instead of the local stress we have used the overall average stress in calculating 

the instantaneous moduli for the grains. 

The results are presented in terms of the following nondimensional quantities: 
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e .. 
~J 

which together with 

J = !.:.E. 
2 

and 
(l+p)So n 

~ - (n+l) [2 ] 

leads to 

1 1 
= K Clill = 2 + 2~ 

1 1 
= - -2 2~ , 

n + 1 
K C12l2 = K C2l2l = 2~ 

(4.10) 

(4.11) 

(4.12) 

In Fig. 4, results are plotted in terms of non-dimensional axial stress and 

strain measures, instead of the effective stress and strain. At stress levels near 

So = 1, the lateral strain, ~22' is positive (extension) and larger than &11' and 

~Cll22 is negative for smaller SO. This anomalous result stems from the assumed 

power law creep for the matrix. Another peculiar phenomenon at this stress level 

is that some of the overall moduli are negative; the shear modulus remains positive. 

Another anomalous behavior for power law constitutive relations has been observed 

by Budiansky et ale (1982), in connection with void growth. These authors report 

examples in which, under axial tension larger than the lateral ones, a void in a 

power law matrix is predicted to extend more rapidly laterally than in the axial 

direction. 

The results in Fig. 4 are tentative, as we are now examining this problem in 

more detai 1. 
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Table 1: Initial and loading conditions 

Case 

I 

II 

III 

IV 

V 

VI 

VII 

VIII 

r 

1 

2 

3 

4 

5 

6 

7 

8 

9 

for considered cases of void growth problems; 
~O - Bo - 1.0, and fa - .005. 

YO ~O S~/S~ I SO /50 
33 II 

10 2 0 0 

1 1 0 0 

10 2 .5 .5 

1 1 .5 .5 

10 2 -.5 -.5 

1 1 -.5 -.5 

10 2 0 0 

1 1 0 0 

Table 2: Geometrical data for grain boundary 
configuration in a unit cell. 

r r xOI x02 er Rr f 
~ r;; r 

7 3 Tr 1 to 
- 24 '8 3 6" 673 

5 1 0 1 to 
-IT 4" 6" 673 

1 0 
Tr 1 to 

- ;; -3 3 373 

5 3 Tr 1 to 
- 24 -'8 3 6" 673 

0 1 0 1. to 
-"4 3 373 

5 3 Tr 1 to 
24 -'8 -3 6" 673 

1 0 
Tr 1 to 

4" 3 3 373 

5 1 0 1 to 
IT 4" 6" 673 

7 3 " 1 to 
24 '8 -3 6" 673 
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II 

.05 

.05 

.05 

.05 

.05 

.05 

-.05 

-.05 
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FIC. 3: A unit cell containing nine segments of grain boundary 
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A THEORY FOR THERMOVISCOPLASTICITY 
FOR MECHANICAL AND THERMAL LOADING 

E. Krempl 
Rensselaer Polytechnic Institute 

Troy, New York 12181 

and 

E.P. Cernocky 
University of Colorado 

Boulder, Colorado 80302 

Abstract 

A coupled isotropic thermoviscoplasticity theory for small strain 
is proposed. The theory consists of a mechanical constitutive equation and 
a constitutive assumption for the heat equation. These equations are sepa
rately postulated but are coupled through their common linear dependence upon 
stress rate and the mechanical strain rate tensors and the time rate of tem
perature. The equations depend nonlinearity on the stress and strain tensors 
through the overstress tensor which is the difference between the stress 
tensor and the equilibrium stress tensOT (obtained as the loading rate approaches 
zero) and on the absolute temperature. The concept of a yield surface is not 
used and the transition from linear thermoelastic behavior to nonlinear inelas
tic behavior is smooth. Extensions of the theory to cyclic loading are under 
development. 

The theory is first applied to conditions of homogeneous deformation 
where the temperature changes in the material are induced by deformation alone. 
For adiabatic conditions numerical experiments (the integration of the coupled 
nonlinear differential equations for the conditions employed in materials test
ing using postulated material functions) show that the theory reproduces initial 
thermoelastic behavior (cooling (heating) in uniaxial tension (compression), 
isothermal behavior in torsion) followed by inelastic heating in any state of 
stress during monotonic loading. The amount of deformation induced temperature 
change is negligible unless the loading is very fast. During cyclic plastic 
loading the temperature increase can be considerable and it is shown that the 
predictions of the theory compare very well with experiments performed at room 
temperature on Type 304 Stainless Steel and on a 3.5 Ni-Mo-V steel. 

When large temperature changes are imposed the deformation induced 
temperature changes can be neglected. The numerical experiments involve in this 
case the uniformly changing temperature and the mechanical loading as inputs 
(no heat conduction is allowed). Although other possibilities exist only the 
elastic modulus is assumed to be a function of temperature. The response of 
the model is shown for heating and thermal cycling under mechanical constraint 
(thermal fatigue) and for combined thermal and mechanical cycling of a uniaxial 
bar. It is shown that the response depends on the rate of temperature applica
tion and on the temperature at which clamping occurs. 
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ON THE APPLICATION OF DEFORMATION KINETICS 
TO NONLINEAR CONSTITUTIVE RELATIONS 

AT HIGHER TEMPERATURES 

K. C. Valanis and C. F. Lee 
University of Cincinnati 
Cincinnati, Ohio 45221 

ABSTRACT 

A single phenomenological constitutive equation is derived theoretically from 
first principles and applied to aluminum, tin and lead. The theory is based on 
deformation kinetics of steady creep in which the fundamental mechanism is atomic 
transport over potential barriers whose conformation is distorted by the applica
tion of a stress field. 

The form of the functional dependence of barrier distortion and stress over 
the entire temperature range is found to be a sigmoidal curve which tends to 
straight lines of a unit slope in the small and high stress regions. With this 
form of barrier distortion, the constitutive equation can predict very well the 
steady creep behavior of aluminum, tin and lead over a wide range of temperature 
and stress. 

1. Introduction 

Experimental results on high temperature creep of pure metals and solid solution 

alloys during past decades, [1,2,3] fall into two main categories: those establishing 

a relationship between steady-state creep rate and stress under constant temperature 

on one hand and a relationship between constant creep rate and temperature under 

constant stress, on the other. The functional dependence of the constant creep rate 

E on the stress a under constant absolute temperature T may be divided basically into s 

three regions whose boundaries depend on the material itself. In the low stress 

region, E is almost linearly proportional to a. Hence it is called a newtonian
s 

like viscous flow region. In the intermediate stress region, € appears to be 
s 

n proportional to a , where n is a temperature dependent material parameter. The value 

of n lies predominatly between 4 and 7 for pure metals ~nd between 3 and 5 for solid 

solution alloys. In the high stress region, € is proportional to the exponential s 

function of Sa, here S is a temperature dependent material parameter. The functional 
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dependence of f on T under constant a is assumed to be governed by a type of 
s 

Arrhenius relation. As a result the activation energy of creep can be found by a 

temperature cycling technique or the slope of the line in the Arrhenius plot of 

f:. 
s 

-1 
vs T • The values of activation energy thus found are very close to those 

of self diffus!on in pure metals or the diffusion of one of the predominant elements 

in solid solution alloys. However, the slope of the Arrhenius plot is, in general, a 

function of stress and temperature. In addition the activation energy calculated 

from temperature cycling technique is, in general, a function of stress and strain. 

Various theories of creep have been proposed in.recent times. These fall 

basically into two broad categories: phenomenological and micromechanical, the final 

aim being, of course, a macroscopic constitutive equation. The first category 

includes theories that are strictly empirical [2-4], others that are mathematical [5], 

and others still which are "quasi" physical such as the internal state variable 

theories, a typical example being reference 6. In the second category fall theories 

in which the underlying micromechanisms are vacancy diffusion, dislocation climb and 

microcreep [7]. In the latter category belong also the absolute reaction rate theory 

by Eyring [8] and the very recent deformation kinetics theory of creep by the 

authors [9]. 

Micromechanical theories, where vacancies or dislocation are the building blocks, 

need more than one mechanism to describe the experimental phenomena over a wide range 

of temperature and stress. while for practical purposes this is not a disadvantage, 

one wonders if a single appropriate atomic mechanism cannot be fOWld whiell describes 

steady creep phenomena over the entire range of stretiti ,lilt! tl'lIIper:llurL'. 

In reference 9, we found reason to believe that this might he possihle. One 

single constitutive equation was shown to predict very well the steady creep hehavior 
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of AISI 316 stainless steel, pure polycrystalline aluminum and copper over a wide 

kg/ 2 
range of temperature and stress, above about 100 cm. The vehicle for this specific 

constitutive equation is deformation kinetics. The fundamental mechanism is the 

transport (diffusion) of atoms over potential barriers whose conformation is distorted 

by the application of a stress field. 

In the case of one-dimensional flow, of interest here, the central element of the 

theory is the relation between the barrier distortion wand the free energy gradient 

- ~! where q (an internal variable) is the statistical average of the displacement of 

atoms in motion facing a tipecific,barrier. In the application of the theory [9] to 

uniaxial stress fields where the stress was above circa lOOkg~m2 a linear relation 

a~ between wand - aq sufficed but proved inappropriate for lower stress levels. 

Evidently the task at hand is to find an appropriate relation that applies to all 

stress levels but the form of the relation does not negate the fact that we are 

dealing with a single mechanism of atomic diffusion over energy barriers. This is 

done in Section 3. 

2. Brief Review of the Theory 

Particle Equations 

Let N be the number of particles whose motion is impeded by a barrier of height 

£ and w the distortion of the barrier due to the application of the stress field. 
o 

See reference 9 for details. Then the number of particles N' partaking in the net 

motion is given by equation (2.1) 

N' = 2Nexp(-£ /kT)sinh(w/kT) (2.1) 
o 

where k is the Boltzmann constant and T the absolute temperature. Assuming a "square 

sinusoidal" barrier shape the average time ~ taken by the atoms to climb the barrier 

is given by equation (2.2) 
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T (2.2) 

where a is the barrier width, F is the complete elliptic integral and 

(2.3) 

Rate (Evolution) Equation for q 

The average velocity q of the atoms crossing the barrier is given by equation 

(2.4) 

• a.N I 

q = TN (2.4) 

Use of equations (2.1), (2.2) and (2.4) gives the desired relation between the 

average velocity and the barrier distortion: 

Jr.P;o 
q = F exp (-so/kT) sinh (w/kT) (2.5) 

A convenient representation for F is the following 

1 
F = 2 log (16so/w) (2.6) 

For o~w/s ~.35 the maximum error is less than 5% [9]. If there exists n barriers to o 

the motion, each of height sr with distortion w , then equation (2.5) applies to each 
o r 

such barrier. 

However in steady creep only the highest barriers come into play, the lowest ones 

having already been climbed by the atoms in the course of the deformation. Thus one 

internal variable suffices (approximately) to represent the effect of these barriers, 

if, indeed more than one is actual active. Otherwise the representation is exact. 
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Free Energy Representation 

In general 

IjJ = 1jJ( S, q, T) (2.7) 

where in the present work T is constant. The free energy is the potential energy 

stored by virtue of atoms being displaced within potential wells. The mean 

displacement generated as a result is directly related to the elastic strain. For 

instance in the case of a unidirectional equispaced atoms the elastic strain is 

exactly equal to the atomic displacement divided by the lattice spacing. Assuming 

parabolic wells, the potential energy is proportional to a quadratic function of the 

displacement, leading to the conclusion that the free energy is a quadratic function 

of the elastic strain [9]. 

To relate the above discussion to equation (2.7) we write IjJ in the quadratic form 

IjJ = (2.8) 

and insist that it is a perfect square, so that the squared linear term can then be 

identified with the elastic strain. This is possible if Ai2 = All A22 . The principle 

of thermodynamic stability requires that IjJ be positive definite. This implies 

2 
0, A22 > 0, Al2 -A22All < o. However, the last inequality can be relaxed and set 

into equality for the purpose of steady state creep in which the metal exhibits a 

fluid equilibrium configuration [9]. As a result, equation (2.8) becomes 

2 
IjJ = ~A( S - Bq) (2.9) 

where A = All and B = -AI2 /A. Thus since equation (2.9) is the mathematization of the 

statement at the end of the last paragraph S -Bq must be identified as an elastic 

strain. Note that A and B may be and are, in general, functions of temperature. 

To obtain the desired analytical expression for creep we appeal to a 
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fundamental relation of irreversible thermodynamics according to which the stress is 

the gradient of free energy with respect to the strain i.e., 0 = a~/ae. Thus 

0= A(e- Bq). Furthermore, as a result of equation (2.9), a~/aq :-Bo. Since 

during creep the stress is constant, it follows that E = B q. The strain rate can 

then be obtained from equations (2.5) and (2.6), i.e., 

-f:. /kT 
E = z/ZE 'lTBe 0 

o 

where w is now a function of 0 and T. 

sinh(w/kT) 
log(16e /w) 

o 
(Z.lO) 

In the next section we will use equation (2.10) to predict the steady creep of 

aluminum, tin and lead, particularly under very high temperature and low stress. 

However before this can be done the relation between the internal force - a~/aq and 

w must be established. As noted above - a~/aq = Bo. The problem is therefore reduced 

to finding the relation between 0 and w, in this particular case. 

3. Application of the Theory to Aluminum 

Let the relation o(w) between 0 and w or conversely, w(o) be known. Specifically 

let 

o =~(w); w = n (0) (3.la,b) 

Substitution of equation (3.lb) in equation (Z.lO) gives a constitutive relation 

-e: /kT 
e:=e 0 J(O,T) (3.2) 

In an inverse fashion, given the experimental relation between 0 and E at constant T, 

one may then use equation (Z.lO) to deduce the relation between 0 and w, Le., the 

function ~ (w) • 

The function of ~(w) in the case of aluminum can be found from figures 1 and Z. 

It may be seen that for higher values of stress the relation of 0 and 10glO ES is 
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linear. Thus, in this range, the linear relation implies that 

a ' 
w = kTK a(l - 2-\ 

2 Jeri / 
(3.3) 

where a; is a threshold stress below which equation (3.3) is not applicable, and K2 

is the slope of the straight portion of the curve. Equation (3.3) was the basis of 

the study in reference 9, where it was shown that the linear relation persists over 

a wide range of temperature with the proviso that K2 and a~ are temperature 

dependent. In this case f(a,T) has the form 

o J 
KI sinh KZ( (j- a 0 ) 

J4( a, T) = --[~16=--€:-----]
log kT 

0 
/ KZ (:1- a~) 

(3.4) 

, 
The determination of the constants K~, KZ and a

o 
was discussed 

at length in reference 9. Note that equation (3.3) implies that the distortion is 

linearly related to the internal force, i.e., 

where Q is defined as - a~/aq and thus equal to Ba, QO = Ba~ and C (=KZ/B) is the 

coefficient of proportionality. 

(3.5) 

As shown in figures I and 2, equations (3.Z) and (3.4) predict quite well the 

experimental data in references 10 and 11, except the temperature at 920 o k. The 

corresponding values of K~, K2 , C and a~ are shown in figures 3 and 4; €:o = 34 

KCa1/mo1e which is the value of activation energy of self diffusion. It is seen 

that serious deviations begin to arise below a stress level of about a ' • Of 
o 

course this is to be expected in view of equation (3.3). 

no longer holds. 

Below a', equation (3.3) 
o 

To determine Q(a) is this region we recall equation (2.10), which because of 
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the smallness of w/kT we can write in the approximate form 

IIJ/kT 
10g(16e: /w) 

o 

and note that insofar as this region is concerned the experimental data at 920 0 k 

" 

(3.6) 

indicate a linear relation between 10glO ES and 10glO (0 - 00). when the net stress 

" " a - 0
0
), is very small [11,12]. As indicated in reference II, a = 3psi , below o . 

which ~reep was not measurable. Since log log (16 £ I w) is an insensitive function of 
o 

w in this small net stress region, the above observation suggests the following 

relation between wand 0: 

" 10glO 8w = 10glO Ao + 10glO (a - ao) (3.7) 

" where A and a are at most functions of temperature; a = l/kT. These parameters 
o 0 

wer~ determined respectively from the intercept and the constraint of a unit slope 

of the curve. In the present case A is a constant (4.6xlO-5) and aN is a 
o 0 

decreasing function of temperature (see figure 4). Indications are that as the 

II 
temperature approaches the melting point (1 ),0 goes to zero at which point the 

m 0 

metal exhibits a truly newtonian behavior. 

The form of the functional dependence of w on a over the entire temperature 

range is shown in figure 5. The relationship is sigmoidal tending to a linear form 

in the small and high stress regions (see equations (3.7) and (3.3». The 

theoretical predictions based on figure 5 are shown in figure 2. 

4. Application of the Theory to Tin and Lead 

The procedure of Section 3 is repeated here without change. It has been shown 

by a three-dimensional argument [13] that the constitutive equation (2.10) applies 

to pure shear without change in form. A comparison between theory and experiment 

is shown in figures 6 and 7. A further treatment will be the subject or a more 
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extensive article to appear at a later date. 

5. Conclusions 

In this paper we apply the theory of deformation kinetics to aluminum, tin and 

lead and show that equation (2.10) suffices to predict accurately steady creep 

behavior over a wide range of stress and temperature. We may conclude that one 

micromechanism, that of atomic transport over potential barriers whose conformation 

is distorted by the application of a stress field, is sufficient to account for the 

steady creep process in the entire range of temperature and stress. 
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A POTENTIAL FUNCTION DERIVATION OF A * 
CONSTITUTIVE EQUATION FOR INELASTIC MATERIAL RESPONSE 
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Cincinnati, Ohio 45221 

ABSTRACT 

Physical and thermodynamic concepts are used to develop a potential function 

for application to high temperature polycrystalline material response. Inherent 

in the formulation is a differential relationship between the potential function 

and constitutive equation in terms of the state variables. Integration of the 

differential relationship p~oduces a state variable evolution equation that 

requires specification of the initial value of the state variable and its time 

derivative. Analysis of these conditions showed that the initial loading rate, 

which is directly related to the initial hardening rate, can significantly 

influence subsequent material response. This effect is consistent with observed 

material behavior on the macroscopic and microscopic levels, and may explain the 

wide scatter in response often found in creep testing. The material used for 

the study, cast and wrought INIOO at 732oC~ was tested in tension at different 

strain rates, creep, stress relaxation, and reversed inelastic flow. 

INTRODUCTION 

The research presented in this paper is directed toward developing a state 

variable constitutive model for metals in high temperature environment where 

rate effects are important. The underlying concept used in the model is to 

develop a consistent system of equations to predict the inelastic strain rate 

and evolution of the state variables that are derivable from a potential 

function. The essential structure of the theory is based on the maximum 

plastic work inequality, the rate of work hardening inequality, and dislocation 

dynamics. 

The maximum plastic work inequality, expressed using the concept of a yield 

surface, can be written as (refs. 1 and 2) 

( 
0 I cr •• - cr •• ) dE: •. > O. 

1J 1J 1J-
(1.1) 

* This study was supported in part by the Air Force Wright Aeronautical Labora
tory under contract number F336l5-78-C-5l99 with the University of Cincinnati. 
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The . d I is the inelastic strain increment due to the stress step quant~ty ~ .. 
0 

~J 0 
aij - aij • The stress a .. is on the current yield surface and a .. is any other 

~J ~J 

stress either inside or on the yield surface. The inequality requires that the 

inelastic strain increment is normal to the yield surface and that all yield 

surfaces are convex. Eq. (1.1) is an axiom resulting from observed plastic 

behavior of metals. It is not derivable from thermodynamics and is not 

necessarily valid for all materials. It does, however, capture the essence of 

how many metals behave. 

The property of work hardening, as identified with a large class of metals, 

can be further characterized. In these materials it has been consistently 

observed that the stored energy of cold work, ~, increases with deformation at 

a decreasing rate during a continuous deformation history. This can be expressed 

by 

(1.2) 

h h where dW
l 

and dW2 are the increments of stored energy associated with identical 

strain (or stress) increments in two different stored worked states W~ and W~ 
such that \~ > W~ (ref~ 3). The exact structure of a cold worked state is not 

fully understood, however, it is generally-accepted that the energy is stored 

through the development of a system of dislocations (ref. 4 and 5). 

In the initial state of deformation dislocations multiply and tend to 

arrange themselves into groups or clusters occupying only a small fraction of 

the material volume. ~fost of the deformed material is dislocation free. As 

deformation increases the dislocation clusters form continuous walls separating 

relatively perfect cells. With further strain, secondary slip systems are 

activated and the density of dislocations increases with other point defects 

appearing. The cell size decreases at a dec"reasing rate as strain increases 

and tends to stabilize. The cell size and dislocation density at any time are 

influenced by the initial microstructure, temperature and loading history up 

to that time. In addition, it is important to recognize that a substantial 

portion of the character of the microstructure is established early in the load 

history when the observed macroscopic inelastic strain is very small. 

In some cases, the stored energy is partially recovered in time at elevated 

temperature or fully recovered through recrystalization. This effect could be 

important for metals at high. temperature that have been work hardened in the 

initial configuration. This situation is typical of cast and wrought super

alloys. In the case of recovery, w~ < ~, and the stored energy increments d~ 
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and d~ are both negative. In this case, eq. (1.2) requires the rate of 

change of recovery to be positive. That is, softening occurs at an increasing 

rate; conversely, hardening occurs at a decreasing rate, and both hardening 

and softening tend to stabilize. 

The maximum plastic work inequality and the rate of work hardening 

inequality satisfy most observed response in metals at high temperature under 

continuous load histories. However, the essence of the theory can be easily 

extended by a broader class of materials and load histories by requiring the 

two inequalities hold together rather than individually; that is 

(cr .. - cr~.)dE:. - (dWh
2 - d~l) ~ 0 • 

1.J 1.J 1.J 
(1. 3) 

A similar relation was suggested by Ponter (refs. 5 and 6) and the consequences 

are extensive. First, sLice the stored energy is generally small compared to 

the total plastic work during a typical deformation history, the restriction 

on the hardening or softening rate (eq. (1.2)) can be softened in some cases. 

This allows, for example, a jump in the rate plastic working to produce a jump 

in the rate of work hardening that is not restricted by eq. (1.2). The effect 

appears possible in situations where there are jumps in strain rate early in the 

development of microstructure. 

Another essential feature of the constitutive model is to use the result 

of Rice (ref. 7) showing that the components of an inelastic strain rate tensor, 
·1 
E •• , are derivable, at each instant during the deformation history, from ao 

1.J 
potential function, n, of the stress, i.e • 

• 1 = an[~, history] 
E •• 

1.J acr •• (1.4) 
1.J 

This result is based on the physical notion of conventional crystalline deform

ation: At a given slipped state, the rate of permanent shearing on a particular 

slip system depends on the stress at that point only through the shear stress 

acting on the slip f.:ystem. Thus, for a given prior history, eq. (1'.4) was 

shown to give time dependent stress strain equations consistent with both 

plausible macroscopic and microscopic idealizations. More recently, Ponter 

and Leckie (ref. 8) extended the formulation to polycrystalline metals at high 

temperature. Following the methods in ref. 6 they established a potential 

function for a constitutive equation of the Baily (ref. 9) and Orowan (ref. 10) 

type that contains one state variable, s, to describe the hardness or stored 
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energy of the material. In the Ponter-Leckie development the assumption of a 

local (microscopic) potential was essential to establish a macroscopic potential 

that can be used to derive both the inelastic flow equation and state variable 

evolution equation. The Baily-Orowan the macroscopic flow equation contains 

an Gver stress argument of the type ¢ - s, where ¢ is a scalar function of the 

stress tensor. 
Another state variable constitutive equation that uses a single state 

variable to describe the hardness or resistance to inelastic flow was developed 

by Bodner and Partom (refs. 11 and 12). Inherent in the representation is the 

absence of a yield surface. That is, the inelastic strain rate is non-zero 

for all non-zero values of stress. This is a continuous flow equation without 

separate loading and unloading conditions. It has been used to successfully 

predict the response of two superalloys at high temperature (refs. 13 and 14). 

In part, the success may result from using the entire load history rather than 

excluding the load history inside the yield surface. For example, recall that 

the character of the dislocation substructure is established very early in the 

deformation history prior to classical yield. 

Another key feature of the Bodner-Partom model is that the specific form 

of the flow equation was motivated by dislocation dynamics. Both of the well 

accepted representations for dislocation velocity, developed by Gilman (ref. 15) 

and Vreeland (ref. 16) are embodied in the Bodner-Partom formulation. One 

shortcoming of the Bodner-Partom representation is that the basic structure 

of the evolution equation for the hardness state variable is developed by 

phenomenological methods. The evolution equation is consistent with the observed 

properties of stored energy (eq. (1.2») but does not possess a formal 

mathematical or physical derivation. 

Specifically, in this paper it is shown that the concept of a macroscopic 

inelastic potential function is compatible with the essential features of high 

temperature material response expressed in eq. (1.3). A potential function 

concept is then used to derive a state variable evolution equation directly from 

the inelastic flow equation. A specific example is developed using the Bodner

Partom representation. It is shown that the Bodner-Partom evolution equation 

has a mathematical structure very similar to the derived evolution equation. 

However, the derived evolution equation has a new important property. The 

derived representation depends on the initial hardening rate that can vary from 

test to test for the same initial material microstructure. The representation 
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is used to predict the response of INlOO at 7320 C. The material constants are 

determined from tensile response data and the experimental response in, creep, 

stress relaxation and reversed inelastic flow is analyzed. 

II DEVELOPMENT OF A POTENTIAL FUNCTION FORMULATION 

Let us introduce a state variable Z as a macroscopic measure of the effect 

of the dislocation microstructure on deformation. It is designated as the 

hardness or resistance to inelastic flow and the units are that of stress. 

Similarly a macroscopic strain state variable, £h, is defined as a measure change 

in geometry associated with. the development of dislocation microstructure. 
h The variables Z and £ are scalar functions of tensor valued arguments and 

defined so that an increment of stored energy of cold work can be calculated as 

(2.1) 

It is required that the stored energy increment, dWh , and hence the valuables 
h Z and £ , satisfy the conditions outlined in the Introduction. The increment of 

inelastic work associated with an increment of inelastic deformation is 

(2.2) 

In a constant hardness state the maximum plastic work inequality (eq. (1.1)) 

can be written as 

·1 
£ •• da .. > 0, 
~J ~J 

Z = const. (2.3) 

Similarly, the rate of work hardening inequality, for constant stress eq. (1.2) 

can be rewritten as 

·h 
£ dZ 2 0, aij = const. 

and the combined inequality (eq. (1.3)) is 

£ •• da .. 
~J ~J 

Z = const. 

~h dZ > 0. 

aij = const. 

(2.4) 

(2.5) 

Using the result of Rice (eq. (1.4)) there exists a potential function ~(~,Z) 

such that 

·1 = acp (<z, Z) 
£ •• 
~J ao .. (2.6) 

~J 
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Further, using the eqs. (2.5) and (2.6) , and the result of Ponter (ref. 17), 

let us assume that for ~ to exist and be physically acceptable, that 

and 

e h = _ a cp [ ~ , zJ 
az 

~ ~ - > ~ da .. + ~z dZ - d~ o. 
oa~ ~ 0 -

(2.7) 

Therefore, ~ exists and it is convex in the space {~,~} (ref. 16). The existence 

of the potential function ~(a, Z) is consistent with the essential structure of 

work hardening or softening metal plasticity. As a result of the existance of 

~ and from eqs. (2.6) and (2.7) it follows that 

·1 
~;.h 38 .. 
0.. _~ aa::- = az • 

~J 

Using the idea of an instantaneous tangent modulus in one dimensional 

plasticity, the stress rate state variable Z can be related to the strain 

rate variable eh by the function h; i.e. 

(2.8) 

(2.9) 

·h 
That is, h is the instantaneous slope of the Z - E: response curve. For the 

following analysis let h = h(Z, ••• ) be independent of the current stress. 

Finally, eq. (2.8) can be used to derive the state variable evolution 
. I . I 

equation directly from the flow equation. Let us assume E: •• = E: •• (a, Z) is 

specified, 

. 
dZ = -

then from eq. (2.8) and (2.9) 
·1 

ck i · 
h ~ daij + df(Z, ••• ) 

~J ~J-

(2.10) 

where f is independent of stress. Integrating on the time interval [O,tJ, the 

evolution equation for the hardness can be written as 
I 

a.j(t) ck .. . . - f ~ --..2J... Z(t) - Zo --h (0) az da .. + [f(2, ••• ) - £(20,···)J a. . ~J 
~J 

(2.11) 

The integral can be evaluated for any specific choice flow law involving only 

one state variable. 
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Embodied in eq. (Z.ll) is an important property that is not widely . . 
recognized. The parameters Zo = Z{O) and Zo = Z{O) are initial conditions. The 

parameter Zo describes the initial state of the microstructure that, for example, 

would be the same for all specimens from the same heat of material. However, Zo 

is the initial rate of hardening of the microstrucutre and would be expected to 

vary from test to test, depending on the initial loading conditions. 

III Bodner-Partom Constitution Equations 

The Bodner-Partom constitutive equation (refs. 11, lZ, 18) is a fully 

developed three dimensional theory that has even been extended to anisotropic 

materials (refs. 19 and ZO). Since the main purpose of the paper is to evaluate 

the properties of the evolution equation, it is convenient to restrict the 

analysis to a one dimensionel form of the constitutive equation. This is 

consistent with the accompanying experimental program. 

The isotropic constitutive theory of Bodner and Partom is based on the 

assumption that the total strain rate, ~(t), can be separated into elastic, 
·e ·1 
E (t), and inelastic, E (t), components. Let E represent the elastic modulus, 

then the Bodner-Partom equation can be written in a one dimensional form as 

where o{t) is the current value of the stress. Inherent to the theory is that 

the inelastic strain rate is non-zero for all non-zero values of stress. The 

specific representation used by Bodner and his co-workers for the inelastic 

strain rate is given by 

Z 
~I(t) = D ,O(t), exp [_ (n+l) (zz)n] • o o(t) Zn a 

(3. Z) 

The constant DO represents a limiting value of the inelastic strain rate and is 

generally taken at Zxl04/13 sec-l unless the strain rates are very high. The 

constant n controls the strain rate sensitivity and Z(t) is the hardness state 

variable. The general mathematical structure of eq. (3.Z) is based on dis

location dynamics expressed in the context of continuum mechanics and has proven 

consistent with the observed response for many metals. The formulation is 

similar to the classical yield surface theory. The structure of the Prandtl-Reuss 

formulation is preserved, but a yield surface itself is not part of eqs. (3.l) 

and O.Z). 
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Necessary for the use of the above equations is a representation for the 

state variable Z. The specific representation proposed by Bodner et. a!. 

(ref. 18) and used for superalloys (refs. 13, 14 and 21) is based on the concept 

that only the inelastic rate of 
·1 

working W and the current hardness control the 

rate of hardening. The representation is written as 
z-z 

Z = m(Z - Z)wP - AZ ( __ 2)r 
1 1 Zl 

(3.3) 

with Zo designated as the inital value of Z. The two terms in eq. (3.3) are 

defined so that AZ l [(Z-Z2)/Zl]r is negligible during rapid load histories. 

