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TRENDS IN SHUTTLE ENTRY HEATING FROM

THE CORRELATION OF FLIGHT TEST PANE_'VERS

James Ko Hodge

Air Force Institute of Technology

Wright-Patterson Air Force Base, £hio

SUPi._.LARY

A new technique was developed to systematically expand the aerothe_-tmodynamic

envelope of the Space Shuttle Thermal Protection System (TPS). The tec_.ique re-

quired transient flight test maneuvers which were performed on the secc_, fourth,

and fifth Shuttle reentries. Kalman filtering and parameter estimation -_ere used

for the reduction of embedded thermocoup!e data to obtain best estimates of aero-

thermal parameters. Difficulties in reducing the data were overcome or _inimized.

Thermal parameters were estimated to minimize uncertainties, and heati_ rate para-

meters were estimated to correlate with angle of attack, sideslip, def!_=zion angle,

and Reynolds number changes. Heating trends from the maneuvers allow f_ rapid and

safe envelope expansion needed for future missions, except for some loc_ areas.

INTRODUCTION

Because of the lifting capability of the Space Shuttle orbiter, its ranging

capability and the aerodynamic heating to its TPS can vary significantl_ _ith atti-

tude and in turn with the reentry trajectory. Flight simulators for mcs= airplanes

today have fairly standardized equations'of motion in terms of linearize_Z stability
and control derivatives for example. No such capability existed for ae__-odynamic

heating. Development of a standardized procedure on flight simulators _ and is

needed for manned reentry vehicles.

Most heat transfer data from wind tunnel tests for the orbiter wer_ fairly

standardized. The ratio of film transfer coefficient to a reference station

coefficient was tabulated as a function of angle of attack, sideslip, de-=-iection

angle, and Reynolds number. The wind tunnel data must be scaled to flig___ con-

ditions, however, especially when the flow in the wind tunnel was transf_zional. Var-

ious theories to accomplish this were often buried in large programs wh-_ primar-

ily output temperature time histories and were no_ appropriate for fli__ sim-

ulators or for m_ssion planning. A simplified method (Ref. 1-2) was use_ for mis-

sion planning and was adapted and modified for flight simulators (Ref. 3-5). A
one-dimensional thermal model was used to improve accuracy for bondline ___m_.eratures,

and simplified heating ratios were moCified to a tabulated form similar rm the wind

tunnel ratios, or scaled ratios could be used. An added advantage of thim :,,proach

was flexibility for updating from fl_ght test data.

A systems approach was used to develop the new technique for aeroth__--modynamic

envelope expansion of the orbiter for operational missions at Vandenbur_ L_ir Force

Base. A _iagram of the approach is summarized by Figure I. The systems mpproach

essentially addresses operational needs for the life of the vehicle and oot just
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needs for the next flight. Once the vehicle design was frozen, wind tunnel data

and thec_ry established a simulator data base for heating ratios. Tabulated heat_
ratios and a one-dimensional thermal model for several control points (Ref. 6)

were programmed on the simulator at the Air Force Flight Test Center (AFFTC) to
obtain both surface and bondline temperatures. Using the thermal model al_ a!!rmed

calculation of temperatures which would be measured by existing thermocoupies in -_!e

TPS. Thus, not only were temperatures on future operational flights predicted, bE

thermocouple response during transient flight test maneuve=s was also simu!mted.

The data reduction technique for heating estimation, referred to as HEATESY, was

developed to estimate heating parameters in a manner similar to estimation of st_-

ility and control derivatives during aerodynamic flight test maneuvers. P_hover-

puilup (POPU) maneuvers and flap maneuvers caused sufficient thermocouple response

•to allow aerothermod_amic envelope expansion. The POPU allowed angle of _=rack

envelope expansion (heating as a function of angle of attack) needed for mote cr-_a

ranBe. Flap maneuvers allowed axial center of gravity expansion (heating am a

fu_ction of elevon and flap deflection.). Lateral teeter'of gravity expansion (Lne_t-

ing as a function of sideslip) could not be accomplished by maneuvers. By mddrese-

ing the overall need for flexible and quick updating of the simulator data base,

almost identical equations for the thermal model and heating rates were use_ in _he

data reduction program.

The data reduction program actually became a data correlation program _nen

thermocouple data from flight test maneuver_ were input. Maneuvers were designed

to vat3" angle of attack, for example, while other variables were nearly con_-tant.

