FCR THE SPACE SHUTTLE ORBITER

Vernon T. Helms III
NASA Langley Research Center Hampton, Virginia

SUMMARY

Heat transfer data measured along the leeward centerline and on che side fuselage of the Space Shuttle orbiter during STS-2 and STS-3 are compared with predictions of empirical heating techniques derived from wind-tunnel tests. Steps required to extrapolate an existing leeward centerline theory to flight conditions are described. Generally favorable comparisons from Mach 24 down to approximately Mach 7 for both flignts are presented. The side fuselage impingement heating method is currently under development, but some preliminary results ara avallable. The method is briefly described and compared with wind-tunnel and flight measurements. Side heating predictions are given for an STS-j trajectory point near Mach 10 showing good agreement. with flight data. There is evidence of embedded vortices emanating from the side fuselage impingement line which significantly enhance local heating rates at both windtunnel and filght conditions.

INTRODUCTION

Heating on top of the Space Shuttle orbiter's vortex-dominated fuseldge is a complex function of Mach number, Reynolds number, and angle of attaㅊ. The upper fuselage thermal environment is generally characterized in termo of heating to the leeward centerline where heating rates can be relatively high. ${ }^{-3}$ An empirical technique for predicting top centerline heating on the orbiter has been developed and successfully applied to wind-tunnel data covering a large range in Reynolds number and angle of attack at Mach 6 and 10.4 This method consists of a modified turbulent swept cylinder correlation using an effective local sweep angle that is measured directly from oil-flow patterns on the upper fuselage. A consistent relationship was demonstrated between the axial distribution of measured sweep angles and the distribution of top centerline heating. This report explains how to extrapolate these wind-tunnel sweep angles to account for conditions at flight Reynoids numbers and Mach numbers. Comparisons of leeward centerline heating predictions with filgit values are then presented.

The basic concepts for a new technique designed to predict heating along the side fuselage impingement line are also presented herc. This method use. 3 the same form of heating equation as the top centerline theory. Furthermore, it makes use of similar assumptions concerning the relationship between surface flow directions and the side fuselage impingement heating distribution. The side fuselage method is derived from oil-flow and phase-change paint wind-tunnel data and supplemented by thermocouple measurements. Although the
\qquad IMTENLIONALIY BLANX
PRECEDING FAGE ELANK NOT FILMED
sije impingement methed is still under development, some promising preliminary cciuparisons have been made with both wind-tunnel and flight heaing rates.

SYMBOLS

AFFDL	Air Force Flight Development Laboratory .
C	Chapman-Rubesin coefticient
L	characteristic length of wind-tunnel model or full-scale vehicle as indicated
M	Mach number
OMS	Ortital Maneuvering System
τ_{c}	convective heating rate
$\mathrm{q}_{c_{h}}$	stagnation heatitag rate on a sphere with radius equal to average height of orbiter flat side body
q_{0}	stagnation heating rate on a scaled one-foot radius sphere in the froe stream
q_{5}	stagnation heating rate on a sphere with radius equal to that of orbiter top fuselage
Re	Feynolds number, "based on L unless otherwise specified
s	cross-sectional surface running length measured from top centerline
STS	Space Transportauion System
T	temperature \rightarrow
x	axial length measured from orbiter's nose
¢	senterline
α	angle of attack
α_{r}	reference α defined in equaticr (5)
B	bow shock angle measured with respect to free stream direction
δ	flow deflection angle across bow shock
ε	surface flow angle and local angle of attack
7	change in sweep angle with respect to angle of attack
n^{\prime}	change in η with respect to s / L

 effective swesp angl,
 \(\Lambda_{r} \quad\) reference \(A\) defined in quations (3), (4), and (5)
 u Prandtl-Meyer turning angle
 \(\phi \quad\) Macn number correction factor
 \(\bar{X} \quad\) hypersonic viscous-interaction parameter \(=M^{3} \sqrt{C} / \sqrt{R e}\) (see
 reference 5)

Subscripts

D In equation (1), twice the orbiter upper fuselage radius; in equation (16), twice the average height of orbiter flat side body
ext extrapolated
$\ddagger \quad$ flight condition
L. quantity based on characteristic length
\& quantity based on local flow properties
$\max \quad \operatorname{maximum}$ value
$t \quad$ wind-tunnel condition
$\infty \quad$ Free stream

WIND-TUNNEL DATA

011 flow patterns used to ext-apolate the leeward centerline heacing method to flight conditions were cbtained on the upper fuselage of a 0.01 -scale orbiter model in air in the Langley Research Cente:'s Mach 6 and Mach 10 facilities, ${ }^{5-8}$ and also on a 0.006 -scale model in 20 -Inch Mach 14 AFFDL wind tunnel at Wright-Patterson Air Force Base. ${ }^{9}$ Tests at Mach 6 ranged from 15° to 40° angle of attack at Reynolds numbers of $2.7 \times 10^{6}, 5.4 \times$ 10^{6}, and 7.3×10^{6}. OAl flows at Mach 10 were run at $a=15^{\circ}$ to 45° for freestream Reynolds numbers of $0.59 \times 10^{6}, 1.19 \times 10^{6}$, and 2.37×10^{6}. Angles of attack of 15° to 40° at $\operatorname{Re}_{\infty}=0.280 \times 10^{6}$ and $0.423 \times 10^{\circ}$ wi re used at Mach 14.

The phase-change paint heat transfer, oil flow, and thermocsuple measurements used to derive the side fuselage impingement heating method were made on 0.01 -scale Shuttle orbiter models in Langley's. Mach 6 and Mach 10 tunnels. Tests were conducted for $\mathrm{Re}_{\infty}=0.59-7.3 \times 10^{6}$ and at angles of attack of $20^{\circ}, 30^{\circ}$, and 40°. Ofl-flow tests were made using an aluminum model. Nodels for the phase-change paint heating measurements were constructed of a filled epoxy casting compound and a semi-infinite alab solution ${ }^{20}$ was assumed during data reduction. The supplemental thermocouple results were drawn from a previously unpublished data base described in reference 4.