Thus, during a tensile test that is fast compared to creep test, eq. (3.3) 

reduces to the first term alone. The constant Zl corresponds to the maximum 

value for Z and m is an exponential coefficient controlling the rate of harden

ing. For a long time response, such as creep, a second term corresponding to 
.p 

hardening recovery is necessary. During the minimum creep rate both E and a 

are constant, thus Z is constant (2 = 0) and the rate of hardening must equal 

the rate of recovery. The coefficient Z2 corresponds to the minimum recoverable 

value of hardness, and A and r are the coefficient and exponent, respectively, 

controlling the rate of hardening recovery. 

At this point in the paper it is now possible to carry out one specific . 
objective: Derive an evolution equation for Z by using eq. (3.2) in 

eq. (2.11) and to compare the result to eq. (3.3). To begin, let us define 

n+l 1/2n +1 Z 2 
B = D (Zn) and R = E-.- (_) n o 2n a (3.4) 

so that the integral ineq. (2.11) can be written as 

I=BjR- l / 2n -R 
e dR. (3.5) 

For continuous histories eq. (3.5) can be integrated by parts N times to 

obtain a series representation. Letting p = 1/2n, the series can be written as 

_ _~_p R R2 R3 
I(R) - B e [(l-p) + (1-p)(2-p) + (l-p) (2-p) (3-p) + ••• ] (3.6) 

which converges for all R on (0,00). The function I(R) is almost constant for 

large values of R (small values of stress) and decays with decreasing R (increas

ing stress). In this application of eq. (3.6) the constants DO and n are 

generally known so eq. (3.6) is totally defined. 

Finally, since eq. (3.5) could be integrated to obtain eq. (3.6), then 

eq. (3.6) is an exact differential. This implies that the contribution of 
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I(R) to the current hardening rate depends only on the current value of the 

state, Z, and the current stress. Thus, for all histories producing the same 

state and stress the integral term will have the same contribution to the 

hardening rate. 

IV PROPERTIES OF THE TWO EVOLUTION EQUATIONS 

The derived evolution Equations, (eqs. (2.11) and (3.6», can be put in a 

form similar to the Bodner-Partom eq. (3.3). Noting from eqs. 0.2) and (3.4) 

that I(R) can be written as 

I(R) 

where 

o • I 
= g(z}E; (4.1) 

O +1 1/2 -n R R2 R3 
( ) = D (E-) n R [+ + + ] (4 2) g z 0 2n . (l-p) (l-p) (2-p) (l-p) (2-p) (3-p) • • • • 

and R(~) is given by eq. (3.4). Thus, the derived evolution Equation, 
o 

(eq. (2.11», becomes 

• Z Z· I 
Z = Zo - h[g(o) - gO(o)]E + [f(Z, ••• ) - f(ZO'···)]· (4.3) 

The Bodner-Partom Evolution Equation (eq. (3.3» can be rewritten for convenience 

as 
·1 Z-Z2 r 

Z = m(Zl - Z)OE - AZI (-Z-) 
1 

(4.4) 

Direct comparison of eqs. (4.3) and (4.4) shows a very strong mathematic 

similarity. Both equations have two terms of similar type. One term is linear 

in the inelastic strain rate, £1, and the other term is independent of the stress . 
0. The derived evolution equation has the initial hardening rate term Z00 The 

coefficient of the strain rate term in the derived equation is a product of a 

modulus h and a non-linear function of (Z); whereas, the corresponding term in o 
the Bodner-Partom is linear in both 0 and Z. The function f(Z, ••• ) in the 

derived equation is consistent with logarithmic function of Z in the Bodner

Partom equation. In general, eq. (4.4) can be considered almost a special case 

of eq. (4.3). 

To evaluate the properties of the derived evolution equation further it is 

con"lenient to develop a representation for the function f(Z, ••• ). A power series 

expansion of f in Z would produce a series of exponential time terms when 
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eq. (4.3) is solved. Since the general solution is exponential in nature, a 

reasonable approximation is to use a single exponential term. Thus, let us 

assume a linear representation, namely 

where a is a parameter that is independent of Z and o. Further, in order for 

the representation for Z to approach a stable asymptotic value it is necessary 

for a > O. It is expected that this representation should contain many of the 

essential features. 

Even though the mathematical structure of eqs. (4.3) and (4.4) is similar, 

the physical interpretation of the terms is different. First notice that t = 0, . . . 
Z = o in eq. (4.4) whereas Z = Zo in eq. (4.3) • It is expected that the initial 

hardening rate should depend on the initial loading conditions, that is 

20 = 20(~O) = ZO(;O/E) where €O and ;0 are the initial strain and stress rates. 

This adds considerable flexability to the model and is consistent with the 

initial formation of dislocation microstructure as described earlier. Next, the 

strain rate term in the third term of eq. (4.3) produce basic tensile response 

properties and the stable value for Z. The strain rate term of eq. (4.3) and 

the second term of eq. (4.4) characterize the long time recovery response 

properties of the model. 

V EXPERIMENTAL PROGRAM 

Sixteen mechanical tests have been conducted on INIOO at 7320 C (1350oF) at 

the Air Force Wright Aeronautical Laboratory, Ohio and Mar-Test Inc., Cincinnati, 

Ohio. The material was obtained at different times from different heats resulting 

in five groups of specimens designated as series C, G, T, GT and ENTEN. The 

experimental program, summarized in Table 1, includes eight tensile tests, seven 

creep tests and one combined test. The controlled experimental variable is 

shown in Table 1 and the observed stable values for stress or secondary creep 

rate is also given for the tensile and creep tests, respectively. 

The results of seven tests conducted under constant strain rate control 
-3 -1 -6-1 ranging from 1.4xlO sec to 1.6xlO sec and one test under constant head 

rate control at 8.3xlO-4 sec-l are shown in fig. 2. There is significant 

variation in the level of the stress response due to the imposed variation in 

strain and head rate. Note, however, the total accumulated strain in these tests 

is not important since several of the specimens were not failed. For four 

162 



different values of strain rate (Tests 2, 4, 6 and 8) the response obtained a 

maximum stress and maintained that value of stress for all subsequent values of 

strain. However for Tests 5, 7 and 9 a different response was obtained. In 

these experiments the value of the stress decayed from the maximum value obtained 

at about one percent strain. In test 5 the amount of reduction in stress to a 

lower stable value was small. In Test 7, at a lower strain rate, the reduction 

in stress to a stable value was larger; and in Test 9, the stress did not 

stabilize at a lower level. This wide variation in response might arise since 

the eight specimens are from four different heats. Since both types of 

response were observed at both AFWAL and Mar-Test Inc., it cannot be accepted 

as an experimental problem. 

The results of six creep tests are shown collectively in fig. 6b for 

up to 100 minutes. The variation in the creep stress was almost twofold 496 

to 896 MFa (72 td 130 KSI), and the corresponding minimum creep rates are given 

in Table 1. Although not shown, Test 10, 14 and 15 obtained tertiary creep at 

times ranging from 100 minutes to about 1200 minutes. The response curves do 

not exhibit a significant primary creep phase and most of the response is 

dominated by tertiary creep. This is typical of other superalloys. Test 20, 

creep at 896 MFa (130 KSI) shown in fig. 6b, is not ordered with respect to 

the other tests; however, this could result from speciments variation or loading 

conditions as discussed later. 

If the deformation mechanism controlling the tensile tests and creep tests 

are the same, then the controlled and observed variables from the two types of 

tests shown in Table 1 correspond to the same deformation process. That is, the 

stable value of stress obtained in a strain rate controlled tensile tests should 

correspond to the creep stress with the same constant (secondary) creep rate as 

the tensile test. A plot of the observed and controlled variables for both the 

creep at tensile tests is given in fig. 1. Considering the data is over five 

decades of strain rate, there appears to be reasonable consistency between both 

types of tests. Tensile Tests 7 and 8 correspond very closely to creep Tests 19 

and 18, respectively, as shown in fig. 1 and table 1. Thus, it does appear that 

the same basic deformation mechanisms control both creep and tensile behavior 

between 482 and 1100 MFa (70 and 164 KSI) at 7320 C (1350oF). 
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VI APPLICATION TO INIOO 

The next step in predicting the response of INIOO at 7320 C is to determine 

the remaining material parameters in the evolution equation. This exercise is 

divided into two steps. First, constant strain rate histories are analyzed and 

then the results are extended to piecewise constant strain rate histories. 

Constant strain rate histories. The evolution equation that is derived 

from the potential function can be written as 

(6.1) 

for continous deformation histories using eqs. (4.5) and (4.1) in eq. (4.2). 

During each constant strain rate tensile test the last term approaches a step 

to the steady value, ~ ss 
An approximation of the behavior can be made by 

replacing the integral term in eq. (p.l) by a step function. Thus, assume 

eq. (6.1) can be approximated by 

. . 
Z = Zo - a(Z-ZO) + ~ ~[t-t J ss n 

(6.2) 

where t is the time of the unit step ~[t-t J. The solution of eq. (6.2) for 
n n 

the hardness variable yields 

i +az t:,. 
Z = zoe-at + (0 0) (l_e-at ) + ~ ~[t-t J (l_e-a(t-tn )) (6.3) 

a a n 

which is expected to be a reasonable approximation for times up to t and at 
n 

times much larger than t • 
n 

Since a significant change in response occurs early in the history, let us 

define t as the time to reach the ultimate stress under a hypothetical elastic 
n 

loading conditions using the initial strain rate; ie, 

t 
n 

(J 

:: -~-
EtO 

(6.4) 

where (J~ and £0 are the ultimate stress and constant strain rate during each 

tensile test. The elastic modulus is denoted by E. Thus, the response up to 

time t characterizes Lhe ievelopment of the microstructure before the onset of 
n 

significant macroscopic inelastic deformation. The value of hardness, Z , 
n 

expressed from eq. (6.3) as 
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and the steady state value (Long time) value is 

Z 
S8 

= 
CL 

(6.6) 

Equations (6.5) and (6.6) can be used to evaluate the parameters in the evolution . 
equation at three points: the initial condition Zo and ZO; the onset of 

significant inelastic flow, Z ; and in the fully saturated condition, Z 
n ss 

The values of Z and Z can be calculated directly from the tensile data 
n S8 

for each test. Inverting eq. (3.2) and evaluating at time t gives n . 
Zn = a~[~!~ ~n(~~)]1/2n 

likewise at saturation . 
E 

Z = a C 2n ~n(~)Jl/2n 
ss ss n+l DO 

Comparing eq. (6.1) to eq. (6.2) and using eq. (6.8) yields 

Z 
t:. = h[I(O) - I(~)] 
ss a 

ss 

which can be used with eq. (6.6) to define the parameter h as 

h = 

. 
a(Z -Z )-Z 

ss 0 0 
Z 

[I (0)-1 (~)] 
a 
ss 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

The parameter h, as, expected, is a function of history noting from eq. (6.8) . 
that (Z /a ) is dependent only on the imposed constant strain rate EO' The ss ss 
initial hardening rate can also be determined from eq. (6.5) 

a (Zn-ZO) 

-at l-e n 

noting that Z can be determined from eq. (6.7). 
n 

(6.11) 

The time parameter a can by estimated from the time required to obtain the 
-at steady state response. Assuming e vanishes at at = 5 and using saturation 

strain E~, then aE~/I~ol = 5. In this example 

(6.12) 
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-1 where Co = 10 sec and the time response is also dependent upon the applied 

strain rate. The remaining parameter Zo is choosen by interactive computation 

to obtain the best fit for the lowest strain rate response curve. The permits 

including the recovery effect as well as strain hardening. This, analysis 

produced a O = 3275MFa(475 KSl). The representations derived directly from the 

tensile data for use with eq. (6.7) and (6.8) are 

and 

a = 6.8948(2).8.79 x-O.77934 _ 58.65 x-2.9l44) 
1-1 

a 
ss 

= 6.8948(162.048 x-0.3l697 _ 0.047656 x9.638l) (6.13) 

where x = log ~/log DO and stress is in MFa(KSI). The representations were 

established to account for two different deformation mechanisms above and below 

approximately 900 MFa (see fig. 6). The other constants for INIOO used in the 

study were taken from ref. 14. They are 

5 0.70 and DO 2xl04/13" -1 
E = 1.50xlO MFa, n = = sec 

Piecewise Constant Histories. The representation for constant strain rate 

histories can be summarized by substituting eq. 6.10 into eq. 6.2 and identifying . 
Z /a from eq. (0.8) as a function of the applied strain rate, EO' to get ss ss ., 

Z = Zo - a(Z-ZO) + [a(Z -z )-2 ] I(O)-I(~)J • 
ss 0 0 [I(O)-I(E )J 

o 
(6.14) 

. 
Let us consider a step change in strain rate from EO to E1 at time t l • 

From eq. (3.1) it is seen that this produces a jump in the stress rate, 

but not a jump in the stress. Further it is expected that the. inelastic strain 

rate would remain the same; therefore, from eq. (3.2), the value of the hardness 

Z is the same immediately before and after the jump in the strain rate. This 

implies that the nicrostructure does not change instantaneously. Note that 

eq. (6.15) also shows that separate unloading conditions are not required. 

If ~l = -eO' then ~crl = -2EEO' which is very large compared to a stress rate 

near zero before the jump if the material is in the plastic range. Also, note 

that since the one test with reverse plastic flow does not indicate a significant 

amount of Bauschinger Effect, it is reasonable to assume an "isotropic hardening 
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rule" and use the same hardening rate equation for loading in both tension and 

compression. 

It is expected, however, that a jump in strain rate would produce a jump 

in the hardening rate, Z. From eq. (6.14), a jump in the value of EO to 81 
should produce a jump in I(~O)' Zss and a. It is necessary to update I(~O) to 

I(~l) t~ maintain the asympotic value for Z. In this case, as time becomes 

large, Z approaches zero for any choice of Z and a. Thus, Z and a define ss ss 
the new microstructure corresponding new strain rate and time required to 

arrive at the new structure. For INlOO,it was found that updating Z , ss 
especially after several strain rate steps, produces erroneous results and 

estimating Z from the initial strain rate produced much better results. 
5S 

Thus, due to the lack of more specific information, Z was determined from ss 
the initial value of strai~ rate. This implies that the microstructure 

generated during the initial load secquence establishes some of the major 

features of the microstructure for all subsequent deformations. This appears 

to be reasonable for the simple deformation histories used in current study; 

but, may not be valid for all materials and all deformations. Finally, from 

the lack of better data during creep and stress relaxation testing, as 

fully explained later, it was decided to use the same value for a the entire 

history as a first approximation. Thus, for step changes in strain rate, the 

hardening rate described in eq. (6.14) is used with the values of a and Z 
ss 

determined by the initial strain rate. 

Extension to continuously varying strain rate histories could perhaps 

be modelled by using the current value for strain rate as described above. 

However, in the current paper only piecewise constant strain rate histories 

were used in the experimental program so it is difficult to test this 

hypothesis. Extension to other histories and materials requires additional 

development along with a better experimental description of microstructural 

changes. 

VII CALCULATED AND PREDICTED RESULTS 

The observed and calculated tensile response curves are shown in fig. 2. 

The calculated curves match the observed response with remarkable detail. The 

constants were determined with only two parameters, Zo and CO' being determined by 

computational techniques. This was done using Curve 9 only. Further only 
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tensile data was used to determine the constants in eq. (6.13). All other 

predictions were made using only these constants. 

It is interesting to note that the shape of both the observed and calculated 

response curves are not uniform. Curves 5, 6, 7 and 9 show elements of softening 

and hardening effects. Notice that there is the same ordering of the softening 

in curves 7 and 9, with almost no softening in curve 8. The value of 

G = [I(0)-I(2/a)J/[I(0)-I(E
U
)] in eq. (6.14) for the tensile curves is shown in 

fig. 3. The effect of this term becomes important at about the yield strain. 

Thus, it is responsible for describing the majority of the macroscopic plastic 

flow. Further, shape of the curve is consistent with the step function approx

imation used in eq. (6.2) for determining the material parameters. The initial . 
hardening rate term, 20 in eq. (6.11) is responsible for characterizing the 

initial microstructure and influences the subsequent inelastic response. The 

transistion, from one term to the other, depends on strain rate and produces 

the various responses in calculated curves. This effect arose as a direct 

result of the potential function formulation. 

If the initial hardness, 2
0

, is lowered to near zero, the response becomes 

unstable between cycles of strain hardening and recovery as shown in fig. 4a. 

This effect has been observed in chemical lead at 290 C by Morrow and Halford 

(ref. 22) as shown in fig. 4b). They documented the effect as cyclic hardening 

and recovery. The calculated response in fig. 4a underscores the importance of 

the 20 and 20 terms. 

The predicted and observed response to a hysteresis loop with a 25 second 

hold in compression is shown in fig. 5. The overall dimensions on the observed 

and predicted response are close including the compressive stress relaxation 

response. The shape of the predicted curve near yield on loading in compression 

and reloading in tension reflects the assumption of isotropic hardening. 

Obviously, there is a small element of kinematic hardening being observed in the 

response. 

Next, let us investigate the effect of initial load history on the sub

sequent creep response. This was done for the four initial strain rate histories 

and one creep stress as shown in fig. 6a. The predicted response curves have 

a very pronounced variation. Increasing the initial strain rate from 1.33xlO-l 

Sec-l to 8.33xlO-4 in four steps produces increases in creep strain rate. 
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The observed creep response for INIOO for six levels of creep stress is 

shown in fig. 6b. It was expected that increasing stress would produce creep 

curves ordered with increasing creep rates. However, creep curve 20 is not 

ordered with respect to the other curves. If the increase creep stress of 

21 MFa between curves 19 and 20 is accompanied by a decrease in the initial 

strain rate, the observed response could be predicted. 

Further evidence of the effect of initial strain rate on the subsequent 

response is shown in fig. 7 for Rene~ 95 at 649 0 C. All four tests were run 

using the creep stress of 1034.3 MFa. Two tests were run on a creep frame 

with the weights placed, one at a time, on a load pan. This produced a "slow" 

initial strain rate. The other two tests were run in a hydraulic closed loop 

testing system with the initial load applied rather rapidly producing a "fast" 

initial strain rate. There is significant variation in the observed creep 

response that might be attributed to the variation in initial strain rate. 

However, the two sets of tests were run in different laboratories on different 

heats of the material. 

The effect of initial strain rate on stress relaxation was also investigated. 

Shown in Fig. 8 are fOUL stress relaxation curves that were calculated using 

four different initial strain rates to a strain of 0.01. The initial strain 

rate has a dramatic influence on the initial stress as might be expected from 

the tensile curves. The initial rateof stress relaxation and the final stress 

level both appear to depend on the initial strain rate. The observed stress 

relaxation from 0.01 strain is also shown. This curve is part of a creep and 

recovery history with a subsequent deformation to 0.01 strain. 

VIII SUMMARY 

The potential function formulation for the state variable evolution 

equation was based on a combined inequality that allowed for both strain hardening 

and recovery. The resulting evolution law demonstrated both of these properties. 

In particular the derived evolution equation required initial values for both the 

state variable, Z, and its rate, Z. In a given heat of material, with a fixed 

initial microstructure, the corresponding initial value for the state variable, . 
Z, is assumed constant for all tests. However, the initial hardening rate, Z, 

depends on how the specimen is initially loaded. This permits: the equation to 

account for the formation of different initial microstructures with different 

properties that can effect the subsequent macroscopic inelastic flow. 
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This effect was investigated and the results can produce response curves 

that are not similar or even ordered under various loading conditions. These 

effects were observed in INlOO, Rene~ 95 and chemical lead at high temperature. 

Thus, it is possible that the variations in the initial loading condition could 

account for atleast some of the variations observed high temperature tests. This 

could be particularly useful for explaining the large amount of scatter observed 

in creep tests. 
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TABLE 1. SUMMARY OF THE EXPERIMENTAL PROGRAM 

Test Type of Spec. Control Observed 
No. Test No. Variable Varfab1e Comments 

-3 -1 
(1 = 1116 2 Tensile Gl £: == 1.42x10 s MPa 

Tensile T1 • -4 -1 Const. Hd. Rate 3 X = 8.33x10 s 

Tensile T3 -4 -1 1068 MPa 4 e: = 8.33x10 s (1 = 

Tensile G2 -5 -1 951 MFa 5 £: = 6.33x10 s (1 = 

6 Tensile ENTEN 1 · -5 -1 978 MFa e: = 5.5x10 s (1 = 

7 Tensile GT7 -5 -1 889 MFa e: = 1. 33x10 s (1 = 

8 Tensile EN TEN 4 · -6 -1 841 MFa e: = 6.67x10 s (1 = 

9 Tensile G3 · -6 -1 e: = 1. 67x10 s 

10 Creep C1 496 MPa -8 -1 
(1 = £: = 1.8x10 s 

14 Creep GT6 627 MFa -8 -1 
(1 = e: 5.0xl0 s 

15 Creep GT5 620 MFa · -7 -1 
(1 = £: = 1.2x10 s 

16 Creep C4 (1 = 696 MFa Relax. Obs 

18 Creep GT4 827 MFa -6 -1 
(1 = e: = 4.5x10 s 

Creep C5 875 MFa · -6 -1 19 (1 = e: = 7.74xl0 s 

Creep ENTEN 2 896 MFa · -6 -1 20 (1 = e: = 4.17xl0 s 

Combined C3 -3 -1 21 £: 4.0xl0 s Hyst. Loop 
History 
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Figure 2. 
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Figure 6. 
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A UNIFIED CONSTITUTIVE RELATIONSHIP FOR THE TIME-DEPENDENT 
BEHAVIOR OF FAST BREEDER ALLOYS* 

D. N. Robinson 
Oak Ridge National Laboratory 
Oak Ridge, Tennessee 37830 

EXTENDED ABSTRACT 

Constitutive equations based on classical concepts of creep and 

plasticity generally rest on the assumption that the inelastic strain 

can be decomposed into two distinct and additive contributions, one time

dependent (creep) and the other time-independent (plastic). Experimental 

data collected on structural alloys at high temperature (500 to 600°C), 

however, suggest that an improved approach is to adopt a unified represen

tation in which creep and plasticity are characterized as occurring simul

taneously and interactively and time is an essential ingredient throughout. 

Examples of the inherent time dependency exhibited by some fast breeder 

alloys (particularly 2-1/4 Cr-l Mo steel) at elevated temperature are rate

dependency under monotonic and cyclic straining, thermal recovery (Fig. 1), 

and strong creep-plasticity interaction. One manifestation of the latter 

is illustrated in Fig. 2 which shows the strong influence of the recent 

history of plastic straining on stress relaxation. Account of such be

havior is important in structural problems related to the design of fast 

breeder components. 

A creep-plasticity-recovery constitutive model has been under develop

ment at Oak Ridge National Laboratory (ORNL) in recent years 1 ,2,3 that 

allows for some of the more important nonclassical features observed in 

the behavior of fast breed~r alloys. The ORNL model is based on the 

Bailey-Orowan theory of competing hardening and recovery mechanisms and 

incorporates some aspects of the work of several authors, e.g., Rice,4 

Ponter and Leckie,s and Lagneborg. 6 A notable distinction between this 

constitutive model and the related state-variable theories of Krieg 7 and 

Miller8 lies in an accompanying set of inequalities that, in effect, 

delineate analytically different regions of the "state space." This 

approach in so structuring the state space follows the work of Onat 9 

*Research sponsored by the Office of Reactor Research and Technology, 
U.S. Department of Energy under contract W-7405-eng-26 with the Union 
Carbide Corporation. 
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and Larrson and Stoakers 10 and admits a representation of analytically dis

continuous response such as that observed before and after reductions or 

reversals of stress and exemplified in Figs. 1 and 2. 

Figures 3 through 6 provide a qualitative demonstration of the abil

ity of the ORNL unified model to represent key features of high temperature 

uniaxial response. Figure 3 illustrates creep behavior (in arbitrary non

dimensional units) under constant stress conditions, indicating satura

tion of the state variable CL at steady state creep. Figure 4 shows the 

predicted response in an interrupted creep test and is characterized by 

the occurrence of state recovery with zero creep strain recovery (cf. 

Fig. 1). The state variable CL is seen, in this case, to decrease during 

the period at zero stress. Figure 5 illustrates the capability of the 

model, coupled with linear elasticity, to represent rate-dependent plas

ticity. Shown are several monotonic stress strain curves corresponding to 

different strain rates. Finally, Fig. 6 demonstrates the ability of the 

unified equations to model the complex behavior depicted in Fig. 2. A 

saturated hysteresis loop predicted on the basis of the ORNL unified 

equations is shown in Fig. 6a, the numbers indicating points from which 

the stress is relaxed. The corresponding predictions of stress relaxa-

tion are given in Fig. 6b. Figure 6c depicts the limit cycle in state space 

corresponding to the saturated hysteresis loop of Fig. 6a and shows the 

trajectories followed by the state points during stress relaxation. The 

relaxation behavior is seen to be strongly dependent on the initial in

elastic state even for points of equal starting stress. 
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APPLICATION OF AN UNCOUPLED ELASTIC-PLASTIC-CREEP 
CONSTITUTIVE MODEL TO METALS AT HIGH TEMPERATURE 

Walter E. Haisler 
Texas A&M University 

College Station, Texas 77843 

Abstract 

A uniaxial, uncc~pled constitutive model for predicting the 

response of thermal and rate dependent elastic-plastic material be-

havior is presented. The model is based on an incremental classical 

plasticity theory extended to account for thermal, creep, and transient 

temperature conditions. Revisions to the combined hardening rule of 

the theory allow for better representation of cyclic phenomenon in-

cluding the high rate of strain hardening upon cyclic reyield and 

cyclic saturation. Also, an alternative approach is taken to model 

the rate dependent inelastic deformation which utilizes hysteresis 

loops and stress relaxation test data at various temperatures. Evalua-

tion of the model is performed by comparison with experiments involving 

various thermal and mechanical load histories on 5086 aluminum alloy, 

304 stainless steel and Hastelloy-X. 

The uncoupled model assumes that there is a temperature below 

which the total strain consists essentially of elastic and rate 

independent inelastic strains only. Above this temperature, the rate 

dependent inelastic strain (creep) dominates. Experimentally, Bradley 

has shown for Hastelloy-X that such an uncoupling appears feasible. 
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The rate independent inelastic strain component is modelled in 

an incremental form with a yield function, flow rule and hardening 

law. However, the model is able to predict kinematic-isotropic 

hardening behavior, cyclic saturation, asymmetric stress-strain 

response upon stress reversal, and variable Bauschinger effect. The 

rate dependent inelastic strain component is modelled using a rate 

equation in terms of back stress, drag stress and exponent n as 

functions of temperature and strain. A sequence of hysteresis loops 

and relaxation tests are utilized to define the rate dependent in

elastic strain rate (see Bradley). 

Numerical testing of the constitutive model against experiment 

has thus far centered primarily at the low temperature range where 

the rate dependent component is negligible. Figure 1 presents results 

for 5086 Aluminum subjected to a cyclic thermomechanical loading. Nu

merical results are in excellent agreement with experiment. Figure 2 

shows the cyclic response of 304 stainless to strain-controlled cycling 

at 1000°F. The model uses a variable hardening ratio and accounts for 

the asymmetry in tension-compression response exhibited by the exper

imental data. Figures 3 and 4 show the room temperature experimental 

and model results, respectively, for Hastelloy-X during strain-controlled 

cycling at several strain rates. Cyclic saturation is modelled reason

ably well as shown in Figure 4. Numerical comparison of model pre

dictions and experiment at elevated temperature where rate dependent 

inelastic strain is significant are currently being obtained. 
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ABSTRACT 

SOME RECENT DEVELOPMENTS IN THE ENDOCHRONIC THEORY 
WITH APPLICATION TO CYCLIC HISTORIES 

K. C. Valanis and C. F. Lee 

University of Cincinnati 
Cincinnati, Ohio 45221 

Constitutive equations with only two easily determined material constants 

can predict with computational ease the stress (strain) response of normalized 

mild steel to a variety of general strain (stress) histories, without a need 

for special unloading-reloading rules that are otherwise so evident in the 

literature. 

These equations are derived from the endochronic theory of plasticity of 

isotropic materials with an intrinsic time scale defined in the plastic strain 

space. Agreement between theoretical predictions and experiments are excel-

lent quantitatively in cases of various uniaxial constant strain amplitude 

histories, variable uniaxial strain amplitude histories and cyclic relaxation. 

The cyclic ratcheting phenomenon is also predicted by the present theory, in 

routine fashion. 
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INTRODUCTION 

In recent years, cyclic plasticity, which deals with the rate-independent 

inelastic response of materials to cyclic stress or strain histories, has be

come an important subject of research in applied mechanics and engineering 

design. Past experimental work, theoretical studies and engineering analysis 

are well documented in the lit~rature. For details see, typically, References 

~1-1§1. 

On the basis of existing experimental results, one concludes that gene

rally, when subjected to symmetric stress or strain cycles, annealed or soft 

materials will harden and will tend to a stable response, while cold-worked 

or hard materials will soften. When a stable response is reached, hysteresis 

loops in the stress-strain space become stable, closed and symmetric. Also 

stable loops at various strain (or stress) amplitudes are similar in shape. 

This has led to the definition of a cyclic stress-strain curve which is the 

locus of the tips of stable hysteresis loops. It is found that some metals, 

e.g. 7075-T6 aluminum, follow the Masing rule. However, some metals, e.g. 

normalized mild steel, do not follow this rule at all I-a 7. 

In the presence of a history of unsymmetric stress cycles, the material 

response involves a progressive increase of plastic (or total) strain in the 
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direction' of mean stress. This is' called cyclic "creep" or "ratcheting". 

On the other hand, a history of unsymmetric strain cycles, will result in 

"cyclic stress relaxation" toward zero mean stress. Both phenomena occur 

whether the material response is stable or not. 

Under variable amplitude cycling, metals have a strong memory of their 

most recent point of reversal. 

If the number of cycles is large enough, then effects of prior plastic 

history tend to disappear. More precisely a material has a "fading" memory, 

in termsof the intrinsic time scale SI of the history of plastic deformation 

that preceded the cyclic history ~ 7_1, as the latter progresses. 

Attempts to describe the above phenomena analytically in terms of con-

stitutive laws have been tried. However, so far, an elegant, simple but real-

istic constitutive law is still not at hand. 

In this paper, we use a recent model of endochronic theory in the study 

of cyclic plasticity of stable materials. This model, proposed by Valanis 

113/, has been applied to metals by authors il~/. In the case of normalized 

mild steel, it is shown that the constitutive equations derived from the theory 

can predict quantitatively stable hysteresis loops pertaining to various strain 

amplitudes. The broader capability of the theory is critically tested by 

demonstrated agreement with the observed cyclic response of normalized mild 

steel to variable uniaxial strain amplitude histories. In the final section 

we show that cyclic ratcheting and cyclic relaxation are phenomena which are 

readily predicted by the present theory. 
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1. A BRIEF REVIEW OF THE ENDOCHRONIC THEORY 

In the late 1960 1 s, the formulation of constitutive theories of visco-

elastic materials from concepts of irreversible thermodynamics and internal 

state variables reached an advanced level of development. It was natural to 

inquire if a similar approach could be used to establish a theory of plasticity, 

and the attempt by Valanis to explore this question led to the development of 

the endochronic theory in 1971 ~1~/. 

