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SUMMARY

During that portion of Space Shuttle orbiter entry when significant

aerodynamic heat transfer occurs, the flow over the vehicl_ is in chemical

nonequilibrlum. The parameter which most significantly influences the level
of surface heat transfer in juch a flow field is the catalytic efficiency of

the surface with respect to the recombination of dissociated oxygen atoms.

Significant, and instantaneous, changes were observed in the level of heat
transfer at several lower-surface centerline locations on STS-2 and STS-3.

This phenomenon apparently resulted from a sudden change in the surface cata-

lytic efficiency at these locations due to contamination of the surface by

metallic oxides. As a result, data obtained from affected measurements cannot

be considered as "benchmark'" data with which to attempt to characterize

nonequilibrium heat transfer to the orbiter's lower surface centerline.

INTRODUCTION

The design of the thermal protection system (TPS) of the Space Shuttle

orbiter was based r.on predicted aerothermodynamic environments which were

generated assuming that the orbiter flow field was everywhere in chemical

equilibrium (ref. I). Detailed preflight calculations (refs. 2 and 3),
however, indicated that significant chemical nonequilibrium would persist over

the majority of that portion of orbiter entry when significant aerodynamic
heat transfer occurs. The parameter which most significantly influences the

level of surface heat transfer in such a flow field is the catalytic efficien-

cy of the TPS surface with respect to the recombination of dissociated oxygen

atoms. The catalytic efficiency of the reaction-cured glass (RCG) coating on

orbiter TPS tiles was thought to be relatively low based upon arc-tunnel

experiment results (ref. 4). Therefore, flight heating rates were expected to

be lower than "equilibri,_n chemistry" predictions as a result of the

combination of nonequi!ibrium chemistry and a non-fully-catalytic TPS surface.

The desire to confirm, in flight, the apparent low catalytic efficiency

of the RCG coating and the accompanying benefits of nonequilibrium heat trans-

fer to that surface led to the development of the NASA _es Research Center's

Catalytic Surfac= Effects (CSE) Experiment (refs. 5 and 6). CSE experiment
results were obtained on STS-2, 3, and 5. The STS-2 data (ref. 6) provided

graphic evidence that the RCG coating of the orbiter's TPS tiles is indeed
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"noncatal_tlc.'" The flight data showed that surface temperatures o_ the CSE-

experiment catalytlc-coated riles were substantially greater than those of the

baseline tiles and that, therefore, the surface catalytic efficiency of the
baseline tiles is low.

_ addition to the CSE experiment, however, an unexpected event occurred
during th_ orbital flight test mission entries which provided further informa-

tion into the catalytlc/noncatalytic nature of orbiter windward-surface heat

transfer. This "unplanned experiment" manifested itself in instantaneous,

significant changes in measured TPS surface temperatures at affected measure-

ment locations. The phenomenon occurred to varying degrees on both STS-2 and

STS-3. It was apparently the result of anomalous deposition of metallic ox-

ides on portions of the lower surface TPS, due to oxidation of upstream acous-

tic sensor covers (ref. 7). Although occurrence of the phenomenon has been

recognized iu the literature (refs. 7-10), there has been little analysis of

the qualitative information relative to catalytic/noncatalytlc heat transfer

which is _abodied in the resulting data. This paper provides comparlsons of

the heat transfer to affected measurement locations from mission to mission

and to contaminated versus noncontamlnated surfaces. Discussion of the impli-

cations of these results should aid in assessment of the overall quality of

data obtained from these and later flights and corresponding flight-data
analyses.
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SYMBOLS AND ACRONYMS

Catalytic Surface Effects

Development Flight Instrumentation

altitude

convective heat-transfer rate

heat-transfer rate to the stagnation point of a l-foot radius
sphere

pu_h-over/pull-up maneuver

reaction-cured glass

temperature

time from entry interface

thermal protection system

velocity

DFI measurement identification number

nondimensional body length (L = 1295 inches)
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angle of attack

o density

FLIGHT DATA

Source

During the orbital flight test missions, the orbiter was equipped with an

instrumentation system referred to as the Development Flight Instrumentation

(DFI). The DFI was comprised of over 4500 sensors, associated data-handling
electronics, and recorder, which provided data to enable post-flight certifi-

cation of orbiter subsystems design. Included among the DFI were measurements

• " @f the aerodynamic surface temperature at 14 locations on the forward fuselage

lower surface. These measurements were obtained from thermocouples mounted

within the thermal protection system tiles, in thermal contact with the sur-

face coating. (Temperature measurement locations are shown in figure I,

depicted by the planform of the TPS tile which contains the thermocouple.)

