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SLRdMARY

Heat transfer data measured along the leeward centerline and on the side

fuselage of the Space Shuttle orbiter during STS-2 and STS-3 are compared with

predicZ_onN of empirical heating techniques derived from wind-tunnel tests.

Steps required to extrapolate an existing leeward centerline theory to flight

conditions are described. Generally favorable comparisons from Math 24 down

to approximately Mach 7 for both flignts are presented. The side fuselage

impingement heating method is currently under development, but some prelimi-
nary results are available. The method is briefly described and compared with

wlnd-tunnel and flight measurements. Side heating predictions are given for

an STS-3 trajectory point near Mach I0 showing good agreement with flight

data. There is evidence of embedded vortices emanating from the side fuselage

imFingement line which significantly enhance local heatlng rates at both wind-

tunnel and flight conditions.

INTRODUCTION

-Heating on top of the Space Shuttle orbiter's vortex-dominated fuselage

is a complex function of Math number, Reynolds number, and angle of attack.

The upper fuselage thermal environment is generally characterized in term_ of

heating to the leeward centerllne where heating rates can be relatively

high. I-3 An empirical te:hnique for predicting top centerline heating on the
orbiter has been developed and successfully applied to _-ind-tunnel data

covering a large range in Reynolds number and angle of attack at Math 6 ard

10. 4 This method eonslsts of a modified turbulent swept cylinder correlation

using an effective local sweep angle that is measured directly from oil-flow

patterns on the upper fuselage. A consistent rel_tionshlp was demonstrated
between the axial distribution of measured sweep angles and the distribution

of top centerline heating. This report explains how to extrapolate these

wind-tunnel sweep angles to account for conditions st flight Reynolds numbers

and Math numbers. Comparisons of leeward centerline heating predictions with

flight values are then presented.

The basic concepts for a new technique designed to predict heating along

the side fuselage impingement line are also presented here. This method use._

the same form of heating equation as the top centerline theory. Furthermore,

it makes use of similar assumptions concerning the relationship between sur-

face flow directions and the side fuselage impingement heating distribution.

The side fuselage method is derived from oil-flow and phase-change paint

wind-tunnel data and supplementea by thermocouple measurements. Although the
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si_e impingement method is still under development, some promising preliminary

comparisons have been made with both wind-tunnel and flight heating rates.

SYMBOLS
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qc

qc h

qc o

qc s

Re
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STS
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rl'

Elf Force Flight Development Laboratory

Chapman-Rubesln coefficient

characteristic length of wind-tunnel model or full-scale vehicle as
indicated

Mach number

g_

Orbital Mmneuvering System

convective heating rate

stagnation heating rate on a sphere with radius equal to average
height of orbiter flat side body

stag_lation heating rate on a scaled one-foot radius sphere in
the free stream

stagnation heating rate on a sphere with radius equal to that of

orbiter top fuselage

[_ynolds number,'based on L unless otherwise specified

cross-sectional surface rumning length measured _rom top centerline

Space Transportation System

temperature

axial length measured from orbiter's nose

centerline

angle of attack

reference a defined in equati_ (6)

bow shock angle measured with respect to free stream direction

flow deflection angle across bow shock

surface flow angle and local angle of attack

change in sweep angle with respect to angle of attack

change in _ with respect to x/L

L
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A effective sweep angl,,

A r reference A defined in quations (3), (4), and (5)

Prandtl-Meyer turning angle

¢ Macn number correction factor

hypersonic viscous-interaction parameter = M3vC/ vRe (see

reference 5)

Subscripts

D in equation (1), twice the orbiter upper fuselage radius; in

eouation (16), twice the average height of orbiter flat side body

extrapolated

flight condition

quantity based on characteristic length

quantity based on local flow properties

maximum value

wlnd-tunnel condition

free stream

WIND-TUNNEL DATA

0il flow patterns used to extrapolate the leeward centerllne heating

method to flight conditions were obtained on the upper fuselage of a

O.Ol-scale orbiter model in air in the Langley Research Center's Math 6 and

Math i0 facilities, 6-e and also on a 0.006-scale model in 20-1nch Math

14 AFFDL wlnd tunnel at Wright-Patterson Air Force Base. _ Tests at Math 6

ranged from 15 ° to 40 ° angle of attack at Reynolds numbers of 2.7 x 106 , 5.4 x

