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ABSTRACT 

A basic method is presented for the e!timate of the overall mechanical 

response of solids which contain periodically distributed defects (inhomogeneities, 

regions undergoing inelastic flow, voids, cracks, etc.). This method is then 

applied to estimate the shape and growth pattern of voids that are periodically 

distributed over the grain boundaries in a viscous matrix. The interaction effects 

are fully accounted for, and the results are compared with calculations for a 

single void in an infinitely extended viscous solid, by Budiansky, Hutchinson, and 

Slutsky. Then, for a polycrystalline solid that undergoes relaxation by grain 

boundary sliding, the relaxed moduli are obtained, again fully accounting for the 

interaction effects. Finally, the overall inelastic nonlinear response at elevated 

temperatures is discussed in terms of a model which considers nonlinear power law 

creep within the grains, and linear viscous flow in the grain boundaries. 

*This work was performed under NASA Grant NAG 3-134. 
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1. INTRODUCTION 

The inelastic response of polycrystalline solids stems from a variety of micro

structural changes, depending on the temperature regime, as well as the stress 

history. At temperatures sufficiently below 50%'melting point, the rate effects are 

not dominant. The deformation consists of plastic slip on crystallographic planes, 

accompanied by the accommodating elastic lattice distortion. At higher temperature 

regimes the rate effects become significant, and the intracrystalline flow can be 

modelled adequately by a power law. At higher temperatures, creep effects are the 

major components in the overall response. In this case, adequate micromodelling 

involves a power law flow within the grains, accompanied by linearly viscous grain 

boundary sliding. 

Various micromechanical defects that may arise in the course of deformation, 

contribute differently to the failure mechanisms during different temperature 

regimes. At low temperatures, voids are generated because of plastic flow at second 

phase particles, and this may lead to a reduction in ductility. At higher tempera

tures, on the other hand, voids are nucleated on grain boundaries, and grow in re

sponse to the applied load, as the solid creeps. Depending on the load level and 

the temperature regime, the mechanism of such void growth varies. For example, 

cavity growth is essentially crack-like, when surface diffusion is much slower than 

the grain boundary diffusion, whereas at a high stress level the cavity grows essen

tially by intragranular power law diffusion. 

Under NASA-Lewis sponsorship, theoretical and experimental work has been initi

ated at Northwestern University on the micromechanical modelling of nonlinear con

stitutive relations of superalloys at various temperature regimes, addressing all 

the above-mentioned microscopic features. The present report summarizes some of the 

theoretical results on the growth of voids in viscous metals, the effects of grain 

boundary defects on the overall response of the polycrystal, and, finally, the over-

114 



all creep response of the po1ycrysta1. E1asto-p1astic (rate-independent) modelling 

is discussed in a separate report; Iwakuma and Nemat-Nasser (1982). 

The calculation of the overall response of the po1ycrysta1 is based on some 

fundamental results on the effect of periodically distributed defects (inhomogenei

ties, regions undergoing inelastic deformation, etc.) on the overall response of the 

solid; Nemat-Nasser et a1. (1982). These results are first briefly discussed, and 

then applied to the estimation of the shape and growth pattern of voids that are 

periodically distributed over the grain boundaries in a viscous matrix. The inter

action effects are fully accounted for, and the results are compared with calcula

tions for a single void in an infinitely extended viscous solid, by Budiansky, 

Hutchinson, and Slutsky (1982). Then, for a po1ycrysta11ine solid that undergoes 

relaxation by grain boundary sliding, the relaxed moduli are obtained, again fully 

accounting for the interaction effects. Finally, the overall inelastic nonlinear 

response at elevated temperatures is discussed in terms of a model which considers 

nonlinear power law creep within the grains. 
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2. FORMULATION OF THE BASIC PROBLEM 

Consider a solid containing periodically distributed sets of inhomogeneities 

such that it can be regarded as a collection of identical unit cells. Let D be a 

typical cell of volume V and exterior surface S. For simplicity assume that D is a 

parallelepiped of dimensions Ai' measured along the rectangular Cartesian coordinate 

axes xi' i - 1,2,3. The results also apply to a single cell subjected on its bound

ary to suitable displacement or velocity fields. 

