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ABSTRACT 

A single phenomenological constitutive equation is derived theoretically from 
first principles and applied to aluminum, tin and lead. The theory is based on 
deformation kinetics of steady creep in which the fundamental mechanism is atomic 
transport over potential barriers whose conformation is distorted by the applica
tion of a stress field. 

The form of the functional dependence of barrier distortion and stress over 
the entire temperature range is found to be a sigmoidal curve which tends to 
straight lines of a unit slope in the small and high stress regions. With this 
form of barrier distortion, the constitutive equation can predict very well the 
steady creep behavior of aluminum, tin and lead over a wide range of temperature 
and stress. 

1. Introduction 

Experimental results on high temperature creep of pure metals and solid solution 

alloys during past decades, [1,2,3] fall into two main categories: those establishing 

a relationship between steady-state creep rate and stress under constant temperature 

on one hand and a relationship between constant creep rate and temperature under 

constant stress, on the other. The functional dependence of the constant creep rate 

E on the stress a under constant absolute temperature T may be divided basically into s 

three regions whose boundaries depend on the material itself. In the low stress 

region, E is almost linearly proportional to a. Hence it is called a newtonian
s 

like viscous flow region. In the intermediate stress region, € appears to be 
s 

n proportional to a , where n is a temperature dependent material parameter. The value 

of n lies predominatly between 4 and 7 for pure metals ~nd between 3 and 5 for solid 

solution alloys. In the high stress region, € is proportional to the exponential s 

function of Sa, here S is a temperature dependent material parameter. The functional 
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dependence of f on T under constant a is assumed to be governed by a type of 
s 

Arrhenius relation. As a result the activation energy of creep can be found by a 

temperature cycling technique or the slope of the line in the Arrhenius plot of 

f:. 
s 

-1 
vs T • The values of activation energy thus found are very close to those 

of self diffus!on in pure metals or the diffusion of one of the predominant elements 

in solid solution alloys. However, the slope of the Arrhenius plot is, in general, a 

function of stress and temperature. In addition the activation energy calculated 

from temperature cycling technique is, in general, a function of stress and strain. 

Various theories of creep have been proposed in.recent times. These fall 

basically into two broad categories: phenomenological and micromechanical, the final 

aim being, of course, a macroscopic constitutive equation. The first category 

includes theories that are strictly empirical [2-4], others that are mathematical [5], 

and others still which are "quasi" physical such as the internal state variable 

theories, a typical example being reference 6. In the second category fall theories 

in which the underlying micromechanisms are vacancy diffusion, dislocation climb and 

microcreep [7]. In the latter category belong also the absolute reaction rate theory 

by Eyring [8] and the very recent deformation kinetics theory of creep by the 

authors [9]. 

Micromechanical theories, where vacancies or dislocation are the building blocks, 

need more than one mechanism to describe the experimental phenomena over a wide range 

of temperature and stress. while for practical purposes this is not a disadvantage, 

one wonders if a single appropriate atomic mechanism cannot be fOWld whiell describes 

steady creep phenomena over the entire range of stretiti ,lilt! tl'lIIper:llurL'. 

In reference 9, we found reason to believe that this might he possihle. One 

single constitutive equation was shown to predict very well the steady creep hehavior 
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of AISI 316 stainless steel, pure polycrystalline aluminum and copper over a wide 

kg/ 2 
range of temperature and stress, above about 100 cm. The vehicle for this specific 

constitutive equation is deformation kinetics. The fundamental mechanism is the 

transport (diffusion) of atoms over potential barriers whose conformation is distorted 

by the application of a stress field. 

In the case of one-dimensional flow, of interest here, the central element of the 

theory is the relation between the barrier distortion wand the free energy gradient 

- ~! where q (an internal variable) is the statistical average of the displacement of 

atoms in motion facing a tipecific,barrier. In the application of the theory [9] to 

uniaxial stress fields where the stress was above circa lOOkg~m2 a linear relation 

a~ between wand - aq sufficed but proved inappropriate for lower stress levels. 

Evidently the task at hand is to find an appropriate relation that applies to all 

stress levels but the form of the relation does not negate the fact that we are 

dealing with a single mechanism of atomic diffusion over energy barriers. This is 

done in Section 3. 