106 , and 7.3 x 106 . Oil flows at Math I0 were run at e = 15 ° to 45 ° for free-

stream Reynolds numbers of 0.59 x 106 , 1.19 x I06, and 2.37 x 106 • Angles of

attack of 15 ° to 40 ° at Re_ = 0.280 x 106 and 0.423 x I06 w, re used at Math

14.

The phase-change paint heat transfer, oll flow, and thermocouple measure-

ments used to derive the side fuselage impingement heating method were made on

0.Ol-scale Shuttle orbiter models in Langley's Math 6 and Math I0 tunnels.

Tests were conducted for Re_ = 0.59 - 7.3 x 106 and at angles of attack of

20 °, 30 °, and 40 ° . Oil-flow tests were made using an aluminum model. _dels

for the phase-change paint heating measurements were constructed of a filled

epoxy casting compound and a semi-infinite olab solution l° was assumed during

data reduction• The supplemental thermocouple results were drawn from a

previously unpublished data base described in reference 4.
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FLIGHT DATA

Flight measurements used for comparison with the top centerllne and side

fuselage heating methods were obtained on STS-2 and STS-3 at the locations

shown in figure I. The top centerline heating rate6 meas_;ed by calorime-

ters, were the only data from STS-2 that were used in this report. The con-

vective component of heat transfer for the calorimeters was determined by add-

ing the radiative loss term to the calorimeter value. Heating due to solar

radiation was then subtracted for those trajectory points where the

instruments were in sunlight. The effect of solar heating was comvuted by the

technique of reference ii. All of the instrument louations for STS-3 were

occupied by thermocouples. A one-dimenslonal, transient-conduction analTs is12

was used to determine convective heating for these instruments with solar

radiation heating, once again, computed separately.* A process combining the

results of trajectory and atmospheric reconstruction provided information on
vehicle attitude and free stream conditions. 13'_

LEEWARD CENTERLINE HEATING

916

Review of Theory

The empirical leeward centerline heating method described in reference 4

is embodied in the equation

0.3 (0.002975 + 0.003428 cosA) (i)
qc = 0.75 qc Re£,D

S

The parameter qc " is the stagnation heating rate on a sphere with a
radius equal to that of the Shuttle's upper fuselage. The keynolds n,-,ber is

based on twice that radius. Both quantities are defined by local leeside flow

properties computed using the flow model shown in figure 2. It was determined

that the bow shoc_ angle, B , through which free stream flow is processed

must be equal to 2_. The flow deflection angle, 6 , depends on M_ and

8. The Prandtl-Meyer angle, v , required to expand the flow to the Shuttle's

upper fuselage is the sum of 6 and a.

A pivitol feature of the theory is the close relationship between axial

variations in heating and changes in upper fuselage surface flow directions,

A, measured from oil flew photographs. The technique used to measure oil-flow

patterns is illustrated !n figure 3. The angle, E, between the top

centerline aad a line arawn tangent to the oil-flow path inflection point is

*Heating rates reduced from STS-3 thermocouple data and sular_eatlng

corrections for STS-2 and STS-3 were provided by D. A. Throckmorton,

Aerothermodynam_Ics Branch, Space Systems Division, Langley Research Canter.
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equatedwith the local angleof attack of flow approachingthe top fuselage.
Thelocal sweepangle is thus defined as

A = 90° - E (2)