Neither the matrix nor the inhomogeneities are required to be linearly elastic 

or rate-independent, but, for the intended applications, only small strains and 

rotations are considered. 

To be specific, let cr be the Cauchy stress and set 

(2.1) 

where repeated indices are summed over 1,2,3, dg is the stress increment, and D = 

~(~) is the instantaneous compliance which mayor may not depend on stress. For 

rate-independent applications, f in (2.1) is the strain tensor. For rate-dependent 

cases, on the other hand, f is the strain rate tensor. For example, for non-linear 

creep, the strain rate is € - ~(~). In this case we consider the incremental rela-

tion 

n In particular, if power law creep is assumed, E' - nJ cr', we obtain 

ncr' cr' 
d ' n{ ~ ~ + ij kR.}d ' 

Eij - nJ uikujR. 2J2 okR.' 

where prime denotes the deviatoric part, and 

k 
Ja (10' 0')2 • ij ij 

(2.2) 

(2.3) 

(2.4) 

is the effective stress; in (2.3) n is a positive number and n is a dimensional 

parameter.' If an inhomogeneity is linearly elastic or linearly viscous, then D in 

(2.1) would be a constant tensor with suitable usual symmetries. 
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Let C be the inverse of D and rewrite (2.1) as 

(2.5) 

Again, ~ may be a function of q. 

Assume now that the displacement (velocity) field 1;! 0 is prescribed on S in 

such a manner that the average strain (strain rate) field EO is obtained. Let the 

corresponding average stress field be~. Consider an incremental change, d~O, in 

~O, which produces the increments dE O and dq in the average strain (strain rate) 

and stress fields, respectively. We seek to calculate the overall moduli ~*, defined 

by 

d;; = C* d 0 
"ij ijkR. EkR.' (2.6) 

where, in general, c* depends on the average stress £, as well as on the micro-

structure. 

Within the unit cell, neither the stress increment nor the strain (strain rate) 

increment is uniform. Let there be M inhomogeneities, Or' r .. 1,2, ••• ,M, and set 

in D- ° r 

in ° , r 

(2.7) 

r:: 1,2, ••. ,M, 

where dE is the perturbation strain (strain rate) field due to inhomogeneities; C is 

the modulus tensor of the matrix; and Cr is that of the rth inhomogeneity. 

As has been shown by Eshe1by (1957) for an ellipsoidal inhomogeneity in a 

linearly elastic, unbounded solid, the nonhomogeneous body may be replaced by a 

homogeneous one, provided that suitable transformation strains are prescribed in the 

ellipsoid. In this case, the transformation strain tensor is constant. For period-

ically distributed inhomogeneities, or when the inhomogeneity is not ellipsoidal, 

the transformation strain tensor is no longer constant. The basic concept, however, 

still applies, and can be quite effective, as shown by Nemat-Nasser and Taya (1981) 

and Nemat-Nasser et ale (1982). 
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Hence, in place of (2.7), one writes 

(2.8) 

where dE*r is zero in D-n , and seeks to express this transformation strain (strain 
r 

rate) increment in terms of dEO. This is done by the use of the Fourier series 

representation of the incremental fields, as has been discussed by Nemat-Nasser ~ 

al. (1982). The final results for the present case are as follows: 

Orr in n , (2.9) dEki D AkimndE:n(~) - dEki(~) r 

r Cr ]-1 Ak ... [C --imn kipq k.2.pq c pqmn' (2.10) 

1 ±co M 
d *r ( ') i~. (x-x' ) d ' dEjk (~) -= - I' gjkmn (P I J E X e _ - - x (2.11) 

V n =0 r=1 nr 
mn - - , 

p 

_ 21Tnj 
- (no sum on j), 

Aj 
i = 1=1, (2.12) 

and where k,.Q"m,n,j = 1,2,3. In (2.11), the fourth order tensor gjkmn(~) depends on 

the matrix modulus tensor C. For an isotropic matrix. 