The he_ting rate at a giv@n angle of attack was assumed to be the same, and th_l_

corm'elate. Otherwise, any hysteresis during a manuever would be due =o error in tire

thermal model. Uncertainty was thus decreased by identifying this error by estimm--

ring thermal model parameters. Use of a Kalman filter further minimized ot_er un-

certainties due to modeling. Details of the technique are given in Referenc_es 3,z_5,

and 7.

Lessons have been learned by applying this new technique to thermocoup_e dat:

from flight test maneuvers on the second and fourth Space Transportation Systems

flights (STS-2 and STS-4). Another maneuver is also available from STS-5. Real-

gas effects, internal radiative and convective cooling, and late transitiom are

among heating trends which have been identified from thermocouple data, but -_nly

trends from transient fiight test maneuvers will be emphasized in this paper.

THERMOCOUPLE INSTRUMENTATION

The excellent thermocouple instrumentation embedded in the orbiter TPS _as

designed for typical reentry profiles, and not for transient flight test mamm_ver_-

For future vehicles, considerations for flight test maneuvers should be emp_..msize_-

Surface thermocouples were installed in the TPS and covered with a thi= coat-

ing of thickness AX A. This coating was applied by hand and according to wei_,ht, nr_
thickness. For a transfent maneuver, error in the coating thickness can eaume !a_--_e

uncertainty in the heating rate. Error in the specific heat and conductivity of _e

coating could also cause more uncertainty. Therefore, an effective coating Yhic_s

(equivalent to the surface thermocouple depth and including any significant _rire h_at

capacity) was estimated during flight test maneuvers by the HEATEST program.

The coating thickness of High-temperature Reusable Surface Insulation (E_RSI)
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was expected to be between I0 to 15 mils (0.025 to 0.04 cm). Estimates for coating

thickness on HRSI have varied between a maximum of 21 mils (0.05 cm) at an outboard

elevon location (VO7T9730) to 15 mils at a lower surface location (V09T9527).

Nomex felt Flexible Resuable Surface Insulation (FRSI) ceat[:g was expected tmbe

around 7 mils (0.02 cm) A location on the side of the Orbital Y_neuw_ring System

(OMS) pods were of primary concern because of discoloration of the FRSI during the

first flight (STS-I). Because of the discoloration, the FRSI was apparently coate_

again, increasing the ceating thickness. An estimate for the FR_I coating during
the Mach 20 POPU on STS-2 was 20 mils (0.05 cm) at one location (V07T9976). However.

a time skew of 3 seconds was also necessary for data correlation.

Time skews were identified as a serious problem based on es:imates from sim-

ulated thermocouple data in Ref. 3. If thermocouple samples incm_rectly led samples

of the angle of attack by only one second, for example, estimates for the HRSI coat-

ing thickness became negative and physically unrealistic. If the thermocouple lagged

by a second, then the estimates for coeting thickness increased. Since the thermo-

couple and angle of attack wcr= recorded on different recorders vith no common clock,
there was and _ a concern over time skews. The actual sample time was also unkn£r,_

within the sampling rate, which was once per second for thermocouples and angle of

attack.

Thermocouples were no= calibrated before the first, flights. Most of the error

associated with a calibration would probably only be in the form of a bias _ince

calibration curves for thermocouples are well known. Most bias errors could be

checked at ambient conditions inside the hangar within the data recorder resoluticn,

which for the orbiter was an eight-bit word. This rese!ution was the primal1 noise

source for the reduction of orbiter thermocouple data during transient maneuvers.

Each thermocouple was scaled according to the anticipated maximum_ temperature at its

location to minimize the resolution error. Calibration curves we:e then approximated

•by polynomials and an additional small error was introduced.

It is suggested that thermocouple installation on future vehicles with a low-

conductivity thermal protection system be similar to the orbiter with the following

improvements. A pressure transducer, surface thermocouple, and bondline thermocouple

should be at the sam_ location to enhance utilization of all measurements. A step

input to the installed thermocouples with a known heat source sh_Jld be used to

verify the thermal model (at least at ambient conditions). The timing of the step

input relative to the thermocouple samples is crucial to accurate estimation of
the effective coating thickness. An accurate calibration curve could be practically

used if all thermocouples of the same type are scaled identically and higher data

resolution is used. Raw-data reduction would be simplified at the =xpense of more

data storage capability. Real-time data links could possibly offscl the additional

data storage. In addition, fewer thermocouples may be necessary because of a better

understanding of reentry heating gained from the thermocouple measurements on the

orbiter. More flexibility in installing thermocouples at critical locations, which

may not be identified until after a first flight, could also reduce the number of

measurements. Although a higher sample rate is needed during flight test maneuvers,

a lower sample rate may be sufficient for most of the reentry.