Flight measurements used for comparison with the top centerline and side fuselage heatiog methods were obtained on STS-2 and STS-3 at the locations shown in figure 1 . The top centerline heating rater, measured by calorimeters, were the only data from STS-2 that were used in this report. The convective component of heat transfer for the calorimeters was determined by adding the radiative loss term to the calorimeter value. Heating due to solar radiation was then subtracted for those trajectory points where the instriments were in sunlight. The effect of solar heating was computed by the technique of reference 11. All of the instrument locations for STS-3 were occupied by thermocouples. A one-dimensional, transient-conduction analysis ${ }^{12}$ was used to determine convective heating for these instruments with solar radiation heating, once again, computed separately.* A process combining the results of trajectory and atmospheric reconstruction provided information on vehicle attitude and free stream conditions. ${ }^{13,14}$

LEEWARD CENTERLINE HEATING

Review of Theory

The empirical leeward centerline heating method described in reference 4 is embodied in the equation

$$
\begin{equation*}
q_{c}=0.75 q_{c_{s}} \operatorname{Re}_{\ell, D}^{0.3}(0.002975+0.003423 \cos \Lambda) \tag{1}
\end{equation*}
$$

The parameter $\mathrm{q}_{\mathrm{C}_{s}}$ is the stagnation heating rate on a sphere with a radius equal to that of the Shuttle's upper fuselage. The feynolds number is based on twice that radius. Both quantities are defined by local leeside flow properties compcted using the flow model shown in figure 2. It was determined that the bow shocis angle, B, through which free stream flow is processed must be equal to 2α. The flow deflection angle, δ, depends on M_{∞} and B. The Prandtl-Meyer angle, v, required to expand the flow to the Shuttle's upper fuselage is the sum of δ and c.

A pivitol feature of the theory is the ciose relationship between axial variations in heating and changes in upper fuselage surface flow directions, Λ, measured from oil flew photographs. The technique used to measure ofl-flow patterns is illustrated $!n$ figure 3. The angle, ε, between the top centerline aid a line orawn tangent to the oil-flow path inflection point is

[^0]equated with the local angle of attack of flow approaching the top Euselage. The local sweep angle is thus defined as
\[

$$
\begin{equation*}
A=90^{\circ}-\varepsilon \tag{2}
\end{equation*}
$$

\]

Figure 4 shows two sets of wind-tunnel data where the measured sweep angles and the corresponding values of normalized heating rate are plotted as a function of x / L at $t w n d i f f e r e n t$ test conditions. It is readily apparent that sweep angle and top centerline heating vary in an inverse fashion. A more appropriate term for A is "effective" sweep angle because, as defined for the purpose of the top centerline method, its value of ten becomes larger than 90°. Effective sweep angles greater than 90° are generally associased with inboard flow in the vicinity of the leeward centerline or with surface patterns caused by flow circulation ahead of the OMS pods and vertical tail. This is simply a mathematical convonience which allows the theory to penetrate zones on the leeward meridian where heating is influenced by various classes of separafed flor patterns. ${ }^{4}$ Using this approach, it was demonstrared that the leeward centerline theory is able to cope with the diverse heating environments represented by the wind-tunnel data. As an example, figure 5 shows a comparison of tine theory's heating predictions with wind-tunnel data at the two test conditions indicated in figure 4.

Extrapolation to Flight Conditions

The wind-tunnel data base of upper fuselage surface flow directions is presented in figures 6, 7, and 8 where axial distriburions of measured sweep angles for Mach numbers of 6, 10 , and 14 , respectively, are plotted for each angle of attack and Reynolds number combination. The hypersonic viscousinteraction parameter is also given for each test condition since shis term is often used to classify the general behavior of leeside separated flow. Sweep angles from $x / L=0.383$ to 0.731 correspond to axial locations where chermocouples were positioned on the wind-tuntiel model. Additional zeasurements from $x / L=0.30$ to 0.787 were made to encompass the locations of orbicer flight instrumentation. For a given Mach number, the Reycolds numbers in flight are considerably higher than those in the wind tunnel. Conversely, flight Mach numbers are greater than in the wind-tunnel data for corresponding Reynolds numbers. The ground-to-rilght difference in each of these parameters will affect both upper-surface flow patterns and leeward centerline heating. Details of the many complex flow interactions which determine upper fuselage heating and curface flow patterns cannot be directly addressed due to the lack of information concerning the specific nature of leeside flow processes. However, it will be demonstrated that the relatively simple approach described here for extrapolating the leeward centerline heating equation and wiad-tunnel sweep angles to flight conditions is able to capture the essential trends of the Reynolds number and Mach number influences on top centerline haating.

The first step toward converting the empirical leeward centerline hearing method into a flight prediction technique is to establish a procedure for extrapolaring the wind-tunnel sweep angles to their equivalent flight Reynolds number values. The next step is to define a criterion which relates the flight environment at each trajectory point to the proper set of wind-tunnel tes: conditions in order to duplicate flight trends in leeward centerine heating distributions. A rhird requirement is to develop a method of
correcting for the effects of the differential between flight Mach numbers and the wind-tunnel Mach number from which the flight sweep angle distribution is investigated.

A Reynolds number correction for the upper fuselage surface flow pattens may be obtained through manipulation of the sweep-angle data base. The data for each Mach number were cross-plotted in a va.lety of ways in order to reveal the format which optimized the effect of Reynolds number related trends. No easily discernable or consistent Reynolds number trends could be found in the Mach 6 data, which correspona to low values of $\bar{\chi}_{\infty}$. The mixed trends in the data for ligure 6 also suggest that a majority of the Mach 6 sweep angle distributions are relatively independent of Reynolds number. It was concluded that the sweep angles measired over the Reynolds number range indicated in figure 6 require no overali correction for the effect of flight Reynolds number. However, flow angles for the different Mach 6 tests must still be linked to the appropriate range of filight conditions in a manner that is yet to be described. Similarly, sweep angles for the two free stream conditions near Mach 14, where \bar{x}_{∞} is large, were found to be nearly identical for most test cases. Only the surface flow directions at Mach 10, for intermediate values of \bar{x}_{∞}, were subject to significant variations as a function of Reynolds number. Rough estimates for the range of \bar{x}_{∞} where wind-tunnel data must be corrected for the effects of flight Reynolds numbers can be be \bar{x}. 0.2 to basis of these assessments. The lower bound of this range may Mach 6 tests but well mese numbers are close to the maximum value for the discussed below, there is a the lowest Mach 10 parameter for which, as will be the range of \bar{x}_{∞}, where Reymoids ing Reynolds number effect. The upper bound on perhaps 1.5 or less. This is based on angle distribution for $\alpha=45^{\circ}$ at M the observation that the axial sweep is similar to those at Mach 14 for $M_{0}=10.16$ and $\bar{x}_{0}=1.219$ in figure 7 Mach 10 flow patterna are still dependent angles of ettack in figure 3. These moderate increase in \bar{x} may dissolve the associa ${ }^{\text {, }}$ but it is suggested that a