In its early stages of development, the theory rested on the notion that 

the stress response of dissipative materials is a function of the deformation 

(strain) path. When the material behavior considered is rate-independent, the 

path in question must also be rate independent. The early version of the 

endochronic theory was constructed in terms of a path in the strain space €, ,. 
~J 

In this space, every point represents a deformation (strain) state. A sequence 

of strain states traces a path in this space (Figure 1). The distance along 

the path between the two strain states P and pi is denoted by d~. If P, a 

fourth order positive definite tensor, is the metric of the space, then 

(1.1) 

The tensor P is a material property in the sense that in general it will vary 

from material to material. Since successive strain states on a strain path 

are distinct and d~ is always positive, the latter can serve as a time measure 

which is a property of the material at hand, since P is such. The length of 
~ 

the path ~ is then an intrinsic time scale where "time" is used here in a very 

general sense. The stress at point P is not determined simply by the strain 

194 



at P, but by the history of the strain along the path OPe Materials for 

which the stress is a function of the history of strain with respect to an 

intrinsic time scale, have been called "endochronic" by the first author 

and the theory of the mechanical response of such materials is called 

"endochronic theory". 

In the applications, it was found that it is appropriate to define an 

intrinsic time scale z which is related to the intrinsic time measure ~, by 

the relation: 

dz = d~ 
f 

(1. 2) 

where f is a function of the history of strain. The function f, generally 

considered to be a function of ~, is of thermodynamic origin and is related 

proportionally to the degree of internal friction in a material. If a material 

hardens, f(~) increases with ~; if it softens, f decreases with ~ and is constant 

otherwise. 

The power of the thermodynamic development that follows lies in the fact 

that it does not depend on an explicit definition of z. Thus one can envision 

a thermodynamic framework, applicable to a large class of materials, from 

which an explicit constitutive equation, pertaining to a sub-class, can be 

obtained by simply choosing the appropriate form of z. 

The intrinsic time defined by equation (1.2) leads to a so-called simple 

endochronic theory. In the case of linear isotropic theory the constitutive 

equations so derived can be decomposed into deviatoric and hydrostatic parts. 

The deviatoric stress s is related to the history of the deviatoric strain e 

by the linear functional relation: 
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ae 
dz' 

(1. 3) ~(z - z') 
az' 

where in the reference configuration, s is zero, z = 0, and the shear modulus, 

~(z), is given by a Dirichlet series, i.e., 

n 

~ (z) = Ace + ~ 
r=l 

(1. 4) 

where A ,A and B are positive constants. The hydrostatic stress, 0H' is 
ce r r 

related to the history of volumetric strain, e, in a similar fashion by the 

linear functional relation: 

ae 
K(z - z') dz' 

dZ' 
(1. 5) 

where 0H = 0kk/3 and e = £kk' in the usual notation where the summation con

vention is employed. The bulk modulus, K(z), is given by a Dirichlet series 

of the form of equation (1.4). Note again that 0H = 0 in the reference 

configuration. 

For further details of the derivation of equations above see ~1~/, where 

it is shown that both ~(z) and K(z) are composed of finite sums of positive 

exponentially decaying terms. In particular, ~(O) and K(O) are the shear 

and bulk elastic moduli, respectively. 

The simple endochronic theory has been applied with success to a number 

of problems of practical interest 17,15,16/. 

Despite this fact, it failed to predict closed hysteresis loops for 

"small" unloading-reloading processes in one-dimensional conditions. For 
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such deformation histories, the theory predicted a slope at the reloadin9 point 

that was smaller than the unloading slope at the same point. This feature of 

the theory is at odds with the observed behavior of most metals. 

It was shown that the openness of the hysteresis loops is thermodynamic 

in nature and has to do with the fact that the intrinsic time rate of dissi

pation at the onset of unloading is equal to the intrinsic time rate of dissi

pation upon continuation of loading. However, from experience, most rate

insensitive materials initially unload in an elastic manner and, therefore, 

with essentially zero rate of dissipation. In view of this, the discrepancy 

between prediction and observation was bound to arise 117/. 

It .was subsequently demonstrated, however, that if the measure of intrinsic 

time is redefined in terms of the increment of plastic strain, the rate of 

dissipation at the onset of unloading and reloading is, in fact, zero. There

fore, it was appropriate to adopt the plastic strain increment as the measure 

of intrinsic time. Moreover, the constitutive equations (1.3) and (1.5) are 

recast in a form whereby the stress is related to the history of plastic strain. 

This was done by the first author recently ~lZI. This model was used to prove 

mathematically the existence of yield surface and that the kinematic hardening 

rule is a consequence of the theory. Of greater theoretical and practical 

consequence, however, is the fact that new measure of intrinsic time makes 

feasible the complete elimination of the yield surface by shrinking its size 

to zero and thereby reducing the surface to a point. This is done by intro

ducing weakly singular kernel functions in the linear functional representation 

of stresses in terms of history of plastic strain by allowing the kernel 

functions to possess an integrable singularity at the origin (i.e. z = 0). On 

the basis of the above considerations, endochronic constitutive equations of 
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isotropic materials, which exhibit yielding immediately upon application of 

loading, are as follows 

p (0) = co (1. 6) 

O'kk 
= jZoH K (0) = co (1. 7) 

and 

where D and H denote the deviatoric and hydrostatic state, respectively. Also 

ds 
(1. 8) 

(1. 9) 

where ~l and Kl are the appropriate elastic moduli. The intrinsic time scale 

increments dZ
H 

and dZ
D 

are related to the intrinsic time measures by the 

equations: 

(1.10 ) 

(1.11) 
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where 

= I de~. de~. I ~ 
~J ~J 

(1.12 ) 

(1.13) 

Here I· I denotes the absolute value. Other more general definitions are 

possible, see reference /13/. The kernels p and K are given by the series 

<Xl 

2: 
-Cl Z 

p (zD) 
r D = p- e 

r 
(1.14 ) 

r=l 

<Xl 

2: 
-w Z 

I<' (zH) = r H 
Kr e (1.15 ) 

r=l 

which must be convergent for all values of Z > 0, but should diverge at z = O. 

The above equations summarize the new model of the isotropic endochronic theory. 

In conclusion, two significant results are accomplished: (1) The slope of 

the deviatoric (or hydrostatic) stress-strain curve at points of unloading and 

reloading or strain rate reversal is always elastic, i.e., equal to the slope 

at the origin of the appropriate stress-strain curve. (2) The hysteresis loops 

in the first quadrant of the stress-strain space are always closed. For 

details see reference /13/. 

Constitutive Relations in Tension-Torsion 

The constitutive equations that apply in this specific case are found from 

equations (1.6) and (1.7) and are given below. 
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J:O p 
T = p (Z - Z I ) 

dn d I -- z 
D D dZ I D 

D 

(1.16) 

J:O K(ZD - Z~) 
d 

(e:P - e:P ) dz' °1 = dZ' 1 2 D 
D 

(1.17) 

= 1:° K(Z - z') d ( e:P + 2e:P ) dz' 
°1 H H dZ' 1 2 H 

H 

(1.18) 

where e:~ and cr. are the axial plastic strains and stresses, respectively, 
~ ~ 

along the axes x. and e:P = ~P3 to satisfy the condition of isotropy. Also T 
~ 2 

and nP stand for s12 and ei2' respectively, in the notation of equation (1.6). 

Because in the experiments to be investigated the hydrostatic strain was 

not measured we shall proceed to make the usual (approximate) assumption of 

elastic hydrostatic response, in which case equation (1.7) does not apply, 

but instead the plastic incompressibility condition 

(1.19) 

is used. In the following, we will omit the subscripts D and H. 

In light of the above hypotheses and in view of equations (1.16) and 

(1.19) the appropriate constitutive equations in tension-torsion are the 

following: 

p 
p (z - z') E..!L dz' 

3z' (1. 20a) 
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where 

3e:P 
1 

E (z - z') -- dz' 
dZ' 

E(z) = 3 p(z) 

dz = dZ
D 
=~ 

f (I;) 

2 
dl; = dl;D = I[ (de:P - de:P ) 

3 1 2 

(1.20b) 

(1. 20c) 

(1. 21) 

(1. 22) 

2 2 ~ 
+ 2 (dnP) ] I (1.23a) 

Alternatively. dl; can be expressed in terms of the engineering shear strain 

yP = 2nP , in which case, upon using equation (1.19), 

(1. 23b) 

In the applications that follow we will use the above equations in the 

study of cyclic response to a variety of test conditions. 
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2. APPLICATIONS TO STEADY CYCLIC RESPONSE 

In subsequent applications, it is expedient to rescale d~ by a constant 

Ii so that 

(2.1) 

The values of p(z) and E(z) are rescaled by the same constant. 

cyclic Shear Response 

It follows from equation (2.1) that in pure shear 

d~ (2.2a) 

In addition, if the cyclic response is steady, then f(~) is a constant, which 

we set equal to 1. Thus equation (1.22) becomes 

(2.2b) 

In reference /13/, we let p(z) be a function of the form 

where P 
o 

-ct 
= Po z 

and ct are material constants and 0 < ct < 1. 

(2.3) 

This type of kernel 

satisfies the constraint imposed by equation (1.6) and leads to the Ramberg-

Osgood equation for the tensile response. In view of these remarks, we use 

equation (2.3) for the present study. 
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Upon substitution of equation (2.3) in equation (1.20a), the shear 

stress is expressed.asa function of the history of plastic strain as follows: 

Po dyP d ' 
a dz' z 

(z - Z ') 

(2.4) 

At the completion of n reversals and by virtue of equations (2.2a, b) and (2.4), 

the following relation applies, 

1" = (_l)i-l 
Po 1Z 

--~-- dz ' + (-1) 
(z - z') a 

z 
n 

Po 
--~--dz' (2.Sa) 

a 
(z - z I ) 

where z. denotes the value of z at the point where the ith reversal has been 
~ 

completed and z 
o 

result 

def 
O. 

Po [ I-a 
1" = -- Z + 2 

I-a 

By simple analysis, the above equation leads to the 

n 

2: (2.Sb) 

i=l 

Equation (2.5b) is suitable for the prediction of the stress response, once 

the functional relationship between z and the (plastic) shear strain history 

is known. 

Cyclic Uniaxial Response --

In this case, we use equations (2.1) and (2.2a, b) to obtain the essen-

tial relation. 

(2.6) 
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In the fashion outlined above, the steady cyclic uniaxial response is found 

from equations (1.20b), (1.21), (2.3) and (2.6) and is given by the relations, 

v3P 
a = __ 0_ [zl-a + 2 

l-a 

n 

2: 
i=l 

If, instead of using equation (2.6), we use 

dz 

then equation (2.7) becomes 

3 Po 1 [l-a 
0=----- z +2 

l-a a/2 
3 

n 

2: 
i=l 

( -1 ) i (z - z.) l-a ] 
~ 

(2.7) 

(2.8) 

(2.9) 

The scaling of the intrinsic time by a constant is a matter of convenience 

and may be done at will, without interference with the theory. We observe 

that equations (2.5b) and (2.9) obey the linear homogeneous transformation 

between indicated stresses and strains given below: 

1: = (2 .lOa ,b) 

To test the validity of the theory, we appeal to the experimental results 

on normalized mild steel obtained by Jhansal and Topper /-6 7. 

Constant Uniaxial Strain Amplitude --

We consider the class of metals whose asymptotic stress response to sus-

tained cyclic strain excitation at constant strain amplitude is a periodic 
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stress history with constant amplitude. Specifically in a uniaxial test of 

this type, the axial stress amplitude ~a is constant and therefore the axial 

plastic strain amplitude ~£P is also constant, following equation (1.8). 

Thus 

(2.11) 

where ~£ is the axial strain amplitude and El is Young's modulus. As a 

result, the value of z during cyclic tension and compression can be found by 

integrating equation (2.8). After an odd number n of reversals has been com-

pleted, the value of z - z can be calculated by integrating the relation 
n 

dz = -d£P with ~£P as the lower limit of integration. If n is even, then the 

relation dz = d£P applies with -~£P as the lower limit of integration. The 

results are as follows: 

and 

z 
n 

= (2n - 1) ~£P 

where in equation (2.12a) "-" is used for n = odd and "+" for n 

Equation (2.12b) applies to both cases. 

(2.l2a) 

(2.12b) 

even. 

Upon substitution of equations (2.12a, b) in equation (2.9), one obtains 

the result 

205 



3 p 1 I-a 
= -..£ -- (L\e:P ) F (a,x) 

I-a 3a/2 n 

F (a,x) = (2n ± x)l-a + 2 
n 

n 

2: 
i=l 

i I-a 
(-1) (2n - 2i + 1 ± x) 

(2.13) 

(2.14a) 

(2.14b) 

where the "+" and "_" signs correspond to n even and n odd, respectively. 

The algebraic value of the peak stress (i.e., stress amplitude) is found from 

equation (2.14b) by choosing n odd and setting x = 1 in equation (2.14b), i.e., 

F 
n 

(a) 
I-a 

= (2n - 1) + 2 

n 

2: 
i=l 

i 
(-1) 

I-a 
(2n - 2i) (2.14c) 

where n = I, 3, 5, ...• The peak stress at n = even is given by the same 

equation, i.e., equation (2.14c). Thus equation (2.14c) is applicable for 

all n. It can be shown that, in the limit of n~~, F converges to a constant 
n 

F~(a), where F~ varies with a but is essentially close to unity. For instance, 

for a = 0.864, F is equal to 1.03 /14/. Thus the asymptotic value of L\cr as 
~ 

n tends to infinity is given by the equation 

(2.15) 

This is the equation of the cyclic str~ss-(plastic) strain curve. 

Cyclic steady response in shear can be found in a similar fashion or 

by using equations l2.10a, b). 
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To test the validity of the theory, we use experimental data on normalized 

mild steel i 6_/. In reference / 6 /, a set of stable uniaxial hysteresis 

loops corresponding to various constant strain amplitudes was presented in the 

stress-strain space. A propos of the ensuing theoretical predictions we note 

that the geometric shape of the loops is given by equation (2.13), whereas 

the peak stresses are given by equation (2.15). We also note that there are 

only two undetermined parameters in these equations, a and p. The form of 
o 

equation (2.15) was corroborated in reference /14/ where a semi-logarithmic 

plot of the experimental values of ~a vs ~EP gave rise to a linear relation. 

The plot also determines a and p which were found to be 0.864 (a pure number) 
o 

and 48.4 MPa (7.02 ksi), respectively. These values are then used in equation 

(2.13), and the shape of the hysteresis loops is thereby calculated. Agree-

ment between theory and experiment is excellent as shown in Figure 2. 

We wish to devote a few lines to these powerful results. The reader will 

note that two constants are sufficient to define the cyclic stress- (plastic) 

strain response as well as the hys~eretic behavior of normalized mild steel. 

It is also pertinent to mention that the analytical expressions involved 

(equations (2.13) and (2.15» are not empirical formulae but closed forms 

derived from a general constitutive equation pertaining to three-dimensional 

histories. Also of importance is that the prediction of unloading and reload-

ing behavior did not necessitate special rules or special treatment but was 

dealt with routinely, as part of the total experimental history of interest. 

Specifically, the celebrated Bauschinger effect is predicted quantitatively 

and correctly from one and the same constitutive equation. 

We make in passing, an observation of historical interest. Equation 

(2.15) agrees with the empirical relationship proposed by Landgraff et ale / 2 / 
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for steels, i.e., 

where I-a ranges from 0.12 to 0.17. In our case, I-a = .136. 

Variable Uniaxial Strain Amplitudes --

To extend the experimentally verified domain of validity of the theory 

and to broaden our view of its capabilities, we test it under conditions of 

variable uniaxial strain amplitude histories. The stress response to such 

histories is found by using equations (2.13) and (2.14b). The analytical 

results are compared with the experimental data on normalized mild steel ~-6_/. 

The experiment consists of a constant uniaxial strain amplitude cyclic test 

(until stable hysteresis loops are reached) followed-by a variable uniaxial 

strain amplitude test. The experimental data are shown in Figure 3. Despite 

the complexity of the history, agreement between theory and experiment is 

obtained and shown in Figure 3. Again the theory predicts the stress history 

routinely without the use of special rules present in other theories ~3,5,6,10, 

l~/. At this point, we may reasonably conclude that the theory as expressed 

by equation (2.5b) (or equation (2.9)) is suitable for the prediction of the 

stress response to cyclic straining, in the case of normalized mild steel. 

Cyclic Relaxation --

Here we address the case where the plastic shear strain is increased 

monotonically to a value Y~ , and is followed by a cyclic shear strain history 

with amplitude ~yp about a mean value yP 
o 
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To calculate the stress response we use equation (2.5b). The cyclic 

shear strain history is shown in Figure 4. With reference to Figure 4, to 

make the following definitions 

(2.l6a) 

(2.l6b) 

The value z. of z at ith reversal, is found from equation (2.2b). Thus 
~ 

z. = yP + (2i - 1)6yP, i 
~ 0 

1, 2, ... n. (2.17) 

After n reversals have been completed, the value of z at the current shear 

strain yP is 

where 

-p 
y 

(2.18) 

(2.19) 

and the minus and plus signs correspond to n odd and even respectively. The 

shear response, after n reversals is found upon using equations (2.5b), 

(2.17) and (2.18). Specifically, 

pol-a 
T = (6yP) F (a x , x) 

I-a n ' 0 
(2.20) 
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where 

- I-a 
F (a, x , x) = (2n + x + x) 

n 0 0 

n 

+ 2 2; (-1) i (2n - 2i + 1 + x) 
I-a 

(2.21) 

i=l 

and 

(2.22a) 

(2.22b) 

If n = odd, then x varies from 1 to -1; while if n even, then x varies 

from -1 to 1. 

Equations (2.21) and (2.14b) differ only in the first term on their right-

hand side. It is x which allows cyclic relaxation to take place. The results 
o 

are shown in Figure 4 where the material constants, found previously, were used. 

We notice that as n is very large, the effect of x in equation (2.21) 
o 

disappears as a result of the relation Lim F (a, x , x) = Foo(a, x). The 
n-+oo n 0 

hysteresis loops then become stable and symmetric with respect to yP and have 
o 

exactly the same shape as those with zero mean shear strain. 

Other Complex Histories 

A strain history of practical importance is shown in Figure 5, where a 

cyclic strain history at a fixed strain amplitude is followed by another at a 

lower strain amplitude. The experimental results are shown in Figure 5. In 
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order to predict the stress response, we use the numerical scheme developed 

in the section on variable uniaxial strain amplitudes. The theoretical 

results obtained are also shown in Figure 5. Again agreement between theory 

and experiment is demonstrated. 

It is important to observe that the decreasing effect of the previous 

history on the stress response to a periodic strain history (cyclic test at 

constant strain amplitude) is the natural consequence of the monotonically 

decaying kernei function used in the present theory, i.e., in equation (2.3). 

This type of kernel does indeed impart to the material a fading memory with 

respect to the endochronic time scale. 

3. CYCLIC RATCHETING 

In this case the cyclic stress history is given. The numerical scheme 

developed in the previous sections is still useful. In addition, an iterative 

method is used to ensure the correct value of the stress at the point of 

reversal. Such schemes are easy to implement in the computer program. For 

purposes of theoretical study, the constitutive equations for shear under 

symmetric and unsymmetric stress cycles were used. Specifically, equation 

(2.5b) with material constants of normalized mild steel found previously, pre

dicted the cyclic ratcheting phenomena shown in Figures 6(A) - 6(D). It is 

clear that, under unsymmetric stress cycles, the increment of plastic shear 

strain per cycle OY~ is positive and decreasing but not equal to zero, as 

shown in Figure 6(0). This indicates that, whether the material response is 

stable or not, the direction of progressive (plastic) shear strain is in the 

"direction" of mean shear stress. However, in the case of symmetric stress 
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cycles, the first stress cycle gives rise to a hysteresis loop which lies 

toward the right-hand side in the stress-strain space. The subsequent cycles 

will then cause the hysteresis loops to move toward the left-hand side until 

a stable symmetric hysteresis loop is reached. Due to the effects of the first 

stress cycle, the center of stably symmetric hysteresis loops does not lie 

at the origin of the stress-strain space. We find that the sign of the "off

center" value of the strain is the same as the sign of the strain at the 

point of first reversal. This phenomenon is essentially the counterpart of 

the cyclic relaxation after initial loading as indicated in Figure 4. 

Comparisons between theoretical predictions and experiments must await 

further experimental information. 

4. CONCLUSIONS 

On the basis of the results presented in this paper, we conclude that the 

constitutive equations derived from the endochronic theory are very suitable 

for the analytical prediction cyclic response of stable materials under a 

variety of conditions. Moreover, the theory has its origins in irreversible 

thermodynamics of internal variables shown to be a powerful tool in the deri

vation of constitutive theories for several classes of materials (e.g. 

viscoelastic, plastic and viscoplastic materials). 

Also noteworthy is the fact that a constitutive equation with two 

material constants, which are easily determined, can predict with computational 

ease the stress (strain) response of a material to a variety of general strain 

(stress) histories, without a need for special rules that are otherwise so 

evident in the literature. 
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INTRODUCTION 

A NEW UNCOUPLED VISCOPLASTIC 
CONSTITUTIVE MODEL* 

Walter L. Bradley and Shik Yuen 
Texas A&M University 

College Station, Texas 77843 

A new uncoupled viscoplastic model has been developed which 
assumes a portion of the inelastic strain is rate independent (or 
at least rate insensitive). Unlike earlier uncoupled models, this 
model recognizes that some of the inelastic strain which occurs 
during a load change is rate sensitive (or thermally activated). 
To separate the rate dependent and rate independent contributions~ 
hysteresis loops are run in strain control at temperatures that 
are sufficiently low thRt essentially identical loops are obtained 
for a 40s, 120s, and l200s period. This a - £ loop is assumed to 
define the stress/rate-insensitive, inelastic strain behavior for 
all temperatures. Subsequent tests at higher temperatures will 
include rate-sensitive and rate-insensitive components of inelastic 
strain. However, since the magnitude of the rate-insensitive inelastic 
strain at each stress and temperature is already known from the 
low temperature hystersis loop measurements, the rate sensitive in
elastic strain component can be determined by subtraction. The 
stress/rate-sensitive, inelastic strain is then modelled using 
standard viscoplastic models. 

At higher temperatures. and there~ore, lower stresses, the rate 
independent inelastic strain contribution is found to be negligible 
and the predictions of the model are exactly those of standard 
viscoplastic models. However, at lower temperatures and ~he re
sultant higher stresses, the rate independent, inelastic strain 
is significant and accounts for the rounded corners that are 
currently a problem for viscoplastic models which assume all inelastic 
strain to be rate sensitive. 

In this paper we will present the physical basis for the un
coupled viscoplastic model, describe the various experiments used 
to evaluate the material constants, and compare predictions of 
stress relaxation behavior by the model to experimental results 
where the material constants have been determined using hysteresis 
loop data. 

PHYSICAL BASIS FOR MODEL 

Deformation of metals and alloys occurs by dislocation glide. 
cross-slip and climb. Additional flow may result from grain 
boundary sliding, though some dislocation deformation in the grains 

* This work was sponsored by NASA under direction of Dr. Robert Thompson 
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is required even here for compatibility. In the low temperature 
regime (0-0.20T m) the yield strength and flow stress are found to 
vary significantly with temperature. This is particularly true 
for materials with a body centered cubic lattice structure. The 
fairly small activation energy for thermally assisted dislocation 
motion at these low temperatures is usually associated with 
dislocations overeoming lattice friction (Peirels stress) or 
possibly dislocation intersections. 

Between 0.20-0.40T • the thermal assistance to overcoming such 
barriers is core than a~equate, allowing dislocation glide to occur 
equally caoily at various temperatures and/or strain rates in this 
temperature range. Here, the flov stress depends more on the in
elastic strain and the resultant strain hardening it produces than 
on the strain-rate. While short range barriers to glide such as 
Peirels stress are easily overcome with thermal assistance at these 
temperatures, the thermal energy is relatively small and generally 
ineffective in giving much thermally assisted recovery via dis
location c.ross-slip, climb, etc. The activation barriers for such 
processes are relatively large compared to the phonon energies 
(thermal energy), making these processes quite sluggish; thus, 
their contribution to the overall deformation is quite small. In 
summary, between 0.20 and 0.4T, thermally activated processes are 
either so rapid (e.g., overcom~ng Peirels stress) or so slow(e.g., 
dislocation climb) that very little rate sensitivity observed over this 
temperature range. We may say the deformation behavior in this 
temperature range is rate insensitive and over a range of strain-
rates of 50-100X will be essentially rate independent. It will 
be shown later that Hastelloy-X speci~ens tested under fully 
reversible strain conditions over a temperature range of 298K t~4 
533K (0.2 to 0.35T ) and over a 30X strain-rate range (9.70 xl0 
to 3.23 x 10-5 s-l n at each temperature have essentially identical 
hysteresis loops and material constants for nand K. At 755K 
(0.49T m), the hysteresis loop is changing slightly, though rate 
dependence over the strain-rate range (30X) we have studied is 
still not significant. 

As the specimen deformation temperature is raised above O.sT , m 
rate sensitiv~ inelastic deformation becomes apparent. Hysteresis 
loop size (and shape to a degree) changes y1th changing strain-rate. 
At these higher temperatures, thermally activated cross-slip and 
climb nOll becomes possible, particularly at the slower strain-rates, 
which lowers the peak stress achievable in the hysteresis loop. We 
will associate our rate sensitive, inelastic strain with the add
itional increments of deformation made possible by the thermally 
assisted overcoming of these larger barriers to deformation, i.e., 
dynamic recovery, or softening. The rate sensitivity is seen 
principally in the circumventing of various barriers by cross-slip 
or climb rather than in the subsequent glide to the next barrier. 
Nevertheless, all of the inelastic strain that results from the 
combined cross-slip (or climb) and subsequent glide will be 
included in the rate sensitive, inelastic strain. 

We have implicitly divided our inelastic strain into a 
component which results in strain hardening and a component which 
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does not. Even during the portion of the hysteresis loop where 
strain hardening is occuring, the inelastic strain may contain rate 
dependent (no strain hardening) as well as rate independent (strain 
hardening) components. It should be emphasized that net strain 
hardening continues until the back stress reaches a level where re
covery and strain hardening are balanced. Ideally. the stress is 
dependent on the rate insensitive. inelastic strain and the rate 
sensitive. inelastic strain-rate. A transient dependence of stress 
on the rate sensitive, inelastic strain (as well as strain-rate) 
is sometimes observed and is equivalent to primary creep. Since 
we are initially interested in modelling hysteresis loop behavior for 
saturated loops, such transients are not expected to be significant. 
They do probably playa role in the initial "shakedown" where 
dislocations are gradually being rearranged into more stable cell 
structure configurations. 

In summary, we believe that the inelastic strain may be un
coupled into two components. one associated principally with dis
location glide resulting in strain hardening and a second associated 
with dynamic recovery processes including dislocation cross-slip 
and climb. To a first approximation. the flow stress should depend 
on the rate insensitive, inelastic strain and the rate dependent. 
inelastic strain-rate. The stress/rate- sensitive inelastic strain
rate relationship can be modelled using viscoplastic models. The 
stress/rate-insenaitlYe, inelastic strain relationship is determined 
from hysteresis loops taken at a suitably low temperature (0.2-0.3T ). 

m 
At higher temperatures, the flow stress is relatively low and the 
inelastic strain is essentially all rate-sensitive, resulting from 
dynamic recovery processes. At lower temperatures and the resultant 
higher flow stresses, a significant portion of the total inelastic 
strain will be rate insensitive deformation. The more gently rounded 
corners of the hysteresis loop observed at these temperatures are 
a consequence of this rate-insensitive, inelastic strain. 

In this next section, the constitutive model will be defined 
in mathematical equations and the experiments required to characterize 
the various constants will be described. 

CONSTITUTIVE MODEL 

The total strain-rate is assu~ed to be divisible into three 
componentsi an elastic component Ee' a rate-insensitive. inelastic 
component E .. , and a rate-sensit ive inelast ic component 1::. ; i. e. 

11 1r 

I:: = I:: + 1:: •• + 1::. 
tell lr 

(1) 

. 
The rate-sensitive strain rate 1::. is modelled using the relationship 
typically used in unified theori~§ for inelastic strain rate (note 
unified theory assumes all inelastic strain is rate sensitive); 
namely, 

E. 
1r 

n = o-rl (-) 
K 

(2) 

where a is the applied stress. n is the back stress and K is the 
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drag stress. The elastic strain-rate is modelled in the usual 
way as 

E = alE e (3) 

Finally, the rate-insensitive, inelastic strain is modelled wit~ 
an empircally determined strain hardening function f(a,amax ) as 
followa: 

• 
E.. D f (a. a ) a 

11 d E:11 max 
(4) 

where f(a,amax ) ~ da as measured from hysteresis loops for different 
strain ranges, and therefore, amax values, as shown in Figure 1. 
It should be noted that the ~ystersis loops even at these lower 
temperatures are slightly asymmetric so the sign of the cmax before 
the stress reversal as well as its magnitude must be specified 
to define the particular f value for a given value of a in a stress 
reversal. The results for f(a,qmax) determined from the data in 
Figure 1 is summarized in Table 1. The stress-rate may be calculated 
from Bquations (1)-(4) for a given axial strain-rate of ~t as follows: 

or 

. .. 
a 

(0-0) 
K 

n 

E
l + f(a, a ) 

max 

0-0 n 
60 = 6£t - (---K-) 6t 

1 
- + f(a, a ) 
E l1\ax . 

(5) 

(6) 

The evaluation of 6£ is given by £ 6t where the total axial strain-
rate for a constant ~iametral strait rate dD/dt is 

-2 dO 
E t = DQ at (7) 

1 do 
1 - E ere (1-2\)) 

It should be noted that the appropriate time step 6t is selected 
by monotonically decreasing the value of 6t until the simulated 
O-E: hysteris loops for two successive choices of 6t are essentially 
identical. 

The material constants which must be determined empirically 
in Equation 5 are n(a,T,N), K(a,T,N), E(T), f(a,amax) and neT) 
where Nand T refer to the cycle number and temperature respectively. 
For the initial phase of this program, we chose to evaluate only 
saturated hystersis loop behavior, eliminating for the moment "N" 
as a variable. It was further assumed that for a saturated hystersis 
loop, "K" would retain a constant value around the loop whereas 
n was assumed to vary with a around the loop. The rational for 
this assumption is that the drag stress is physically associated 
with the dislocation cell structure, or dislocations in stable 
configurations while n is associated with the metastable dislocation 
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arrangements such as pileups, multiple loops around particles. 
etc. Once a stable dislocation cell structure is formed (i.e •• 
at saturation), it is reasonable to assume it does not change appreciably 

as we traverse a strain cycle. It may also be reasonably expected 
that the cycle to cycle changes leading to saturation will be asso
ciated with an N dependence of K, with 0 independent of N, at least 
to a first approximation. 