THERMOCOUPLE DATA P£DUCTION

The reduction of thermocouple data using the HEATEST progran was first success-
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fully demonstrated by simulating thermocouple data on a typical lower surface

location _Ref. 3). Thermocouple data on DIRSI during a transient maneuver in a win_

tuunel test was also reduced (Ref. 3, 4, and 5), but difficulty in estimating ccat-

ing thickness was encountered. Thermocouple data from STS-I were reduced in Ref-

erences 3 and 7, although data were lost above Mach 14 and there were no maneuvers.

Thermocoup]e data from STS-2 and STS-4 have also been reduced (Ref. 4-6). The date

reduction technique and the lessons learned concerning the technique are discussed.

The heating equations and one-dimensional model are referred to as the neatinz

model and thermal model. These models were chosen to be nearly identical to the

simulator equations. The ratio (denoted by a bar) of the heating rate (q) or film

transfer coefficient (h) to an appropriate reference condition was assumed to be a

linear function of the form

q = qo + qa (a-_o) _ qB (B-Bo)

+ qlog RE (log RE - log RE o)

+ q_e (_e - _eo) + qdbf (_bf
_ _ ) _-_)

_bfo

where q_ is the magnitude or intercept at the reference conditions specified by the

zero subscript on each variable. The subscripts on the heating ratio (q) represe_:

partial derivatives with respect to each variable. The variables are angle of atta:k

(_), sideslip (_), logarithm of the freestream Reynolds number (log RE), e]evon de-

flection angle (de), and flap deflections (_bf) . Second-order terms with second-de--iv
ative parameters _ere also added somtimes to account for nonlinearity. The heating

model _n the simulator was analogous to the linear equation when the heating param-

eters qo' qa' q_'. _Io_ RE' q_e' and q_bf are functions of the appropriate variables.
For data reductl_n curing maneuvers, these parameters were assumed to be constant fm:

short time durations, but to vary during the reentry. The heating rate was obtaime_

by multiplying the ratio by the reference heating (qr). The heating rate was input
to the one-dimensional thermal model. A typical TPS cross section for Reusable

Surface Insulation (RSI) is shown in Figure 2. The thermal-model equetion_ were

solved by the same finite-element (or finite-diffference) method as on the si:nu!ato=

and require initial conditions.

A simplified diagram of the HEATEST algorithm is shown in Figure 3. The }_DEL

block was identical to the simulator model except the sensitivity and covariance of

the temperature at each node were als¢ propagated in time. Initial conditions in

the IC block were required for temperature (U), the sensitivity (U^) of the temp-

erature to each parameter (e), and the covariance (P) of the temperature. The

parameters (e) include bol:h_thermal and heating model parameters. The propagated

or predicted _emperature, sensitivity, and covariance are referred to as a priori

values and are denoted by a minus superscript.

If a thermocouple measurement was available, then the a priori t_perature was

compared with the measured temperature in a Kalman filter algorithm (Ref. 3, 4, 5,

and 7) which is referred to as a KALD_N UPDATE. Depending on the Kalman filter

tuning (i.e., the uncertainty in the measurement _nd models), the a priori values

were updated to a posteriori values which were donoted by a plus superscript. This

process was repeated in a TIME LOOP until the end of a given time seg---ent.

A Newton-Ralohson algorithm was then used to update heating and thermal psra-
meters in the PARPS_ETER UPDATE block to satisfy a maximum likelihood fL_nction for

each parameter (Kef. 3, 4, 5, and 7). With the updated parameter, the TIME LCOP
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was r_peated. This _.rocess was repeated for a fixed number of [tera_icns.

FLIGHT DATA REDUCTION

The HEATEST algorithm was applied to flight thermocouple data. Some d: ffic_i_y

was encountered due to data loss, initial condition generation, and excessiv* c_:-

purer time.

Onboard thermocoup_e data were lost on STS-i and STS-4, end oni7 te!ema_ry

data were obtained. Therefore, the only flights with maneuvers and _ith th__--moc:'.ple

data are STS-2 and STS-5. Data from STS-5 were not available in ti_ for this

paper, but do not appear to change any results. Pressure _ea_uremen=s were lost :n

STS-2. Therefore, predicted pressures were used for determining RSI conducelvitT-

Telemetry data from STS-4 partially covered both FOPU maneuver3, but caused rone_:_

fo= initial conditions.