Figure 4 showstwo sets of wlnd-tunneldata wherethe measuredsweepangles
and the correspondingvalues of normalizedheating rate areplotted as a func-
tion of x/L at twodifferent test conditions. It is readily apparentthat
sweepangleand top centerllne heating vary in an inverse fashion. A more
appropriate term for A is "effective" sweepanglebecause,as defined for
the purposeof the top centerline method,its value often becemeslarger than
90°• Effective sweepanglesgreater than 90° are generally associatedwith
inboard flow in the vicinity of the leewardcenterllne or w_thsurface pgt-
terns causedby flow clrculation aheadof the OMSpodsandvertical tail.
This is simply a nmthematicalconveniencewhich allows the theory to penetrate
zoneson the leewardmeridian whereheating is influenced byvarious classes
of separatedflew patterns.4 Usingthis approach,it wasdemonstratedthat
the leewardcenterllne theory is able to copewith the diverseheatin_ envi-
ronmentsrepresentedby the wind-tunnel data. As an example,figure 5 showsa
comparisonof the theory's heating predictions with wlnd-tunneldata at the
two test conditions indicated in figure 4.

Extrapolation to Flight Conditions

Thewlnd-tunnel data base of upper fuselage surface flow directions is

presented in figures 6, 7, and 8 where axial distributions of measured sweep

angles for Mach numbers of 6, I0, and 14, respectively, are plotted for each

angle of attack and Reynolds number combination. The hypersonic vi&cous-

interaction parameter is also given for each testconditlon since this term is

often used to classify the general behavior of leeside separated flow. Sweep
angles from x/L - 0.383 to 0.731 correspond to axial locations where

_hermocoup_es were positioned on the wind-tun_iel model. Additional measure-

ments from x/L - 0.30 to 0.787 were made to encompass the locations of orbiuer

flight instrumentation. For a given Mach number, the Reynolds numbers in

flight are considerably higher than those in the wind tunnel. Conversely,

flight Mach numbers are greater than in the wlnd-tunnel data for corresponding

Reynolds numbers. The ground-to-flight difference in each of these p_rameters

will affect both upper-surface flow patterns and leeward centerliLle heating.

Details of the many complex flow interactions which determine upper fuselage
heating and curface flow patterns cannot be directly addressed due to the lack

of information concerning the specific nature of leesfde flow processes.

However, it will be demonstrated that the relatively simple approach described

here for extrapolating the leeward centerllne heating equation anl w'ind-tunnel

sweep angles to flight conditions is able to capture the essential trends of

the Reynolds number and Mach number influences on top centerline heating.

The first step toward converting the empirical leeward centerline heating

method into a flight prediction technique is to establish a procedure for

extrapolating the wlnd-tunnel sweep angles to their equivalent flighz .Reynolds
number values. The next step is to define a criterion which relates [he

flight environment at each trajectory point to the proper set of wind-tunnel

test conditions in order to duplicate flight trends in leeward center!ine

heating distributions. A th!rd requirement is to develop a method of
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correcting for the effects of the differential between flight Math numbers and

the wlnd-tunnel Math number from which the flight sweep angle distribution is

to be extrapolated. The solution to these three _=o01ems will now be
investigated.

A Reynolds number correction for the upper fuselage surface flow patte_-as

may be obtained through manipulation of the sweep-angle data base. The data

for each Math number were cross-plotted in a va.iety of ways in order to

reveal the format which optimized the effect of P_ynolds number related

trends. No easily discernable or consistent Reynolds number trends could be

found in the Math 6 data, which correspona to low values of _. The mixed

trends in the data for figure 6 also suggest that a majority of the Math 6

sweep angle distributions are relatively inde endent
was concluded that the swee_ an_le_ mP==, --- p _ of Reynolds number. It

- o ....... uzea over the Keynolds numb°r range

indicated in flgure 6 require no overall correction for the effect of flight

Reynolds number. However, flow angles for the different Math 6 tests must

still be linked to the appropriate range of flight conditions in a manner that

is yet to be described. Similarly, sweep angles for the two free stream con-

ditions nea{ _ch 14, where _ is large, wet_ found to be nearly identical

for most test cases. Only the surface flow directions at Math i0, for inter-medlate valu== ^= --