The Mach 10 data extibited very clear Reynolds number relationships by plotting sweep angles at all Reynolds numbers versus angle of attack for each axial location. This is illustrated for $x / L=0.51$ in figure 9. Linear curve fits are used to indicate general trends of the flow-angle measurements at each of the three Reynolds numbers. Individual data polnts usually fall within $+10^{\circ}$ of the corresponding curve fit. An increase in ieynolds number increases the rate of change of the sweep angle as a function of angle of attack. The linear curve fits for each Regnolds number share one common value of sweep angle and angle of attack, denoted by Λ_{r} and α_{r}, where local flow directions are independent of Reynolds number. Plots like the one in figure 9 for other axial locations reveal variations in A_{r} and α_{r} that depend on x / L. The axial dependence of Λ_{r} is shown in tigure 10 . In a broad sense, Λ_{r} is an indication of the average magnitude oi sweep angles on the upper fuselage at each axial station. The large values of Λ_{i} for $0.2 \leqslant x / L<0.34$ are due to the influence of the canopy and the initiation of the leeside vortex flow patterns. The effect of the canopy dininishes with increasing axial length and leeside flow becomes well established beycnd $x / L=0.34$. As a reoult, Λ_{r} is nearly corstant until reaching $x / L=0.63$ where it begins to rise again. This is due to the forward extent of surface patterns with reversed flow directions, parificularly at large angles of attack
and high Reynolds numbers, caused by flow interactions with the bluat forwerd face of the 0MS pods and with the vertical tail. The straight-line segments in figure 10 which approximate Λ_{r} are defined as follows:

$$
\begin{align*}
& \text { for } 0.2<x / 1 .<0.34 \\
& \Lambda_{r}=117.7^{\circ}-133.7^{\circ}(x / L) \tag{3}\\
& \text { for } 0.34 \leq x / L \leq 0.63 \\
& \lambda_{r}=72.0^{\circ} \tag{4}\\
& \text { for } 0.63<x / L<0.8 \\
& A_{\mathbf{r}}=1.3^{\circ}+112.3^{\circ}(\mathrm{x} / \mathrm{L}) \tag{5}
\end{align*}
$$

Figure 11 shows that α_{r} varies linearly and decreases with increasing $x /$. This is primarily caused by the flow interactions at aft axiai stations mentioned above. Effective sweep angles within the resulting surface flow patterns are elevared at high values of a and Ke_{∞}. This forces the point of intersection for the various Reynolds number distributions, like those in figure 9, to lower angles of attack. The linear curve fit for a_{r} is giren by

$$
\begin{equation*}
\alpha_{r}=40.1^{\circ}-29.5^{\circ}(x / L) \tag{6}
\end{equation*}
$$

The parameters Λ_{r} and α_{r} will be used as part of the procedure $=0$ correct Mach 10 wind-tunnel sweep angles for the effects of flight Zeynolds numbers.

A basic property of the Reynolds number correction for local flow directions is related to the slopes of the linear distributions of Λ vs a. A well-defined Reynolds number relationship develops when the slopes of the linear curve fits for each Reyoolds number, $\eta=\Delta N / \Delta \alpha$, are plotted agains: x / L as in figure 12. The slope of Λ vs α, η, becomes larger at all axial stations with increasing Reynolds number. Each Reynolds number produces a maximum value of η at $x / L=0.445$ as also shown by the straight-line curve fits for the data. The rate of change of π with respect to x / L depends on axial location and Peynolds number. This is shown in figure 13 where $\eta^{\prime}=$ $\Delta n / \Delta(x / L)$ is presented as a function of $\log R e_{\infty}$ for locations both fore and aft of $x / L=0.445$. These terms are defined as follows:

$$
\begin{align*}
\text { for } x / L & <0.445 \\
\eta^{\prime} & =-11.059+2.542 \log R e_{\infty} \tag{7}\\
\text { for } x / L & >0.445 \\
\eta^{\prime} & =15.429-3.297 \log R e_{\infty}
\end{align*}
$$

The variation of η at $x / L=0.445$ provides the information which allows extrapolation of the entire Mach 10 sweep angle data base to higher Reynolds numbers corresponding to flight conditions. Figure 14 indicates that the three wind-tunnel data points that are avallable form a linear function of log $R e_{\alpha}$ which is given as

$$
\begin{equation*}
\eta_{\max }=-13.332+2.424 \log R e_{\infty} \tag{9}
\end{equation*}
$$

The djspersion of each data point from the linear correlation is caite sadl. This would appear to confine the error band of the extrapolation to a ver? narrow range up to leynolds numbers at least an order of magnitude large: than the wind-tunnel values.