Stress relaxation tests were made in an attempt to determine 
"{I." and "n" over the entire range of temperatures studied (755K
l144K). Using an analysis first suggested by J.C.M. Li (1), it 
was determined that the back stress decreased significantly during 
the stress relaxation tests for temperatures of 978K (1300 0 F) and 
above, giving erroneous results for both "n" and "0". This was 
subsequently confirmed by drop stress/strain transient tests used 
to measure the back stress. Thus, stress relaxation tests were 
only used over the temperature range of 755K-922K to determine 
t· n " and "n". At hi g her t em per a t u res ( 9 78 K - 114 4 K). s t res s d r 0 p / 
strain transient tests were used to determine the back stress ~. 
Then abrupt strain-rate change tests were used to determine the 
value of "n". The strain-rate was decreased by a factor of 3x 
and by a factor of 30x with the resultant flow stress measured. 
It was assumed that "K" remained constant during these strain-
rate changes but that "0" changed to a new value during 0.5s tran
sient that occured before a new "steady-state" flow stress was 
attained. The plotting of (0-0) vs. E allowed the stress exponent 
"n" to bee val u ate d . i r 

At all temperature~. "K" was subsequently evaluated using 
Equation 2 at the same stress where "n" and "0" had previously 
been evaluated (usually on the plateau of the hysteresis loop or 
near 0 at lower temperatures where no plateau was reached). With 

max 
n, n. and K determined for one 0-£ position on the hysteresis loop 
and assuming nand K are constant for a saturated loop at a given 
temperature and strain-rate, one may then calculate n for other 
points around the hysteresis loop using Equation 2. Typical result" 
for n vs. E(oro) are shown in Figure 2. 

EXPERIMENTAL PROCEDURES AND DATA REDUCTION 

Round tensile bars with a gage section 4 cm long by 1 cm in 
diameter were prepared from Hastelloy-X. They were then inserted 
into a 100 Kip MTS materials testing system with special water 
cooled grips and a diametral extensometer which utilizes quartz 
rods. Inducti6n heating was used with an Ircon optical controller 
to heat the specimens. The temperature variaton at l144K was !l.lK. 
An absolute accuracy of !3K was attained by calibrating the optical 
controller using llastelloy-X in a conventional furnace. High purity 
thermocouple wires and a precision digital thermometer were used 
to establish the actual temperature. Several thermocouples were 
used to verify the absence of significant temperature gradients 
in the small Hastelloy-X specimen used in calibration as well as 
in the tensile specimens' gage length during temperature maintenance 

221 



by induction heating. The calibration of the optical controller is 
checked every three months and recalibrated as needed. 

Special alignment procedures were used to reduce an initial 
variation in axial strain measurements at three equally spaced 
positions around the circumference from 30% to 5% maximum. This 
was verified on several successive specimens and then was not checked 
thereafter. Only one specimen was buckled in testing, and this 
specimen had a fatigue crack which had grown across about 20% of 
the cross-section. 

Specimens were tested at ten temperatures ranging from 298K 
(0.20T) to l144K (0.75T). At each temperature, specimens were 

m m 
testea at three diametral Strain-rates vit~1 _4ga~e axial strain
rates of approximately 10,3.3 and 0.33 x 10 s- , the instanta
neous strain-rate varying slightly around these values depending on 
the relative amounts of elastic and inelastic strain. The strain 
range used was ±l% axial strain and the specimens were cycled until 
the loop saturated, whidh required as few as two cycles at higher 
temperatures but as many as 40-50 cycles at lower temperatures. 

Diameter measurements were converted Into total axial strain 
using the easily derived relationship 

.. Q (1 - 2v) - 2~ 
E D o (8) 

where E and v are the elastic modulus and Poisson's ratio. Do is the 
initial diameter and ~D is the change In diameter. The axial in
elastic strain is easily calculated as the difference in the total 
strain and the elastic strain, 

or (9 ) 

Equations for the total strain rate E and the inelastic strain 
• t 

rate £i are alco easily derived In terms of the measured load/ 
diameter relationships and give 

-2 dD 

£t = Do at (10 ) 

1 
1 da (1-2v) - E dE 

t 

1 
1 da --2 dD E dE 

£1 .. - t 
D dt 

(11 ) 

0 

1 (1-2v) 
da - dE 

E t 
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where do 
~ 

t 
= 

1 

( lE- 2\.1 2~) - 0 do 
o 

(12 ) 

Since dD is specified in programming the MTS function generator 
dt 

and dD/do is eastly measured, the total and inelastic strain-rates . . 
E t and Ei are also easily determined from load/diameter measurements. 

With the strain hardening function f(o,o ) defined from hys-
max 

teresis loops at lower temperatures where all inelastic strain is rate 
insensitive. Equatio~ 4 can be used to quantify the rate in~ensitive 
inelastic strain-rate for any temperature and stress rate. o. Since 
the total inelastic strain-rate may b~ calculated from Equati~n (11) 
and the rate i~sensitive strain-rate calculated tllrough using 
Equation (4). the rate sensitive strain-rate is easily calculated 
as the differnce in these two quantities. Thus, the elastic, in
elastic rate-insensitive and inelastic rate-sensitive contributions 
to the total strain-rate may all be evaluated from the experimentally 
measured load-displacement curves. Once the rate-sensitive component 
of strain-rate is evaluated, the n can be calculated for various 
measured values of a and calculated values of "n" and "K". 

The stress relaxation tests were run under constant diameter 
conditions imposed by interrupting the diametral strain cycling 
at various points on the hysteresis loop. The stress-time response 
during the interruption of strain cycling is measured using a second 
recorder so as to not interfere with tile load-diameter measurements. 
The axial, rate-sensitive strain-rate is dctermineu frum the luau 
time record using the relationship 

t: . 
lr 

-2\.1 • 
= -E- 0 

(l 3) 

derived assuming stress relaxation under constant diameter conditions. 
Load versus dr/dt is taken and used to evaluate Ei . The value for 
" " r n in Equation 2 may be determined by plotting 1" ti vs. In (0-,:). 
assuming n does not change during the test. r 

Experimental Results and Discussion 

Typical stress/total strain and stress/ rate-sensitive inelastic 
strain results are seen in Figures 3 and 4 respectively. Results 
at room temperature (0.20T ) and 533K(O.35T ) at three strain-rates 

. m m 
gave essentially identical hysteresis loops, indicating the inelastic 
strain over this temperature range is all rate insensitive. 
Additional hystersis loops were run at room temperature for strain 

amplitudes of :t 0.05%,0.17., 0.27., 0.3%, 0.4%, 0.6%, 0.87., with the :t 1% 
having been run previously. These results are presented in Figure 1 
with the f(o,omax)" values tabulated in Table 1. 
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The various material constants required for characterization of 
the rate sensitive, inelastic strain are summarized in Table II. 
The elastic constants as a function of temperature are summarized in 
Table III. It should be noted in Table II that "n" varies from 3.63 
to 5.57. This is in sharp contrast tu unified models where the "nil 
value at lower tewperatures may be as high as 60-100. We too 
found "n" values of 50-100 if we ran strain-rate cycling tests at 
lower temperatures and analyzed the results assuming all of the 
inelastic strain was rate sensitive (or rate dependent) ~s chc 
unified tlieory does. 

The back stress is seen to increase wit~ inc~easing stress as one 
might expect. At higher temperatures, the slower st~ain-rate gives 
the lower back stress. At temperatures below 978K, the back stress 
does not seem to be a sensitive function of strain-rate. At 978K 
and above "I(" is seen to systematically decrease with increasing 
temperature. This indicates an increasing mobile dislocation 
density, possibly resulting from an increased cell size which is 
both the source of mobile dislocations and a place where thev may 
be entrapped. At lower temperatures "K" increases with decreasing 
strain-rate, again indicating the expected lower mobile dislocation 
density at lower strain-rates. These differences in calculated "K" 
are a result of stress relaxation data for different prior strain
rates being displaced vertically in a (n~. vs. in (a-Q) plot. 
The con s tan t " K " val u e sat va rio u ~ s t r a i n ~ ~, ate sat h i g her t em per a -
tures are assumed in the analysis, this assumption being justified 
by a careful analysis of the strain-rate cycling tests. 

Table IV summarizes the results of analysis of the inelastic 
strain-rate just before and just after the strain cycling is inter
rupted for a stress relaxation test. The inelastic strain is given 
from equations (1), (2) and (4) as 

. 
E •• 

11 

• • n 
+ E. = f (0, a ) a + (O-Q) 

1r max --K- (14) 

Since a goes from positive to negative as one interrupts the strain 
cycling for stress relaxation and since f (a, a ) is essentially 
zero just after a load reversal, the rate insen~rfive strain-rate 
experiences a discontinuous change from a positive value to zero. 
Since the stress is continuous at this time, one would expect the 
rate-sensitive inelastic strain-rate to be continuous. Thus, a 
large decrease in inelastic strain-rate as one interrupts the strain 
cycling indicates that the inelastic strain-rate during strain 
cycling is principally rate-insensitive. If the inelastic strain
rate before and after the interruption is essentially the same, 
this indicates that the inelastic strain during cyclic straining 
must have been essentially all rate sensitive. Thus, inelastic 
strain-rate continuity is a good measure of to what degree the 
inelastic strain is rate sensitive. A large discontinuity indicates 
significant rate-insensitive strain. Table IV summarizes such re
sults over a wide range of strain rates and temperatures. The 
trends as expected show a greater degree of rate-dependent inelastic
strain (smaller discontinuity) for higher temperatures and slower 
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strain-rates. These results show a gradual transition from about 
100% rate insensitive flow at high strain-rates and lower temp
eratures (as in classical plasticity) to 100% rate sensitive flow 
as in the unified theories. It should be noted that our consti
tutive model will cover this entire range as it explicitly accounts 
for both types of inelastic strain. 

PREDICTIONS 

The constitutive model as described in Equations 1-4 and 
reformulat~d into Equations 5-7 may be used to predict strain 
cycling, stress relaxation or other phenomena if used with the 
approximate material constants. Such constants for Hastelloy-X 
are summarized in Tables I, II and III. To first see if the model 
is self consistent in being able to predict the original strain 
cycling curves from which Tables I, II and III were determined, 
all of the input strain cycling curves were simulated using Equa
tions 6 and 7 and the material constants in Tables I, II and III. 
The original curves and the simulated curves were found to be in 
excellent agreement over the whole range of temperatures and 
strain-rates, as seen in the selected examples presented in Figure 
5. Gently rounded corners are well simulated at the lower temp
eratures using this uncoupled approach. The unified theory with 
its high "n" values always gives square corners at lower temp
eratures. 

Stress relaxation simulations are presented in Figure 6. 
At the lower temperature, the results are reasonable; however, 
at the higher temperature the actual asymptotic stress value is 
much lower than the predicted one. This is because we have not 
yet accounted for thermal recovery of our state variables nand 
K. The back stress does decrease during stress relaxation at 
higher temperatures as has been previously noted. We are still 
assuming a constant value for nand K during stress relaxation. 

SUMMARY 

A new uncoupled viscoplastic model has been proposed along 
with experiments and analysis to define the various material 
constants. Distinguishing between rate sensitive and rate in
sensitive strain allows the rate sensitive strain to be modelled 
over a wide range of temperatures with very little variation in 
the stress component "n". Furthermore, it allows the rounded 
corners on stress-strain hysteresis loops to be achieved very 
naturally. 
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Table 1. Values for Rate Independent,Inelastic Strain Function f(O'Omax) 

o(MPa) f( 0, 'lnax)HPa- 1 
o(HPa) f(o'~x)MPa-l o(HPa) f(o'''max)MPa- 1 

for 0max ~ 149 MPa 
Loading for 0max E 467 HPa 
-149 0 for 0max = 562 MPa 
-105 0 Loading 
105 0 -477 0 Unloading 149 0 -105 0.145E-5 

0 0.113E-5 562 0 
Unloading 106 0.255E-5 106 0.783E-6 

149 0 212 0.559E-5 0 0.174E-5 
106 0 318 0.880E-5 -106 0.388E-5 

-106 0 424 0.187E-4 -212 0.677E-5 
-149 0 461 0.455E-4 -318 0.120E-4 

467 0.134E-3 -371 0.164E-4 
-424 0.217E-4 

Unloading -477 0.314E-4 
457 0 -509 0.403E-4 

for 0max " 286 105 0.145E-7 -530 0.565E-4 
0 0.104E-5 -546 0.796E-4 

Loading -106 0.294E-5 -557 0.132E-3 

-286 -212 0.545E-5 -567 0.388E-3 
0 

0 0 -318 0.890E-5 

105 0.187E-6 -424 0.165E-4 for 9nax • 610 MPa 
212 0.406E-6 -459 0.329E-4 

286 0.161E-5 -477 0.913E-4 Loading 
for 0max ~ 520 HPa -615 0 

Unloading -106 0.141E-5 

286 0 Loading 0 0.288E-5 

0 0 -530 0 106 0.429E-5 

-106 0.275E-6 -106 0.681E-6 212 0.723E-5 

-212 0.580E-6 0 0.164E-5 318 0.126E-4 

-286 0.148E-5 106 .0.330E-5 371 0.175E-4 
212 0.732E-5 424 0.232E-4 
318 0.114E-4 477 0.307E-4 
424 0.197E-4 530 0.448E-4 

for 'lnax = 392 HPa 477 0.333E-4 562 0.629E-4 
509 0.754E-4 583 0.858E-4 

Loading 520 0.196E-3 605 0.152E-3 
610 0.229E-3 

-403 0 Unloading 
0 0.319E-6 520 0 Unloading 

106 0.155E-5 105 0.127E-6 610 0 
212 0.259E-5 0 0.135E-5 106 0.681E-6 
318 0.435E-5 -105 0.383E-5 0 0.188E-5 
392 0.124E-4 -212 0.723E-5 -105 0.357E-5 

-318 0.110£-4 -212 0.630£-5 
Unloading -424 0.177£-4 -318 0.103E-4 

392 0 -477 0.310E-4 -371 0.159E-4 

0 0.232E-6 -509 0.541E-4 -424 0.194E-4 

-106 0.185E-5 -530 0.157E-3 -477 0.274E-4 

-212 0.270E-5 
-530 0.416E-4 

-318 0.417E-5 
-562 0.572E-4 

-403 0.107E-4 
-583 0.894E-4 

for "max = 562 HPa -605 0.185E-3 

for ° = 435 MPa 
-615 0.372E-3 

Loading max Loading 
-446 0 -567 0 

0 0.652E-6 -106 0.986E-6 
106 0.258£-5 0 0.225E-5 
212 0.432E-5 106 0.394E-5 
318 0.620E-5 212 0.658E-5 
392 0.126E-4 265 0.862E-5 
424 0.246E-4 318 0.126E-4 
435 0.680E-4 371 0.164E-4 

424 0.220E-4 
Unloading 477 0.328E-4 
435 0 509 0.461E-4 

0 0.551E-6 530 0.600E-4 
-106 0.214E-5 552 0.111E-3 
-212 0.441£-5 562 0.291E-3 
-318 0.694E-5 
-392 0.108E-4 
-424 0.184E-4 
-446 0.522E-4 
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Temp. 
(K) 

755 

610 

866 

922 

978 

1033 

1089 

1144 

Table II. Values for Back Stress(for o-omax),n,Drag Stress(K) and Kn 

n 
(MP~S") 

Kn 

Temp. (~IPa) (MPanS) 
s trii i n -ra te n strain rate strain rate (oF) (10-'S-I)" (10-'s-' ) (10-'s-' ) 

10 3.3 0.33 10 3.3 0.33 10 3.3 
900 466 466 474 15.50 Ij~U :!Ij Uq:! ./ts x ts.u:! x~' 

1000 252 265 316 4.96 1186 1260 1704 1.77 x 10" 2.39 x 10" 

1100 255 226 237 5.57 905 978 1274 2.94 x 10" 4.53 x 10" 

1200 161 164 163 4.31 1690 1829 2597 8.17 x 10" 1.15 X 10" 

300 141 136 115 5.57 800 800 SOO 1.48 X 10" 1.48 X 10 lt 

400 118 111 82 4.75 672 672 672 2.69 x 10" 2.69 X 10" 

500 76 66 43 4.70 466 466 468 4.32 x 10" 4.32 X 10'.' 

600 41 38 26 3.63 532 532 532 7.85 x 10 9 7.85 x 10· 

900°F - 1200°F: n, n & K obtained from stress relaxation tests. 

1300°F - 1600°F: n obtained from strain rate change test 
n obtained from stress drop tests. 
K assumed to be constant for all strain rates 

0.33 
~x~ 

1.07 x 10" 

1.98 X 10'" 

5.20 X 10" --
1.46 X 10' , 

2.69 X 10' ; 

4.32 X 10 ' .' 

7.85 x 10' 

Table Ill. Values for Young.'s Modulus and Poisson's Ratio 

Temp. I 
(K) I 
294 
533 

755 
i 810 

866 
922 

978 
1033 

1089 
1144 

Temp. Temp. T/Tm* 
(oF) (CO) 

70 21 0.19 
500 260 0.35 
900 482 0.49 

1000 538 0.53 
1100 593 0.57 
1200 649 0.60 
1300 704 0.64 
1400 760 0.67 
1500 816 0.71 
1600 871 0.75 

\) = 0.32 (assumed constant for all temp.) 

*melting range is 1260-1255°C 
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(10'psi) E(GPa) 

28.6 197 
26.3 182 
24.0 166 
23.4 162 
22.8 158 
22.3 154 
21.7 150 
21.1 146 
20.5 142 
19.9 137 



Table IV. Inelastic Strain Rate Continuity at Various Ternperatur~s 
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Figure 1. Saturated stress-strain results for Hastelloy-X at 
room temperature for total atrain amplitudes of 0.05%.0.1%.0.2%. 
0.3%.0.4%.0.5%.0.6%.0.8%.1.0%. 
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CORRELATIONS BETWEEN METALLURGICAL CHARACTERIZATION STUDIES, 
EXPLORATORY MECHANICAL TESTS, AND CONTINUUM MECHANICS 

APPROACHES TO CONSTITUTIVE EQUATIONS* 

J. Moteff 
University of Cincinnati 
Cincinnati, Ohio 45221 

and 

C. E. Pugh and R. W. Swindeman 
Oak Ridge National Laboratory 
Oak Ridge, Tennessee 37830 

Austenitic stainless steels, such as types 316 and 304, are widely 

used as pressure vessel materials in the temperature range of 425 to 650°C. 

Depending on the loading rate, the deformation behavior may fall into cate

gories classified in continuum mechanics as either time-dependent plasticity 

or time-dependent creep. Ad hoc rules are sometimes needed to accommodate 

interaction effects. Some of the rules for interaction effects can be bet

ter understood by taking into account the dynamic nature of the dislocation

dislocation and dislocation-precipitate substructure and how it responds to 

transient stress, strain, and temperature conditions. The variation in this 

structure includes changes in mobile dislocation density, dislocation link 

lengths, cell sizes and misorientation angles, and precipitate sizes and 

distributions. 

Al though somewhat limited in its use for understanding kinematic harden

ing behavior, microscopy is a valuable tool in the study of isotropic harden

ing, especially as it is affected by the Orowan-Bailey concept of strain 

hardening versus thermal recovery and acceleration of aging phenomena due 

to cyclic strain. Indeed, a better understanding of metallurgical phenome

na needs to be developed in order to establish the useful range of accumu

lated strain as a state variable. 

In considering type 304 stainless steel that exhibits a creep behavior 

characterized by a relatively high stress exponent of creep rate and the 

development of subgrains during creep deformation of recrystallized material, 

*Research sponsored, in part, by the Office of Reactor Research and 
Technology, U.S. Department of Energy under Contract \~-7405-eng-26 with 
the Union Carbide Corporation. 
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and for tests conducted under constant stress (a), temperature (T), and 

environments (E), the creep rate, E, may be given as: 

E(a,T,E,S) T E = E(S) a, , 

Here S is a parameter that describes microstructure, \vhich for dislocation 

creep is characterized by the following parameters: 

S = S[A,p,8,F(8),f(p)] , 

where A is the subgrain size, p the dislocation density, 8 is the average 

misorientation angle between subgrains, F(8) is the distribution function 

of the misorientation angle, and F(p) is some function of dislocation

second phase interactions. 

Figures I through 3 show creep curves (strain-time) of some explora

tory mechanical tests performed at temperatures 704, 650, and 593°C. Speci

mens were tested to rupture at two different stress levels al and a2 

(al > a2) to establish the normal strain-time behavior. A subsequent test 

was performed in which the specimen was crept at the higher stress (al) to 

the beginning of the secondary stage of creep, presumed to be the strain/time 

conditions at which a steady state microstructure is developed, and then 

the stress was reduced to the lower level (a2). In most of the conditions 

studied, it was observed that some incubation time period (6t) would pre

vail at which the strain, other than elastic strain recovery, would show 

no measurable change. In some cases, such as a stress change to 48 or 33 

percent of the initial stress for tests conducted at 650°C and an initial 

stress, aI, of 207 MPa, a negative strain would prevail for a period of time. 

As the test temperature is decreased, the incubation period is significantly 

increased such as the 160 hours observed at the 593°C with a stress drop of 

about 25%. 

The associated microstructure, S, and significance of this microstruc

ture on the creep strain-hardening model for variable uniaxial loads were 

assessed and found to be consistent with the use of creep-recovery models 

at high stresses and temperatures and strain-hardening models at low 

stresses and temperatures. 
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A NONVOLUME PRESERVING PLASTICITY THEORY 
WITH APPLICATIONS TO POWDER METALLURGY* 

Brice N. Cassenti 
United Technologies Research Center 
East Hartford, Connecticut 0610S 

ABSTRACT 

A plasticity theory has been developed to predict the mechanical 

response of powder metals during hot isostatic pressing. The theory 

parameters were obtained through an experimental program consisting of 

hydrostatic pressure tests, uniaxial compression and uniaxial tension tests. 

A nonlinear finite element code was modified to include the theory and 

the results of the modified code compared favorably to the results from 

a verification experiment. 

INTRODUCTION 

In the Hot Isostatic Pressing (HIP) process a sheet metal container 

is fabricated in the approximate shape of a component to be manufactured. 

The container is evacuated, filled with a powder metal and sealed. The 

container is then placed in a HIP facility where it is subjected to high 

temperatures and pressures. For powder metals consisting of nickel base 

superalloys typical HIP temperatures are l150C at pressures of 1000 atm. 

During the HIP all the void space is squeezed out from between the particles. 

After HIP the container is removed and the solid component remains. 

* Work performed as a part of AFOSR Contract F49620-7S-C-0090 
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The HIP process is ideally suited to the manufacture of turbine and 

compressor disks in jet engines and is cost competitive with forging. 

Unfortunately the final shape of the hot isostatic pressed component is not 

a photographic replica of the original container shape. Non-photographic 

distortions are introduced by several sources. Some of these include: intrin

sic differences in the stiffness of the container at different locations, and 

distortions due to gravitational loading. The cost for constructing components 

by HIP could be substantially reduced if the final shape of the component 

resulting from a given container shape could be predicted. 

The permanent volume reductions inherent to the HIP process, of about 

35 percent, cannot be predicted by classical plasticity theory, which assumes 

no permanent volume changes. Therefore classical plasticity theory must be 

modified to include permanent volume changes. Additionally, volume reductions 

of 35 percent imply linear strains of 10 to 15 percent and therefore large 

strain measures must be employed. 

There have been previous attempts, Refs. 1-9, to describe the 

deformation mechanics of powder metals, but none of these has been 

successfully applied to the prediction of the final shape of hot isostatic 

pressed components. 

A nonvolume preserving plasticity theory has been developed for this 

purpose. The parameters for the theory were found through the execution of 

an experimental program. The theory was added to the MARC* computer code. 

The computer code was used to model a simple verification experiment and the 

* }MRC Analysis Research Corporation 
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results predicted by the code compared favorably to the results of the exper

iment. Each of the above topics will be discussed in the following sections. 
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PLASTICITY THEORY 

A finite strain plasticity theory requires: (1) specification 

of a yield surface to delineate regions of elastic and plastic response, 

(2) a hardening rule for the expansion of this yield surface, and (3) a 

flow rule for relating stress and strain increments. This flow rule must 

be formulated using large strain, stress and stress rate measures. Each of 

these topics will be considered separately below. 

Yield Surface Formulation 

A yield surface can be developed based on heuristic arguments. Since 

the powder particle orientation is random, the powder aggregate should 

initially respond isotropically. Thus the yield function must be an 

isotropic function and depend on only the stress through its three invariants. 

Also, yielding must occur under hydrostatic pressure and the yield function 

must approach that of a metal as densification progresses. Since invariant 
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II is a linear multiple of the hydrostatic component of stress, and yield 

surfaces for metals are usually defined in terms of invariant J 2 , which is 

the second invariant of the deviatoric stress tensor, both of these invariants 

must appear in the yield function 

(1) 

where the third invariant,J3,of the deviatoric stress tensor has been included 

for completeness, and 

J 2 = 1/2S .. S .. 
1J 1J 

J 3 = 1/6CijkClmnSilSjmSkn is the determinant of the deviatoric 

stress tensor 

Sij = 0ij-l/36ij Okk is the deviatoric stress tensor, and 

0ij is the stress tensor 

Qij is the Kronecker delta 

Cijk is the permutation tensor 

The parameters ha were determined experimentally and depend on deformation 

measures, Tla • 

Assume that a HIP powder metal has unequal responses in tension and 

compression, and that the yield surface has no sharp corners. A simple yield 

function satisfying the above assumptions is 

2 (Il+a)2 B -- +J = 
3 2 (2) 

A yield function of the form of Eq. (2) has previously been proposed by Green 

in Ref. 4, Shima and Dyane in Ref. 7, and Kuhn and Downey in Ref. 8. Equation 
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(2) is an ellipse in 11' tJ2 space (Fig. 1), with deformation dependent 

parameters, a, Band 00' The yield surface is plotted in principal stress 

space with 03 zero in Fig. 2, for the case a = O. 

A large strain theory of plasticity based on Eq. (2) can be developed by 

decomposing the symmetric part of the veloci,ty gradient tensor, D ij into elastic 

and plastic parts, or 

(3) 

p 
The plastic deformation rate D .. is assumed to be given by an associated 

~J 

flow rule 

. 

P 
D .. 
~J 

• af 
= ).-

aOij 
(4) 

Where ). is a scalar function greater than zero. The choice of the deformation 

parameters, n , and the specification of the flow rule will be discussed in 
a 

the following two sections. 

Choice of Hardening Deformation Parameters 

In this section, strain hardening of a compacting metal powder is discussed 

and parameters to characterize hardening are identified. This is necessary 

to complete the specification of the plastic deformation. Initially, the yield 

surface of the powder aggregate will be small. During the compaction and sintering 

process yield strength will grow and the yield surface will expand. Compaction 

alone will cause growth of the yield surface along only the II axis (Fig. 1) with 

a theoretical limit corresponding to full densification. Yield stress in shear 

will be less affected by compaction. Additionally, yield strength will grow 
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in all directions of stress space with increased sintering time. Thus, there 

exists a time dependent hardening phenomenon unique to powder metallurgy. Since 

plastic deformations are assumed to occur instantaneously, time enters the plas

ticity theory as a parameter defining yield surface size at the time of plastic 

deformation. 

The process of strain-hardening in triaxial pressure will primarily be a 

geometric effect on the microscopic scale. There could also be a contribution 

to the apparent macroscopic hardening due to real strain hardening of the particles 

as they experience large plastic shearing deformations. Such an effect could 

raise the effective yield strength of the metal particles. The separate contrib

utions of matrix hardening and void reduction can be determined from systematic 

experiments using different initial volume fractions. 

Initially, powder particles contact each other at isolated points. As pressure 

is applied, the contact areas and the powder stiffness increase. The macroscopic 

result is strain hardening of the powder due to macroscopic shrinkage. In the 

limit the powder is completely compacted and the response to further pressure 

increments is elastic dilation; the plastic bulk molulus has become infinite. 

An obvious choice for a deformation mea~ure, n
l

, is the void volume fraction. 

The void volume fraction is a measure of the macroscopic shrinkage and should 

reflect an increase in stiffness due to an increase in contact area between 

the individual particles, or 

v 
(5) 

The void volume fraction does not represent any permanent changes that occur 

during plastic deformation. If as in classicial plasticity theory the effective 
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plastic strain is used this would not represent all of the permanent deformations 

since permanent volume changes would not be represented. A third deformation 

measure, the plastic volume change would then be required. 

Rather than use the permanent volume change and the effective plastic strain 

as two independent deformation measures, a single measure, the plastic work, 

would be sufficient to represent both effects. Therefore, let 

(6) 

In classicial volume preserving plasticity theory using either the plastic work 

or the effective plastic strain produces exactly the same re~lt. The plastic 

work, or equivalently the inelastic energy dissipation has been used previously 

to describe nonlinear material response, for example, in Refs. 9 and 10. 

Development of Flow Rule 

It is now possible to describe the symmetric part of the velocity gradient 

tensor, Dij in terms of the stress rate, for small strains, using Hooke's Law for 

the elastic response and Eq. (4) for the plastic response in the form 

where for small strains 

= L e.p 
ijkl 

In general the yield function is of the form 

f(Oi" h ) = 0 J, a 

(7) 

(8) 

(9) 

where elastic deformations occur when f < 0 and plastic deformations occur 

when f = 0 and where h are parameters in the yield surface dependent on de
a 

formation history measures n
S

' or 
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Assume that the plastic deformations are given by an associated flow rule 

Using Hooke's law for the elastic deformations 

the total strain rate can be written as 

Equation (9) can be equivalently written as 

• af 
f =-

aO
ij 

In Ref. 11, Parks has shown that 

where 

() = a( )/at 

The quantity kl can be determined from 

and k can be found from 
2 

n = v = (l-v)D = ~kl 
1 kk 

n = wP = o .. D~. = ~k2 
2 ~J ~J 

For the yield surface of Eq. (2), from Ref. 11 

'U 2 2 
kl 'U"3 (l-v) B (Il+a) 

Equations (7) through (13) can be solved to give 
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(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 



where 

The quantities 
ah 

a 
-- are anS 

af af 

E 
daij ilokl 

Le •p = °ikOjl -ijk] 1 + v af af (11") -- H 
aOmn damn 

(21) 

hardening parameters which are determined from the 

mechanical test results and described in the section on Material Property 

Determination. A more detailed discussion of the plastic flow rule can be 

found in Ref. 12. 

Large Strain Flow Rule Considerations 

Following McMeeking and Rice, Ref. 13, when using the current deformed state 

as the reference configuration, all stress measures coincide. However, the 

rates associated with these stress measures do not coincide. A stress rate which 

is useful for expressing large deformation consitutive laws is the Jaumann, or 

corotationa1 rate (Ref. 14). The Jaumann rate of Cauchy stress is 

'iJ 

0ij = 0ij - 0ip npj + nip 0pj (22) 
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where G .. is the material time rate of Cauchy stress G
iJ

. and 
l.J 

The constitutive law of interest is of the form 
iJ 
Gij :: L ijkl Dkl (23) 

where L denotes the rate moduli. Dij is the symmetric part of the velocity 

gradient tensor. 