Errors in initial conditions were determined to be a scurce of erro_ in healing

parameter estimates based on studies with aimulated thermocou_ie da_a (Ref. 3). F_r

STS-2 initial conditions were generated by reducing all ther-_oeouD!e data fro_ _.cry

interface to just prior to the maneuvers at approximately 3[ach 21. iniriaii_, t_e

on-board dynamic pressure and velocity were used to calculate density. _e_ the

pitch jets fired at low dynamic pressure, a large spike was caused in th_ dp_amic

pressure and thus in density. HEATEST estimated large angle of attaKk derive_ive_

since no input variables except angle of attack were changing. If =he pit¢_ jet_

were input and the heating allowed to correlate, with this variable, :hen the pro_am

should identify the error. Time segment size wgs increased instead- The i_!tial

conditions for STS-2 maneuvers should therefore he accurate, 5ut excessive c_-_r_.pun!r

time was required.

Several methods to decrease the computer ti:_e were imp!e_=_nt ed- Most _%= [l.e

time was used to propagate the covariauce. First an adiabatic wall _yFe bour__darF

condition was assumed only for the covariance at a few nodes from the surf_e.

Another approximate initial condition generation procedure was based on a circui_

analogy with an )ericaily determined time constant (Ref. 4-5). F!_ally, old i__-

efficient libr _outiues were replaced by new more efficien_ routines (Ref- 8)-

Analysis of th ach-20 POPU at a lower surface location (V09[9527-FO7T9531)with

14 nodes required 440 seconds on a Cyber 74. The new routine_ decremsed the tim_

to 44 seconds. Using the adiabatic wall assumption would decrease =_is further b_=

would not allow the use of all in-depth thermocoup!es. Approximate initial nondl-

tions were generated 50 seconds prior to the maneuver and _EA_-E_ST we__ used fm_ ir_i=i_il

conditions for the POPU. The behavior of the Ka!man filter at each measure m_nt n:de

was demonstrated as shown in Figu=e 4.

TRENDS FRCM FLIGHT TEST MANEUVERS

Heating and thermal paramvters were estimated during r_an÷uvers. Escimm:es f:r

effective coating thickness have _iready been discussed. Hea:[ng trends fr_ th_e

maneuvers were obtained at a few locations and are presented _t a _cint repr_Ee _n-

ative of the lower surface, the elevon control surface and OM_ pods _n the _per

surface.
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LowerSurlace

!ecauseof the data loss on STS-4,a icwer-surface location (V09T9527-VOTZ_531!
wi=hfive embeddedthermocoLpleswasinvestigated, rime histories of the surface
the_-moco_pleand angleof attack of the Mach20 POPUduring STS-2are shcwnin
Fi_=re5. Timehistories of the Mach12and 8 POPUduring STS-4are sho,_n_=Fig-
ureE6and 7. Note that the _ullup portion of the Mach12maneuverwasunusually !a_;
and_hat telemetry data started during the pushover. Note that the _,_ach8 _mneuver
wasshort duration.

Results for the Mach20 maneuveraBrecdwell with wind tunnel data as sheenin
Fi_=re8. T=etrend in angle of attack agreeswell anddemonstratesthat the
linear assump=ionin angle of attack wasvalid.

Cneangleof attack he_ting derivative was lower at Mach12. This coulQhea
Macheffect or initial condition error causedby the data loss andtransitio= to
fully turbule=t flow above44 degreesangleof attack. As seen in Figure 6, the
te--.__.eraturewashigher than the simulated temperaturebasedon laminarheati=_ rate_
In addition, as suggestedby Hertzler (Ref. 6), the axial accelerometermeaSL_e-
men=(axlal drag) increaseddiscretely for angles of attack above44 degrees, typi-
cal of flow transition, anddecreasedback to laminar flow below44 degrees. TI_s,
se=sitivity of transition to angle of attack wasdemonstrated.

T=eflow wasfully turbulent during the Mach8 POPU.Thehigher heating _g-
nic_ie and larger uncertainty boundare shownin Figure 7. Thehigher uncertainty
wasiue to the short duration maneuverandperhapsto heating changeswith ReTr..olds
number. A Reynoldsnumberderivative could not be estimatedevenwhenthe _mgieof
attm:k derivativ_ wasfixed. An alternate procedureusedsequential five second
time segments.Thetrend in Reynoldsnumbe_,assumingthe angle of attack trend was
correct, is _hownin flgu:e 9.

Z}evonContro] Surface

_=_atingtrends weresucessfully e=timatedat a location near the tip of th_
outboardelevon (V07T9730)for numerousmaneuversduring STS-2. Timehistories are
sho_ for the }_ch 21 flap maneuverandMach20 POPUin Figure !0. Becausethere
was=o thermocoupleresponse,the flap maneuvera[ Mach16 is not shown. The}mch
12 fn.apmaneuve:is shownin Figure II.