The assessment of Reynolds number effects on sweep angles for the vi=ious sets of wind-tunnel data and the extrapolation of the Mach 10 upper fuse ise flow patterns to their equivalent flight Reynolds number form described jecove crmplete the first step required of applying the empirical leevard-cente=iine heating method to flight conditions. The second step, which was outline earlier, involves the definition of a criterion that relates fligh= concizant to the proper set of wind-tunnel test daia. The purpose of this is to t-iure that gencral trends in heating predictions will reproduce the axia: distiojuticis of flight heating measurements. The most direct way of obtaining :-is infocmation is to collect heating distributions at various entry trajecticy points and observe which of the wind-tunnel tests produce a corresfondine inverse variation in sweep angles. Examples of such comparisons are 111 is:rated in figures 15° through 17 for Mach numbers from 24 to approximarely 7 . Both flights produced nearly the same leeward centerline heating distribetions at corresponding trajectory points. However, heating rates zeasure: by calorimeters on STS-2 are higher than the thermocouple-derived heat-tranzier rates for $\mathrm{Sis}-3$ at similar flight conditions. This point will be discussed later. In each case it is noted that the correct distribution of sweep \equiv gles corresponds to a wind-tunnel test for which the free stream Reynoles numbir is roughly 40 percent of the flight Reynolds number. A study of orbiter leside heating in reference 15 aiso found that trends in ground-based heating reses appeared during entry only af flight Reynolds numbers that were consideraily higher than in the wind tunne:1. Apparently, the wind-tunnel enviroament nore accurately simulates flight flow structures on the upper fuselage $a=$ higier Reynclds numbers over a witi lach number range. For practical purposes, is sufficient to use the set $\bar{c} f$ wind-tunnel sweep angles for a freestieam Reynolds number tiat is closest to 40 percent of the flight jalue. This allows nearly complete coverage of the orditer's entry trajeptcry insteac of having heating predictions at only a few discrete flignt conditions. This relationship seems to bc indispendent of either wind-tunnel or flight Mact number, which indicates that the distribution of leeward centerline heati-g is almost exclusively a function of free stream Reynolds number. Aconrding =0 this criterion, top centerline heating predictions at early entiry times $E=$ STS-2 and STS-3 should use wind-tunnel sweep angles from the Mach if data. Flight heating distributions from $M_{\infty}=20$ down to around 10 require the extrapolated Mach 10 's. Trajectory points below this will use the Mach s wind-tunnel data.

Heating rates on STS-2 using calorimeters were significantly above tie STS-3 thermocouple heating measurements. A general dissatisfaction with =e calorimeters' paiformance on STS-1 and STS-2 resulted in their removal. Gere is also the unseitled question concerning hot-to-cold wall effects on heaing rates measured by calorimeters. It can be expected that the large =emperisure differential which existed between the relatively cool calorimetprs and te surrounding hot surface areas would cause these instruments to regisle: a higher heating rate than was actuaily present. The thermocouple laza do zer suffer from this problem. For these reasons, the determination of 3 Maci number effect on leeward centerline flight heating predictions was jased n thermocouple measurements from ilight 3.

Heating predictions based on the Reynolds number extrapolazion of Findtunnel sweep angles will be required to obtain the Mach number corraction. The following is a step-by-step set of instructions on how to the tiae Regnolis number correction. Heating predictions for a given trajectory poine will make use of sweep angles at the wind-tunnel Reynolds number closest 0040 percent of the flight Reynolds number

$$
\begin{equation*}
\operatorname{Re}_{\infty, t}=0.4 R \mathbf{R}_{\infty, f} \tag{10}
\end{equation*}
$$

Calculate $n_{\max }$ and η^{\prime} for both Reynolds numbers. Next determi=e n 三t tie desired axial location using the expressions

$$
\begin{align*}
& \eta_{f}=\eta_{\max , f}-(0.445-x / L) \eta^{\prime} \mathrm{f} \tag{i二a}\\
& \eta_{t}=\eta_{\max , \mathrm{t}}-(0.445-x / L) \eta^{\prime} \mathrm{t} \tag{1Zb}
\end{align*}
$$

Now compute Λ for each Reynolds number at the desired angle of attack assuming a linear curve fit of Λ vs α, as in figure 9 , using the ralationsheps

$$
\begin{align*}
& \Lambda_{f}=\Lambda_{r}+\left(\alpha-\alpha_{r}\right) n_{f} \tag{c}\\
& \Lambda_{t}=\Lambda_{r}+\left(\alpha-\alpha_{r}\right) n_{t}
\end{align*}
$$

The change in sweep angle required to extrapolate the ground-based ii to the flight Reynolds number is the difference between Λ_{f} and Λ_{C}, thas

$$
\begin{equation*}
\Lambda_{e x t}=\Lambda+\left(\Lambda_{f}-\Lambda_{t}\right) \tag{i3}
\end{equation*}
$$

where Λ is interpolated for x / L and α frow the wind-tunnel data set idertified by equation (10). Usualiy, $A \neq \Lambda_{t}$ because the linear distriburion containIng Λ_{t} is only meant co be a general representation of the measarements. However, the difference between two such linear representations for a given x / L and α is a direct measure of the effect of changing the Reyooldse maber. These steps must be repeated for all axial locations where hearing predictions are to be made.

The lack of wind-tunnel data at very high Kach numbers precludes the possibility of extracting a Mach number effect on upper fuselage flaw directions, and the associated leeward centerline heating, frow the availiable ground testi. As with the criterion relating flight-heating distributions to wind-tunnel surface flow patterns, the effect of flight Mach nomber on the extrapolated heating predicticn must be formulated using a small puttion of the entry data. Heating rates at $M_{\infty}=14.0$, $R e_{\infty}=3.52 \times 10^{6}$, and $x_{i}=$ 40.9° for flight three were chosen at random and plotted in figare $2 \mathrm{~B}(a)$ along with three sets of heating predictions calculated using the MISIVER ${ }^{-0}$ aerodynamic heating computer program. The highest heating predictions fesulted from applying the uncorrected wind-tunnel sweep angles for $M_{\infty}=10.34$ and $\operatorname{Re}_{\infty}=1.19 \times 10^{6}$ directly to the flight environment. The set of predictions at intermediate heating levels shows the effect of using the Revolizs maber extrapoiation outlined in equations (10) through (13). The reszlt if this procedure is a predicted heating distribution that displays the geceral trends of the flight measurements, but the predictions are higher by aimose a factor of two. This residuai is assumed to be related to the differesce between the Elight and wind-tunnel Mach numbers. It can be accounted for ar the Maci 14
trajectory point by multiplying heating rates for the Reynolds numer extrajolation by a Mach number correction factor, ϕ, given es

$$
\begin{equation*}
p=\left(: L_{\infty}, t / L_{\infty}, \hat{f}\right)^{2} \tag{14}
\end{equation*}
$$