L
ijkl 

is developed 

c·p 1 l Lijk1 = Lijkl - 2 

in Ref. 15 for large strains as 

e·p 
and L

ijkl 
is the small strain elastic-plastic stiffness in Eq. (21). 

tensor L
ijkl 

is not symmetric due to the presence of the last term. or 

L ij k1 .f ~lij 

For a hydrostatic pressure 

a = Po .. 
ij l.J 

(24) 

The 

the tensor is symmetric and since this should be the primary part of the loading 

during the HIP process, the last term should produce a nearly symmetric stiffness. 

It, therefore, was decided to separate the last term into symmetric and un-

symmetric parts, and add the symmetric part to the stiffness matrix and transfer 

the unsymmetric part to the loading side of the governing equations. 
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MATERIAL PROPERTY DETERMINATION 

To predict the mechanical response of metal powder subjected to the HIP 

process it is necessary to know the mechanical properties of the metal during 

the HIP cycle. These mechanical properties can be obtained by removing test 

specimens from the HIP facility at various stages in a HIP cycle. The partial 

HIP samples would represent the powder at various stages for a pressure-tem

perature history. A complete description of the mechanical properties can 

then be obtained by postulating yield surfaces, flow rules, hardening laws 

and creep properties and comparing these predictions to the results of 

mechanical tests on the partial HIP samples. 

Partial HIP Tests 

The UTRC HIP facility has been utilized to process powder metals through 

temperature-pressure-time profiles closely paralleling the procedure used to 

fabricate full size turbine disks to near net shape. 

The HIP facilities allow several partial HIP samples to be preheated 

simultaneously. Since the powder is initially weak a container is required 

to retain the powder shape for temperatures exceeding 2000 F (1100 C). There

fore, all specimens were preheated at 2000 F (1100 C) and 1 atm for 12 hr. 

During the preheat cycle the powder is encapsulated in quartz and attains 

sufficient strength from sintering to be handled. During the preheat the den

sity changed from 60 to 65 percent of full density initially to 65 to 70 per

cent of full density upon completion of the cycle. 
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After the completion of the preheat cycle the samples have the quartz 

container removed and a glass container substituted. At HIP temperatures the 

inside surface of the glass container fuses with the outer powder metal parti-

cles and forms a gas tight seal about the powder metal, and the glass has no 

strength or stiffness. Consequently, a uniform hydrostatic stress is trans-

mit ted to the powder metal. The glass container with the preheated or sintered 

powder metal is next placed in the HIP facility and subjected to a specified 

temperature, pressure time cycle. 

A set of tests was performed at 1800 F (982 C) and various pressure, with 

the maximum temperature and pressure acting for 10 minutes only. These tests 

successfully produced partially dense samples. The test regime was expanded 

to include 1600 F (871 C), 1900 F (1638 C) and 2000 F (1093 C) at appropriate 

pressures and again the time at maximum temperature and pressure was held to 

10 min. 

Some understanding of the compaction process can be obtained by applying 

the hydrostatic pressure plastic compaction model (Ref. 16), where the yield 

pressure was represented by 

[-1n(v: ) -(1- :1 t 1nv1 + a( :1 'it :1 ) 1 (25) 

a = C vi 
-~ 

(I-vi) tan2e (26) 

and 

cos e 
"(:i)( 1 

+ Pi 
8 , and (27) 
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where vi = the initial void volume fraction 

Pi = I-vi is the initial relative density, and 

C % 2.75 

In order to apply the model the yield stress of the powder particle 

material must be known. This data does not exist and therefore the short time 

partial HIP data has to be reduced to determine the yield stress. For each 

of the temperatures, 1600 F (871 C), 1800 F (982 C) and 2000 F (1093 C), the 

yield stress was estimated and Eq. (25) was applied to determine the relative 

density for various applied pressures. Figure 3 presents the results of the 

calculations and demonstrates good agreement for the yield stresses given by 

T 

0y = (1.1 x 109 kSi)e - 120.7 R = 7.58 x 10 
( 

12 
-T 

/ 2) 67 K nt m e (28) 

Equation 28 results in yield stresses that are somewhat low for superalloys. 

Three facts could account for this: (1) the yield stress for the pre-HIP pow-

der metal is generally lower than for the fully consolidated power, (2) the 

strain rate during a partial HIP cycle is relatively slow and therefore pro-

duces a somewhat lower effective yield stress, and (3) the creep rates at high 

temperatures are relatively high, producing an apparently lower yield stress. 

Mechanical Tests 

To determine the shape of the yield surface several types of mechanical 

tests are required. Each type of test produces one point on the yield sur-

face. There is one point on the surface that is known: the hydrostatic 
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pressure of the HIP process. A compression test performed at temperature will 

provide a second point on the yield surface and will also provide some infor

mation on the elastic, hardening and plastic flow of the material. Tension 

tests performed at.·temperature, when compared to a compression test performed 

at temperature, will determine the symmetry of the yield surface. The compres

sion tests are the most important tests to be performed since they produce 

a hydrostatic pressure which is the predominant loading feature during a HIP 

cycle. Two deformation measures will be used to characterize the yield sur

face; the void volume fraction and the plastic (nonrecoverable) work. There

fore, the measurement of the axial length change is not sufficient to deter

mine the mechanical response and a measurement of the volume will also be re-

quired. The final volume of a compression specimen was measured after a com-

pleted test but this does not provide a complete description of the path to the 

final state. 

More than thirty compression tests were performed. Three of these tests 

were used to size the compression specimens and determine the test conditions. 

The remaining tests were all completed in a similar manner. The specimens 

consisted of a right circular cylinder 0.5 in (.127 em) long by 0.2 in. (0.51 

cm) in diameter. Each specimen was placed in a furnace in an inert gas and 

brought up to the temperature at which the specimen was hot isostatically 

pressed. At temperature the specimen was subjected to compression crosshead 

displacement rate of 0.0025 in./min (0.00635 em/min) and the load was recorded. 

After the load leveled out, the crosshead rate was doubled to 0.005 in./min 

(0.00127 em/min). 
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The average values for the height, diameter, and volume change measurements 

are presented in Table 1 along with the standard deviations. From the last 

column in Table 1 it can be seen that over all the samples there was a sig

nificant decrease in the height and a significant increase in the diameter, 

while there was essentially no change in the volume. 

A total of 14 tensile tests were completed and resulted in significantly 

lower yield stress values than the compression tests, especially at 2000 F 

(1093 C). The low tensile yield stresses could be a result of the presence 

of voids which would be adjacent to the particle interfaces. Tensile stresses, 

which are amplified at the void, would tend to separate the particles producing 

a smaller apparent yield than compression stresses which would tend to close 

the voids. Microscopic examination and room temperature tensile tests (Ref. 

14), indicated the powder was not contaminated. 

The uncertainty associated with the tensile test results necessitated the 

use of the experimental observation that the volume was conserved during com-

pression. 

Interpretation of Mechanical Test Results 

The mechanical tests indicated that there is little or no volume change 

in compression. Coupling this fact with the hydrostatic pressure yield stress, 

Py ' and the compressive yield stress 0c will determine all of the yield param

eters in Eq. (9) as 

(29) 
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where 

3 
2 

q 

a = a 
o c 

3 P 
q = --y -1 

a 
c 

(30) 

(31) 

(32) 

The experimental results for the tensile yield stress, aT' were not reliable 

but can be determined from Eq. (2) as 

(33) 

Normalizing the compressive yield stress data, ac ' with respect to the 

initial powder particle yield stress, a ,shows that this ratio is approxi
y 

mately a linear function of relative density as shown in Fig. 4, or 

~= b(~) 
Y I-Vi 

(34) 

where Py is evaluated from Eq. (61) by setting P equal to Py 

v is void volume fraction 

vi is initial void volume fraction, and 

b can be determined by requiring the tensile yield stress to vanish 

at the initial void volume fraction, or 

From Eqs. (32) and (33), the above condition on b is 
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Then from Eqs. (25) and (34) 

lim Py 2 
-=-

v~i crc 3 

C 
b = ---

2 
tan e 

where e is given by Eq. (27) and C ~ 2.75 • 

(35) 

(36) 

. 
The temperature, T, and strain rate, £, dependence have been included 

in the initial particle yield stress, cry' A good fit occurs when 

for uniaxial stress conditions. 

A good fit to the specimens partially densified in the HIP facility 

occurs if 

E ~ 0.00315/min. 

The parameters in Eq. (37) are 

T o 

a. 

. 
£ 

o 

1.074x1010 kis (7.41x1013 nt/m2) 

= 120.7 R (67.06 K) 

= 0.03403, and 

= S.14Sx10S/min • 

(37) 

Equations (29) through (37) are the plastic formulation added to the }~RC code, 

and are compared to the experimental measurements in Figs. 3, 4, and 5. The 

agreement is good if the volumetric creep under hydrostatic pressure is included 

(Fig. 3). Volumetric creep will move points subject to HIP for more than 10 
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min (the solid symbols in Fig. 3) to the right of the line representing 

instantaneous plastic deformation. 

Although little work hardening was observed during the compression tests, 

it may have an influence on the final deformations, and therefore an approxi-

mate hardening law of the form of Eq. (38) below was assumed. 

(38) 

where wP 
is the plastic work, aI' a 2 are constant work hardening parameters. 

From the uniaxial compression tests it was noted that the compressive 

yield stress seems to level off at about 1.4 times the initial compressive 

yield stress and therefore the constant a l is given by 

a l = 0.286 (39) 

The constant a
2 

was found to vary with temperature approximately by the 

relation 

(40) 
c (~) T~Tc L= 2 t:.T 

a2 0 

0 T>T - c 

where C2 = 9090 psi (6.26 x 106 ~) 
m2 

T :.: 2020 F (1104 C) 
c 

t:.To = 420 F (216 C) 

A more complete discussion of the work hardening evaluation is given in 

Ref. 14. 

The elastic constants are required to complete the formulation but only 

Young's modulus can be derived from the compression test data. The Young's 
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Modulus, E, was assumed to be linear function of void volume fraction, v, 

and an exponential function of temperature, T, given below 

_ T-To 

(41) 

where vi is the initial void volume fraction, and El , To and Tl were chosen 

to provide a good fit to the data, as 

El = 1.5 x 106 psi 

To 1900 F (1038 C) 

Tl = 163 F (72.8 C) 

Figure 6 compares the analytical expression with the resulting mechanical 

test data. The comparison is within the experimental error. Since it was 

not possible to measure radial deflections during the testing, Poisson's ratio 

could not be determined. 

It should be noted that if the tensile strengths were accurately measured, 

a yield surface utilizing: the hydrostatic yield pressure, the compression 

yield stress, the tension yield stress and the fact that volume was preserved 

during compression, could have been tal~en as 

where 8, a, and ao are given by Eqs. (29-31), and 
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(43) 

and J
3 

is the third invariant of the deviatonic stress tensor 

Note that if 0T is given by Eq. (33) the parameter y vanishes. 

With the experimental specification of the parameters the yield surface 

is completely determined. 

MODEL VERIFICATION 

Verification Criteria 

The validation tests were designed to avoid duplication of the uniform 

hydrostatic stress state of the partial HIP tests. The experiments must 

therefore result in a nonvanishing shear stress within the sintered material. 

A nonhydrostatic stress state can be achieved with the application of the 

uniform external pressure if the material has nonhomogenous properties. 

This may be achieved by imbedding in the metal powder a different material, 

for example, steel spheres or fully compacted powder spheres or cylinders. 

Such an experimental configuration will produce a nonhydrostatic stress 

state and will make use of existing hardware and techniques. Metal foil 

could be placed tangent to a steel sphere and the resulting displacements 

measured and compared to the predicted displacements. 

Plastic Analysis for Spherical Inclusions 

Before proceeding with the verification experiments, a finite element 
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model of the experiment was analyzed using a version of the MARC code modified 

to include the powder metal constitutive properties of 7 axisymmetric 

elements illustrated in Fig. 7. Constraints were set to insure only 

spherically symmetric radial displacement would result, The steel sphere 

was modeled as rigid, and therefore the radial displacements were fixed 

in the powder at the surface of the steel sphere. The analysis considered 

only the plastic deformations that would result in raising the external 

pressure to 1000 atm. In Fig. 8, the model resulted in predictions that the 

void volume fraction decreased near the sphere or the density is highest 

near the sphere. At an applied external pressure of 1000 atm all points 

in the specimen are more than 90 percent of full density. The deflections 

of the foil can be easily calculated using the radial displacements and 

are presented as a function of the distance from the center of the foil, 

as shown in Fig. 8. At about 8 ksi (533 atm) the edge of the foil should 

be nearly flat. These conditions had been run during the partial HIP tests 

and produced a relative density of about 0.85, which agrees with the 

predicted results presented in Fig. 8, 

Verification Results 

The specimen design consists of a steel sphere imbedded in a sintered 

rod. A layer of nickel foil is placed tangent to the sphere. One, two, 

or three sphere and nickel foil configurations are placed within the 

sintered bar. Figure 9 illustrates a typical configuration. The first 

verification experiment consisted of a test to insure the configuration 

would HIP properly and was successfully completed, 
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Two sintered bars were hot isostatic pressed, based on the above 

success and the finite element results for a maximum of 10 min at 1800 F, 

(982 C) and 8 psi (533 atm). These bars contained a total of five 0.25 

(0.63 cm) diameter spheres. 

Foil displacement measurements were successfully obtained from three 

of the five spheres and the results of these measurements are presented in 

Fig. 10, along with the prediction from the finite element model. 

The lack of agreement near the center may be due to either the relative 

elasticity of the sphere and powder including thermal effects, which were 

not modeled, or due to the weight of the sphere. The rapid decrease in 

error with position indicates the error may be due to the elastic effects. 

Another source for the difference can be attributed to the fact that the 

foil and the upper and lower bar segments may not have been in contact and 

gradually brought into contact as the HIP progressed. The numerical 

predictions and the experimental measurements agree to within the accuracy 

of the experiment, and verify that an accurate mechanical description of 

the powder response has been developed. 

CONCLUSIONS 

In the analysis developed, classical plasticity theory has been extended 

to include the large permanent changes in volume of about 30 percent that are 

incurred during HIP. The theory developed assumes an isotropic yield surface 

and uses an associated flow rule. The assumed yield surface includes all 

three invariants of the stress tensor although presently the yield surface 
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only uses the first invariant of the stress tensor, and the second invariant 

of the deviatoric stress tensor. 

The parameters in the theory were obtained through an experimental program 

consisting of hydrostatic pressure tests, uniaxial compression and uniaxial 

tension tests. From the hydrostatic pressure tests a simple analytical expres

sion was developed that predicted the change in density as a function of pres

sure and temperature. Results of the compression tests indicated that there 

is no measurable change in volume in compression and that the compression yield 

stress is a linear function of void volume fraction. The uniaxial tension tests 

were inconclusive and the results were used for comparison with prediction from 

the theoretical model only. 

Isotropic hardening of the yield surface was assumed to depend on void 

volume fraction and plastic work accumulated. Experimental results showed 

that the primary dependence was on void volume fraction. 

A nonlinear finite element code was modified to include the plasticity 

theory and an experiment was run to verify the theory and the code modifications. 

The verification experiment consisted of steel spheres imbedded in partially 

dense bars of powder metal. Each of the spheres had a layer of foil placed 

tangent to the sphere. The bar, with spheres and foil, was placed in a 

furnace and subjected to a pressure loading of 8 ksi (533 atm) at 1800° F. 

The resulting distortion of the foil was measured and compared to the results 

of a finite element analysis using the modified code. The numerical 

prediction and the experimental measurements agreed to within the accuracy 

of the experiment. 
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As a result a modified finite element code exists capable of predicting 

the mechanical reponse of powder metals and is now being applied to predict 

the final shape of components manufactured by the HIP process. 
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Ratio, Final/Initial 

Height 
Diameter 
Volume 

TABLE 1 

STATISTICAL GEOMETRY CHANGES FOR 
COMPRESSION TESTS 

Mean Std. Dev. 
m s 

0.9345 0.029 
1.0330 0.010 
0.9975 0.015 

TABLE 2 

m-l 
s 

-2.25 
3.31 

-0.17 

RESULTS OF ROOM AND HIGH TEMPERATURE TENSILE TESTS 
Room Te",perature 

Spec imen Relative Yield Stress (ksi) 
No. Density 0.2 Percent 

1004 0.990 144 

1098* 0.900 -
1114 0.977 102 

1115 0.984 138 

* Failed in grip 

p2 ('1:4 ) 2 

p=o 

Fig. 1. Assumed ylald surface In 11, J2112 stress space for a" 0 

264 

Room 
Temperature Yield Strels (k.i) 
Ultima~e 

Stress ksi) at 1800 deg. F 

168 0.022 

82.4 0.126 

156 2.30 

164 -

Fig. 2. Assumed yield surface In principal slress space 
foro3=O,a"O 
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1. INTRODUCTION 

CONSTITUTIVE MODELS BASED ON 
COMPRESSIBLE PLASTIC FLOWS 

A. M. Rajendran 
University of Dayton Research Institute 

Dayton, Ohio 45409 

The need for describing materials under time or cycle dependent 

loading conditions has been emphasized in recent years by several investigators 

(Ref. 1 through 4). In response to the need, various constitutive models 

describing the nonlinear behavior of materials under creep, fatigue, or other 

complex loading conditions were developed. The developed models for describing 

the fully dense (non-porous) materials were mostly based on uncoupled plasti

city theory. The improved characterization of materials provides a better 

understanding of the structural response under complex loading conditions. 

However, the constitutive models describing the fully dense materials will 

be inadequate for characterizing the regions of the material where voids 

(porosity) develop due to various complex micromechanisms. For instance, 

voids may nucleate under high temperature loading condition,s due to inter

granular cavity formation around the second phase particles (Ref. 5). The 

necked portion of a tensile specimen and the ductile material at the crack 

tip are the few examples where the initially non-porous material becomes a 

porous aggregate due to debonding of the hard particles from the matrix. 

In these regions, the stress-strain relationship of the porous aggregate 

starts deviating from the matrix material behavior. 

Several authors considered this aspect of the problem. Among the!r., 

Gurson (Ref. 6) presented a continuum theory of du~tile rupture by void 

nucleation and growth and he came up with a constitutive equation for '~'id 

containing materials, which explicitly considered the void volume fract::on 

and the matrix stresses. 

The constitutive models for compressible porous materials based on 

Gurson's yield criterion, was employed by Yamamota (Ref. 7) and also by 

NeedleQan and Triantafyllidis (Ref. 8) in a study of shearband localization 

in metal sheets and the influence of void growth on forming limit diagrams, 

respectively. These authors, while describing the porous aggregate, used an 

idealized simple rate-independent power-law type constitutive model to 

describe the incompressible matrix material. Their main purpose was to 
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predict the onset of localized necking or shearband localization through an 

approximate description of the porous aggregate and the matrix material. 

However, it is important to describe the matrix material behavior more 

accurately in order to properly characterize the porous region of the solid 

material under complex loading conditions. 

The present paper provides a simple methodology to introduce void 

nucleation and its growth into the nonlinear incompressible constitutive 

equation through Gurson's yield criterion which is based on compressible 

plastic flow. This yield criterion is combined with the state variable flow 

theory of Bodner and Partom (Ref. 4), for the incompressible solid. Stouffer 

and Bodner (Ref. 9), have demonstrated the predictive ability of the state 

variable theory by applying it to high temperature nickel base super-alloys, 

such as IN100 and Rene' 95. Since the matrix material behavior is well 

characterized, this will result in an improved description of the porous 

material under complex loading conditions. 

The usefulness of the present approach is its capability for 

establishing meaningful stress-strain behavior of a localized damage zone 

in which void initiation and growth is occurring and also of the surrounding 

zone of void free material. 

2. CONSTITUTIVE MODEL FOR COMPRESSIBLE SOLID 

To describe the void containing aggregate, the slightly modified 

version of Gurson's yield criterion as proposed b~ Tvergaard is considered 

(Ref. 10).· The corresponding yield criterion used in the present paper is 

3J2 
¢:: - + 

y 2 
m 

(1) 

where J
2 

is the second invariant of the stress deviator, II is the first 

stress invariant, Y is the equivalent stress of the matrix material, f is 
m 

the current void volume fraction, and Q1' q2' and q3 are the void shape 

factors. The yield function, based on the spherically symmetric deformation 

of a rigid perfectly plastic body around a spherical void, as derived by 

Gurson (Ref. 6) can be retrieved by setting q1 = q2 = q3 = 1 in equation 1. 

Since the plastic work done by the aggregate is equal to the plastic 

work done by the matrix material, the plastic strain-rates in the aggregate 

(E~j) and the matrix (D~) are related by the following expression 
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.p 
0.. E: •• 

1.J 1.J 
(1 - f) Y uP 

m m 

where 0 .. is the aggregate stress and the dot represents the time 
1.J 

derivative. 

(2) 

The plastic strain-rates of the aggregate can be expressed in terms of 

the flow rule of the yield function as, 

.p 
E: •• 

1.J 
1\~ 

30 .. 
1.J 

(3) 

where 3¢/30 .. is the partial derivative of the yield function with respect 
1.J 

to the aggregate stresses. The proportionality factor, 1\, can be obtained 

by combining the equations (2) and (3) and the plastic strain-rates of the 

porous aggregate can be shown as 

.p 
E: •• 

1.J 

(1 - f) Y uP 
m m 3¢ 

dO .. 
1.J 

where repeated indices k and 1 mean summation. 

(4) 

The nonlinear constitutive relationship for the porous aggregate can 

expressed in terms of total strain-rate as sum of the elastic and plastic 

components. The corresponding relationship is given by, 

(1+\J) (1-f) Y i>P 
d¢ 

E .. G .. 
\J o .. Gkk + m m 

1.J E 1.J E 1.J d¢ dO •. 
-- 0 1.J dO

k1 
k1 

(5) 

where \J and E are poisson's ratio and elastic modulus, respectively. The 

above equation describes the porous aggregate for a given stress-strain 

behavior of the matrix material. 

parts. 

The void volume fraction rate (f) of the aggregate consists of two 

The nucleation rate of voids (f ) at various stages of the deforming 
n 

solid contribute to the current void volume fraction rate as the first part. 

The second part is due to the growth (f ) of the already nucleated voids. 
g 

The growth law is easily obtained by equating the volume change of the voids 

to the dilation as 

f 
g 

(6) 
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There are few models at present, available in the literature to 

approximately model the nucleation rate of the voids at room temperatures. 

However, for high temperature applications, it is important to consider a 

nucleation model based on an appropriate micromechanism, such as the inter

granular cavitation around an inclusion (Ref. 5). For completion, in the 

present work, the plastic strain controlled void nucleation model as proposed 

by Goods and Brown, (Ref. 11) is arbitrarily considered. The particular form 

used by Chu and Needleman (Ref. 12) is given by 

f 
n 

(7) 
sl27T 

where s is the standard deviation of the distribution and '±' is determined so 

that the total void or volume nucleated is consistent with the volume fraction 

of second phase particles. 

nucleation. 

e is a mean equivalent plastic strain for 
n 

The total void "olume fraction rate is then expressed as 

(1 f) ( .p .p .p )" 
- Ell + E22 + E33 (8) 

To complete the description of the voided aggregate, it is now 

necessary to describe the matrix material with an appropriate constitutive 

model. For this purpose, the model developed by Bodner and Partom (Ref. 4) 

based on state variable theory is considered. The main advantage of this 

theory is its ability to describe the material response under various 

loading conditions. The following equation describes the constitute 

relationships in terms of second invariant of the strain-rate (D~) to the 

second invariant of the stress deviator (J
2
), as 

(9) 

where DP
2 

= 1/2 e~. e~ .. Here, e~. are the plastic strain-rate tensors of the 
1J 1J 1J 

matrix material, n is the strain-rate sensitivity parameter, Z is the 

inelastic state variable, and D is the limiting value of the plastic strain
o 

rate in shear. 
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The evolution equation for Z is given by Bodner as 

z 
Z 

Z p!.: Z - Z2 2 
2m (1 - -) (D J ) 2 - A ( Z ) 

Zl 2 2 1 
(10) 

where m, Zl' Z2' r, and A are material constants. M is a parameter that 

controls the rate of work hardening, Zl and Z2 are saturation values of Z, 

and the value of Z corresponds to the complete non-work hardened condition, 

respectively. The constants A and r are needed to describe the recovery 

process of the material. 

The main equation (9) can be written in terms of equivalent stress and 

strain of the matrix material and it is given by 

.p 4 2 Z 2n n + 1 
D = - D exp[-(-) ( )] 

m 3 0 Y n 
(11) 

m 

The equations (10) and (11) together complete the description of the matrix 

material. 

The nonlinear constitutive relationships for the compressible (porous) 

material are described by equations (5) through (11), along with the 

consistency condition for plastic loading (¢ = 0). However, to demonstrate 

the stress-strain behavior of the aggregate, uniaxial stress-strain 

relations can be obtained from the already derived governing equations. The 

following section describes the aggregate and the matrix stress-strain 

relations explicitly under uniaxial stress state. 

3. UNIAXIAL CASE 

The necessary equations to describe the voided aggregate under 

uniaxial stress state condition can be deduced from the governing equations 

(equations (1) through (11)). Uniaxial matrix plastic strain-rate (eP) can 
m 

be obtained from equation (11) as 

(12) 

The corresponding matrix stress-rate can be obtained from the 

definition of total strain-rate as sum of the elastic and plastic components 

and it is given by 
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(13) 

The aggregate plastic strain-rates in the principal directions can be 

written using equation (5) as 

(I-f) Y eP 
m m 

a 

(I-f) Y eP (H-o) 
m m 

o(2o+H) 

where 

Here, a represents the uniaxial aggregate stress. 

An expression for the void volume fraction rate can be obtained by 

combining equations (14) through (17) with equation (8) as 

2 p eP - e 

(14) 

(15) 

(16) 

(17) 

3(1-f) H Y e If' _!.< (m n)2 
____ ~----7m~=m + ---- e ~ s 

o(2o+H) sv'2TI 
(18) 

The aggregate stress-rate (6) can be obtained from the consistency condition 

(¢ = 0) for loading and it is expressed as 

-2y;(qlCosh s-fq3)t + o(2o+H) 

(2o+H)Y 
m 

y 
m (19) 

The uniaxial stress-strain relationships for the aggregate can be 

expressed through the total strain-rate as the sum of elastic and plastic 

components and they are given by 

(I-f) Y eP 
m m 

a 
(20) 

(I-f) Y eP (H-o) _ va + m m 
E o(2o+H) 

(21) 

(22) 
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The equations (12) through (22) can be simultaneously solved through 

numerical integration and the aggregate stress-strain response can be 

computed for various matrix stress or strain-rate conditions. 

4. RESULTS 

The stress-strain behavior of the aggregate with voids is computed by 

simultaneously solving the uniaxial equations through an appropriate numerical 

integration. The computations are made for an imposed matrix under constant 

stress or strain-rate conditions to facilitate comparing the reduced strength 

(or stiffness) of the aggregate to that of the fully dense matrix material. 

Since the material constants for describing the materials Rene' 95 and 

INlOO at 650°C and 730°C, respectively, under complex loading conditio~s are 

readily available, the stress-strain response of the porous aggregate is 

calculated assuming that these materials represent the matrix materials in 

this study. Apart from the arbitrarily chosen nucleation model as explained 

in Section 2, for illustrative purposes, a simple nucleation criterion based 

on voids being nucleated at the onset of plastic deformation, is assumed in 

these calculations. The assumed value for the void volume fraction repre

sents the initial void constant of the aggregate. 

The void shape factors ql' q2' and q3 that appear in the yield function 

described by equation 1, can be determined based on (a) the values already 

available in the literature and (b) the results obtained from the experiments 

on sintered materials. The effect of various values of these constants on 

the yield function is shown in Figure 1, for f = 0.15. As can be seen in 

the figure, the yield function is shown as the variation of 13J2/Ym with 

respect to (Il/Y
m

) for a given value of f and the other constants. For 

f = 0, the yield criterion becomes obviously independent of the hydrostatic 

pressure (II) and represents the von-mises yield criterion for an incompres

sible solid. Whereas for f f 0, the yield functions represented by the 

curves A or B show the dependency on the level of void contents. The curve 

A represents the Gurson's yield function (q = 
1 q2 q3 1) while the curve 

B is the yield function used by Tvergaard (Ref. 10) with ql = 1.5, q2 1.0, 

* and q3 = 2. The experimentally obtained single point as shown in the 

* Experiments Conducted in Air Force Materials Laboratory, Wright-Patterson 
Air Force Base, Dayton, Ohio. 
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figure, represents the results of an uniaxial compression test on a sintered 

material of void volume fraction, f, equals 0.15. It can be seen from these 

results that the yield criterion based on the values of ql' q2' and q3 which 

are available in the literature, is significantly off from the experimental 

result. However, when improved values for ql' q2' and q3' obtained by trial 

and error, were used, the theoretical predictions for f = 0.15 and f = 0.25 

were quite compatable with the experimental values at least for the case of 

uniaxial stress state as shown in Figure 2. 

To demonstrate the effect of the various ql' q2' and q3 on flow stress, 

the uniaxial stress-strain curves of the porous aggregate for a constant 
··3 -1 matrix strain-rate of 1.4 x 10 sec are shown in Figure 3. These curves 

clearly show the differences in the predictive stress levels by the three 

sets of values chosen for thesE constants. However, in the present calcula

tions, the improved values of ql' q2' and q3 are used to describe the 

porous material behavior under uniaxial stress-state. 

The various levels of flow stress of a porous aggregate with IN100 as 

the matrix material for different void contents are shown in Figure 4 using 

the simple nucleation criterion. The dotted line corresponds to the flow 

stress level of fully dense matrix material. The reduced strength of the 

material due to the presence of ten percent void content can be seen from 

this figure. The initially nucleated voids grow during the plastic 

deformation according to the growth law represented by equation (6). The 

increasing void volume fraction (f) normalized by the initial value f is 
o 

shown in Figure 5 for the three values of f , corresponding to the earlier 
o 

Figure 4. It can be seen from the figure that the growth levels are almost 

the same in these cases. Since the plastic strain levels under uniaxial 

stress conditions are of the same order, the plastic strain-rate based growth 

law predict the same order of growth. 

To demonstrate the effect of void nucleation model on the flow stress, 

solutions were obtained for the nucleation model discussed in Section 2. 

The results for various nucleation strains are shown in Figure 6. For 

~ = 0.05 and s = 0.01 (narrow range of nucleation strain), the curve 

corresponds to e = 0.01 shows the entire nucleation to occur between A and 
n 

B. The rapidly reducing strength of the material due to the entire void 

nucleation occurring in the narrow range, stabilizes beyond point B. The 
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steady drop in the flow stress level later on depends mainly on the void 

growth in the material. 

For e = 0.05, the nucleation process starts at point C and the stress-n 
strain behavior of the aggregate is the same as that of the matrix due to 

the absence of any void up to point C. The stress-strain curve for the 

aggregate and the matrix material are identical for the case e c 0.1 due to 
n 

the absence of void nucleation up to the strain c~rresponding to point D. 