(2.13) 

we have 

gijk.2.(P a ~j(Oii~k+Oik~.2.) + ~i(Oji~k+Ojk~i) - 1':- V ~i~j~k~i + 1~ \) ~i~jOk.Q,· 
(2.14) 

A V c: -=-.;.;......".--
2A +2~ • 

In (2.13) and (2.14), A, ~, and V are material parameters for the matrix, which may 

depend on stress £. For a linearly elastic matrix, these are the usual Lam~ con-

Btants and Poisson's ratio, respectively. In the general formulation that will fol-

low, we shall assume an anisotropic matrix. In Section 3, however, we assume an 

isotropic matrix, and hence use (2.14). In Section 4, on the other hand, a non-

linear creep law is considered, and this makes the tensor S dependent on the current 
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stress state; then (2.14) cannot be used, and hence a more general expression is ob-

tained. 

Let f be the volume fraction of the rth inhomogeneity, 
r 

f = V lV, 
r r (2.15) 

where Vr is the volume of nr , and denote by d~xr the average value of dExr taken over 

dEXr(x)dx· - - -, (2.16) 

note that d~*r is zero outside of n. Averaging (2.8) over D, and using (2.6) w~ 
r 

obtain 

(2.17) 

where the notation 

(2.18) 

is used. We now substitute from (2.11) into (2.9), average the resulting equation 

over n to arrive at 
r 

where 

M 

L f 
s=l n s 

s -i;·x' dE* (x')e - - dx' mn - - ' 
(2.19) 

(2.20) 

It has been shown by Nemat-Nasser and Taya (1981) that good accuracy is obtained 

if the transformation strain (strain rate) increment in the integrand in (2.19) is 

replaced by its average value. This then leads to 

M 
f d 0 - Ar Sr \ Srs Ss 

r EJ"k - J"kmn mn - l. jkmn mn' 
s=l 

(2.21) 

where 
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Srs = 
jkmn (2.22) 

Equations (2.21) are now solved for ar , results substituted into (2.17), and since 
mn 

dEC is arbitrary, the following general result is obtained: 

M 
f { ~ [Ar ors _ srs f }-1 

s 1.1 mIlk.£. mnk.£. r ' r= 
(2.23) 

where ors is the Kronecker delta. 

r ,..rs In (2.23) the tensors g, ~ , an~ ~ may depend on the stress, ~, in the matrix 

as well as in each corresponding inhomogeneity. The estimate of the stress variation 

throughout the solid is indeed a formidable task. For our purposes, it seems ade-

quate to use the overall average stress a instead. Then the overall stress-strain 

(strain rate) relation can be obtained incrementally with the aid of (2.23) and 

(2.6). Some specific results are presented in subsequent sections. On the other 

hand, when necessary the local strain (strain rate) increment in, say, n can be 
r 

obtained from (2.9), 

o 
de: k £ + de:k £ (~) = A.

r 
n dE,.~r (x) , 

-lc ... mn mn-

and hence the local stress increment can be estimated from (2.7), 

in n 
r 

(2.24) 

(2.25) 

In a similar manner, the stress increment within the matrix can be obtained from 

(2.11) and (2.7). 
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3. GROWTH OF PERIODICALLY DISTRIBUTED VOIDS IN VISCOUS METALS 

3.1 Background 

At elevated temperatures, voids are nucleated at grain boundaries in polycrys-

talline solids. Depending on the deformation and temperature histories, the arrange-

ment of these voids relative to the orientation of the principal applied stresses 

can vary considerably. For example, experiments show that voids can be concentrated 

on grain boundaries perpendicular to the direction of maximum tension, see, e.g., 

Garofalo (1965). For superalloys that are plastically deformed at room temperature, 

on the other hand, Dyson ~ ale (1976) have shown and Kikuchi and Weertman (1980) and 

Saegusa et al. (1980) have conclusively verified that after annealing, voids are 

generated at grain boundaries parallel to the direction of maximum tension. The 

mechanisms giving rise to the formation of these cavities are different, but their 

presence has similar adverse effects on the life expectancy of the structural com-

ponents. An account of diffusive cavitation in polycrystalline solids is given by 

Chuang et al. (1979) and by Argon et ale (1981); see also Rice (1981). Here, how-

ever, a different approach is used, which considers the growth of periodically dis-

tributed cavities within a viscous metal. We make contact with the work by 

Budiansky et al. (1982) who examine the growth of a single cavity in an unbounded 

viscous medium, as well as with an earlier contribution by McClintock (1968) on the 

same subject. 