.... X_, were subject to significant variations as a function

of Reynolds number. Rough estimates for the range of _ where wlnd-tunnel

data must be corrected for the effecLs of flight Reynolds numbers can be

offered on the basis of these assessments. _"_.e lower bound of tb/s range may

be L " 0.2 to 0.3. These numbers are close to the maximum value for theMath 6

tests but well below the lowest Math I0 parameter for which, as will be

discussed below, there is a strong Reynolds number effect. The urpe r bound on

the range of _, _here Reynolus number corrections are required, is

perhaps 1.5 or less. This is based on th= oh_arvatlon that the axial sweep

angle distribution for e = 45 ° at M= = 10.16 and L = 1.219 in figure 7

is similar to those at Mach 14 for lower angles of attack #
Math 10 flow patterns are st _I- ........ _n figure 8 These

_ u_pe_ent on _e_, but it iS
moderate increase in _ ma" dl ........... suggested that a

_ _=uxve the association with Reynolds number.

The Math I0 data exhlblted very clear Reynolds number relationships by

plotting sweep angles at all Reynolds numbers versus angle of attack for each

axial location. This is illustrated for x/L = 0.51 in figure 9. Linear curve

fits are used to indicate general trends of the flow-angle measurements at

each of the three Reynolds numbers. Individual data points usually fall with-

in +10 ° of the corresponding curve fit. An increase in Reynolds number

Increases the rate of change of the sweep angle as a function of angle of

attack. The linear curve fits for each Reynolds number share one common value

of sweep angle and angle of attack, denoted by A r and ar , where local

flow directions are independent of Reynolds number. Plots llke the one in

figure 9 for other axial locations reveal variations f_ Ar and mr that

depend on x/L. The axial dependence of A r is shown in Zigure 10. In a

broad sense, Ar is an indication of the average magnitude o_ sweep angles on

the upper fuselage at each axial station. _e large values of A r for

0.2 < x/L < 0.34 are due to the influence of the canopy and the initiation of

the !eeslde vortex flow patterns. The effect of the canopy diminishes with

increasing axial length and leeslde flow becomes well established beycnd

x/L = 0.34. As a result, Ar is nearly conJtant until reaching x/L = 0.63

where it begins to rise again. This is due to the forward extent of surface

patterns with r_versed flow directions, particularly at large angles of attack
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and high Reynolds numbers, caused by flow interactions with the blunt forward

face of the 0MS pods and with the vertical tail. The stralght-line segmen:s

in figure I0 which approximate A r are defined as follows:

for 0.2 < x/L < 0.34

Ar = 117.7 ° - 133.7 ° (x/L)
(3)

for 0.34 < x/L <__0.63

Ar : 72.0 ° (4)

for 0.63 < x/L < 0.8

Ar : I_3° + 112.3 ° (_/L) (5)

Figure II shows that =r varies linearly and decreases with increasing

x/L. This is primarily caused by the flow interactions at aft axial stations

mentioned above. Effective sweep angles within the resulting surface flow

patterns are e_za_ed at high values of _ and Re_. This forces the poln:

of intersection for the various Reynolds number distributions, llke those in

figure 9, to lower angles of attack. The linear curve fit for cr is given

by

=r = 40"I° - 29"5° (x/L) (6)

The parameters A r and =r will be used as part of the procedure to
correct Mach I0 wlnd-tunnel sweep angles for the effects of flight Reynolds

numbers.

A basic property of the Peynolds number correction for local flow dire-c-

tions is related to the slopes of the linear distributions of A vs =. A

well-defined Reynolds number relationship develops when the slopes of the

linear curve fits for each Reynolds number, _ : AA/Am, are plotted agains:

x/L as in figure 12. The slope of A vs a, _, becomes larger at all axial

stations with increasing Reynolds number. Each Reynolds n_mber pro<_uces a

maximum value of _ at x/L = 0.445 as also shown by the stralght-line curve
fits for the data. The rate of change of q _ith respect to x/L depends on

axial location and P_ynolds number. This is shown in figure 13 where n' =

A_/A(x/L) is presented as a function of log Re® for locations both fore az_

aft of x/L = 0.445. These terms are defined as follows:

for x/L < 0.445

n' = - 11.059 + 2.542 log Re,
(7)

for x/L > 0.445

n' : 15.429 - 3.297 log Re_
(__)

The variation of n at x/L : 0.445 provides the information which allows

extrapolation of the entire Mach I0 sweep angle data base to higher Reynolds

numbers corresponding to flight conditions. Figure 14 indicates that the

three wlnd-tunnel data points that are available form a linear functlon of log

Re_ which is given as

nmax : -13.332 + 2.424 log Re_ (9)



Thedispersion of each data point fromthe linear correlation is quite snail.
This wouldappearto cenfine the error bandof the extrapolation to a ve.-y
narrowrange up to Reynoldsnumbersat least an order of magnitudelarger =han
the wind-tunnel values.