The zodified Reynolds-number corrected predictions are in good agreement wi=: the zeasured heating rates. This fector was proven to yele results tha: we= consistent with flight data at othe: trajectory points, as shown in figu:e $18(b)$ for $M_{\infty}=20.0, \operatorname{Re}_{\infty}=1.53 \times 10^{5}$, and $\alpha=39.8^{\circ}$. The zorresponding wind-=unnel sweep angles were for $M_{1}=10.16$ and $\operatorname{Re}_{\infty}=0.50 \times 10^{6}$. Thrfe sets $3 E$ predictions are plotted as before. There is a much larger effec: of dach number at this entry foint. But the Mach number correi=ion in equaここor. (14) تlaces the fully corrected predictions very close to the fligh= data. Figure 18 demonstrates that the wind tunnel to flight difference in both itec.i number and keynolds number is important for predirting the wagnituce of $E=i g=$ heat $=$ ransfer to the orbiter's leeward meridian. By incorporating the Reynolds number extrapplation, the criterion for reproducine the filight jeating distribution and the Mach number correction, equation (1) can now be written as

$$
\begin{equation*}
G_{c}=0.75 q_{C_{s}} \psi \operatorname{Re}_{\ell, D}^{0.3}\left(0.002975+0.003428 \cos \Lambda_{\mathrm{ext}}\right) \tag{15}
\end{equation*}
$$

At flight conditiuns requiring the use of wind-tunnel sweep angles from tie tlach 6 or Mach 14 tests, $\lambda_{\text {ext }}$ is assumed to be equal to A.

Cumparison of Leeward Centerline Heating Predictions Wiej flight Data

Figures 19 and 20 present corparisons of leeward cencerline heating predictions with entry measurements made at Mach numbers from 24 to 7 duri=g STS-2 and STS-3, respectively. Similar free stream conditions for each trajectory are shown here so that measurements and theory for both fligits max be compared. Calorimeter measurements of heating rate on STS-2 are consistently above the thermocouple data of flight 3 by 50 pezcent to 100 percent or more. The largest differences occur at free stream Hach numbers greater than 20 and less than 10 . Heating predictions for the two filights ar approxizatel" the same free stream conditions and angle of ateack are at asour the same levef. This indicaces that the discrepancy in hearing measurements may be due to instrumental effects rather than large variatiocs in the flignt environment. The magnitude of predicted heating tends to agree more closeip with STE-3 thermocouple measurements. The predicted axial distribution of heating rate is much the same as flight measurements of heatiog distributions for both entry rajectories. The very large disagreement between theory and flight data below Mach 10 on STS-2 may be another symptce of instrumental effects, as might be the case for $M_{\infty}>20$. The comparisons at low Mach numbers Eor STS-3 are much clo:ier.

Evidence for transitoion from laminar to turbulent flow can be seen in these ccaparisons, particularly in the thermocouple data of flight 3. Most of the precicted heating rates, which are turbulent, are higher than measured values be a factor of approximately two for $M_{m}>20$. This is \geq clear indication of laminar flow on the upper fuselage at very high yach nuabers.

The theory and flight data rapidly converge for bot：flights beginning near $M_{\infty}=20$ ．The entire leeward centerline appears to become turbulent within a very short time．However，another studyis of leeward centerline heating for STS－3 concludes that transition to turbuient flow occurs no earlier than M_{x} \approx 18．This difference may be related to the corrections applied to wind－ tunnel sweep angles used for heating predictions in the vicinizy of $M_{8}=$ 20．It was noted earlier that the high angie of attack，low ？eynoids ruber Mach 10 flow patterns bear a resemblance to the Nach 14 sweep angles for wiich no Reynolds numbe：correction is required．Perhaps by virtue or theiz relatively large vaiue of $\bar{x}_{\text {r }}$ ，the low Reynolds numbe ：tach 10 jlow ang ies used in the $M_{\infty}=20$ heating prediction way require less arrection for keynolds number effects than was imposed by the find－tunnel extrapolation．IF so，predicted heating rates could be higher than rhose indicated for the Mact 20 STS－3 trajectory point．．This would shi三t the realm of fuliy turbilent fiow to somewhat lower Mach numbers．But if such an influence of sie viscous interaction parameter exists，it is not readily apparent in the available wind tunnel data．Even though corrections for this kind of second order effect ay be necessary for heating predictions to agree exactly with tlight data，the first－order corrections presented here produce favorable cumparisur．s with entry heating measurements．

SIDE FUSELAGE HEATING

Basic Concepts of Theory

An empirical method for predicting side fuselage impingement hearing on the Shuttle orbiter is under development．It is based on 11 analysis of oi：－ flow patterns and corresponding phase－change paint and therwocouple heating measurements．The side fuselage theory uses the same form of turbulent heating equation as for the wind－tunnel top centerline correlarion．The equation as derived for $M_{o}=10.36, \operatorname{Re}_{\infty}=2.37 \times 10^{\circ}$ ，and $\alpha=40^{\circ}$ ，since these parameters are close to the conditions for which flight comparisons wil： be made，is

$$
\begin{equation*}
q_{c}=0.42 q_{c_{h}} R e_{\ell, D}^{0.3}(0.003531+0.004069 \cos \mathrm{n}) \tag{16}
\end{equation*}
$$

The factor 0.42 corrects the reference heating rate，$q_{C_{y}}$ ，from the stagnation value on a sphere to that on a sharp－cornered slab of infinite length with a half width equal to the average height of the side fuselage flat surface．Reynolds number and the reference heating rate are jased on local flow parameters that are computed using the methods outlined below，and the coefficients are determined by iteration using only a few data points at different values of $R e_{\infty}$ ．

The surface oil－flow directions radiating away from the impingement line are also taken to represent angle of attack of flow approaching the side fuse－ lage and，thus，a sweep angle in the same sense as illustrated in figure 3 for
the upper body. The axial variation of sweep angle along the impingement iucation is shown ia figare 21 for io $=10$ and $a=40^{\circ}$. Sweep angles on the side fuselage show Iittle change with Reynolds number. They are constant over the forward portion of the firpingement line and increase sharply at large values of x / L. The increase in A was determined to be a result of an rdditional expansion of the Elow before reaching the fuselage. Both factors contribute to a rapid fail in impingement heating ar those locations.

The source of the inpinging flow is assumed to be the shear layer which originates aloag a separatica line on the strake's upper surface. It is further assumed thaz separation-point shear-laver flow properties are proportional to those at the same axial location ou the strake's leading edge. Variations in leacing-adge flow properties along the srrike were accounted for by interpoiation of pressure distributions computed by the three-dimensional Eigh Aipha Inviscid Solution (HALIS) ${ }^{17}$ compurer code.* Ir was found ther fiessure increases linearly along the extent of the strake. Another simplifying assumption states that leading edge flow from a given fractional distance along the strake will influence heating at the sane fractional distance alung the side fuselage impingement line. This model allows the flow to =rave: downstream as it moves upward and over tuward the fuselage.