The variations of void volume fraction with respect to the aggregate strain 

for e = 0.01 and e 
n n 

0.05 are shown in Figure 7. The rapid increase in 

f as shown by the curves between AB and CD are due to the nucleation of new 

voids and the growth of existing voids. When the nucleation process is 

completed over the narrow range of strain, the increase in void volume 

fraction, later is due to the growth of the nucleated voids alone. The 

rate of increase stabilizes beyond the points Band D as shown in the figure. 

As an additional exercise, the effect of the standard deviation, s, 

of the nucleation strain distribution on the flow stress for e = 0.01 and 
n 

~ = 0.05 is shown in Figure 8. It can be seen from the figure as the 

distribution takes place over a broad range of strain (s = 0.05 and 0.1) 

the decay in strength due to void nucleation and growth is less pronounced 

with a steady decline. The corresponding increase in the void volume 

fractions are shown in Figure 9. 

The effect of strain-rate on the stress-strain response using the 

simple nucleation model is shown in Figure 10. The response of the fully 

dense matrix material (IN100) and also of the porous aggregate are obtained 

through the numerical solutions for various matrix strain-rates (D). The 
m 

reduced strength of the material due to the presence of a low void content 

(two percent) can be seen from this figure. 

As an additional description of the modeling procedure the creep 

response of the voided aggregate with a Rene' 95 matrix is demonstrated in 

Figure 11, when the matrix material creeps at different stress levels 

(Y = 1206 and 903 MFA). The aggregate stresses are calculated for two 
m 

different creep stress levels applied to the matrix material. For the higher 

matrix stress level, the stress in the aggregate is reduced due to five 

percent voids in the material. However, for the lower stress (Y = 903 MFA), 
m 

since the plastic flow has not yet initiated within the time shown in 
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Figure 11 (1200 seconds), voids are not nucleated. Thus, both the matrix 

and the aggregate with no voids creep at the same stress. Also, the 

corresponding strain responses are obviously the same as shown in Figure 12. 

w11ereas the responses corresponding to higher stress, show the distinct 

difference for two different values of void volume fraction (f = 0.05 and 

0.10). 

Thus, it can be seen from these results that the response of a porous 

aggregate to rate or time dependent loading conditions can depend on various 

material parameters that appear in the yield function and as well as in the 

nucleation model. 

5. SUMMARY 

The accuracy of modeling the porous aggregate behavior depends mostly 

on the (a) yield function which characterizes the compressible yield behavior, 

(b) description of the matrix material, and (c) nucleation model. It is 

demonstrated in the present studies that an approximate yield function to 

describe the porous aggregate can predict significantly different stress 

levels which may be inaccurate. It is important to test the yield function 

and its validity through carefully designed experiments under various stress 

conditions. As an example, it is shown that the values of the shape factors 

which appear in the yield function can be improved based on the experimentally 

obtained stress state at yielding. However, the values selected in this 

report based on two experiments may not be unique. Nevertheless, under 

uniaxial stress state conditions, these values may better characterize the 

yield function. 

The improved characterization of the matrix material behavior under 

complex loading conditions through various nonlinear constitutive theories 

has been successfully achieved by several investigators. If the well defined 

and accurately described matrix material models are appropriately built into 

the constitutive models for the porous aggregate, that would substantiously 

improve the characterization of the porous solid as demonstrated in the 

present studies. 

The description of the porous material through an improved yield 

function and the matrix material model, may be accurate for a homogeneous, 

isotropic material with randomly distributed voids, such as the sintered 
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materials. However, for materials which were initially non-porous but 

developed porosity at some stage of the deformation due to various micro

mechanisms operating at the void nucleation site, the improved characterization 

of the porous aggregate will then also depend on the models for describing 

the nucleation process. The dependency of the flc~ stress on the parameters 

that describe the nucleation process is demonstrated for a model which was 

arbitrarily selected for illustrative purposes. For high temperature 

applications, it is important to select a model on a sound fundamental basis. 

Unfortunately, a continuum mechanics approach in this area is still lacking 

and needs more rigorous research efforts to model the complex nucleation 

process. The growth process of the nucleated voids seemed to be more or less 

temperature independent and also it is reasonably well established as a 

process which depends on the plastic strains (Ref. 13). 

In summary, the present studies demonstrate that the rate or time 

dependency of the response of a porous aggregate can be incorporated into the 

nonlinear constitutive behavior of a porous solid by appropriately modeling 

the incompressible matrix behavior. It is also shown that the yield function 

which was determined by a continuum mechanics approach must be verified by 

appropriate experiments on void containing sintered materials in order to 

obtain meaningful numbers for the constants that appear in the yield function. 
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TIME-INDEPENDENT ANISOTROPIC PLASTIC BEHAVIOR BY MECHANICAL SUBELEMENT MODELS* 

Theodore H. H. Pian 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 02139 

ABSTRACT 

The paper describes a procedure for modelling the anisotropic elastic-plastic 

behavior of metals in plane stress state by the mechanical sub-layer model. In this 

model the stress-strain curves along the longitudinal and transverse directions 

are represented by short smooth segments which are considered as piecewise linear 

for simplicity. The model is incorporated in a finite element analysis program 

which is based on the assumed stress hybrid element and the viscoplasticity-theory. 

1. INTRODUCTION 

For time-independent elastic-plastic behaviors a very convenient model to 

represent kinematic hardening is to use an assembledge of elastic-perfectly-plastic 

elements to represent the stress-strain relation which is approximated by a curve 

with several piecewise linear segments. This model, which has been widely used 

for numerical analysis of multiaxial elastic-plastic behavior is named mechanical 

sublayer or overlay models [refs. 3,4,5J. For more general case including three

dimensional solid, the method should perhaps be called mechanical sub element 

method. 

For plane stress problems the corresponding mechanical model is a laminated 

plate with layers of elastic-perfectly-plastic materials of different yield 

stresses. Differential equations for the solutions of plane stress elastic-plastic 

and isotropic stress-strain relations has been obtained for model with two layers, 

one of which is elastic and the other is elastic-perfectly-plastic [ref. 6J. The 

* Work performed under NASA Grant NAG 3-33. 
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equations are non-linear and for the case of uniaxial loading the resulting strain 

hardening behavior will not be a straight line. Thus, for a material with uniaxial 

stress-strain relation approximated by straight line segments, it is, strickly 

speaking, not possible to obtain exact representation by a mechanical sublayer 

described above. In Ref. 6, a relationship has been obtained between the ratio 

of the initial tangant modulus and the elastic modulus and the thickness ratio of 

the two layers. It is however, reasonable to assume that by using sufficiently 

small segments a piecewise linear model can be adopted. 

Hunsakier ~t al. [ref. 5] have also obtained a corresponding relationship for 

three-dimensional isotropic solids. In that case, for a material represented by one 

elastic subelement and one elastic-plastic subelement, the resulting uniaxial stress-

strain relation will have linear strain hardening behavior. The proportion of the 

volume of the elastic-plastic element to the total volume Vl/V is expressed simply as 

where El is the elastic modulus and E2, the tangent modulus. In this case, when 

the uniaxial stress-strain relation is represented by linear segments a corresponding 

subelement model can be constructed exactly. 

The present paper is to extend the mechanical sublayer model to materials 

with anisotropic plastic behavior. Again the plane stress problem is considered. 

Finite element method for elastic-plastic analysis based on the viscoplasticity 

theory and the stress hybrid model is used in conjunction with the present mechanical 

subelement model. An example solutioh of a time-independent elastic-plastic problem 

is presented. 
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2. Mechanical Sublayer Model for Anisotropic Plasticity Problems 

Figure 1 is a plate with two layers under plane stress loading. Layer 1 is 

elastic-perfectly-plastic and is considered tranversely isotropic with yield stresses 

Yx and Yy respectively along the longitudinal and transverse directions. Layer 2 is 

elastic. The elastic constants E and Poisson's ratio v for both layers are identical. 

The yield condition for layer 1 is governed by the Hill's generalized yield oriterion 

(1) 

where a = Yx under uniaxial loading along x direction. With yield stresses under 

uniaxial loading along y and z direction equal to Yy ' we can express the constants 

F, H etc. in terms of the yield stresses and obtain the following yield conditions 

for the plane stress problem 

where 

The flow rule is 

a = (Y IY )2 x y 

a = (Y IY )2 s x xy 

(2) 

(3) 

(4) 
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Now, consider the behavior of the laminated plate under inplane loading 

conditions. From testing tension coupons cut along the x and y directions, the 

elastic modulus for both direction is given as El while the initial tangent moduli 

are represented, respectively, by E and E as shown in Figure 2. 
x2 Y2 

Let 0 and 0 x y 

represent the average in-plane stresses, then the stress rate 0y is 

o 0 tl 0 t2 
0y = 0Yl t + °Y2 t = 0 

where t is the total thickness and tl and t2 are the individual thickness. The 

thickness ratio then is, 
o 

o 
Y2 

= - --
O. 

o y 
1 

Hene, layer 2 is elastic hence, 

From f = 0, we obtain, 

Thus, at initial yield when 0 = 0 = 0 = 0 
Y Yl Y2 

and from Eq. (4), 

We also have 
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(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11 ) 



and E: P = E: - _1 (a - va) 
Yl yEl Yl xl 

(12 ) 

From Eqs. (9) to (12), we obtain, 

(l3) 

(14 ) 

Now from the given uniaxial loading conditions the strain rate along y is given by 

• e 1· P 
= -v E - - E 

X 2 x 

Substituting 

and 

into Eq. (15) we obtain 

• • 1 1 EX2 
Ey = EX [- -2 + ( -2 - v) -E-J 

1 . 

(15 ) 

(16 ) 

(17) 

(18 ) 

Substituting into Eqs. (7) and (14) and then into Eq. (16), the following thickness 

ratio is obtained, 

tl 5 - 4v E1 
= (- - 1) 

t2 4 (1 - v2) Ex 
2 

(19 ) 

From which 

t1 
= t1 El - EX2 

= t t1 + t2 E1 - B EX2 
(20) 

where 2 
B = (l - 2v} 

5 - 4v (21) 
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It is noted that this factor S is the same for isotropic materials for which 

Eqs. (9) and (10) hold. For one dimensional problem the ratio of the area of 

plastic element to the total area is 

Al = El - E2 
A El 

(22) 

Thus S is the modification factor for plane stress problems. For v = 0.3, of 

Eq. (22) s = (1-2v)2/(5 - 4v) = 0.0421. Thus, the modification is very small when 

the uniaxial behavior along the longitudinal direction is used to determine the 

thickness ratio. 

Now if a coupon is cut along the y-axis, then when a = a = a = 0, 
x xl x2 

and 

Fo 11 owi ng the same deri va ti on gi ven above, if the tangent modul us is Ey 2' the 

thickness ratio becomes 

t, = El - EY2 
t E, - , 

S E 
Y2 

where S"= (l - 2a v)2 
1 - 4va + 4a

2 

For v = 0.3 and fora between 0.5 and 2, the values of W is in the range of 

o to 0.35. 

Equating Eqs. (19) and (26) and solving for E," we obtain a relation 

between EX2 and Ey2 ' 
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(25) 

(26) 



Thus for anisotropic material represented by the mechanical sublayer model the 

initial tangent moduli for the two directions are not the same. When the 

stress-strain curves for two perpendicular directions are given, a mechanical 

sublayer can be obtained according to the following procedure. 

(1) For the stress-strain curves, for both x-and y-direction determine the 

initial yield stresses y~ and y~ 
xl Yl 

These are also the yield stresses Y and 
xl 

Y of the sublayer and are euqal to El sX
l 

and El 
Yl 

S ,respectively. 
Yl 

(2) Based on one of the curves say for the x direction try an initial tan-

gent modulus E Knowing Y ,Y ,and E ,a and S for layer 1 can be 
x2 xl Yl x2 

determined, hence, tl/t can be calculated from Eq. (2) and the initial tangent 

modulus E for the y-direction, from Eq. (27). 
Y2 

(3) The 2-sublayer model is then used to analyze two uniaxial loading 

problems and to obtain the stress-strain curves for both directions. The 

intersections of these lines to the actual stress-strain curves now determines 

the second set of transition points at which the second layer yields. The 

stresses and strains are respectively Y~ and Y~ and sand s as shown 
x2 Y2 x2 Y2 

in Figure 3. In general, the yield stresses Y and Y of the new sublayer are 
x2 Y2 

not equal to El sand El s ,although in 
x2 Y2 

the case of subelement model for 

uniaxial problems, the yield stress for the second subelement is equal to Els 2. 

For 3-~ problems with isotropic plastic behavior, Hunsaker has obtained 

closed form solutions for the case of a 2-subelement model. For a typical 

case with E2 = 0.5 El and s2 = 3 sl the difference between Y2 and El s2 is 

only 5%. 

The choice of the initial tangent modulus E must be such that the second x2 
set of transition points do fallon the actual stress-strain curve. In 

general, an iterative procedure is required. 
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(4) The plate is now considered as a new two-layer model with the yield 

stresses for the two directions equal to Y and Y Then by choosing a 
x2 Y2 

tangent modulus E for the next segment, values of (tl + t 2)/t, E ,and Y , 
x3 Y3 x3 

Y~ ,Y ,and Y can be determined following the same steps (2) and (3) 
Y3 x3 Y3 

above using 

tl + t2 
= 

El - Ex ·3 
t El - B E 

x3 

and E = 
(1 - 13) El EX3 

Y3 
(1 - 13~) E - (13 - 13~) E 

1 x3 

for the value of 13~ Eq. (26) is used with a = (Y IY )2. 
x2 Y2 

(28) 

(29) 

(5) The mechanical sublayer model may be constructed using the stress-

strain curve for the transverse direction as reference. In that case, Eq. (25) 

as used to determine the thickness ratio's and Eq. (27) is used to solve for 

E in terms of E x· y. 
1 1 

In the solution of a plane stress problem given in this paper a simolified 

procedure was adopted. The stress-strain curves for 8,ither the lonaitudinal or the 

transverse directions is replaced by a curve with linear segments. With one of the 

tangent moduli given, the other tangent modulus can be obtained and is again consid-

ered constant. Thus, the intercept of this linear segment to the actual stress-strain 

curve can be determined. The yield stresses for sublayers are obtained by the 

simple formulas, 

Y = EIE: X. X. 
1 1 (30) 

and Y = E, E:y. y. 
1 1 
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3. Finite Element Method Based on Viscoplasticity Theory 

Time independent elastic-plastic analysis can be made by using viscoplasticity 

models [ref. 7J. In the case of elastic-perfectly-plastic material, it is 

only necessary to consider the rate of viscoplastic strain components sVP as 

·vp s = y<<p>lE. au 

where F (a) = 0 represents the yi el d surface and 

< <p > for 

for 

a = equivalent stress 

a > a y 

a = a < y 

a
y 

= yield stress under uniaxial loading 

(31) 

(32) 

y = a fluidity parameter which is arbitrary for the corresponding 

elastic-plastic analysis. 

A corresponding viscoplastic model for the mechanical sublayer model is an 

arrangement of viscoplastic elements in parallel as shown in Figure 4. 

In the finite element analysis of a plane stress problem, the entire 

panel is discretized into N finite elements, the thickness of each of which is 

divided into M sublayers according to the modelling described in the previous 

section. A finite element method for the creep problem has been formulated by 

the initial strain approach using the assumed stress hybrid model [8,9]. 

The method is extended to the present multilayer model. For the incremental 

solution of the elastic-plastic problem, the procedure is as follows, 

(1) An elastic solution of nodal displacements due to a given load 

increment is made using the assumed stress hybrid elements, 
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(2) The stress increments at selected Gaussian stations in each 

element are evaluated, 

(3) The stresses in each sublayer at each Gaussian station are updated 

and the corresponding equivalent stress a evaluated, 

(4) A time increment ~ t is chosen and the increments of viscoplastic 
vp ·vp strains are ~E = ~ ~ t for all sublayers at all Gaussian stations. Here the 

viscoplastic strain rates are determined by Eqs. (31) and (32). 

(5) The equivalent nodal forces due to the viscoplastic strain increments 

can be evaluated. They are used for the determination of nodal displacements for 

the time increment. 

(6) Steps (2) and (5) are repeated until the changes in s~resses within the 

time increment become less than a small prescribed limit. 

At this stage, the equivalent stress a in each sublayer is either equal or smaller 

than the yield stress of that sublayer and stabilized stress state for this 

loading increment is obtained. The use of successive time increments is 

equivalent to an iterative procedure for this elastic-plastic problem. 

A guideline for the choice of the time increment ~t to assure numerical 

stability is, according to Cormeau [ref. 10J, 

~t < 4 (1 + v) 
- 3 E Y 

where E is the Young's modulus 

4. Anisotropic Analysis of Shear Lag Structure 

(33) 

To illustrate the finite element solution using the present anisotropic 

model, a shear lag structure which was tested in 1963 at Massachusetts Institute 

of Technology is used [ref. llJ. The structure shown in Figure 5 was integrally 
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machined from thick 2024-T4 aluminum alloy plate. It is a rectangular panel 27.94 cm 

x 25.4 cm x .203 cm, stiffened by tapered stiffners along the loading (y) 

axis. The stiffness became flu?h with the panel at the center, where the 

stresses and strains are the highest under the applied tension load through the 

stiffners. 

Fitted stress-strain curves for both the longitudinal or x-direction and 

the transverse or y-direction were obtained from tension tests as shown in 

Figure 6. An average of these two curves is also shown. 

A mechanical sublayer model for this material was constructed by the 

simplified procedure indicated in section 2. The corresponding curves with 

piecewise linear senments are shown in Figure 7. The yield stress under 

shear was not obtained in the original experiment. For the mechanical sublayer 

model, the values of Y
xY 

for each layer is set equal to YI ~ where Y is the 

larger of Y and Y. Of the five sublayers used in the models the last one is x y 

considered elastic. The strain disbribution of the panel, thus, is determined 

directly by the elastic strains offuis layer. Table 1 lists the thickness ratios 

and yield stresses of the various sublayers. 

For the finite element analysis one quarter of the panel is used. It is 

subdivided into 7 x 7 rectangular plane stress elements as shown in Figure 8. 

The tapered stiffness is also modelled as plane stress elements with constant 

thickness in each element. For the finite element solution all numerical 

integrations were obtained by using 2 x 2 Gaussian quadrature. 

The resulting strains E and E at the center of the panel were determined x y 

by extrapolating from the two Gaussian stations along the diagonal line of 

the element at closest to the center. Their variations with respect to the 

applied load are shown in Figure 9. Also plotted for comparison are: 
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(1) A finite element solution obtained by the present method but by mod-

elling as an isotropic material based on the average stress-strain curve shown 

in Figure 6. 

(2) A finite element solution obtained by Jensen et al. [ref. 12], using 

144 constant strains triangular elements and by modelling as an isotropic material. 

(3) Experimental results obtained in Ref. 11. 

It is seen that the solutions by the three finite analyses are comparable 

although they do not agree with the experimental result, especi a lly, for 

the Ey component. In this particular case the approximate solution obtained 

by considering the material property to isotropic appears to be very close to 

that by the present modelling of anisotropic material. 

5. Conclusions 

A method has been developed for the modelling of anisotropic plastic 

behaviors for metals by the mechanical subelement model. It has been incor-

porated in a finite element analysis program based on the assumed stress hybrid 

model and, on the viscoplasticity theory. 
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Table 1. Constants for Mechanical Sublayer Hodel (Anisotropic Plasticity) 

~ Number
j 

1 2 3 4 5 

t;lt 0.360 0.351 0.130 0.130 0.029 

E 
xi 

GPa 69.6 45.2 20.8 11.5 2.08 

E 
Yi 

GPa 69.6 44.7 20.3 11.2 2.01 

EXi 
10-.:s 5.01 5.33 5.52 6.01 10.0 

£Yi 
10-j 3.24 4.52 6.22 8.44 14.0 

Y (=E 1£ ) MPa 349 371 385 419 
xi xi 

<.> 

Y (~E£ ) MPa 226 315 433 587 ~ 

Yi ' Yi l-

V> 

(l E (Y IY )~ 2.39 1.39 0.789 0.508 <: 

i xi Yj -' 
w 

a = (Yx IYs )2 7.17 4.17 3 3 
si i i 

Y a 

//7'------x 

£ 

Figure 1. Two-layer Model Representing Strain Hardening Behavior Figure 2.Uniaxial Stress-Strain Relations for Two-layer Model 
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Figure 7. Approximate Stress-Strain Curves by Mechanical Sublayer Model (2024-T4) 
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CONSTRAINED SELF-ADAPTIVE SOLUTIONS PROCEDURES FDR 
STRUCTURE SUBJECT TO HIGH TEMPERATURE 

ELASTIC-PLASTIC CREEP EFFECTS* 

Joseph Padovan and Surapong Tovichakchaikul 
University of Akron 
Akron, Ohio 44325 

Currently, the design of engineering structures which operate in 

a creep range involves the use of either approximate methods [1-3] or 

iterative/incremental schemes [4]. As has noted by Corum [5], 

Hayhurst and Krzeczkowski [6], among others [7,8], the current status 

of time-iterative or incremental schemes in creep analysis is such 

that a poor choice of time step size can lead to instabilities in the 

solution or to erroneous results. Because of this, even the highly 

skilled user is faced with extremely expensive parametric studies in 

order to determine requisite time stepping. 

In the context of the foregoing, the paper will develop a new 

solution strategy which can handle elastic-plastic-creep problems in an 

inherently stable manner. This is achieved by introducing a new con

strained time stepping algorithm which will enable the solution of 

creep initiated pre/postbuckling behavior where indefinite tangent 

stiffnesses are encountered. Due to the generality of the scheme, 

both monotone and cyclic loading histories can be handled. 

The solution to the foregoing problem is made possible through 

the use of closed piecewise continuous least upper bounding constraint 

surfaces which control the size of successive dependent variable excur-

sions arising out of the time stepping process. Because of the manner 

of constraint, the overall algorithm in addition to being architectur-

*This work has been supported by NASA Lewis under Grant NAG 3-54. 
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ally flexible has self adaptive attributes which enable the stable and 

efficient solution of problems involving elastic-plastic-creep proper

ties exhibiting severe nonlinearities. Specifically, the scheme can 

be easily modified to handle a wide variety of constitutive formulations. 

Additionally, regardless of the constitutive relation employed, the 

approach can handle situations exhibiting indefinite tangent proper-

ties potentially leading to large deformation and strain pre-post

buckling behavior. 

The presentation will give a thorough overview of current solution 

schemes and their short comings, the development of constrained time 

stepping algorithms, as well as illustrate the results of several 

numerical experiments which benchmark the new procedure. These give 

special attention to tracing the degradation of structural integrity 

and stability as cyclical loading proceeds. 

As a preview of the paper, Fig. 1 illustrates the finite element 

simulation of an arch subject to a cyclical load history at elevated 

temperatures. Figure 2 depicts the force-deflection response of the 

arch as the external loading is cycled. As can be seen, while the 

loading is initially well below the buckling limit of the arch, due 

to significant structural distortion caused by creep, the load carrying 

capacity is severely degraded with increasing time. Since the problem 

involves very large kinematic distortions, the capability of the new 

constrained time stepping algorithm is clearly illustrated. The 

presentation will highlight several such examples as well as benchmark 

the approach with other schemes. 
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STRESS AND FRACTURE ANALYSES UNDER ELASTIC-PLASTIC AND CREEP 
CONDITIONS: SOME BASIC DEVELOPMENTS AND 

COMPUTATIONAL APPROACHES* 

K. W. Reed, R. B. Stonesifer,** and S. N. Atluri 
Georgia Institute of Technology 

Atlanta, Georgia 30032 

Abstract: 

In Part I of this paper a new hybrid-stress finite element algorithm, 

suitable for analyses of large quasi-static deformations of inelastic solids, 

is presented. Principal variables in the formulation are the nominal stress-

rate and spin. As such, a consistent reformulation of the constitutive equa-

tion is necessary, and is Jiscussed. The finite element equations give rise 

to an initial value problem. Time integration has been accomplished by Euler 

and Runge-Kutta schemes and the superior accuracy of the higher order schemes 

is noted. In the course of integration of stress in time, it has been demon-

strated that classical schemes such as Euler's and Runge-Kutta may lead to 

strong frame-dependence. As a remedy, modified integration schemes are proposed 

and the potential of the new schemes for suppressing frame dependence of 

numerically integrated stress is demonstrated. The applicability of explicit 

and implicit forward gradient schemes to improve the stability of time-

integration in large deformation problems is investigated. The feasibility 

and performance of the present methods are demonstrated in a number of problems, 

and it is found that the stresses obtained by the present method are of excep-

tional accuracy, much more than could be expected of an assumed-velocity based 

finite element algorithm. 

In Part II of this paper, the topic of the development of valid creep 

fracture criteria is addressed. Until now, the so-called C* integral, intro-

* A report of research supported under NASA Grant NAG 3-38. 
** Formerly a Doctoral Candidate (now graduated and in private eng. practice). 
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duced by Goldman and Hutchinson, was attempted to be used in the literature 

to correlate creep crack growth rate. In the present work, a new path-in-

dependent integral parameter (i) which has a considerably more degree of 

generality and validity than the C* integral, is introduced. The mathematical 

aspects of this parameter are first reviewed by deriving generalized vector 

forms of the parameters (j) and £*; using conservation laws which are valid for 

arbitrary, three-dimensional cracked bodies with (macro)-crack surface tractions, 

body forces, inertial effects and large deformations. Two principal conclusions 

are that (i) is a valid crack-tip parameter during nonsteady as well as steady

state creep and that (T) has an energy rate interpretation whereas £* does not. 

Using this new integral, and a finite element analysis procedure, several funda-

mental aspects of creep crack-growth are studied numerically. Specifically 

numerical results are presented for a double-edge-crack specimen for which ex-

perimental results are available. Finally, a simplified methodology for pre-

dieting creep growth behaviour is presented, based on the conclusions drawn from 

the present numerical simulations of experimental data. 

Part I: Stress Analysis of Inelastic Solids Using Assumed Stress Finite 
Elements 

Nomenclature: 

C(T) configuration (image of the body in space at time T) 

X position vector in space at time T 

x position vector in space at (present) time t 

iiI I. 
V = ~ d/aX; Vx = ~ a/ax; a = aa/at + V.Va material derivative of 'a' 

v deformation function; maps C(T) to C(t) as .o.r 

V velocity function; related to deformation function as 
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~L - (~XA.(!,t))T deformation gradient 

J = det F 
L -L 

T L = (~V(x,t)) velocity gradient 

. 
J = ~.V(x,t) di1itation 

e: = -kL+LT) stretching 
2 - -

w = l(L-L T) spin 
2 - -

T true traction; T nominal traction relative to eeL) 
---r 

L true stress; 0. = J L Kirchhoff stress relative to eeL) 
- L-

--1 
t = F 0 -. -. -L 

nominal stress relative to e(.) 

t true traction rate; T nominal traction rate 
---r . 

0 = J. + 1- Kirchhoff stress rate 

. 
- (~+'E) 0 nominal stress t • + rate -

0* 0 w • + • w 'co rotational , stress rate 

Introduction: 

The research which produced the present hybrid stress fintie element 

algorithm was motivated by the observation that hybrid stress algorithms con-

sistently outperform those using velocity (or displacement) as the sole 

variable. Hybrid stress models for infinitesimal deformation of shells and 

incompressible solids have been topics of intense research since Pian's first 

presentation of such a model in [1]. However, hybrid stress models for finite 

deformations have only been researched since de Veubeke's [2] presentation of 

a complementary energy principle for finite elastic deformations, and Atluri's 

[3], [4] generalization of that principle for inelastic solids. A hybrid stress 

model for finite elastic deformation was presented by Murakawa [5]. In this 

~eport a hybrid stress model for finite inelastic deformation is detailed. 
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.Lhe Boundary V~lue Problem: 

Compat ib ility 

(LI) 

Linear Momentum Balance (LMB) 
. 

V.~ + P£ = Q; (L2) 

Angular Momentum Balance (AME) 

(1.3) 

Constitutive Equations 

(L 4) 

Velocity Boundary Condition (VBC) 

os.(-£+w+VV) = 0 on S (os is any tangent on S ) 
- --- v - v 

(L 5) 

Traction Boundary Condition (TBC) 

. -
n • t = T on S 

-t (] 
(L 6) 

Above are listed the equations of the general boundary value problem 

associated with quasistatic deformations of inelastic solids. From (1.1) through 

(1.4) one may obtain 18 scalar equations for the 9 unknown stress rate com-

. ij i" 
ponents t ,3 unknown spin components w J, and 6 unknown stretching components 

i" 
£ J. It is possible to reset (1.1) through (1.6) so that only velocity com-

i ponents V appear as variables. Alternatively one may use (1.4) to eliminate 

f as a variable in (1.1) and (1.3), thus obtaining a boundary value problem 

for the components of stress rate and spin. Any solution of this latter boundary 

value problem is a stationary point of the functional 

7r (V,w,t) = (v {-R - 21 T:(~.~) + t:w}dV 
mc - - - ), 

(1. 7) 
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provided that only stress rate variations ot such that 

v . ot = 0 (1. 8) 

and spin variations ow such that 

O~ + o~T = Q (1.9) 

are admitted to 01T The velocity in Olf plays the role of a Lagrange mul-mc mc 

tiplier. 

We replace the boundary value problem for t and ~ by the generalized b.v.p.: 
. 

01T (V,w,t) = 0 
mc - - -

with subsidiary conditions: 

(1.10) 

T w + w = 0 (1.11) - -. 
'l. t + P~= Q (1.12)* 

The stationary conditions of 1T when (1.11) and (1.12) decide admissible 
mc' 

w and !;, are 

Is 
a 

. 
(n.t-T ) 
- - -t 

(1.13) 

(1.14) 

oVdS o (1.15) 

where £ is written for dR/dt. Equations (1.13), (1.14), and (1.15) are varia-

tional statements of AMB (1.3), compatibility (1.1) and VBC (1.5), and TBC 

(1.6), respectively. 

• .Q ·b ·0 * the general solution of this equation is known as ~=~ +~ , where t ='lX~ and 
.b • 

'l.t =-pb. 
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Reformulation of the Constitutive Equation: 

As may be surmised from the development above, the present approach 

necessitates reformulation of the constitutive equation. In applications 

one typically is given or may find a constitutive equation of the form 

0* = V: E + E (1.16) 

where y and ~ generally depend upon ~, !, and scalar invariants*. If V and 

E do not depend on ~ then we say (1.16) is affine with respect to E. This 

includes most material models found in the engineering literature. If (1.16) 

is also an isotropic function then ~ and ~ may be set in the forms 

V ijkl = A
l
\Oi/\.1) + ",12(Oij Th) + ",13(Oij Skl) 

and 

A2l(T~jOkl) +A22(TijTkl) + A23(TijSkl) 

A
3
\sij Okl) + A32(sijT~1) + ",33(sijSkl) 

+ 2~'(Oik jl) + /(OikTij+TikOlj) + ~3(OikSlj+sikOlj) 

E = n 
1 ° + n2 

T ' + ,}s 
ij "ij ij ij 

(1.17) 

(1.18) 

h 'i h did" The ,IJ I d If' were T s t e stress ev ator an S=T.T. A, ~ , an T) are unct10ns 

of the scalar invariants of the deformation. 