Theassessmentof Reynoldsnumbereffects on sweepangles for the veriou_
sets _f wind-tunnel data andthe extrapolation of the Math i0 upper fuseie-_e
flow patterns to their equivalent flight Reynoldsnumberform described e_ove
ccmpletethe first step required of applying the empirical leeward-centerline
heating methodto flight conditions. Thesecondstep, whichwasoutllne=
earlier, involves the definition of a criterion that relates fligh= cond_ion_
to the proper set of wind-tunnel test data. Thepurposeof this is to _-_ure
that general trends in heating predictions will reproducethe axial dist__bu-
ticns of flight heating measurements.Themostdirect wayof obtaining _s
information is to collect heating distributions at various entry trajectory
points and observewhich of the wind-tunnel tests producea corres_-_ondinz
inverse variation in sweepangles. Examplesof suchcomparisonsare ili_ra-
ted in figures l_'through 17 for Mathnumbersfrom 24 to approximately7.
Both flights producednearly the sameleewardcenterline heating distribz-
tions at correspondingtrajectory points. However,heating rates _easure:by
calorimeters on STS-2are higher than the Lhermocouple-derivedheat-transfer
rates for STS-3at similar flight conditions. This point will bediscussed
later. In each case it is noted that the correct distribution of sweep-__-_les
correspondsto a wlnd-tunnel test for which the free stream Reynold_ nur_e_r is

roughly 40 percent of the flight Reynolds number. A s=udy of orbiter le_-ide

heating in reference 15 also found that trends in ground-based hea=ing ra:es

appeared during entry only a= flight Reynolds numbers that were co_iderahl_-

higher than n the wind tunnel. Apparently, the wind-tunnel environment note

accurately simulates flight flow structures on the upper fuselage a= hig_ec

Reynclds numberb over a wide Math number range. For practical purposes, i_ is
sufficient to use the set cf _nd-tunnel sweep angles for a freestream

Reynolds number that is clo3es_ to 40 percent of the flight value. This

allows nearly complete coverage of the orblter's entry traje_tcry instead of

having heating predictions at only a few discrete flight conditions. This

relationship seems to bc independent of either wind-tunnel or flight Math

number, which indicates that the distribution of leeward centerline heatlr_ is

almost exclusively a function of free stream Reynold_ number. _=oording =o

this criterion, top centerlin¢ heating predictions at early entry times f_r

STS-2 and STS-3 should use wind-tunnel sweep angles from the Math 14 data.

Flight heating distributions from M_ = 20 down to around I0 require the

extrapolated Math I0 A's. Trajectory points below this will use the Math 6
wind-tunnel data.

Heating rates on STS-2 usin_ calorimeters were significantly above the

STS-3 thermocouple heating measurements. A general dissatisfaction with =he

calorimeters' pe=formance on STS-I and STS-2 resulted iu their removal. _--_ere

is also the unsettled question concerning hot-to-cold wall effects on hea:_ng

rates measured by calorimeters. It c_n be expected that the large =emper_:ure

differential which existed between the relatively cool calorimeters and

surrounding hot surface areas _ould cause these instruments to register a

higheK heating rate than was actually present. The thermocouple da=a do _=

suffer from this problem. For these reasons, the determination of a Macn

number effect on leeward centerline flight heating predictions was _ased

thermocouple measurements from flight 3.
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Heating predictions based on the Reynolds number extrapola=lo= of w-lnd-

tunnel sweep angles will be required to obtain the Mach number corr,.orlon.