These procedures were incorporated into the MINIVER computer program. Figure 22 shows an example of a comparison between the theory's side fuselage impingement line hezting predicticns and phase-change paint measurements for the test condition of $M_{\infty}=10.36, \mathrm{Re}_{\infty}=2.37 \times 10^{\circ}$, and $\alpha=40^{\circ}$. The initial rise fin heatigg is due $=0$ the fincrease in pressure along the strake's. leading edge combined with the constant A^{\prime} 's in figure 21. Peak heating occurs just forward of $x / L=0 . i$ corresponding to the location at which sweep angles begin to increase: Larger smeep angles and the additional expansion of flow beyond this point cause a rapid reduction of impingement heating. The heating predictions are in close agreement with wind-tunnel data over the entire length of the impingement lize. Similar comparisons have been obtained for all test conditions at Mach 10 which includes angles of attack from 20° to 40° and free strean Reyolds numjers of $0.59 \times 10^{6}, 1.19 \times 10^{6}$, and 2.37×10^{6}.

Comparisons With Flight Data

The effect of yach zumber on the heating prediction has not yet been assessed. Therefore, a preliminary comparison with flight data has been limited to the STS-3 trajectory point where $M_{o}=10.37$, $\operatorname{Re}_{\infty}=5.41 \times 10^{6}$, and $a=38.9^{\circ}$. Flight Kach zumber and angle of attack are within the range of the wind-tunnel conditions. The flight Reynolds number is larger by over a factor of two. But wind-tunael sweep angles, as well as the impingement iocation, showed little change with Reynolds number at a giver angle of attack. Valies of Λ and impingement iocation for $\alpha=38.9^{\circ}$ were interpolated from the wind-tunnel measurements and applied to the flight prediction. Figure 23 shows the resulting axial distribution of impingement heating rate for the
+Existing HALIS flow-fie:d computations were supplied by K. Janes Weilmenster, ieroṫermodynamics Branch, Space Systems Division, Iaggley Research Center.
selected iifght parameters．The peak heating race is approximately ten tiajs higher tha the average top centerline heating at this same irajectory poin：．

It is difficult for the relatively few iastzaments on tie orbiter＇s six： Euselage $=0$ obtain a direct measurement of impingement heatiag．Figure 24 shows the predicted location of flow impingement in relation to the positions of the silj fuselage thermocouples．However，a comparison of the heating p＝e－ dicrion stown in figure 23 with flight data can be accouplished as illustra＝ed in ifigure 25．Cross－sectional measurements of beating at six axial stations are presented along with the predicted impingemen heating Eor each value 0 ミ x＇：．Winc－：unnel measurements indicate that $三$ Iow impingemene moves of of int upper side Euselage near $x / L=0.65$ for $\alpha=40^{\circ}$ ，so only data for $x / L \leq 0 . ⿰ 氵$ ： are used bere．The next downstream array of orbizer instruaents is at $\mathrm{v} / \mathrm{L}=$ ＇J．696．The heating distributions superimposed on the data points were take＝ Eram wind－：unnel phase－change paint measurements for $\mathrm{M}_{\infty}=10.36, \mathrm{Re}_{\infty}=$ 2.37×10^{6} at $\alpha=40^{\circ}$ and normalized by the predicred impingement heating． The flight heating data generally con＇form to the crend and magnitude of the proigrted iistributions．This seem to indicate that the impingement heatiog predictio：is near the correct level．

Flighr＇atá at $x / L=0.497$ and $x / L=0.542$ contain some heating measure－ ments that are approximately 80 and 120 percent above the mean local values， respectively．Figure 26 shows that these pulses of high convective heating are associared with large and erratic excursions in surface temperature which occur at later entry times．Sinilar temperature fluctuations affect many of the side fiselage thermocouple locations at slighcly different times，but these variations are always confined to the high Reynolds nuaber portion of the trajectory．The anomaly at $x / L=0.497$ is above the impiagement ine while at $x / L=0.594$ it is well below the impingement loration．Many similaz hearing＂spikes＂were observed in the wind－tumel data for Mach 6 and Mach 10 ， but only ar locations above the impingement lina．This is iliustrated in figure 27 using one of the Mach 6 test creses For which Reynolds number is the same as for the STS－3 trajectory poinc．The average increase over local heaiing assoriated with these features in the wind tunnel was about 70 percent．The phase－change paint data revealed thet the phenomena are highly localized，ar indicated by the slender heating profile in figure 27．Tis same profile was applied to the data in figure 25 using dasied IInes in orde＝ to distinguish accual flight measurements fron normalized wind－tunnel heatirg．

It is suggested that these elevated local heating rates are caused by eqbedded vortices which are generated by viscous interacticas during the impingemenr process．Embedded vortices are beliered to be caused by boundary－ layer cross－flow instabilities．${ }^{18}$ References 19 and 20 are $t=\pi$ examples of the many studies on the relation between embedded streamwise vorticity and flow impiagezent，Figure 28 contains a photograph showing a sequence of uniformly spaced streaks in phase change paint above，and originating from， the iupingeaent location on the orbitar model＇s side fusolage at a Mach 6 test condition．Each streak is thought to represert a very thin line of vortex impingement ohich produces locally higher heailig，and the ragaitude of heat－ iag decreases along its length．Side fuselage＂screak＂heatiag has aiso bee＝ nored on an early phase B orbiter configuration ${ }^{21}$ and on the ASSET entry vahicle．${ }^{2 Z}$ A larger number of streaiks were obserfed in the jtase－change paíat tests with increasang Reynolds number and higher angles of atcack．Streaks rere present for all test conditions except $a=20^{\circ}$ and 30° for Mach 10 ．

These trends indicate that side fuselage "streak" heating may well be expected to occur in the entry flight regime containing the selected STS-3 trajectory point. In addition, the changing number of streaks and variations in the spacing between them at different free-stream conditions and angles of attack mean that embedded vortices on the orbiter in flight will move longitudinally on the side fuselage. This motion will cause a number of individual vortices to sweep across a fixed location resulting in irtermittent locally higher heatiag. This could explain the large temperature variations at later enery tines shown in figure 26. Very large side fuselage STS-2 heating rates that have been previously documented ${ }^{23}$ may also be caused by the onset of embedded vorticity.