3.2 Formulation 

For a linearly viscous matrix, we have 

where 

Qij Qki) , 

" - 1+ " QijQki)· 
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In (3.2), Iijk~ is the fourth order identity tensor; in (3.1) f is the strain ~. 

Consider a unit cell of dimensions Ai' and let it include an ellipsoidal void of 

(principal) semi-axes ai' oriented along the coordinate axes xi' i = 1,2,3. Define 

a ... -
11.2 

Y = -11.-
1 

' (3.4) 

Since (3.1) is linear, all the incremental relations in Section 2 can be re-

placed by the total ones, i.e. all the relations apply if d~O, dQ, ••• , are replaced 

o -by € , a, ••• , respectively. 

From (2.8) it follows thatt 

€* = €O + € (3.5) - - -
within the void, and from (2.21) we obtain 

(3.6) 

where, in view of (2.22) and (2.14), 

(3.7) 

The infinite series 51 a S~(a,B,y,~,f) in (3.7) is defined by 

~ c 1,2, ••• ,9, (3.8) 

where 

tSince M "" 1, the superscript r = 1 is dropped. 
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h ... (c: c: )2 
7 "'2"'3' 

h :a (c: c: ) 2 
8 "'3"'1' 

and, for an ellipsoidal inhomogeneity, 

pen) = f 9(sin n - n cos n)2 
n6 ' 

n ,. 0, 

n 

In view of (3.5), the shape change can be defined by 

and we also note, from (3.4), that 

. 
Ct. -* -* Ji e -* -* _ a 

e:22 - e:ll e: 33 
e:
ll Ct. B 

. 
f -* ::L,.. ° - 0 .1 ... e:0 - 0 e:22 e:ll 

, e: 11 f= ~k-Y r,; 33 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

~k 
To obtain the current dimensions and other geometric variables, we integrate (3.12) 

and (3.13) with respect to time. This, for example, yields 

... , (3.14) 

where the subscript 0 denotes the initial value. 

-* Since the transformation strain rate tensor, ~ , characterizes the rate of 

change of the void geometry in accordance with (3.12) and (3.13), Eq. (3.6) relates 

the void change parameters to the overall strain rate tensor e:0. To make contact 

with results of Budiansky ~ a1. (1982), we relate the overall strain rates to the 

average stresses by 

(3.15) 
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and note that, unlike the case of a single void in an infinitely extended solid con-

sidered by Budiansky ~ _a1. (1982), here C* does not equal the matrix modulus tensor 

C. The overall modulus in the present case is obtained by specializing (2.23) or, 

equivalently, by equating the overall rate of energy loss per unit volume with the 

average rate of loss. This results int 

(3.16) 

which, for Mal and because of (3.6), implies (2.23). Since EO is arbitrary, 

(3.16) and (3.15) yield 

(3.17) 

In the present case ~ is isotropic, Eq. (3.2), and if we introduce 

S~j .. 0 ij/2lJ (3.18) 

and eliminate EO between (3.17) and (3.6), we obtain 

1 -v -v S~l 1-f-Sll11 -Sl122 -S1133 
1 1 Sg2 -S2211 1- f - S2222 -v -v '" 1 +v -S2233 

-v -v 1 S~3 -S3311 -S3322 1- f - S3333 

SO c (1 - f -* 12 - 2S1212)E12' 
(3.19) 

SO II: (1 - f -* 23 - 2S2323h23' 

SO ft (1 - f -* 31 - 2S3131)e:31' 