The following is a step-by-step set of instructions on how to --_e _k,e Reynolds

number correction. Heating predictions for a given trajectory point- will make

use of sweep angles at the -;ind-tunnel Reynolds number closest to &O percent

of the flight Reynolds number

Re=,t = 0.4 Re=,f (!_D)

Calculate nmax and n' for both Reynolds numbers. Next dete-,_mi=a n -as the

desired axial location using the expressions

qf = _max,f - (0.445 - x/L)q'f (iLa)

qt = qmax,t - (0.445 - x/L)q' t (lZb)

Now compute A for each Reynolds number at the desired angle of attack assuming
a linear curve fit of A vs a, as in figure 9, using the relationshf-ps

Af = A r + (e - _r)nf (ITs)

A t = A r + (_ - ar),it (i _--b)

The change in sweep angle required to extrapolate the ground-based ._ to the

flight Reynolds number is the difference between Af and A t , thus

Aex t = A + (Af -A t) (i3)

%_here A is interpolated for x/L and e from the win_-tunne! _at=. set identified

by equation (i0). Usually, A # A t because the linear distribution c_ntain-

ing A t is only meane _o be a general representation of the meas_rem_nts.

However, the difference between two such linear representations for a given

x/L and e is a direct measure of the effect of changing the Reymolds number.

These steps must be repeated for all axial locations where hearing mredictions

are to be made.

The lack of wind-tunnel data at very high Mach numbers pre¢lud_-s the

possibility of extracting a Mach number effect on upper fuselage f_ direc-

tions, and the associated leeward eenterline heating, from the ava _i-_able

ground tests. As with the criterion relating flight-heating distri[_ntions to

wind-tunnel surface flow patterns, the effect of flight Mach n_mber on the

extrapolated heating predicticn must be formulated using a small p_=-tion of

the entry data. Heating rates at M_ = 14.0, Re_ = 3.52 x 106 , and :_ =

40.9 ° for flight three were chosen at random and plo'-ted in fi_-_re lS(a) along

with three sets of heating predictions calculated using the MINIVEP_ -= aero-

dynamic heating co=puter program. The highest heating predictions _-__sulted
from applying the uncorrected wind-tunnel sweep angles for M_ - 10.54 and

Re== = I. 19 x 106 directly to the flight environment. The set _f prm_dictlons

at intermediate heating levels shows the effect of using the Reynollf-s n_mber

extrapolation outlined in equations (I0) through (13). The re_c_It _f this

procedure is a predicted heating distribution that displays the gemaral trends

of the flight measurements, but the predictions are higher by aimosr, a factor

of two. This residual is assumed to be related to the differer_ce h_tween the

flight and wind-tunnel Mmch numbers. It can be accounted for a= tP_e_Math 14
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trajectory point by multiplying heating rates for the Reynoldsnumber

extrapolation by a ,_ch number correction factor, _, given as

= (,t_,tl: _ f)2
' (14)

The --_dified Reynolds-number corrected predictions are in g_od agreemen= wi-_.e

the _-_easured heating rates. This factor was proven to yleig resul=s tbsp. we_--e

consistent with flight data at other trajectory points, as shown in figure
[8(b) for M= = 20.0, Re_ = 1.53 x 106 and Q 39.8 =

The corresponding
wind-tunnel sweep angles were for ,_, = 10.!6 and Re== = 0.59 x 106 . Thr_e

sets _f predictions are plotted as before. There is a much larger effecE of

,_tach number at this entry point. But the Mach number correction in equaEion
(14) places the fully corrected predictions very close to t.-_eflight data.

Figure 18 demonstrates that the wind tunnel to flight difference in both /_=c_

number and Reynolds number is important for predicting the _gnltude of flig_.-

heat transfer to the orbiter's leeward meridian. By incorporating the

Reynolds number extrap_!ation, the criterion for reproducin_ the flight heat-
Ing distribution and the Mach number correction, equation ([) can now be
wcitten as

0.3

qc = 0.75qcs , Re£, D (0.002975 + 0.003428 cos Aext) (15)

At flight conditions requiring the use of wind-tunnel sweep angles from the
:_ch 6 or Mach 14 tests, Aex t is assumed to be equal to A.