DFI temperature data were recorded once each second throughout the time period

of entry from Earth orbit. The meas-ared surface temperature-time histories

were used to determine the surface heat-transfer rates. DFI tape recorder

malfunctions on missions STS-I and STS-4 resulted in the loss of all thermal

data during that portion of entry when the vehicle was not in communications

contact with the ground. Therefore, no data were obtained at flight Mach

numbers above approximately 14 _n STS-I or STS-4. On $TS-5, the DFI measure-

ment loc_tlone discussed in this paper were coated with the catalytic coating

of the Catalytic Surface Effect_ experiment. Consequently, only data from

missions STS-2 and STS-3 are considered herein.

P_at-Transfer Rate Determination

A one-dimenslonal, transient heat-conduction analysis (ref. Ii) was used

to determine the convective heating rate to each measurement location. The

flight-measured surface temperature data provided a tlme-dependent boundary
condition for the analysis, which assumes an initially uniform temperature

throughout the thermal protection system materials. The analysis is a mathe-

matically rigorous simulation of heat conduction within the thermal protection

system, and reradiation from its surface, so as to provide a "benchmark"

determination of the flight heat-transfer rates.

The reference heating rate used herein is that to the stagnation point of

a 1-foot radius sphere in radiation equilibrium at the flight condition. The

heat-_ransfer rate computation was made by the method of reference 12 using

the Fay and Riddell (ref. 13) expression for the stagnation-point heat

transfer.

Flight Environment Defini¢lon

Determination of the vehicle attitude and free-stream flight environment

data used herein was accomplished through post-flight reconstruction of the
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orbiter entry trajectory and definition of the atmosphere along that tra!ecto-

ry at the time of entry. The trajectory reconstruction process (ref. 14)

utilizes ground-tracking data and onboard measurements of orbiter inertial

attitude, linear and angular accelerations, and angular rates to determine the

vehicle's inertial position, velocity, and attitude throughout the entry.

Definition of the atmosphere along the trajectory is accomplished (ref. 15) by

combining atmospheric profile data obtained from soundings made on the _ of

entry with atmospheric modeling techniques to infer the free-stream atmes--

pheric oroperties of pressure, temperature, density,* and winds at the time of

entry, bThe results of the trajectory and atmospheric reconstruction processes

are melded Logether to provide an analytically and physically consistent

definition of the free-stream flight environment.

TEMPERA."AIRE "JUMP" ANO_La_LY

The temperature history measured during STS-2 at the X/L = 0.194 locmtlon

on the windward centerline (fig. 2) graphically illustrates the temperer=re

"jump" anomaly observed at several locations on the windward centerline
both STS-2 and STS-3. The sudden "jump" in surface temperature was apparently

caused by an instantaneous change in the catalytic efficiency of the TPS sur-

face at this location which resulted in increased aerodynamic heat transfer.

The change in surface catalytic efficiency apparently resulted from deposition
on the surface of oxidation products from upstream, stalnless-steel, acoustic