From (3.19) it follows that 

1- 2" (50 + SO + SO ) II: {1 - S - 5 - 5 - f}e*ll 
1 +" 11 22 33 1111 2211 3311 

(3.20) 

t The calculation is essentially the same as in Nemat-Nasser ~ a1. (1982). 
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For the incompressible matrix, v = 1/2, and for (3.19) and (3.20) to yield non-

trivial results, the matrix in the right-hand side of the matrix expression in (3.19) 

t and the coefficients in the right-hand side of Eq. (3.20) should vanish. With 

v - 1/2, this leads to 

1 - 3S1 - S2 - S3 + 2(S4 + Sa + S9) = f, 

1 - SI - 3S2 - S3 + 2(Ss + S7 + S9) = f, 

1 - SI - S2 - 3S3 + 2(S6 + S7 + Sa) :1:1 f, 

(3.21) 

and, if only the infinite series SI' S2' and S3 are retained, from (3.7) we deduce 

that 

1 - Sllll - S2211 - S33ll - f 1 - 2v 1 = 1 -2 (1- v) 
f - S 1 + S2 + S3}' 

1 - S2222 - Sl122 - S3322 - f 1 - 2v 1 - f SI - S + S3}' = 2 (1- v) 1 + 2 

1 - S3333 - S1l33 - S2233 - f = 1 - 2v { 
2 (1- v) 1 - f + SI + S2 - S3}· 

With these and with v :1:1 1/2, (3.19) yields 

r-* ~ Sa - 1 Sa 1 SO 1 Ell 3 11 3" 22 - 3" 33 

-* = [Tij ] 1 a 2 Sa - !. S~3J 1"2 -- S +-3 11 3 22 3 

-* 1 a I Sa + 2 S~3 E33 - 1Sll- ~ 22 ~ 

where [T
ij

] is the inverse of the matrix 

1 - f - Slll1 

-S2211 

1 - f - SI + S2 + S3 

-S1l22 

1 - f - S2222 

1- f + Sl - S2 + S3 

-S1133 

-S2233 

1- f + SI + S2 - S3 

(3.22) 

(3.23) 

(3.24) 

Equations (3.23) relate the void growth parameters to the overall stress components. 

In terms of the stress ratios 

tNumerical tests for spherical, cylindrical, and ellipsoidal geometries show 
that to within the accuracy of the estimate of the infinite series, these conditions 
are almost satisfied. 
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(3.25) 

one obtains 

(3.26) 

Finally, the components of EO are obtained from (3.6) and (3.26). 

3.3 Numerical Results 

Table 1 lists the initial and the loading conditions for eight different cases 

which are reported here for illustration. It should be noted that even in high 

strength metals which undergo very small overall deformations, the local deformations 

close to inhomogeneities or at the tip of cracks can be quite large. For this reason 

in Fig. 1, results for rather large strains are included. This figure shows the void 

volume change as a function of the overall deformation measure, L/LO or LOlL, for the 

indicated cases associated with Table 1. For comparison, an asymptotic and addition-

al results of Budiansky et ale (1982) are also sho~~. [These are read off the fig-

ures in the published paper. In the final version of the present report, these will 

be recalculated in order to obtain a more accurate estimate of the effect of perio-

dicity as compared with a single void in an extended solid.] Figure 2 shows the void 

shape changes for the indicated cases. 
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4. EFFECT OF GRAIN BOUNDARY SLIDING ON NONLINEAR STEADY CREEP 

At elevated temperatures, creep of polycrystals involves nonlinear flow within 

grains accompanied by grain boundary sliding which can be modelled by a linearly 

viscous relation; see Ke (1947), Zener (1948), and McLean (1957). The problem of 

estimating the overall creep properties of a polycrystal on the basis of different 

constitutive relations for the grain and the grain boundary has been examined by a 

number of researchers using various models; see, e.g., Zener (1948), Budiansky and 

O'Connell (1976), and Chen and Argon (1979). Recently, Ghahremani (1980a,b) has 

studied a two-dimensional model of creep using a numerical approach. Except for his 

work, other studies do not include the full effect of the essentially periodic 

structure of the grain boundary geometry, and hence the corresponding interaction 

effects. 