CONCLUDING REMARKS

A method has been developed for extrapolating a wind-tunnel-developed empirical heating technique for the Space Shuttla orbiter's leevard centerline to flight conditions. The distribution of heating along the velicle's leeward meridian was found to be primarily a function of Reynolds number. Axial heating trends in flight correspond to those in the wind tunnel for which the Reynolds number is approximately 40 percent of the flight value. Only those wind-tunnel leeside fuselage f.'ow patterns at intermediate values of \bar{x}_{∞} displayed significant and consistent sensitivity to changes in Reynolus number. The effect of Mach number on heating predictions was determined through Ifmited use of the flight data. Application of the extrapolated heating method to the flight environments of STS-2 and STS-3 produced generally
 measurements were of lower qualíry than those of STS-j. The theory nay provide a somewhat conservative indication for the time of transition from laminar to turbulent flow. Heating predictions afforded by this procedure are adequate for the design of upper fuselage thermal procection systems.

A new technique for computing side fuselage impingament heating was briefly described. This method is derived from the leeward centerline theory. Aithough still under development, the side fuselage heating method was shown to agree well with wind-tunnel data and with selected STS-3 filght measurements. The comparison with flight data revealed that, as in the wind tunnel, there are areas of locally enhanced heating at side fuselage locations well awa: from the impingement line. The associated heating rates were approximately 100 percent higher than nearby undisturbed levels. It is siggested that this phenomenon is caused by embedied vortices resulting from viscous interactions that are perhapa related to flow reatiachment at free-stream condftions which satisfy critical values of Mach number and Reynolds number at a given angle of attack. The existence of these features will have an impact on thermal protection requirements of future winged entry vehicles which experience flow impingement on the side fuselage.

1. Whitehead, A. H., Jr., Herner, I. N., and Rao, D. M., "Lee Surface Vurtex Effects Over Configurations in Fypersonic Flow." aIAA Pazer No. 72-77, January 1972.
2. Hefner, J. N., "Le-Surface Heating and Flow Phenomena on Space Shuttle Orbiters at Large Angles of Atzack and Pypersonic Speeds." NASA TN D-7088, 1972.
3. Zakkay, V., Miyazawa, M., and Wang, C. R., "iypersonic Lee Surface Flow Phenomena Over Space Shuttle at Large Angles of Attack at $M_{0}=6 . "$ NASA CR-132501, 19:'4.
4. Helas, Vernon T., III, "An Empirical Method for Computing Leeside Centerline Heating on the Space Shutble. Orbiter." AIAA Paper No. 81-1043, June 1981.
5. Bertram, Mithel H., "Hypersonic Laminar Viscous-Interactfun Effects Dn the Aerodynamics of Two-Dimensional Wedge and Triangular Planform Wings," NASA TN D-3523, August 1966.
6. Goldberg, Theodore J., and Hefner, Jerry N. (Appendix by Emery, James C.), "Starting Phenomena foz Hypersonic Inlets With Thick Turbulent Boundary Layers at Mach ó." NASA TN D-6280, 1971.
7. Schaefer, William T., Jr., "Characteristics of Majoz Active Find Tunnels at the Langley Research Center." NASA TM X-1130, 1965.

ס̂. Dunavant, James C., and Stone, Howard W., "Effect of Roughness on Heat Transfer to Hemisphere Lylinders at Mach Numbers of 10.4 and 11.4." NASA TN D-387i, 1967.
9. Gregorek, G. M., and Lea, J. D., "Dasign, Performance and Operational Characteristics of the ARL 20-Inch Hypersonic Wind Tunnel." Repcrt No. ARL 62-392, Aeronautical Research Labs, Wright Patterson Air Force Base, August 1962.
10. Jones, Robert A., and Hunt, James L. "Use of Fusinle Temperature Indicators for Obtaining Quantitative ferodynamic Heat-Transfer Deta." NASA TR R-230, February 1966.
11. Throcismorton, D. A., "Influence of Radidnt Energy Exchange on the Determination of Convective Heat Transfer Rates to Orbiter Leeside Surfaces During Entry." ALAA Paper No. 82-0824, June 1982.
12. Throckmorton, D. A., "Benchmark Aerodynamic Heat Transfer Cata Erot the First Flight of the Space Shutcle Orbiter." AlAA Faper No. 82-0003, January 1982.
13. Compton, H. R., Findlay. J. T., Keliy, G. M., and Heck, M. L., "Shurtle (SIS-1) Entry Trajectory Reconstruction." ALiA Paper No. 81-2459, November 1981.

1'. Price, J. M., "Atmospheric Definition for Shuttle Aerorhermodynamic Investisatiors." Joumal of Spacecraft and Rockezs, Vol. 20, YarchApril 1:83, pp. 133-140.
15. Throcker=tia, 2. A., and Zoby, E. V., "Orbiter Entry Leeside Heat Transfer llata Analysis." AiAA Paper No. 83-0484, January 1983.
16. H:nder, D. R., "A Mniature Version of the JA70 Aerodynamic Heating Computer Program, H\& 00 (MIRIVER)." McDonnell Doeglas Astronautic Company, M C C0462, June 1970, Revised January 19:2.
17. Weilmuenster, K. James, and Hamilton, H. Harrls, II, "A Method for Computation of Irviscid Three-Dimensional Flow Over Blunt Bodies dzviag Large Embedded Subsonic Regions." ALAA Paper No. 81-1203, 1981.
4. Morkovin, Mark V., "Otservations on Streamfise Vortices ic Laminai and Turbulent Boundary Layers." NASA CR-159061, April 1979.
19. Seegmiller, H. L., "Surface-Flow Visualization Investigation of a Deita Wing Shuttle Configuration at a Mach Number of 7.4 and Several Reynolds Numbers." NASA TM X-62036, June 1970.
20. Ginoux, J. ‥ "On Some Properties of Reattaching Laainar and Transitional High Speed Flows." Von Karman Institute: Beigium, Techrical Note 53, September 1969.
21. Matthews, K. L., Buchanan, T. D., Martindale, W. R., and Harmbrod, J. D., "Experimental and Theoreticai Aerodynamic Heating and klow Field Analysis of © Space Stuttle Orbiter." NASA TM X-2507, pp. 26i-296,
22. Pagel, L. L., Beardsley, F. P., and Gaumer, G. R., "ASSET Volume IV Correlative Analysis of Heat Transfer Data." AFFDL-TR-65-31, Volume
IX, April 1965 .
23. Lee, D. B., and Harthun, 1. H., "Aerothermodynamic Entry anvironment of the Space Shuttle O-bicer." AIAA Paper No. 82-0821, June 1982.

$$
\ldots
$$

Figure 1.- Locations of entry heating rate measurements on Shuttle orbiter's fuselage.