2. Brief Review of the Theory 

Particle Equations 

Let N be the number of particles whose motion is impeded by a barrier of height 

£ and w the distortion of the barrier due to the application of the stress field. 
o 

See reference 9 for details. Then the number of particles N' partaking in the net 

motion is given by equation (2.1) 

N' = 2Nexp(-£ /kT)sinh(w/kT) (2.1) 
o 

where k is the Boltzmann constant and T the absolute temperature. Assuming a "square 

sinusoidal" barrier shape the average time ~ taken by the atoms to climb the barrier 

is given by equation (2.2) 
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T (2.2) 

where a is the barrier width, F is the complete elliptic integral and 

(2.3) 

Rate (Evolution) Equation for q 

The average velocity q of the atoms crossing the barrier is given by equation 

(2.4) 

• a.N I 

q = TN (2.4) 

Use of equations (2.1), (2.2) and (2.4) gives the desired relation between the 

average velocity and the barrier distortion: 

Jr.P;o 
q = F exp (-so/kT) sinh (w/kT) (2.5) 

A convenient representation for F is the following 

1 
F = 2 log (16so/w) (2.6) 

For o~w/s ~.35 the maximum error is less than 5% [9]. If there exists n barriers to o 

the motion, each of height sr with distortion w , then equation (2.5) applies to each 
o r 

such barrier. 

However in steady creep only the highest barriers come into play, the lowest ones 

having already been climbed by the atoms in the course of the deformation. Thus one 

internal variable suffices (approximately) to represent the effect of these barriers, 

if, indeed more than one is actual active. Otherwise the representation is exact. 
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Free Energy Representation 

In general 

IjJ = 1jJ( S, q, T) (2.7) 

where in the present work T is constant. The free energy is the potential energy 

stored by virtue of atoms being displaced within potential wells. The mean 

displacement generated as a result is directly related to the elastic strain. For 

instance in the case of a unidirectional equispaced atoms the elastic strain is 

exactly equal to the atomic displacement divided by the lattice spacing. Assuming 

parabolic wells, the potential energy is proportional to a quadratic function of the 

displacement, leading to the conclusion that the free energy is a quadratic function 

of the elastic strain [9]. 

To relate the above discussion to equation (2.7) we write IjJ in the quadratic form 

IjJ = (2.8) 

and insist that it is a perfect square, so that the squared linear term can then be 

identified with the elastic strain. This is possible if Ai2 = All A22 . The principle 

of thermodynamic stability requires that IjJ be positive definite. This implies 

2 
0, A22 > 0, Al2 -A22All < o. However, the last inequality can be relaxed and set 

into equality for the purpose of steady state creep in which the metal exhibits a 

fluid equilibrium configuration [9]. As a result, equation (2.8) becomes 

2 
IjJ = ~A( S - Bq) (2.9) 

where A = All and B = -AI2 /A. Thus since equation (2.9) is the mathematization of the 

statement at the end of the last paragraph S -Bq must be identified as an elastic 

strain. Note that A and B may be and are, in general, functions of temperature. 

To obtain the desired analytical expression for creep we appeal to a 
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fundamental relation of irreversible thermodynamics according to which the stress is 

the gradient of free energy with respect to the strain i.e., 0 = a~/ae. Thus 

0= A(e- Bq). Furthermore, as a result of equation (2.9), a~/aq :-Bo. Since 

during creep the stress is constant, it follows that E = B q. The strain rate can 

then be obtained from equations (2.5) and (2.6), i.e., 

-f:. /kT 
E = z/ZE 'lTBe 0 

o 

where w is now a function of 0 and T. 

sinh(w/kT) 
log(16e /w) 

o 
(Z.lO) 

In the next section we will use equation (2.10) to predict the steady creep of 

aluminum, tin and lead, particularly under very high temperature and low stress. 

However before this can be done the relation between the internal force - a~/aq and 

w must be established. As noted above - a~/aq = Bo. The problem is therefore reduced 

to finding the relation between 0 and w, in this particular case. 