Comparison of Leeward Centerline Heating Predictions With Flight Data

gigures 19 and 20 present comparisons of leeward cenEerline heating

predictions with entry measurements made at Mach numbers fro_ 24 to 7 during
STS-2 and STS--3, respectively. Similar free stream condlt_ons fo_ each

trajectory are shown here so that measurements and theory for both fligilts ma T
be compared. Calorimeter measurements of heating rate on STS--2 are

consistently above the thermocouple data of flight 3 by 50 percent to I00

percent or _ore. The largest differences occur at free strea_n Hach number_

greater than 20 and less than i0. Heating predictions for tb_ two flights a=

approxlmatel- th= same free stream conditions and angle of attack are at abou=

the same levej, This Indicates that the discrepancy in heatimg measurements

may be due to instrumental effects rather than large variatior_s in the fli-gnt

environment. The magnitude of predicted heating tends to agree more closely

with STS-3 thermocouple measurements. The predicted axial distribution of

heating rate is much the same as flight measurements of heati__g distributi_s

for both entry =rajectories. The very large disagreement betwdeen theory aid

flight data below _ch i0 on STS-2 may be another symptc_ of fnstrumenzal

effects, as might be the case for M_ > 20. The comparisons a= low Math
numbers for STS-3 are much clo.;er.

Evidence for transition from laminar to turbulent flow ca-_ be seen in

these ccmparisons, particularly in the thermocouple data of flight 3. !_s= of

the predicted heat£ng rates, which are turbulent, are higher than measured
-alues _v a factor of approximately two for ,M_ > 20. This is a clear

indication of laminar flow on the upper fuselage at very high _ch numbers.
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The theory and flight data rapidly converge for bot[_ flights beginning near
The entire lepward centerline appears to become turbulent within a

M_ = 20. - _ _ J,,i5 _f l_ewa_d centerl_ne heating for
very short Eime. However, anotner seua_ _ ......
STS-3 concludes that transition to turbulent flow occurs no earlier than M_

18. This difference may be related to the correctioT_s applied to wind-

tunnel sweep angles used for heating predictions in the vicinity of _ =
..... _ the high an¢_e of attack, low Feynolds r,_mbew noEed earller L,,=_ • ° _ _ , r

20. It as ...... _, .... to t_Le \_ch _4 sweep angles ._r w,_l_
Mach i0 flow patterns Dear a re_=mu_=,_= " -

no Reynolds number correction is required. Perhaps by virtue )_ their
relatively large va±ue of _, the low Reynolds number _ch i0 flow angles

used in the M_ = 20 heating prediction may require less aorrec:ion for

Reynolds number effects than was imposed b'/ the ,.rind-tunnel e×:rapolation, if

so, predicted heating rates could be higher than those indicated for tP.e Macn

20 STS-3 trajectory point., This would shift the realm of fL11ly turbulent t!o_

to somewhat lower _ch numbers. But if such an influence of =he visceus

interaction parameter exists, it is not readily apparent in the available ._ind

tunnel data. Even though corrections for this kind of second order effect may

be necessary for heating predictions to ag=ee exactly with _!ight data, the

first-order corrections presented here produce favorable compmrison; with

entry heating measurements.

SIDE FUSELAGE HEATING

Basic Concepts of Theory

An empirical method for predicting side fuselage impingement heating on

the Shuttle orbiter is under development. It is based on _n analysis of oil-

flow patterns and corresponding phase-change paint and therx.ocouple heating

measurements. The side fuselage theory uses the same form of _urbulent

heating equation as for the wind-tunnel top centerline correlation, l_e

equation as derived for M= = 10.36, Re= = 2.37 x l06, and _ = 40 °, since

these parameters are close to the conditions for which flight comparisons will

be made, is

0.3

qc = 0.$2 qch Re£,D (0.003531 + 0.004069 cos %)

<16)

The factor 0.42 corrects the reference heating rate, qc- , from the

stagnation value on a sphere to that on a sharp-cornere_ slab of infinite

length with a h_if width equal to the average height of the side fuselage flat

surface. Reynolds number and the reference heating rate are based on local

flow parameters that are computed using the methods outlined below, and the

coefficients are determlne_ by iteration ,_sing only a few data points at

different values of Re=.