In this section we shall examine the creep of polycrystals on the basis of non-

linear trans granular and linear inter granular creep laws, using a two-dimensional 

(plane) model. 

Figure 3 shows a typical unit cell of dimensions Al and Az. Within the matrix, 

the flow is governed by constitutive relations (2.3) which, in conjunction with a 

linear creep in bulk, dEkk = K domm , K = constant, yield 

so that dOij = CijktdEkk holds for the incremental stress, strain-rate relation 

within the grains. In view of (4.1), Eq. (2.14) must be replaced by 

(4.1) 

(4.2) 

where, now, Njk is 
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where 

F; 0' 0' F; 
+ 1 [1 ~4 _ n~l (~20 - ~ ~) k ri j ~J 

2KnJn 2 ij i j 2J2 

(4.3) 

To apply Eq. (2.23), we must calculate the quantity Qr(~) for the typical rth 

grain boundary segment. r 
For a two-dimensional model, this is easily done and, if ;0 

denotes the center of the segment, and er its orientation relative to the xl-axis, 

see Fig. 3, then we obtain 

r sin y 
r 

y 

r 
r t [ r rJ y -:r -~l sin e + ~2 cos e , 

(4.5) 

no sum on r, 

where 1r is the length and t r the thickness of the rth grain boundary segment. Note 

that Eq. (2.21) now becomes 

M -+= 
r -*r ~ -\' ) r ( s) {. (r s)}d-*s 

-Aijk,q,df:kR. - L fs L gijkR,(~ h(~,e)h §,6 cos!· ~o-~o e:k1 • 
s=l n -0 

(4.6) 

p 

Note also that when the thickness t r is small relative to the length R,r of a segment, 

then 
... r 

sin y"/y = 1 
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The unit cell shown in Fig. 3 includes a total of 9 grain boundary segments, 

so that M = 9 in Eq. (4.6) and in Eqs. (2.21). For each stress increment (or the 

~r 
strain rate increment), we first solve (2.21) to obtain d! ' r = 1,2, •.• ,9. Then 

we calculate the stress increment and update the overall total stress. With this 

stress, we calculate the instantaneous moduli of the matrix from the nonlinear creep 

law (2.3). Equation (2.23) finally yields the overall instantaneous moduli. 

Table 2 shows the geometrical data for the considered unit cell. It is easily 

seen that, in this case, 

zr = n Rr [n
l 

cos e r +/3 n
2 

sin erJ , 
(4.7) 

r to [_ r r 
y = n 3 nl sin e +/3 n2 cos e ] , 

where to = 3t/A
l ; note that 

9 2t 

f = ~ fr = /3
0 ~ to • (4.8) 

For the numerical calculations, we have assumed 

K 1.001 that K~K -= so , 
K 

~ = 0 so that ~» 1 , (4.9) 

~ a22 n = 3 and p = --- = 0 (uniaxial tension). , 
all 

Detailed results are obtained for two cases: .(1) to = 0.1 which implies that 

f ~ 5.8%. We note that the model considers the linear viscous flow in a rather 

thick band about the grain boundary, and a nonlinear power law with n = 3 (in Eq. 

(2.3» outside of this band. This model appears reasonable when we observe that 

instead of the local stress we have used the overall average stress in calculating 

the instantaneous moduli for the grains. 

The results are presented in terms of the following nondimensional quantities: 
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e .. 
~J 

which together with 

J = !.:.E. 
2 

and 
(l+p)So n 

~ - (n+l) [2 ] 

leads to 

1 1 
= K Clill = 2 + 2~ 

1 1 
= - -2 2~ , 

n + 1 
K C12l2 = K C2l2l = 2~ 

(4.10) 

(4.11) 

(4.12) 

In Fig. 4, results are plotted in terms of non-dimensional axial stress and 

strain measures, instead of the effective stress and strain. At stress levels near 

So = 1, the lateral strain, ~22' is positive (extension) and larger than &11' and 

~Cll22 is negative for smaller SO. This anomalous result stems from the assumed 

power law creep for the matrix. Another peculiar phenomenon at this stress level 

is that some of the overall moduli are negative; the shear modulus remains positive. 