sensor covers. Acoustic sensors were located in tiles at X/L ffi0.106 am_

X/L ffi0.204 (fig. I). Post-fllght vehicle inspection revealed the oxidation

occurrence and deposition of oxidation products downstream of the acouscl=

sensors. Figure 3 shows the post-flight condition of the acoustic sensor

located at X/L ffi0.106 (fig. 3(a)), and the trail of contamination left c= the

downstream TPS surface (fig. 3(b)), after the STS-I entry. It should be moted

that although the surface contamination was observed after STS-I, the

potential influence of this contamination on surface heat transfer was _

recognized until the temperature "Jump" anomaly was observed in the STS--2

dat_

Scott _nd Derry (ref. 7) stated _hat the oxidation products were irc_n

oxide _nd nickel oxide. They have postulated that the temperature of the sen-

nor cevers ceached a value at which they "began to violently react with r.he

oxygen in the flow. The oxide was then carried downstream and was deposited

on the tiles. Since iron oxide and nickel oxide are highly catalytic to oxy-

6,_n and altrogen recombination, the coating caused increased heating on r_he
eontzmlnated tiles. The oxides may also have catalyzed atom recomblnati¢_n in

_,_ gas phase, as well, which would cause an increase in boundary-layer

gemperature."

*For STS-2, free-stream density was determined as described. For STS-3, how-

ever, in the altitude range from 185,000-250,000 feet, density data were

determined using measured orbiter surface pressure data. Measured surfaze

pressures near the orbiter nose were processed using the methods of reference
16 to derive free-stream dynamic pressure information. Density was the_

inferred using this dynamic pressure data and the velocity from the reccz>-

structed trajectory.
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Table I provides a reference summary of the tile surface condition and

observed temperature anomaly response at each of the centerline measurement

locations on STS-2 and STS-3. On STS-2, t_e temperature "jump" phenomenon was

observed at centerline measurement locatiom_ at 0.194 < X/L < 0.402. At the

most aft of these locations (X/L = 0.402), the STS-2 te--mpera_ure anomaly

response was a temperature decrease as opposed to the increase observed at the

other locations. This tile was catalytically coated as part of the CSE exper-

iment. If surface contamination had caused a sudden increase in the cmtalyti¢

efficiency of the TPS surface upstream of this location, as is suggested by

the available evidence, a sudden depletion in the number of dissociated oxygen

atoms reaching the location of the catalytic-coated tile would result. There-

fore, with suddenly fewer oxygen atoms available for recombination, the sudden

temperature decrease which was observed would be expected - not due to local

surface contamination, but rather to the residual effect of upstream surface

=or_tamination. On STS-3, the temperature "jump" was only observed at the

X/L _ 0.194 and X/L = 0.285 measurement locations. Why the phenomenon was not

observed at other locations is not fully understood, but it is _hought to

relate to a progressively increasing level of contamination with each flight.

The temperature "jump" anomaly was no___ttobserved at locations no___ton the lower

surface centerline.

ANALYSIS

STS-2/3 Trajectory Comparison

Before valid comparisons can be made between heat-transfer data for STS-2

and STS-3, one _ast understand the comparative relationship of the two entry

trajectories. Velocity and atmospheric density data for the two entries are

shown in figure 4 for the altitude range of interest for this paper. While

density levels _re similar for the two entries, the STS-3 entry velocity was

slightly greater than for STS-2. Because of the higher entry velocity, the

orbiter reached a particular flight condition earlier in time on STS-3 than

STS-2. Consequently, time from entry interface is not considered =o be an

appropriate parameter for correlation of data for the two flights.

The referen=e heating rate (i.e., that to the stagnation point of a

l-foot radius sphere at the flight condition) variation as a function of alti-

tude is shown in figure 5 for both entries. The reference heating rate levels

are comparable at a given altitude, with the maximum difference between the

STS-2 and STS-3 reference rates being less than 4 percent of the mean.

Vehicle angle of attack was nominally constant at 40 degrees on both STS-2 and

STS-3 over the altitude rdnge of interest (fig. 5). Because of these

relationships, P_eat-transfer data compared herein _II be shown in dimensioaal

form with STS-2/5-TS-3 comparisons made as functiona of altitude.