3. Application of the Theory to Aluminum 

Let the relation o(w) between 0 and w or conversely, w(o) be known. Specifically 

let 

o =~(w); w = n (0) (3.la,b) 

Substitution of equation (3.lb) in equation (Z.lO) gives a constitutive relation 

-e: /kT 
e:=e 0 J(O,T) (3.2) 

In an inverse fashion, given the experimental relation between 0 and E at constant T, 

one may then use equation (Z.lO) to deduce the relation between 0 and w, Le., the 

function ~ (w) • 

The function of ~(w) in the case of aluminum can be found from figures 1 and Z. 

It may be seen that for higher values of stress the relation of 0 and 10glO ES is 
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linear. Thus, in this range, the linear relation implies that 

a ' 
w = kTK a(l - 2-\ 

2 Jeri / 
(3.3) 

where a; is a threshold stress below which equation (3.3) is not applicable, and K2 

is the slope of the straight portion of the curve. Equation (3.3) was the basis of 

the study in reference 9, where it was shown that the linear relation persists over 

a wide range of temperature with the proviso that K2 and a~ are temperature 

dependent. In this case f(a,T) has the form 

o J 
KI sinh KZ( (j- a 0 ) 

J4( a, T) = --[~16=--€:-----]
log kT 

0 
/ KZ (:1- a~) 

(3.4) 

, 
The determination of the constants K~, KZ and a

o 
was discussed 

at length in reference 9. Note that equation (3.3) implies that the distortion is 

linearly related to the internal force, i.e., 

where Q is defined as - a~/aq and thus equal to Ba, QO = Ba~ and C (=KZ/B) is the 

coefficient of proportionality. 

(3.5) 

As shown in figures I and 2, equations (3.Z) and (3.4) predict quite well the 

experimental data in references 10 and 11, except the temperature at 920 o k. The 

corresponding values of K~, K2 , C and a~ are shown in figures 3 and 4; €:o = 34 

KCa1/mo1e which is the value of activation energy of self diffusion. It is seen 

that serious deviations begin to arise below a stress level of about a ' • Of 
o 

course this is to be expected in view of equation (3.3). 

no longer holds. 

Below a', equation (3.3) 
o 

To determine Q(a) is this region we recall equation (2.10), which because of 
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the smallness of w/kT we can write in the approximate form 

IIJ/kT 
10g(16e: /w) 

o 

and note that insofar as this region is concerned the experimental data at 920 0 k 

" 

(3.6) 

indicate a linear relation between 10glO ES and 10glO (0 - 00). when the net stress 

" " a - 0
0
), is very small [11,12]. As indicated in reference II, a = 3psi , below o . 

which ~reep was not measurable. Since log log (16 £ I w) is an insensitive function of 
o 

w in this small net stress region, the above observation suggests the following 

relation between wand 0: 

" 10glO 8w = 10glO Ao + 10glO (a - ao) (3.7) 

" where A and a are at most functions of temperature; a = l/kT. These parameters 
o 0 

wer~ determined respectively from the intercept and the constraint of a unit slope 

of the curve. In the present case A is a constant (4.6xlO-5) and aN is a 
o 0 

decreasing function of temperature (see figure 4). Indications are that as the 

II 
temperature approaches the melting point (1 ),0 goes to zero at which point the 

m 0 

metal exhibits a truly newtonian behavior. 

The form of the functional dependence of w on a over the entire temperature 

range is shown in figure 5. The relationship is sigmoidal tending to a linear form 

in the small and high stress regions (see equations (3.7) and (3.3». The 

theoretical predictions based on figure 5 are shown in figure 2. 

4. Application of the Theory to Tin and Lead 

The procedure of Section 3 is repeated here without change. It has been shown 

by a three-dimensional argument [13] that the constitutive equation (2.10) applies 

to pure shear without change in form. A comparison between theory and experiment 

is shown in figures 6 and 7. A further treatment will be the subject or a more 
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extensive article to appear at a later date. 

5. Conclusions 

In this paper we apply the theory of deformation kinetics to aluminum, tin and 

lead and show that equation (2.10) suffices to predict accurately steady creep 

behavior over a wide range of stress and temperature. We may conclude that one 

micromechanism, that of atomic transport over potential barriers whose conformation 

is distorted by the application of a stress field, is sufficient to account for the 

steady creep process in the entire range of temperature and stress. 
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