Another anomalous behavior for power law constitutive relations has been observed 

by Budiansky et ale (1982), in connection with void growth. These authors report 

examples in which, under axial tension larger than the lateral ones, a void in a 

power law matrix is predicted to extend more rapidly laterally than in the axial 

direction. 

The results in Fig. 4 are tentative, as we are now examining this problem in 

more detai 1. 
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Table 1: Initial and loading conditions 

Case 

I 

II 

III 

IV 

V 

VI 

VII 

VIII 

r 

1 

2 

3 

4 

5 

6 

7 

8 

9 

for considered cases of void growth problems; 
~O - Bo - 1.0, and fa - .005. 

YO ~O S~/S~ I SO /50 
33 II 

10 2 0 0 

1 1 0 0 

10 2 .5 .5 

1 1 .5 .5 

10 2 -.5 -.5 

1 1 -.5 -.5 

10 2 0 0 

1 1 0 0 

Table 2: Geometrical data for grain boundary 
configuration in a unit cell. 

r r xOI x02 er Rr f 
~ r;; r 

7 3 Tr 1 to 
- 24 '8 3 6" 673 

5 1 0 1 to 
-IT 4" 6" 673 

1 0 
Tr 1 to 

- ;; -3 3 373 

5 3 Tr 1 to 
- 24 -'8 3 6" 673 

0 1 0 1. to 
-"4 3 373 

5 3 Tr 1 to 
24 -'8 -3 6" 673 

1 0 
Tr 1 to 

4" 3 3 373 

5 1 0 1 to 
IT 4" 6" 673 

7 3 " 1 to 
24 '8 -3 6" 673 
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.05 

.05 

.05 

-.05 

-.05 
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FIC. 3: A unit cell containing nine segments of grain boundary 
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Abstract 

A coupled isotropic thermoviscoplasticity theory for small strain 
is proposed. The theory consists of a mechanical constitutive equation and 
a constitutive assumption for the heat equation. These equations are sepa
rately postulated but are coupled through their common linear dependence upon 
stress rate and the mechanical strain rate tensors and the time rate of tem
perature. The equations depend nonlinearity on the stress and strain tensors 
through the overstress tensor which is the difference between the stress 
tensor and the equilibrium stress tensOT (obtained as the loading rate approaches 
zero) and on the absolute temperature. The concept of a yield surface is not 
used and the transition from linear thermoelastic behavior to nonlinear inelas
tic behavior is smooth. Extensions of the theory to cyclic loading are under 
development. 

The theory is first applied to conditions of homogeneous deformation 
where the temperature changes in the material are induced by deformation alone. 
For adiabatic conditions numerical experiments (the integration of the coupled 
nonlinear differential equations for the conditions employed in materials test
ing using postulated material functions) show that the theory reproduces initial 
thermoelastic behavior (cooling (heating) in uniaxial tension (compression), 
isothermal behavior in torsion) followed by inelastic heating in any state of 
stress during monotonic loading. The amount of deformation induced temperature 
change is negligible unless the loading is very fast. During cyclic plastic 
loading the temperature increase can be considerable and it is shown that the 
predictions of the theory compare very well with experiments performed at room 
temperature on Type 304 Stainless Steel and on a 3.5 Ni-Mo-V steel. 

When large temperature changes are imposed the deformation induced 
temperature changes can be neglected. The numerical experiments involve in this 
case the uniformly changing temperature and the mechanical loading as inputs 
(no heat conduction is allowed). Although other possibilities exist only the 
elastic modulus is assumed to be a function of temperature. The response of 
the model is shown for heating and thermal cycling under mechanical constraint 
(thermal fatigue) and for combined thermal and mechanical cycling of a uniaxial 
bar. It is shown that the response depends on the rate of temperature applica
tion and on the temperature at which clamping occurs. 
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