,_ou-Contamimated S_rfaces

In order to demonstrate Lne similarity of the heating enviro{_ents on

STS-2 and STS-3, heat transfer data for two locations which were not subject

to contamination are shown in figure 6. Tr_e first location (fig. 6 (a)) is cn

the windward centerline at X/L = 0.09% just upstream of the more foraard
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acoustic sensor. The second location (fig. 6 (b)) is at X/L - 0.297, but is

51 inches away from the centerllne. For these locations, which were not

subject to surface contamination, the levels of heat transfer experienced on

STS-3 were approximately the same as were experienced on STS-2. (The small

differences observed between the STS-2 and STS-3 heating rate levels are of

the same magnitude as the uncertainty of the derived heating rates

themselves. )

Contaminated Surfaces

On STS-3, the temperature "jump" anomaly was observed at only two

measurement locations. A_ one of these locations, the aerodynamic surface was

that of a baseline tile which had experienced previo_ entry exposures, and

potential contaminazlon, on STS-I and STS-2. At the second location, the

aero_ynemlc surface was that of a virgin tile with no prior entry exposure or

possible contamination. This _ile %ms part of the Tile Gap Beating experiment

panel (ref. 17) which was replaced prior to each flight. Discussion of heat

transfer to contaminated sdrfaces will focus on these two locations.

852

Multiple-Exposure Tile

Heat transfer data from the measurement location at K/L = 0.194 for both

STS-2 and STS-3 are shown in figure 7. The _ile at this location was

"original equipment" and, gherefore, subject t_ prior contamination. On

STS-2, the occurrence of the contamination event resulted in a 40 percent step

increase in heat transfer at this surface location. On STS-3, the increase

was only 25 percent, but the underlying heating rate immediately before the

contamination event was higher than for $TS-2. Comparing the levels of heat

transfer between STS-2 and STS-3 after the contamination events (altitude <

238,000 it), the STS-3 heating rate level was approximately 18 percent greater

than the STS-2 level. This implies a mission-_o-mi_slon progressive contami-

nation of the TPS surface with an attendant increase in the surface catalytic

efficiency at this location. It is also interesting to note that the STS-2

post-contamtnatio_ data and STS-3 pre-_:ontamination data (ostensibly equal

levels of contaminat :_ _3__iate well over the entire altitude range con-

sidered (fig. 8). it is unfortunate that there are no data from STS-4 to add

to this comparison.

Virgin Tile

Heat-transfer data for the tile with no prior exposure history, X/L =

0.285, is shown in figure 9. On STS-2, the heat transfer increase resulting

from the contamination event was AO percent. On STS-3, the step increase was

only about 17 percent, but the underlying heating rate immediately before the

contamination event was higher than for STS-2. Note that after the contamina-

rio, event (h < 238,000 it), the heating rates to this surface were the same on

both STS-2 and STS-3. The tile surface at this location was not subject to

progressive contamination, as was the multi-mission tile, but was subject to

single event contamination on two different entries. Equal levels of contami-

nation would be expected on each entry and, therefore, equal levels of heat

transfer following contamination, as are shown in figure 9.
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Previously-Catalytic Surface

A _omewhat different catalytic surface heating phenomenon has been

observed in the flight data from the measurement at X/L = 0.166. l'ne tile

containing this measurement was coated on STS-2 with the hlgh-catalytlc-effl-

ciency coating of the CSE experiment. Prior to STS-3, the tile was oste---sibly
cleaned of the coating so as to return the surface to the uncoated "baseilne"

condition. Data obtained from this measurement on STS-3_ however, indicated

that the tile surface, after cleaning, remained substantially more catal_=ic

than basellne tile surfaces. This is clearly illustrated in figure I0 wtere
the STS-3 data from this measurement are compared with data from those

measurement locations Just upstream and downstream of this tile. If the Eur-

face catalytic efficiencies at each of these locations were the same, the data

from the X/L = 0.166 location would be expected _o fall between the values

obtained at the other two locations. Bowever, the heat transfer rates

observed "at this location are always equa_ to or greater .than those obser-_.ed

even at the more upstream location (X/L = 0.140), over the altitude range con-

sldered. Why the heating =ate to the X/L = 0.166 location "peaks" as it goes,

at approximately 247,000 feet altitude, is not fully understood. However non-

equilibrium viscous shock layer computations have indicated that maximum mon-

equilibrium effects on surface heat t_ansfer would be expected to occur i_

this altitude range (ref_. 18 and 9).