This form still includes most material models found in the engineering 

literature. Notable exceptions are models for materials with anisotropy in the 

stress free state, where the present model reduces to 

• 1 ,ll( ) 0* = 2~ E + A I:E I - - - - - (1.19) 

By retaining the constitutive equation in the general form (1.16), (1.17), (1.18) 

in our development we are led naturally to a 'unified numerical procedure' for 

problems of large strain elasticity, plasticity, viscoplasticity, and creep. 

* temperature, strain histories, as well as joint invariants of T and ~. 
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The desired form for the constitutive equation may be found by noting 

the relation between the stress rates 0* and E: 

Using (1.16) to eliminate ~* from (1.20) gives 

where W is defined by 

Inversion of the relation (1.21) yields 

-1 
£ = ~ :(r-E) 

-1 -1 -1 
If ~ is symmetric (i.e., Wijkl=Wklij) 

/ . 1(.) -1 (. ) 
£ C dR dE; R = 2 :-~:~ : :-~ 

then a potential R exists for £: 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

The condition necessary and sufficient for W-l to be symmetric is A1J=AJ1 • 

This condition is satisfied by most engineering materials*. 

In practice one must construct W from V, then invert W (if possible) to 
= ~ = 

achieve the form (1.24). This is a major undertaking from a computational 

point of view since ~ is generally different at each point of a stressed 

body. Therefore special attention is given to practical methods for construc-

-1 tion of W • -1 
For plane problems ~ can be found analytically. For general 

-1 -1 
problems in which Y is known a simple approximation for ~ is often of 

acceptable accuracy. The details of the two special cases are discussed in 

Appendix B of [6]. 

The Finite Element Algorithm: 

Equations (1.13), (1.14), and (1.15) are the basis for the finite element 

algorithm presented in this report. The finite element equations are obtained 

* Flow laws using the corotational rate of the true stress are an exception. 
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by :Introduction of polynomial representations for V, lil, and t.* to (13) and 

th (14); on the N element: 

NQ -i V = '[ N q 
- i=l -i N 

~: isoparametric shape functions 

w = ~ QW a i 

i=l .. i N 

t = 
NT 

i .b 
L QT. BN + t 

i=l - l. 

where QT =?X4> 
- i -i 

·b • 
V.t = -Pb 

. 

(1.25) 

(1.26) 

(1. 27) 

The ~epresentations for ~ and t are independent on each element, so (1.15) must 

be replaced by the 'interelement traction reciprocity' relation: 

NELM 
L 

N=l 
(1.28) 

which includes (1.15). The finite element equations are obtained by perform:lng 

the assigned :Integrations (Gaussian quadrature rules are used). Those equa

i tions are listed below (the element index 'N' has been suppressed on the aN 

i and B
N
): 

{oa}T{_[Hll 

{oB}T{_[H2l 

NELM T 
L {{oqN} [0 

N=l 

Hl2 ]{a} 
B 

+ {pa,b} 

H22]{a} + {pB,b} 
B 

+ {pa ,L}} = 0 (1.29) 

+ {pB,L} (1.30) 

+ [G){qN}} = 0 

(1. 31) 

*Mathematical 'rank' conditions require that NT>NQ-T, where T is the number of 
translational degrees of freedom of an element. Moreover, the [QW] and [QT] 
should be of the same polynomial degree. 
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Henceforth we refer to (1.29) as AMB, to (1.30) as compatibility, and to 

(1.31) as TBe. The individual matrices are defined below: 

« .32) 

(1. 33) 

(1. 34) 

(1.35) 

(1. 36) 

Fi = r ~ . (N ) dS 
J(S nS ) --t -J. 

N a 

(1.37) 

(1.38) 

pS,b = Iv {(~i):(_~:~b)}dV (1. 39) 
i 

N 

pa,E = Iv ((~.q,Wi) :~:PdV (1.40) 
i 

N 

J~ 
N 

(1.41) 

-1 and D is obtained from H by symmetrization: 

1 -1 -1 -1 -1 
Dij kl = r(W ij k1 + Wj ikl + W ij lk + Wj ilk) (1.42) 

*The last term in the integrand is a residual whose significance is explained 
in [6]. 
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-1 
This symmetrization is easily done after ~ is computed, and serves to re-

duce by a factor of four the number of multiplications required to compute the 

-1 
H matrices (1.32) through (1.35), and other matrices involving ~ • 

The procedure which leads one from equations (1.29) and (1.30) to the 

element stiffness matrix is virtually identical to that of Pian [1]. We de-

fine the element 'H-matrix' as 

[H] = [Hll H12] (I.43) 

H21 H22 

and loads {pb} and {prJ, due to body force and fluidity, respectively, as 

(I. 44) 

Then (1.29) and (1.30) may be collected into a single equation as 

[H]I~I = [:] {ijJ + {pb + pE J (I.45) 

-1 -1 
If ~ is symmetric, that is, if Wijkl=Wklij' then from (1.32) through (1.35) we 

easily determine that [H] is symmetric. 

If the H-matrix is not singular, then we solve the matrix equation (NQ+I 

right hand sides) 

[H][H-1G H-1p] _ [: pb + pE] (I. 46) 

on each element. Explicit calculation of the inverse of [H] is not only un-

necessary, but substantially increases the time required to generate the e1e-

ment stiffness matrix. According to (1.45), the spin and stress parameters on 

each element are given by 

(I.47) 
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Using (1.47) to eliminate {a/S} from TBC (1.31) leads to 

(1. 48) 

in which the element stiffness matrix has been identified as 

[~] = [0 (1. 49) 

and the resultant nodal 'forces' are given by 

-[0 (1. 50) 

It is easily verified that the element stiffness matrix [K] is symmetric if 

[H] is, and so the symmetry of [K] ultimately depends upon the symmetry of the 

constitutive matrix W. 

To this point all of the finite element equations are independent on each 

element. The formal assembly of the global stiffness matrix and loads is ac-

complished by introduction of assembly matrices [~] through whose use the ele

ment level velocity parameters may be expressed as functions of the global 

velocity parameters. For {ij} and {cq} we write 

and from (1.48) thus obtain 

(1.51) 

In equation (1.51) the global stiffness matrix [KG] and the loads {P
G

} are 

defined by 

(1. 52) 

(1. 53) 

The load matrix {P
G

} contains contributions from the prescribed body for rate 

b, the relaxation ~, and the traction boundary condition~. The global stiff-
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ness matrix, as defined by (1. 52), will be singular for rigid translations 

(but not for rigid spin). In order to solve the equation (1.51) we define 

a modified global stiffness matrix [K*] and a modified load {p*} as follows: 

K* 
IJ {

OIJ if (QI=QI) or (QJ=QJ) 

KIJ otherwise 

Then (1.51) may be replaced by 

[K* HQ} = {p*} 

If [K*] is not singular, then we solve (1.56) for {Q}, 

(1. 54) 

(1.55) 

(1.56) 

(1.57) 

By backsubstitution we obtain the velocity (on the boundary of each element), 

the spin and the stress rate on each element: 

{'iN} = [~] [K*]-l{p*} (1. 58) 

a 
[H-lGN][~][K*]-l{p*} + {H-lPN} { N} (1.59) 

SN 

vex) = [N(~][~][K*]-l{p*} (1.60) 

(1. 61) 

Equations (1.60) and (1.61) comprise the approximate solution of the boundary 

value probelm. 

Integration of the Motion of the Body: 

The finite element algorithm just described produces an approximation for 

the stress rate and velocity, as opposed to stress increments and displacement 

increments. Thus, considerably more freedom of choice of time integration 
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schemes is afforded by the present approach than by incremental approaches 

(which are predisposed to integration by the relatively inefficient Euler's 

method). In this section we (i) formally state the initial value problem, (ii) 

discuss numerical integration of that problem, and (iii) present a 'forward 

gradient scheme' which stabilizes integration of deformations of bodies which 

exhibit stress relaxation. 

Let {x} = {xl, x2 , ••• , xND} be the vector of nodal positions, and let 

1 2 ND 
{v} = {v , v , •.• ,v } be the vector of nodal velocities, where ND is the 

total number of nodes. 
1 2 G . 

Similarly, let {~} = {~ , ~ ""'~ } and {~} = 
·1'2 ·G 

{~ , ~ ""'~ } be the quadrature point stresses and stress rates, respectively, 

where G is the total number of quadrature points in the body. To indicate 

the dependence of {v} and {;} on {x}, {~}, and the time dependent prescribed 

loads, we write* 

{v} = f [ {~}, { ~ }, t} 

it} = g[{x}, {I}, t} 

(1. 62) 

(1. 63) 

I 
Since each element node is associated with the same material point! 

throughout a deformation, and likewise for each quadrature point, we may write 

each component of {~}, {'E} , {v}, and {t} as -
I I 

(1. 64) x = Xr(X ,t) 

I (l/JI )FI I 
(1. 65) • = t (X ,t) . -. -. -

V
T • I 

= Xr(X ,t) (1. 66) 

.1 
(l/J1)F1 . I 

(1. 67) t t (x ,t) . - -. -

* The function f and g are introduced specifically as a 'shorthand' for the solution 
of the finite element equations, as given by (1. 60) and (1. 61) • In practice 
integrations may be performed on one element at a time. 
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Introduction of (1.64) - (1.67) to (1.62) and (1.63) gives 

{i.} = f T [{x. } , { !: T }, t] 

. 
(1. 68) 

{~T} = gT[{X.}'{~T}' t] (1.69) 

the definitions of f and g being clear. Equations (1.68) and (I.69) and 
T T 

appropriate initial values comprise an initial value problem. 

The initial value problem posed by (1.68) and (1.69) and appropriate in-

itial data is dependent upon the finite element equations. From that same 

discussion, and from the presentation of the finite element equations, it is 

also clear that the finite element-initial value problem is predisposed to 

numerical integration. In this section we indicate the types of numerical 

integration schemes suitable for the present problem, and mention a few im-

portant differences between the various types. 

The finite element-initial value problem may be integrated by single step 

explicit schemes, multistep explicit schemes, or (generally multistep) pre-

dictor-corrector schemes. Three important facts to be kept in mind when 

choosing a particular scheme are 

(i) the solution vector <{x.(t
N

)}, {tT(t
N
)}> at the time t=tN is of 

scalar dimension NDOF+9.G, where NDOF is the number of kinematic 

(2) 

(3) 

degrees of freedom of the mesh and G is the total number of quadra-

ture points. Storage required for implementation or different integ-

ration schemes can vary appreciably. 

evaluation of <f , g > i~ expensive on account of the complexity 
T T 

of the finite element equations. 

the functions f and g are generally discontinuous at points 
T T 

~, ~T> which correspond to material yield surfaces. 

The multistep methods (explicit and predictor-corrector) require rela-

tively few evaluations of <f , g > per step; this is an attractive feature. 
T T 
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However, multistep methods are not self starting, the time step is not easily 

changed, they have relatively large storage requirements (since several past 

values of <f , g > must be carried along), and moreover, they cannot be ex
T l' 

pected to be accurate when the solution crosses a yield surface (since they 

are based on smooth.polynomial interpolation of the solution over several 

time steps). 

On the other hand, the single step methods (explicit and predictor-

corrector) are easily started, the time step size is easily adjusted, and they 

have relatively small storage requirements. They can be expected to perform 

more favorably than the multistep methods when the solution crosses a yield 

surface since smoothing over several time steps is not built in. Thedisadvantage 

of the single step methods is that a relatively larger number of evaluations of <f • g > 
l' l' 

are required per step to achieve a given accuracy when a yield surface is not crossed. 

However. the advantage of single step methods seem to far outweigh the disadvantages. 

In the example accompanying this report the Euler and classical second 

order Runge-Kutta methods were used. Details of these methods may be found 

in many textbooks. Errors of the Euler method were gauged (qualitatively) 

by step-halving and by comparison to results of second order integration for 

randomly selected time steps. Full details are given in the description of 

the example problem. 

It is worthy of special note that complementary work and energy principles 

provide no means whatever for checking the satisfaction of LMB, so it is of 

crucial importance that the numerical integration scheme not introduce errors 

which tend to unbalance the stress. This maintenance of balanced stress, 

necessary in stress-based finite element algorithms is the counterpart of 

maintenance of compatible deformation, necessary in velocity - based algo-

rithms. It can be shown that LMB is maintained when the stress t is integ-
-1' 

rated explicitly, but not when other stresses (such as !) are integrated ex-
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plicitly. Thus, we integrate t explicitly, and find • (afterwards) by the -. 
formula 

l' = l/J F .t 1'-. -. 
Stability of Numerical Integration of the Initial Value Problem: 

(1. 70) 

It is possible that the difference between two supposed numerical solu-

tions of a given initial value problem is much larger than would be expected 

to arise from discr~tization error alone. As an example, consider integration 

of the stress in a material of the type (1.16) by the Euler method. We suppose, 

3 
for the sake of simplicity, that ~(t) is given and ~(!) = -211(2¥! '), so that 

the difference between two solutions satisfies 

(1. 71) 

If the elastic matrix and stretching are such that, in the Euclidean norm, 

I I [V(.+fi.) - V(.)]:e:(t)II/llfi.11 -+ 0 (1.72) 
: - - ~ ~ - -

as I Ifi!1 1-+ 0, then for sufficiently small I Ifi!1 I, equation (1.71) may be 

replaced by 

(1. 73) 

Defining fio as fio = J J3fi ., :fi.' , we may reduce (1. 73) to a scalar equation in 
0'{2 - -

the invariant fio: 

(1. 74) 

For an initial value fio(O) (small), the analytic solution of (1.74) is 

(1. 75) 

Euler's method yields 

lio = liO(O)(l-311Yh)N (1.76) 
N 

It is clear from (1.75) that fio decays to zero as time passes. This means 

that the analytic solution of the equation 

(1. 77) 

320 



is stable with respect to sufficiently small perturbations of the deviatoric 

part of To On the other hand, the numerical solution (1.76) attenuates as 

time passes only if 

I (1 - 311yh) I < 1 (1. 78) 

This means that the numerical solution of (1.77) is stable with respect to small 

pertuvbations of the deviatoric part of !' only so long as the time step h is 

bounded above as 

(1. 79) 

This bound is identical to the bound given by Cormeau [7] (see equations 

16 and 54 in this reference). 

Time steps such as (I~9) are found to be necessary for stability of 

numerical solutions of the finite element-initial value problem presented in 

this report. Argyris et al [8] remark that this time step restriction amounts 

to limiting the inelastic strain increment to be smaller than the elastic strain. 

Since the elastic strain is usually very small in metals such as those used in 

structures, this implies that a finite deformation analysis would entail an 

impractically large number of steps. 

The work of Kanchi et a1 [9] and At1uri and Murakawa [4] suggests the 

modification we now describe. To improve the estimate of the inelastic strain 

increment in a time step, we replace ~P(~N) by an estimate of the mean value 

of the inelastic stretching in that time step: 

de:P 

~P(!(tN+eh» ~ ~P(!(tN» + eh d~ 
T=T 
- -N 

(1. 80) 

where the parameter e, o~e~l, serves to locate the time at which the mean 

value is achieved. As e goes from z.ero to one, the estimate of the creep-

stretch becomes increasingly more conservative. 
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Equation (1.80) may be introduced to the finite element algorithm 

through the constitutive equation; (1.16) becomes 

where 

-1 

From ¥8 (1.81) we derive ~e just as we derived W' from V: 

1 . 
~8 = ~e 

L = -V : cP 
-8 ::8-

= 2(Tikolj + °ikTlj); 

-(H +T):cP 
::8::: -

(1.81) 

(1. 82) 

When a material which exhibits relaxation is to be analyzed, ~8 and ~8 are in

troduced to the finite element algorithm for ~ and ~. 

Example: Growth of a Void in a Viscoplastic Medium: 

In this example we examine the growth of a void in a hypoelastic/visco-

plastic medium. This problem has been studied (numerically) by Burke and Nix 

[10], who treated the material as rigid/viscop1astic. We present the problem 

as a demonstration of the performance of the finite element a1gorithim. The 

material exhibits stress relaxation, so the forward gradient scheme must be 

used to stabilize the time integration. The present results agree quite closely 

with those of Burke and Nix. 

The motion is assumed to be plane strain, and throughout the body is a 

doubly periodic array of cy1inderical voids. Due to the symmetry we need analyse 

only one quadrant of one rectangular cell of the body. The finite element 

mesh and boundary conditions are described in Figure 1. 

Burke and Nix motivate their study by explaining that certain theories 

for the initiation of creep fracture supose that the growth of voids can be 

"attributed to the inhomogeneous plastic deformation of the surrouding grains." 

Furthermore, "finite fracture strains can be predicted only when a void lies 
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in the neighborhood of another void." Such a ~tudy necessarily involves a 

number of special cases. For our purposes, that of demonstration, only one 

case is taken. 

The problem has been analysed in three parts. In the first part the 

cell is brought rapidly from the virgin state (stress-free) to a state of 

purely elastic strain. This is accomplished by a single RK2 step. In the 

second part, relatively small time steps are taken while the stress relaxes 

from the elastic distribution to a nearly steady creep distribution. In the 

third part, time steps are taken which produce 1% nominal elongation of the 

cell in each step. To stabilize time integration in the second and third 

parts the forward gradient scheme is used, the stability parameter e set as 

e = 1/2 and 3/4. Only the Euler time stepping scheme has been used in the 

second and third parts of the problem. 

The material model is a special case of (1.16): 

e = (l+v)a* _ (~)(I:cr*)I E E - E _ _ _ 

This model corresponds to that of Burke and Nix with (their) creep exponent 

n=l. The fluidity y is set as y=lx10-19 (psi-sec)-l. The velocity at the 

top of the cell (see Figure 1) was adjusted so that a specimen with no void 

-11 -11 -14 -1 would experience a homogeneous constant stretching E of E=O.25x10 sec. 

Since the material was treated as rigid/viscop1astic by Burke and Nix, our 

choice of elastic constants is somewhat arbitrary. We have taken Young's 

7 modulus E=3xlO psi and Poisson ratio ~::O.4, so the material is somewhat like 

steel in its elastic response. 
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11 33 In Figures 2, 3, and 4 the contours of stress L ,~tress L and mean 

stress, have been plotted for L (the elongation of the cell) L=l.Ol. The 

3 stress concentration where the hole edge crosses the x axis is approximately 

2.7*. This is quite reasonable since the theoretical value for an isolated 

void in a purely elastic medium is 3.0. In Reference 10 an approximate value 

of 2.66 was found for the rigid plastic material. In Figure 5 the contours of 

effective strain rate,(;~P:~P are plotted for L=l.Ol. Qualitatively this com

pares very well to Figure 7 in [10]. 

In Figure 6 the deformation is traced from L=l.O to L=1.5. These de-

formations are physically tenable. We remark that no indication of any num-

erical instability was observed in the course of integrating this deformation. 

11 33 
In Figures 7, 8, and 9 the contours of stress L ,~ ,and mean stress, 

have been plotted for L=1.50. They compare very well to the stresses found 

in [10] (see Figure 8 there). We note that the stress concentration has drop-

ped to 1.71. The stress concentration depends strongly on the geometry of the 

specimen; as such, it was observed to decline steadily throughout the deforma-

tion. In Figure 10 the contours of effective strain rate are plotted for L=l.5. 

Again, the qualitative agreement with the results of Burke and Nix [10] is noted 

(see Figure 9 there). 

We conclude by noting that in the present analysis only 56 four noded 

elements were used, as compared to 56 eight noded elements used in the analysis 

of Burke and Nix. Considering the agreement between their results and our own, 

the present method appears to have performed very well, in spite of the large 

disparity in the degrees of freedom of the finite element mesh. 

* A stress concentration of approximately 2.59 was observed for the elastically 
stressed-medium. 
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Part II: Fracture Analyses Under Creep 

Numerous experimental studies have been undertaken with the purpose of 

finding a parameter which correlates with creep crack propagation rate. Most 

of these investigations consider as candidate parameters, KI , some form of net 

section (or reference) stress or in more recent studies C*. See, for example, 

the review article [11] and [12-14]. Since the introduction of C*, there appears 

to be less emphasis on KI as a parameter, however, there are apparently real 

materials and conditions for which either net section stress or KI provide better 

correlation with crack growth rate than C*. 

As illustrated in Fig. 11, the above three parameters might be expected 

to correlate three distinctly different creep crack growth situations. In Fig. 

lla, a crack and its associated ligament are shown for a material and geometry 

which results in negligible creep strains everywhere except in the Vicinity 

of the crack-tip. This condition is analogous to that of small scale yielding 

in elastic-plastic fracture. 

Fig. lIb represents a situation in which C* might be considered an appropri

ate parameter. This situation is characterized (i) by the body being essentially 

at steady-state creep conditions (which implies very slow crack propagation) 

and (ii) by the creep-damage process-zone being local to and therefore controlled 

by the crack-tip field. Fig. llc illustrates the type of situation for which 

net section stress might be expected to control crack growth. In this case, 

the main feature is the widespread creep damage zone. 

It is seen from Fig. 11 that intermediate situations can occur. For 

example, suppose a particular material and geometry results in a crack propa

gation rate such that elastic strain rates are not negligible compared to 

creep rates (i.e., non-steady creep) and at the same time, creep strains are 

no longer localized to the crack-tip region. While neither KI nor C* could 
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be valid parameters for this case, it appears reasonable to expect that crack 

growth rate is still determined by the local crack-tip field since the creep 

damage process zone is still assumed to be local to the crack-tip. 

In the present study, we are concerned primarily with behavior bounded 

by at illustrated in Fig. lla and Fig. lIb. That is, we consider conditions 

in which the creep damage zone and presumably crack propagation speed are con-

trolled by the crack-tip field. Therefore, if we have a parameter which 

characterizes the crack-tip fields during such behavior we presumably have a 

parameter which will characterize creep crack propagation rate. A parameter 

which spans the gap between ~ controlled growth and C* controlled growth 

has been introduced in [15] and subjected to initial scrutiny in [16]. This 

Parameter is referred to as (~T) and is defined by a path-independent, vector -c 

integral. For stationary cracks, it has been shown [15,16] that the related 

quantity (T) is a measure of the amplitude of the HRR crack-tip field which -c 

presumably exists for both non-steady and steady-state creep. It has also 

• • dU 
been shown that (Tl)c has the energy interpretation (Tl)c= - da for non-steady 

as well as steady-state creep. 

In the process of exploring this new parameter, it has been found [16] 

that despite C* being a valid crack-tip parameter for strictly steady-state 

creep conditions, it is not equivalent to the (Tl)c parameter under any 

conditions and therefore does not have the energy interpretation commonly at-

tributed to it. Since experimentalists use the energy interpretation as a 

means of "measuring" C* it seems more appropriate to refer to these experi-

mental.results as (Tl)c. 

To start with, we define (~T) and a generalized vector integral -c 

C* and also summarize the properties and the relationship of these parameter&. 

The remainder of the paper discusses several finite element calculations for 

both stationary cracks and propagating cracks. The crack propagation study 
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uses a combination of analytical, numerical and experimental results to show 

that creep crack growth in 304 stainless steel at 6500 C occurs under essen-

tially steady-state creep conditions. Finally, based on this observation, a 

simple crack growth prediction methodology is outline. 

Constitutive Equations: 

In this study we assume strains are infinitesimal and the deformations 
small. Furthermore, we assume material behavior of the type: 

E •• 
~J 

(11.1) 

.e d'c . where Eij an Eij are the elastic and creep stra~n rates, respectively, Cijki 

is the tensor of elastic moduli, Tki is the stress rate, T!j is the deviatoric 

1 1 -stress (Tij=r ij - 3' TkkO
ij

), and 0 is the equivalent stress given by 

a=(3/2)(Ti'.T~.)1/2. The parametersy and n are those of the familiar Norton 
J ~J 

power law: 

- n 
E = Y (0) 

where 

~ = [(2/3)E .. E.. ]1/2 
~J ~J 

(11.2) 

The constitutive law (11.1) can result in steady-state creep response (i.e., t =0) 
ij 

after some period of time provided the boundary conditions are some combination 

of time invariant tractions or time invariant displacement rates. 

Fracture Parameters (~T) and C*: -c -

We now define two vector quantities which have applications to fracture 

analysis under creep conditions. The first quantity is (~T) as recently de-c 

fined by Atluri [15] and subsequently examined in greater detail in [16]. In 

[15] (~!)c is defined in the context of finite strains and large deformations. 

Here we give the corresponding definition for infinitesimal strains and small 

deformations. 
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J: a6uk 
= "[ni 6W-n. (-r ·k+6T .k) --]dS 

r J J J ax. 
234 ~ 

+ Lt 
€+O 

+ 

- Is 
e 

(II.3) 

The various contour integral paths and their outward unit normals n as well 

as V and V are illustrated in Fig.12 for a two-dimensional, cracked body. 
€ 

In writing (11.3) it has been assumed that Se+St=rl2~r45 where Se and St are the 

portions of the crack surfaces with applied incremental displacements, 6~, 

-and applied tractions t k , respectively. The initial stress for the increment 

is denoted T jk' The mass density is P and the acceleration and body force 

components at the end of the increment are ~ and f
k

, respectively. The 

quantity 6W is the incremental stress-working density and is given by 

1 
6W = (T .. + -2 6-r •. )6€ .. 

1J 1J 1J 
(11.4) 

The right equality of (II. 3) shows that (6Ti ) c is independent of the selection 

of r 234 (provided the fields within V-V€ are sufficiently well behaved for the 

divergence theorem to be applicable). It is important to note that this path-

independence exists during non-steady as well as steady-state creep. 

In the present study we consider cracks along tt£ xl axis and symmetrical, 

Mode I type deformations. Furthermore, we consider traction-free crack sur-
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faces and assume body forces and accelerations are negligible. Under these 

conditions, only (6T
I
)c is of interest and we have 

a6~ 
no (. 0k+A• ok) -,,-]dS -

J J J a Xl 
(lI.5) 

where we have now taken the limit of the volume integral. 

It has been shown in [15] that (ATl)c has the physical meaning* 

(II.6) 

where 6U
2 

and AU
I 

are the incremental potential energies for two cracked 

bodies which are indentical in loading histo~ and geometry except that the 

second body has an incrementally longer crack by the amount dc
1

. In creep 

applications, it is convenient to define the quantity 

Lt 
At~O 

(II.7) 

where 6t is the time increment. Comparing (11.7) and (11.6) it can be seen that 
. 

(T
1
)c has the physical meaning which is commonly attributed to C~, i.e. 

(II. 8) 

We now state a generalized definition for the C* parameter which has 

been derived in [16]. 

*The sign convention for AU and AU2 is reversed from that of [15,16] to reflect 
the conventional definitio~ of potential energy. 
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C~ _ Lt 
1 €+O 

. 
aUk 

[n.W*-n'.·k -a -]dS 
1 J J x. 

1 

. 
l 

aUk 
= [n W*-n... -JdS 

r i J Jk ax. 
234 1 

+ Lt 
€+O {Jv-v 

€ 

-

Is aUk I n·.· k -a- dS 
s J J xi 

e 

(11.9) 

Based on the same simplifying conditions used in obtaining (11.5) we have 

(11.10) 

where it is seen that the volume integral no longer is present. 

The quantity W* which appears in(II.9) and (11.10) is usually defined as 

L. 
W* = fl.J

., ,dE: •• 
o 1J 1J 

(11.11) 

Using the steady-state case of (11.1) and the associated incompressibility condi-

tion, the following more useful expressions can be derived [l~]: 

l+n 
1 1/ .

W* = ~ (y) n(€) n 
l+n 

(11.12) 

(11.13) 

As noted previously, Cr is often stated to have the energy interpretation 

which was given for (Tl)c in (11.8). It has been shown in [16] that this incor

rect. The relationship of the steady-state value of (T
l

) (i.e.(T
l

) ) and . c css 

C* is given in [16] as: 
1 

(T ) 
1 css 

(11.14) 
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Approximate numerical evaluation of (11.14) in [16] has shown that (T1)css and 

Ci agree to within 2% for plane strain and differ by as much as 14% for plane 

stress. 

From the above discussion it is clear that C* and (T) are not equivalent 
- c 

quantities under any condition despite their being derivable from the same 

conservation law. The quantity (1) follows more directly from the conservation -c 

law and is the more general quantity not only in that it is applicable to non-

steady as well as steady-state creep but also in that it is applicable to 

constitutive laws which are more general than (11.1) [15]. The quantity £* relies 

on the special property of (11.1) which allows the existance of a potential W* 

for the deviatoric stresses, L~j' Furthermore, since W* does not have a 
. 

physical meaning whereas W has the meaning of rate of stress-working density, 

it is understandable that (T) has an energy interpretation whereas _C* does -c 

not. In light of this conclusion, it seems more appropriate to refer to experi

mental measurements of "- ~~II as measurements of (Tl)c as opposed to measure-
. 

ments of ct or J l etc. 

Finite Element Equations: 

The following summarizes the finite element model. For a more complete 

description see [16]. The model is based on the principle of virtual work: 

r L •• e€ .. dV - r J v ~J ~J JS 
t 

t .eu.dS = 0 
~ ~ 

By substituting the following incremental stress-strain relation 

into (15) and applying customary procedures we have the final equation: 
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(11.16) 

(11.17) 



In the above, {( )}I indicates the quantity at the end of the Ith increment 

and {~( )}I the increment in the quantity for the Ith increment. The incre

mental node displacereents are denoted {~Q}I. The remaining terms of (11.17) 

as follows: 

[K] = E Iv [B] T [EJ[ B] dV 
e 

(II.18) 

e 

{T} r = E Is [N]TCt}rdS 
e 

(11.19) 

t e 

{Selr = E Iv [B] T [E]{~€c} r dV 
e 

(11.20) 

e 

{R}I-l =E ( 
e Jv 

(II. 21) 

e 

The form of (11.17) makes this an initial strain formulation. It can be 

seen that [K] is the elastic stiffness matrix and remains unchanged through-

out the time incrementing process. The quantities {~€c}r in (20) are predicted 

prior to the solution of (11.17) using (11.1) and {.}I-l. Having sovled (11.17), and 

thus obtained {~€}I' the actual values of {6€c}r and {6T1
I 

are obtained by 

subdividing the time step and performing an Eulerian integration based on sub-

increments of {~€}I. As a result of this integration procedure, better ad

herence to the postulated constitutive law (II.l) is achieved but at the price of 

introducing some disequilibrium (i.e. {R}rf{T}I). This disequilibrium is cor

rected, however, in the next time step as a consequence of {R}r_l appearing 

in (II.17). 

The time step size for the calculations is automatically regulated based 

on two criteria. The first criteria is the maximum error in the predicted 

creep strain increments used in solving (11.17) as compared to the creep strain 
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increments from the subsequent integration procedure. The second criteria 

is the maximum creep strain increment compared to the total elastic strain. 

In the present study, the criterion for maximum error in predicted creep 

strain is 20% and the criterion for maximum creep strain increment is 100%. 

For problems which have been considered, it appears that the above model and 

criteria give accurate transient solutions and converged steady-state solutions 

with time step size comparable to those used with more expensive tangent 

stiffness methods. 