Eigure 2.- Flow field model used to compute local leeside properties for leewerd centerline heating therry.

$$
T-c
$$

Figure 3.- Cpper fuselage surface pattern showing measurement of flow angle.

$$
\begin{gathered}
\text { (a) } M_{x}=10 ; \quad \alpha=20^{\circ} ; \\
R e_{\infty}=2.37 \times 10^{6}
\end{gathered}
$$

(b) $M_{\infty}=6 ; \quad \alpha=30^{\circ} ;$
$\operatorname{Re}_{\infty}=5.4 \times 10^{6}$.

Figure 4.- Illustration of the inverse relation between effective sweep angle and leeward centerline heating rate.

> ORIGRTA FASE OF POCR QUAE:TN
> O WIND-TUNNEL DATA
> \diamond LEEWARD CENTERLINE THEORY
> (a) $M_{\infty}=10 ; x=20^{\circ} ; \quad \mathrm{Re}_{\infty}=2.37 \times 10^{6}$.

Figure 5.- Representative comparisons of leeward centerline heating predictions with wind tunnel data.

 Ei 3Fvd Tunforo

Figure 7.- Effective sweep angles measured from Mach 10 oil flow patterns.

- suxajied motj tio ti yoew

Binton yoon fo St smal 7Noteo

Figure 9.- Illustration of Reynolds number effect on Mach 10 wind tunnel sweep angles.

Figure 10.- Axial dependence of Λ_{r}.

Figure 11.- Axial dependence of α_{r}.

Figure 12.- Slope of Λ vs α as a function of Reynolds number and x / L.

Figure 13, - Rate of change of η with respect to Reynolds number.

Figure 14.- Extrapolation of η at $x / L=0.445$ in terms of Reynolds number.
ORIGINAL PAGE is

of foor quality

Figure 15.- Comparison of flight leeward centerline keating distrioutions near $M_{\infty}=24$ with wind tunnel effective sweep angle varlatios.

Figure 16.- Comparison of flight leeward centerline heating distribe=ions near $M_{\infty}=14$ with wind tunnel effective sweep angle variations.

OF FOCR QUALITY

Figure 17.- Comparison of flight leeward centerline heating distributions • near $M_{\infty}=7$ with wind tinnel effective sweep angle variations.

FLIGHT CONDITIONS: $M_{\infty}=14.01, R e_{\infty}=3.52 \times 10^{6}, \quad,=40.9^{\circ}$ TUNNEL CONDITIONS: $M_{\infty}^{\infty}=10.34 . \mathrm{Re}_{\infty}^{\infty}=1.17 \times 10^{\circ}, a=40.9^{\circ}$
(a)

(b)

Figure 18.- Comparison of flight leeward centerline heating rates with predictions in various stages of correction for the effects of Mach number and Reynolds number.

$$
\begin{aligned}
& \begin{array}{l}
\text { ORIGM, } \\
\text { OF pock quasity }
\end{array}
\end{aligned}
$$

Figure 1.3.- Ccmparison of leeward centerline heating predictions with STS-2 flight data.

Figure 20.- Comparison of leeward centerline heating predictions with STS-3 flight data.

orginal pdet !g
OF POOR QURLITY

Figure 21.- Effective sweep angles resulting from side fuselage impingement.

Figure 2:.- Example of comparison between side fuselage impingement heating predictions and wind tunnel measurements for $M_{\infty}=10.36$, $R e_{\infty}=2.37 \times 10^{6}$ and $\alpha=40^{\circ}$.

Figure 23.- Predicted side fuselage impingement heating for STS-3 at. $M_{\infty}=10.37, \mathrm{Re}_{\infty}=5.4 \times 10^{6}$, and $\alpha=38.9^{\circ}$.

- THERMOCOUPLES
---- IMPINGEMENT LOCATION
IMPINGEMENT LEAVES FLAT SIDE-BODY

Figure 24.- Predicted location of impingement line with respect to side fuselage thermocouples at $M_{\infty}=10.37$ and $\alpha=36.9^{\circ}$ during STS-3.

CRGMAL Pres at

OF FCOS QUALITI

- PREDICTED IMPINGEMENT HEATING
—nORMALIZED WIND TUNNEL HEATING DISTRIBUTIONS O FLIGHT DATA

Figure 25.-. Comparison of wind tunnel cross-sectional heating distributions and impingement heating predictions with STS-3 measurements at $M_{\infty}=10.37, \operatorname{Re}_{\infty}=5.4 \times 10^{6}$, and $\alpha=38.9^{\circ}$.

(a) $x / L=0.497 ; s / L=0.0950 ;$ V07T9924.

(b) $x / L=0.542: s / L=0.1248 ;$ v07T9905.

Figure 26.- STS-3 side fusolage temperature time histories showing temperature fluctuations for entry times near $M_{\infty}=10.37$.

Figure 27.- Example of heating spike in wind tunnel data for $M_{\infty}=6, \operatorname{Re}_{\infty}=5.4 \times 10^{6}$, and $\alpha=40^{\circ}$ at $x / L=0.447$.

Figure 28.- Pattern of "streak" heating in phase change paint test at $?_{\infty}=6, R e_{\infty}=5.4 \times 10^{5}$, and $\alpha=40^{\circ}$.

[^0]: *Heating rates reduced from STS-3 thermoccuple data and sulã heating corrections for STS-2 and STS-3 were provided by D. A. Throcknorion, Aerothermodynamics Branch, Space Systems Division, Langley Research Center.