.r_-nlinearheating tcends in elevon deflection anglewere evident as shebain
Figure 12 for _heMach21maneuw_r.A second-orderpolynomialin elevondeflection
was-==d. Thecauseof the increasedheating abovefive degreeselevondeflection
is u-_knownbut could be due to a Iccalized flow phenomenonor to transition to
tur_aient flow. Thereis a possibility that a local separation bubblewould c_se

the h:rpersonic buffet reported on STS-4 when the elevo_ schedule was five degrees.

Beca=se there -_s no thermocoup]e response durin_ the Mmch 16 maneuver, the ei_v_=

heati=g derivative was zero. This result implie:_ that the heating estimates a_
Mach 21 are more nonlinear.

P_ults fro= the Mach 12 flar maneuver for fully turbulent flow on the elevon

are also shown in Figure 12. Th_ data correlated poorly for negative deflection

angles. A localized phenomenon or transitional flow at small deflections coul_

cause _his behavior. For envelope expansion, the t_e:.ds at the larger deflection
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angles "_ere of pri=mry covcern. The lower elevon heatir._ allow_d for a trad_-,Jf-_

with the flap __ontrol surface.

He_ting on the flap was lower than expected for a given deflectic_ angle, bu_

bezause of a shift in the basic pitching m_T=nt, larder flap or elevc_ deflect_cz_

were required. Yhe heating on the flap changed dramatic_lly with f!av defleccicn,

angle of attack, _nd elevon deflection during STS-2 __mmeu_ers. There was also a

Reynolds number tzend which made data correlation ve.--f,d[fficult (Ref. 9).

Orbital Maneuvering System P_.d_=

The primary concern for angle of attack envelope ex_nsion was the upper surfece,

especially the OMS pods. Time histories for the Mach 20 POPU during 3TS-2 are sh_,'n

in Figure 13.. A large unexpected response nccurred on t_e side of the OMS pod

(VO7T9976). Although a three-second time skew was necessary, the results from param-
eter estimates correlate well as shown in Figure 14. The flow impingement on the

pod started a_ 37 degrees angle of attack instead of at _0 degrees as in the win£

tunnel. In addition, estimates in Ref. 6 from STS-4 indicate less deT_endence on

Reynolds number than in the wind tunnel. Visual inspection of FRSI disco!oratio_

as shown in Fig. 15 indicated a different pattern th_n em-pected based on predict i-_ns

from wind tunnel data.

Investigation of transient maneuvers in the wind tun_nel in Ref. IC to estimate

coating thickness demonstrated a similarity with the OMS pod heating. A three-se_Dnd

lag in th_ thermocouple response was found. A [heoreticml investigation in Ref. 21

of the lower heating magnitude reported in Ref. 3-5 confirmed the sensitivity of

the heating to a discontinuity in wall temperature (or no, isothermal _-all caused -_

an i_terface between different materials)_ The stainless-steel leadin_ edge and _RSI

test article on a flat plate in the wind tunnel had a step increase in wall temp-

erature. On the OMS pod, there was a st_p _ecrease at th.e iow-temperm:ure RSI an_

FRSI interface as sho_m in Fig. 15. Therefore, the three-second ti,_;e skew and s_me

of the imcreased heating on the OMS pods maT. be attributed to the noni_othermal _iI.

Numerous locations on the Orbiter have an interface _e_tween different materials

and probably have the same nonisothermal-wa!l problem. C_e such local area would be

the nose cap and HRSI interface where tilem have slu_-_ped due to inc=em_ed heatin_

as shown in Fig. 16. According to Ref. II, such an irterface near the leading edge

would have a rapid recovery. The nose cap surface tem._permture peaks _round Maeh ZB

corresponding to a POPU on STS-5. The nonisothermal wall effect would be largest mt
Mach 18. This effect should be considered when heating d_ta is correlmted and al_D

for future designs.
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Figure 6.- Lower-surface-plug STS-4 flight thermocouple
data with transition onset during Mach 12 pullup-

pushover maneuver.
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Figure i0.- Outboard elevon STS-2 flight thermocouple

data (Mach 21 flap maneuver and Mach 20 pushover-

pullup maneuver).
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Figure 12.- Heating estimates for outboard elevon
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Figure 13.- OHS pod STS-2 flight the_mocouple data
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Figure 15.- Space Shuttle _rbiter LRSI/FRSI interfaces
with a nonlsothermal wall and FRSI discoloration.

Figure 16.- Space Shuttle orbiter no_e CAP/HRSI interface
with a nonisothermal wall and slumped HRSI.
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