CONCLUSIONS

The foregoing discussion of the heat transfer results from STS-2 and

STS-3 provides strong evidence that portions of the TPS surface on the lower

centerline of the orbiter's forward fuselage have been contaminated with

materials which have altered the catalytic efficiency of the TPS surface.

Specific sources of contamination were the acoustic sensors and the catalytic
overcoat of t.he CSE experiment. As a result, data obtained from affected

measurements cannot be considered as "benchmark" data with which to attempt to
characterize nonequilibrium heat transfer to the orbiter's lower surface

cen_erline with baseline TPS. Even the first high altitude, high Mach number

data obtained on STS-2 are probably biased by contamination which was
experienced on STS-I.

Experience with the tile which was catalytically coated on STS-2 and

"cleaned" prior to STS-3 indicates that once the coating material is applie=d

and exposed to the entry envir_mment, the cataly=Ic efficiency of that tile

surface is apparently permanently altered. The majority of the instrumented

tiles oD the lower surface centerline were catalytically coated on STS-4 and

STS-5. It is, therefore, presumed that the catalytic efficiency of these tile
surfaces has been irreversably altered.

Alas, during the orbital flight test missions of the orbiter, not one _et
of[data was obtained for the lower surface cedterline with a clean TPS surface

of nominal baseline catalytic efficiency. Since the lower surface centerlime

is the one area which can be adequately modeled by noneqaillbrium flow-field

and boundar2-1ayer codes, the lack of flight data on a surface of known and

uniform thermochemical properties is a significant obstacle to any
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effort to determine catalytic efficieucies and surface recombination rates
using flight data as a "benchmark."

It is proposed that serious consideration be given to replacement of all

lower surface centerline tiles, at s_ future date, with new "virgin" tiles,

and that substantially more of these tile_ be instrumented. Such a retrofit

would also eliminate the acoustic sensors and any other potential

contamination source. Future flights with a "clean" lower surface center!_Ine

would provide the "benchmark" flight data required to characterize the

orbiter's nonequllibrlum heating envlronment---data which were anticipated from
the orbital flight tests, but apparently never obtained.
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ORIG/NAL F_E |_

OF pOOR QUALITY

MEASUREMENT

VOgTg 341

VO7TgASz

ACOUSTIC

VO7T9462

VOLT9463

V07T9464

ACOUSTIC

V O(Yl'9381

VOgT9 & 21

VO7T9468

V07T9471

VOgT9 5 21

XJL

0.025

.098

.106

.140

.166

.194

.204

.255

.285

.297

.402

.497

|

" TABLE i

ST'C_-2 STS-3

TILE SURFACE TEMPERATURE TILE SURFACE T_ERATURE

CONDITION A._L¥ RESVO_"_E CONDITION ANO_kLY RESPONSE

Catalytlc

Virz_n tile

Catalytic

rHE,.c._nt_nuo_s l_L"_se

Ed_._.atlnuous incre_use

Dic¢oatlnuous increase

D_r.¢oncinuouJ5 dec.'_._s_

Virgin tile

C_tslytic

Catalytic

rHBCORtI_uOUg l_Cre_.¢,_

I_scon:l_aous Incre_
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I
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Figure I.- Forward _usel_ge lower surface temperature measurements.
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Fi%ure 2.- STS-2 temperature-time history at X/L = 0.194.
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OF POOR QUALITY

(a) Acoustic sensor _t X/L = 0.106.

(b) Orbiter lower surfacp "-oking forward.

Figure 3.- STS-! TPS surface

from acoustic s_

= ._at ion emanating
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Figure 4.- STS-2/STS-3 entry trajectory comparison.
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OF POOR QUALITY
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Figure 8.- Heat transfer to "multiple-exposure" tile, X/L = 0.194.

863

4

2.



OF POOR QUALIT#'
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Figure 9.- Heat transfer to "virgin" tile, X/L = 0.285.
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Figure i0.- Heat transfer to ,,prevlously-catalytic" tile, X/L = 0.166.
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