Verification of Model: 

A compact specimen has been chosen for verifying the model. The parti

cular geometry and materials were chosen to coincide with those used by 

Ehlers and Riedel [17] and are illustrated in Fig. 13 along with the two finite 

element meshes used in the verification. Both meshes consist entirely of eight-

noded isoparametric elements, assume plane strain conditions and use collapsed 

(i.e. triangular) elements at the crack-tip. For the 102 element model these 

crack-tip elements are given a singular strain field (r-1/ 2) by shifting the 

appropriate midside nodes to their quarter-points. The 300 element model uses 

a non-singular crack-tip. 

The elastic J
l 

for the 300 and 102 element meshes are 24.1 and 24.3 N/mm, 

respectively and agree with the value 24.2 N/mm from Sraw1ey [18] to well within 

1%. The steady-state (t=600hr) values of Cf for the 300 and 102 element meshes 

are 131 and 130 N/m·hr, respectively, and agree well with 134 N/m·hr from Shih 

and Kumar [19] and 137 N/m.hr (t 300hr) from Ehlers and Riedel [17). Based 

on these results it is concluded that the numerical procedure in general and 

the quarter-point crack-tip elements in particular, are accurate and efficient 

tools for creep fracture analysis. 
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Now we consider calculations of (Tl)c (i.e. (~Tl)c/~t). The 300 element 

mesh results for (T) as computed from (11.5), are shown in Fig. 14 as the solid 
1 c' 

curve. This curve shows the time dependence of (Tl)c during the non-steady 
. 

portion of the creep calculation. The steady-state value of (Tl)c is 130 N/m·hr 

and thus is in agreement with the previously mentioned relationship between 

(Tl)CSS and ct. In [16] it was found that the evaluation of (11.5) using the 102 

element mesh gave values of (Tl)c which were generally in poor agreement with 

those of the 300 element mesh. The volume integral of (11.5) was determined to 

be the cause of this behavior and it was supposed that the origin of the 

problem was the -1/2 use of the r strain singularity as opposed to the HRR type 

singularity (i. e. -n/(l+n» , r • However, several calculations with special 

conforming elements which impose the HRR type radial dependence of strain [20], 

have shown that this is not the case. 

It now seems that the difficulty experienced in computing (Tl)c when 

using singular crack-tip elements is related to the existence argument for the 

limit of the volume integral in(II.3). For the case when the asymptotic field 

has singular radial dependence but does not identically satisfy the following 

condition on angular behavior, 

(II.22) 

the subject limit in (11.3) does not exist (as discussed in Appendix A of [16]). 

The condition (11.22) need not be satisfied exactly if one does not ahve a singu-

lar radial dependence as is demonstrated by the results from the 300 element 

mesh. 

The efficiency, simplicity and general accuracy of the quarter-point ele-

ment procedure makes it a very attractive alternative to the use of very re-
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fined nonsingu1ar meshes or the derivation of singular crack-tip elements which 

satisfy (11.22) a priori. Therefore, a practical solution to this problem is 

sought. As noted above, the difficulty is associated with the volume integral 

over the singular elements. Therefore, calculations were made in which the 

volume integral over the crack-tip elements was omitted. The resulting quantity, 

where Vo consists of the singular crack-tip 
• IS 

Fig. 14 is (T~)c from the 102 element mesh. 

(11.23) 

elements. The dashed curve of 
. 0 

It can be seen that (t1)c coin-

cides with the solid curve for times after about 30 hours. For this mesh 

and problem it can therefore be said that (T1)~ is a valid path-independent, 

crack-tip parameter for times after 30 hours and for values of (Tl)c beginning 

at approximately 1.6 of the steady-state value. The steady-state parameter 

C* is still significantly path-dependent at 30 hours. 
1 

For the 102 element mesh, the crack-tip elements are 5% of the ligament 

size. We therefore assign 0 a value of 0.05. A quantity similar to (Tl)~ 

was computed using the 300 element mesh. In this case, a semi-circular 

region of radius approximately 3% of the ligament was omitted from the evalua

tion of the volume integral of (11.5). This result which we deonte <Tl)~ with 

€=3% is also shown in Fig. 14. This curve seems to indicate that the validity 

• 15 
of (T1)c can be expanded to earlier times with rather moderate reductions in 

the crack-tip, quarter-point element size. For example, the results of Fig. lq 

indicate that a 15 of 3% of the ligament would result in (Tl)~ being valid as 
. 

early as seven hours and for (Tl)c as large as 4.3 its steady-state value. 

Creep Crack Growth in a Strip: 

We now consider the problem of a finite height (2h) infinitely wide strip, 

with a semi-infinite crack. Loading consists of uniformly applied displace-
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ment rates (6) at the top and bottom edges (y=+h) such that Mode I behavior 

results. This problem has been chosen for two reasons. First-, since the strip 

is infinitely wide and the boundary conditions do not change with time, the 

propagating crack-tip fields can be expected to reach a "convecting steady-

state" creep condition. Here we use the phrase "convecting steady-state" 

to mean that the field remains unchanged in time with respect to a coordinate 

system which is centered at and moving with the crack-tip. This terminology 

is used so as not to confuse this condition with the usual steady-state creep 

condition in which material stress rates are zero. 

The second reason for choosing this problem is that Cf can be evaluated 

analytically for the special case of steady-state creep (stationary crack). 

The analytical evaluation of (II.LO) follows easily if one chooses a rectangular 

contour in which the horizontal portions coincide with the top and bottom 

edges of the strip (i.e. y=+h) and the vertical portions are at x=~~. In such 

a contour one finds only the vertical portion at ~=~ is non-zero and therefore 

C'~ = 2ht-1* 1 ~ 
(11.24) 

For the corresponding elastic problem with applied displacement 0, one finds 

a similar relation. 

J = 2hW (11.25) 
1 ~ 

It has been noted that (Tl)css and C! are related and therefore it is possible . 
to obtain (T ) from (11.14) and (11.24). The direct evaluation of (T1)c in terms 

1 css 

of either its integral representation (11.5) or its energy representation 11.6) 

requires knowledge of the stresses in the region of the strip adjacent to the 

crack-tip and therefore is not a trivial task. 

The material properties used in this problem are representative of 304 

stainless steel at 6500 C. These material properties and the finite element 
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Table 1. Summary of Analysis Parameters for Creep Crack Growth 

in the Plane Strain Strip of Fig. 15 

da 

Analytical Results Computed Results 
dt from (6.4) 

(mm/hr) 

remote c5 
C* T cS (elastic) J

1 
C* J 1 upper 

Vol 1 yy 1 
Vol 
-..J (N/mm'hr) (MPa) (mm/hr) (mm) (N/nun) (N/mm'hr) (N/nun) average bound 

0.05 83 3.44 x 10 -4 5.04 x 10 -2 4.18 4.99 x 10 -2 4.19 1.00 x 10 -4 5.00 x 10 -4 

5.0 148 1.94 x 10-2 8.95 x 10-2 13.2 4.99 13.2 2.22 x 10 -2 1.11 x 10 -1 

50 197 1.45 x 10-1 1.19 x 10-1 23.5 49.8 23.5 3.30 x 10 -1 1.65 



discretization are given in Fig. (15). Note that collapsed, eight-noded, quarter-

point elements are used at the crack-tip. 

The mesh for this problem may at first appear rather coarse; however, 

elastic and steady-state creep solutions obtained with this mesh are suffic-

iently accurate to justify its use for the study at hand. The comparison of 

computed elastic J
l 

values and steady-state ct values with their analytic values 

is given in Table 1. 

The first step in this numerical study is to select three values of C! 

which span the range of values reported in the literature for 304 stainless 

steel at 650oC.t The values which have been chosen are 0.05, 5.0 and 50.0 ~/mm·hr. 

Having these values, the remote (x=oo) steady-state T are determined as well 
yy 

as the edge displacement which results in the same remote elastic T • 
yy 

These displacements are applied to the model elastically at txO. Next, the 

steady-state edge displacement rates are determined analytically. Using the 
. 

elastic solution as an initial state, the displacement rate, 0, is applied 

until the model reaches steady-state. 

The next step in this study involves the selection of upper bound crack 

velocities for the three chosen values of ct. The following formula is based 

on the experimental data reported in [13,14] and represents data from center-

crack, double-edge-crack, compact, and round bar specimen types. 

da ex [ct]1.l73 -= 
dt 

(11.26) 

ro68 x 10-2 (upper bound) 
where ex = 

3.36 x 10-3 (average) 

tThe use of Ci rather than (Tl)c is due to the existence of the analytical ex

pression (24) and is justified by the numerical similarity to (Tl)c for plane 
strain conditions. 
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Having reached steady-state, the crack is propagated at the upper bound 

velocity of (11.26) until it is determined that a convecting steady-state has 

been reached. 

The crack growth simulation is accomplished through a combination of 

mesh shifting and periodic remeshing as illustrated in Fig. (16). The region A 

represents the quarter-point elements which remain centered about the crack-

tip. The B type elements are standard eight-noded isoparametric elements which 

distort during mesh shifting so as to keep the region A centered at the crack-

tip. The procedure is to shift the region A (and thus the crack-tip) by 

shifting appropriate nodes of the reg10n A and type B elements. This shifting 

is done without altering element connectivity. Eventually the type B elements 

become overly distorted at which time the element connectivities are redefined 

in the vicinity of the crack-tip so that additional shifting is possible. 

Each occurance of shifting or remeshing requires that shifted nodes have 

their displacements interpolated and that shifted elements have their 2x2 

Gauss point stresses interpolated. The displacement interpolation is by the 

usual isoparametric shape functions. The stress interpolation uses linear, 

two-dimensional Lagrangian polynomials in element local coordinates. In the 

following calculations, the nominal size of the crack growth increments is 0.4 

mm or 2% of the crack-tip element width. For the highest velocity case 

CCi=50 N/mm'hr), this results in crack growth at approximately every fifth 

solution step. 

Results for a Plane Strain Strip: 

The results of the plane strain strIp calculation with Cf=50 N/mmohr 

da 
and dt =1.65 mm/hr are given in Fig. 17. 

• 0 
The values of (Tl)c and C! are given 

for the portion of the calculation prior to steady-state as well as during the 

crack propagation portion. The band represents the range of values obtained 

Co )6 * from the four contours illustrated in Fig. 15. Both Tl c and C1 converge 
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to the 50 N/mm·hr value at steady-state. During the crack propagation, it is 

seen that (Tl)~ and Ci do not depart significantly from their steady-state 

value. This means that this combination of loading and crack-speed results 

in the crack-tip fields being essentially at steady-state conditions. This 

in turn means that both (Tl)~ (or (Tl)c) and Ci are valid crack-tip field 

parameters during crack growth. 

A closer view of the crack propagation portion of these curves is given 

in Fig. 18. The dashed curves bracketing the initial portion of the solid 

curves represent the degree of path-independence and continue to be represen-

tative of the path-independence observed during the crack propagation steps. 

• <5 
For both (T) and C

l
*, it is seen that the strip has essentially returned 

1 c 

to its steady-state condition prior to each crack growth increment. It is 

• <5 
thought that the larger departure of (Jl)c from steady-state (as compared to 

Ci) is more representative of the non-steadiness of the crack-tip field since 

the validity of Ci in general and the numerical evaluation of W* (11.13) in par

ticular, are based on the existence of steady-state conditions. 

The effect of remeshing is seen at approximately eight hours. The first 

two steps after the remeshing were found to result in rather erratic contour 

integral values and are not indicated in these figures. The equilibrium cor-

rection feature of the present model and the automatic time step regulation 

procedure both act to quickly restore equilibrium at the crack-tip. 

The propagation portion of the calculation with Ci=5 N/mm·hr and :~ =0.111 

mm/hr is given in Fig. 19. Here again it 1s seen that both (Tl)~ and C~ have 

converged to the analytical vallle of Ci (to within two percent, which is also 

about the degree of path-independence). Comparing these results with those in 

Fig.18 for the higher Cf and crack speed it is seen that steady-atate creep 

conditions were not reached until 12 hours as opposed to approximately two 
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hours in previous cases. Also, the return to the steady-state value after 

mesh shifting takes more time (two hours compared to 0.25 hours). However, 

when compared to the time between crack growth ste~s (both use-0.4 mm) it is 

seen that the lower velocity case returns to steady-state well before the next 

growth step occurs. This result indicates that lower load levels and crack 

speeds are inherently closer to steady-state conditions. While this behavior 

seems intuitively correct, it should be kept in mind that these results depend 

( 6) hi h i l Od 1 for 304 stainless steel. It on the empirical formula 11.2 w c s va 1 on y 

remains to be seen if similar behavior occurs in other materials. 

A calculation has also been done for the case of Ct=0.05 N/mm·hr. As 

a result of the large number of solution steps between crack growth steps, when 

using the maximum velocity of 5 x 10-4 mm/hr, the calculations used a higher 

-3 velocity (5 x 10 mm/hr). Even at this unrealistically high velocity (for 

this level of loading), the behavior is more steady-state-like than the 

case of Ct=5.0 N/mm.hr described above. 

Creep Crack Growth in Double-Edge-Crack Specimens: 

The purpose of considering this problem is to apply the model to a 

problem for which experimental data exists. While much experimental data has 

been reported in the literature, most authors do not include sufficient in-

formation to allow a numerical simulation of their experiments. The current 

problem is based on the experiments of Koterazawa and Iwatwn [21]. The primary 

re&sons for selecting this work for study are the crack length versus time 

histories were given and that the experiments were performed on 304 stainless 

steel for which high temperature elastic and creep properties were already 

available. 

The geometry of the experimental specimens is given in Fig~ 20. The 

finite element mesh for the calculations is shown in Fig. 21 with contour 
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integral paths being indicated by dashed lines. It can be seen that the mesh 

takes advantage of the two planes of symmetry for the specimen and does not 

model the 600 notch. The initial crack length indicated in Fig. 21 corresponds 

to the notch depth in the specimen. All calculations for this specimen assume 

plane stress conditions and use the material properties given in Fig. 15. 

Elastic J l results for two crack lengths are compared in Table 2 with those 

(based on formulas for KI ) from [22] and are seen to be in good agreement. 

The material properties are those of 304 stainless steel at 6500 C and 

are assumed to be the same as those used in the strip analyses. (See Fig. 

15). Calculations have been made for remote applied stresses of 157 and 176 MPa. 

The experimental crack growth histories for these two stress levels are repro-

duced from [21] in Fig. 22. It is seen from these curves that the first two-

thirds of the specimen lives are characterized by crack velocities of less than 

0.01 mm/hr compared to nearly 0.5 mm/hr as rupture is approached. 

The primary purpose of the following calculations is to verify the 

conclusions which were reached in the previously described strip calculations; 

that is, that the crack-tip fields are essentially creep-steady fields 

even for the most rapid creep crack velocities. These calculations will be a 

valid check because the input to the calculations is only the remote applied 

stress and the measured crack velocity history, and does not in any way depend 

on experimental determination of C! or (Tl)c as did the strip calculations. In 

fact, Koterazawa and Iwata do not report such measurements in [21]. 

Analysis of Initial, Low Velocity Crack Growth: 

This section describes the simulation of the initial portion of the 

crack velocity histories given in Fig. 22. In all of these calculations, t.he 

entire load is applied elastically at t = 0 and held constant throughout the 

subsequent creep solution steps. The convergence of (Tl)c and cr to their 
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steady-state values is shown in Fig. 23, with the dashed lines in the Cf 
plots denoting the degree of path-independentce. It is seen that steady-state 

conditions are reached between a half and one hour after the load is applied. 

(Table 2 summarizes the computational aspects of this portion of the calcu-

lation.) Therefore, it is seen by refering to Fig. 22 that crack growth does 

not begin in the two specimens until well after steady-state conditions are 

reached. Since the current calculations assume small displacements and infinitesi-

mal strains, and since only the strain and displacement magnitudes depend on time 

once steady-state is reached, there is no reason to continue the numerical calcu-

lations to the crack initiation times indicated by the experimental results. 

Therefore, the initial crack propagation is simulated at times after steady-state 

conditions are reached but much earlier indicated by the experiments. 

The crack growth simulation results are shown in Fig. 23. The crack 

increment size for this study was approximately 0.01 mm which is nominally 2.4 

percent of the crack-tip element size. It can be seen that only one mesh shift 

(i.e., crack growth step) was modeled. It is clear from this figure that the 

time it takes for the specimen to return to steady-state is significantly less 

than the time to the next crack growth increment (indicated by dashed lines). 

Therefore, the initial portion of the crack growth histories of Fig. 22 are 

clearly occurring under essentially steady-state conditions and thus ct as 
. 

well as (Tl)c are valid crack-tip parameters. Since an increase in C! re-

sults in a more rapid return to steady-state conditions, the above conclusion 

will remain valid for the initial constant velocity portions of the curves of 

Fig. 22. 

When crack growth occurs so slowly that the crack-tip is essentially 

at steady-state, the crack-tip field does not depend on the history of the 

specimen. Therefore, assuming steady-state conditions continue to exist, it is 
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possible to skip to the final stages of crack growth without modeling the 

intermediate crack growth. If it is found that crack growth is still slow 

enough for steady-state conditions to eXist, then it seems reasonable to expect 

that the behavior at intermediate crack lengths is also of a steady-state type. 

The following describes the results of this procedure when applied to the 

two double-edge-crack specimens. 

Analysis of Final Stage of Crack Growth: 

To analyze the final stage of crack growth, the crack length is in-

creased to 2.75 mm and the process of applying the load elastically and creeping 

to steady-state is repeated. Table 2 summarizes the computational aspects of 

this process. 
. 0 

The convergence of (Tl)c and Cf is their steady-state values is 

shown in Fig. 24. Having reached steady-state, the cracks are grown at the 

rate suggested by the last portion of the crack histories (Fig. 22)as shown in 

Fig. 24. The significant increase in the frequency of mesh shifting (compared 

to that in Fig. 23 due to the velocity increase makes the details of the 

curve difficult to distinguish in this figure. However, the time step size is 

such that six or seven steps occur between each crack growth increment. Unlike 

the strip problem, the values of (T )0 and C*l are clearly increasing during 
I c 

this crack propagation process. 

It is necessary to determine whether this increase in the crack-tip 

parameters is due to the crack-tip no longer being at steady-state conditions 

or whether it is due to the crack-tip no longer being at steady-state conditions 

or whether it is due to the incraese.in crack length. This is accomplished by 

continuing the calculation without further crack extension. If the value of 

the parameters do not change significantly with time, this means the increase 

was largely due to the crack length increase and that crack growth is still 

occuring under essentially steady-state conditions. Examination of the final 

portions of the curves of Fig. 24 shows that this is the case. 
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w 
.p-
VI 

applied 

stress 
(MPa) 

157 

176 

157 

176 

* Control 

Table 2. 

crack 
length 

( mm) 

1.75 

1.75 

2·75 

2.75 

Computational Aspects of the Elastic and Non··Steady Creep 

Portion of the Double-Edge-Crack Calculations 

Elastic Solution Creep Solution 

difference CP total 
J 1 from [ 2] time * l\ t (hr) steps to CP time 

(N/mm) (% ) (sec) initial/final steadv-state t (sec) 

1.12 (-2.1) 38 8 . 10 - 8 /1. 9 . 10 - 2 90 795 

1.40 (-2.6) 38 8 . 10-8;9.5 . 10-3 100 880 

1·79 (-3.3) 38 4 . 10-8/8.6 . 10-3 211 1820 

2.25 (-3.2) 38 2 · 10-8;4.4 . 10-3 205 1770 

Data CYBER 74 

tSolutions are stopped at times indicated in Figs. 5,19 and 5.20 



Based on this analysis; it appears that the conclusions reached as a 

result of the strip calculations are still valid. Since, (i) the strip analy-

ses are much less expensive than this analysis of the double-edge-crack geometry, 

(ii) the steady-state C! for the strip is easily obtained analytically and (iii) 

the crack-tip parameters do not depend on crack length for the strip geometry, 

it seems that similar studies for other materials and/or other temperatures could 

most effectively be accomplished through the use of the strip geometry. The 

need for such studies follows from the vast simplification of fracture analysis 

and prediction which results if crack growth occurs under steady-state conditions. 

More will be said about this point in the conclusions. 

Summary and Conclusions: 

It has been noted that despite the fact that ct characterizes the crack

tip field under steady-state creep conditions, it does not have an energy or 

energy rate interpretation. A related path-independence integral parameter 

(TI)c' however, does have the energy rate interpretation commonly attributed 

to ct. The derivation of (TI)c does not rely on the existence of steady-state 

creep conditions and thus is a valid crack-tip parameter for non-steady creep 

conditions as well as for steady-state creep. 

An initial strain finite element approach provides for improved 

adherence to postulated constitutive behavior and for equilibrium correction 

has been summarized. The accuracy and efficiency of this model with eight-

node isoparametric elements and the quarter-point crack-tip element approach 

have been verified through several calculations for a compact specimen geometry 

and a strip geometry. Also, a method of simulating crack growth through 

shifting of the quarter-point singularity elements and periddic remeshing has 

been described and demonstrated. 

A creep crack growth simulation for 304 stainless steel has shown that 

for realistic load levels and corresponding crack speeds the crack-tip field 
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is essentially at a steady-state creep condition. This means that for this 

material the propagating crack-tip field is largely unaffected by the history 

of crack-growth or the history of loading. This feature can greatly reduce 

the analysis requried for predicting creep crack growth behavior in a component 

as can be seen from the following suggested methodology. 

da • 
We assume that the crack propagation speed dt is related to (Tl)css (i.e., . 

- ~~) through the poer law suggested by experimental data [13,14] 

da -= 
dt 

a [(II) ] S 
css 

(11.27) 

Next we determine (eg. by steady-state creep finite element analysis) 

(Il~css as a function of crack length. Because of the assumed steady-state 

crack-tip behavior, this can be accomplished by considering several discrete 

crack lengths and then fitting a curve. No crack growth simulation procedures 

are necessary. Combining (11.27) with this result provides the followng rela-

tionship between time and crack length 

t = (II. 28) 

where a is the initial crack length and t. is the time when crack growth 
o l. 

initiates. The only unknown quantity in (11.28) is the initiation time t
i

• 

Vitek [23] has simulated several experiments (compact and double-edge-

crack specimens) on two CrMoV steels using a dislocation model and has conclu-

ded that COD correlated well with the initiation of crack growth in these ex-

periments. If the same conclusion is valid for 304 stainless steel, then one 

can presumably predict ti based on a transient finite element analysis of the 

initial flawed configuration and a critical value of COD. If initiation occurs 

long after steady-state conditions are reached, it is then reasonable 

to estimate t using the rate of COD obtained from a steady-state finite ele
i 
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ment solution. At this time, the validity of (11.28) and of the critical COD 

concept has not been investigated by the authors. 
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APPENDIX A 

Plane Strain: 

The deformation studied in the example accompanying Part I of this re-

port is plane strain in the character. Just as for formulations using ordinary 

stresses, a number of the components of the velocity, spin, and stress rate vanish 

if a Cartesian coordiante system is chosen with one axis normal to the plane of 

deformation. We have chosen the x2 coordinate line to be normal to the plane 

of deformation, so that the velocity, spin, stress rate, and stress are of 

the forms 

1 3 
v = v ~1 + v ~3 

·11 + ·13 + ·22 t = t ~1~1 t ~le3 t e2~2 

+ ·31 
t e3~1 + ·13 

t ~#3 

None of the components depends upon 2 x . 

element as 

NQ 
v = ~ 

i=l 

i N.q 
l. 

The velocity is represented on each 

The shape functions ~ are described below. Similarly the spin and stress rate 

are represented as 
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NW i 
W = L Q..WiCl; t 

i=l 

We note that this approach requries minimal specialization in programming 

for the particular case of plane strain. The plane strain condition is not satis-

fied a priori; that is 

for arbitrary oEo Rather, ~22=0 follows from the stationary condition (a 

component of 7.1): 

~ [-~l2(;,~)]ot22dV = 0 

In using the finite element algorithm the plane strain condition is only sat is-

fied apprOXimately. In practice a qUlitative check for satisfaction of the 

plane strain condition can be made by seeing that the stress component ,22 and 

the mean stress are nearly equal. This method for checking '22=0 works so long 

as the inelastic stretching is proportional to the stress deviator (in the con-

stitutive equation). 

SHAPE FUNCTIONS FOR VELOCITY, STRESS RATE, AND SPIN 

Shape Functions for Plane Strain 

i 3 
x =X x =z 

VELOCITY SHAPE FUNCTIONS 

FOt~ NODED ELEMENT: 

N = {! (l+~~i) (l+nni ) 

l,i 0 

i=1,2,3,4. 

i=5,6,7,8. 
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1 E; 12.1 , 1 n 12.1 , 

n =-1 
i ' 

SHAPE FUNCTIONS FOR SPIN: 

QW(1,3,l) = C1 

QW(3,1,l) = -C1 

QW(1,3,2)=X C
2 

QW(1,3,3)=Z C3 

QW(3,1,2) = -x C2 

QW(3,1,3)=-Z C3 

STRESS SHAPE FUNCTIONS: 

QT (1,1,1)=1 

QT(3,1,2)=-1 

QT(2,2,3)=1 

QT(1,3,4)=-1 

QT(3,3,5)=1 

QT(1,1,6)=X 

QT(3,1,6)=-Z 

QT(3 ,1, 7) =-X 

QT(2,2,8)=X 

QT(l, 3, 9)=-X 

QT(3,3,9)=Z 

QT(3,3,1)=X 

i=1,2,3,4. 

i=5,6,7,8. 

The constants were used to improve the 
condition of [H]. 

QTi=QT11,i~le1 + 0 + QT13,fel e3 

+ 0 + QT22 ,fe2e2 + QT31,ie~1 + 0 + QT33,ie~3 
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QT(l,l,ll)=Z 

QT(l,3,l2)=-Z 

QT(2,2,l3)=Z 

3x3 Gauss Quadrature on this Element. 
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.. 

Figure 1. Finite Element Mesh and Boundary Conditions for the 
Problem of Growth of a Void. 
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Figure 2-5. Stresses and Mean Strain Rate at Elongation Ratio L=l.Ol. 
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L=I.35 L=I.50 

Figure 6. Deformation of Cell. 
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Figure 7-10. Stresses and Mean Strain at Elongation Ratio L=l.SO. 
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elastic a. KI ,(.6. I)c controlled 

behavior 

.. 
b. c ,(4I)c controlled 

behavior 

c. crnet controlled 

behavior 

region with 
~~~- creep damage 

Figure 11. Conditions for which Creep Crack Growth Parameters are 
Expected to be Valid. 

Yt -V. 

4 

Figure 12. Conto~rs f~r Applying the Conservation Law to a 
Two-D~mens~onal, Cracked Body. 
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The 300 element mesh (941 nodes~ 1840 d.o.!) 

Figure 13. Summary of Geometry, Loading, Material Properties and 
Finite Element Meshes for the Compact Specimen. 

360 



10,000 

5000 

.N 2000 
mhr 

1000 

500 

200 

2 

mesh 

300 (ta)c 
---.... _-- 300 (tl )~ (£ =3 percent) 

--" 102 (' 8 Tj)e 

5 10 20 50 100 200 
ti me, hr 

Figure 14. Comparison of (Tl)c and (tl)~ for the compact specimen. 

I~ 420mm 

r- -r- - - - - - - --
I I 

I I 

1 I r- -- -- --
I I I 

I I I 
1 r -- --

I I 
I I I 

"" V 1 I I 
~ I 1 

------------ - - -- - -

8,8 

T 
h 

+ 
t y 

"-------~ X 

h 

-L 

8,8 

--

-

-I 

I 
I 

~I 

-- ,-T- --- --, 
I I 

I 
I .., I 
1 I I 

T 
h=lOOmm 

I I 
I I I 

I I 

I I I 

: 1 I 1 
Prq:>ert ies Representative of 

304 Stainless Steel at 650°C 

E = I. 5 X 105 MPa 

JI = 0.3 
y = 4 X 1019 

n = 7 

-7 
MPa/hr 

Figure 15. Summary of Geometry, Loading, Material Properties and Finite Element Meshes for 
the Compact Specimen. 

361 



B B B B C C 

B A B C C 

B c c 
B c c 

B c c 
B c c 

8 C 
c c 

C B C 
c B C 

Figure 16. Illustration of Mesh Shifting/Remeshing Procedure for 
Simulation of Crack Gro\,lth. 
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Figure. 21. Finite Element Model and (T) 
Integral Path for the DEC 
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PANEL DISCUSSION AND RECOMMENDATIONS 

L. Berke, NASA Lewis Research Center, Moderator 

An effective participation of the Symposium attendees was complete with the 
following individual recommendations on: 

Where should development effort in constitutive relations for high 
temperature applications be concentrated in the 1980's 

E. Krempl (RPI) 

1. Systematic uniaxial and biaxial experiments under constant and variable 
temperature (extensometers needed for biaxial testing) 

2. Modeling of specific material phenomena, such as: 

o Aging 
o Metallurgical changes by environment 
o Strain aging 
o Metallurgical changes by deformation 
o Metallurgical instability 
o Anisotropy 

3. Computational tools (variational principles, minimum principle, 
efficiency) 

4. Link with life prediction effort 

5. Dissemination and education, with the goal of obtaining a unified approach 

W. Haisler (Texas A&M University) 

1. Updating of material property data base 

2. Better understanding of actual material environment under service 
conditions 

3. Constitutive models designed with specific objectives (prediction 
capabilities) in mind 

4. Closer definition of capabilities of current models 

5. Education of nonlinear code users 

6. Mutual working relationships among code developers, material specialists 
and experimenters 

R. L. McKnight (General Electric Company) 

1. Anisotropic materials 

2. Powder mater i a 1 s 
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3. Hi gher temperatures 

4. Coat ings 

5. Historical variation 

6. Practical accuracy requirements 

7. Verification and validation 

V. Moreno (Pratt and Whitney, United Technologies) 
Directions for Future Constitutive Model Development 

1. Current models 

Improve rate sensitive response 
Multiaxial applications 

2. Numerical efficiency 

Reduce loading steps 
User independent 

3. Model development-metallurgical examination 

Guidelines for solution/development 

D. Robinson (Oak Ridge National Laboratory) 

1. The primary limitation on large scale inelastic analysis is economic. 
Need simplified and approximate methods of inelastic analysis (e.g. 
uounding Lechniques, shakedown theorems •.. ) Constitutive relat-ions must 
lend themselves to approximate methods. 

2. To do boundary value problems one wants the simplest representation that 
can give a reasonable approximate solution. 

3. Emphasis placed on basic physical aspects in simple mathematical terms 
rather than on simple physical idealizations in-complex mathematical form. 

4. Need improved capability of measuring multiaxial strains at elevated 
temperature. Experimental effort must be thought of as only a check on 
theory. Its major contribution should be to guide the development of 
theory. 

5. The fast breeder industry has adopted the philosophy of developing a 
constitutive equation framework based on the virgin, fully-annealed 
state. Should fully-aged material be used? 

6. Many non-isothermal constitutive formulations are based solely on 
isothermal testing. Approximate non-isothermal tests should be part of 
the data base. 

7. Constitutive relations should be based on a data base that is reasonably 
obtainable. Testing should be largely phenomenological. 

8. Continuum properties: uniqueness, convergence, etc. 
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