The surface oil-flow directions radiating away from the impingement line

are also taken to represent angle of attack of flow approaching the side fuse-

lage and, thus, a sweep angle in the same sense as illustrated in figure 3 for



the upper body. Theaxial variation of sweepangle along the impingement
iuuation is shownin figure 21 for _ = i0 and= = 40°• Sweepangleson the
side fuselage showlittle changewith Reynoldsnumber. Tney are cons'ant over

the forward port,on of the ixplngement llne and increase sharply at large

va!aes of x/L. The iucrease in A was determined to be a result of an nddi-

tional expansion of the flow before reaching the fuselage. Both factors

contribute to a rapid fall in impingement heating at those locations.

The source of the inpin_ing flow is assumed to be the shear layer which

originates along a separation line on the strake's upper surface. It is

further assumed tha: sep=ra=ion-pnint shear-laver flow properties are

proportional to those at the same axial location ou the strake's leading

edge. Variations in leading-edge flow properties along the str_ke were

accounted for by interpolation of pressure distributions computed by the

three-dimensional Figh Alpha Invlscid Solution (KALIS) 17 computer code.* It

was found that pre=sure increases linearly along the extent of the strake.

Another simplifying assumption states that leading edge flow from a given

fractional distance along the'strake will influence heating at the same

fractional distance along the side fuselage impingement line. This model

allows the flow to zravel do_nstream as it moves upward and over toward the

fuselage.

These procedures were incorporated into the M!NI_ER computer program.

Figure 22 shows an example of a comparison between the theory's side fuselage

impingement line heating predictions and phase-change paint measurements for

the test condition of _= = 10.36, Re_ = 2.37 x I0 _ , and a = 40 ° • The ini-

tial rise in hea_img is due to tha increase in pressure along the strake'_ •

leading edge combined with the constant A's in figure 21. Peak heating occurs"

just forward of x/L = 0._ corresponding to the location at ._hich sweep angles

begin to increase: Larger s-_eep angles and the additional expansion of flow
beyond this point cause a rapid reduction of impingement heating. _e heatih_

predictions are in close agreement with wind-tunnel data over the entire

length of the impingemen_ line. Simil&r comparisons have been obtained for
all test conditions at Math i0 which includes angles of attack from 20 ° to 40 °

a_d free stream Reynolds numlgers of 0.59 x 106 , 1.19 x I06, and 2.37 x i06.

Co_rparisons With Flight Data

The effect of _ch number on the heating prediction has not yet been

assessed. Therefore, a preliminary comparison with flight data has been

limited to the. STS-3 trajectory point where M_ = 10.37, Re_ = 5.41 x 106 ,

and e = 38.9 ° . Flight Mmch number and angle of attack are within the range of

the wind-tunnel conditions. The flight Reynolds number is larger by over a

factor of two. But wind-t_nmel sweep angles, as well as the impingement loca-

tion, showed little change with Reynolds number at a give_ angle of attack.

Valles of A and impingement location for a = 38.9 ° were interpolated from the

wlnd-tunnel measure-_m_nts _d applied to the flight prediction. Figure 23

shows the resulting axial distribution of impingement heating rate for the

*Existing HALLS flow-field computations were su@plied by K. James

Weilmuenster, _&erothermod_;namics Branch, Space Systems Division, !angiey

Research Center.
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selected fiight parameters. Thepeak heating rate is approximately ten times

,higher t_han the average top centerline heatln_ a _- this same trajectory poin-.

It is difficult for the =elatively few izstruments on the orbiter's si£e

fuselage to obtain a direct measurement of impingement heating. Figure 24

shews the predicted location of flow impingement in relation to the positioas

of the side fuselage thermocouples. However, a comparison of the heating pre-

diction shc_ in figure 23 with flight data can be accomplished as illustr_:ed

in figure 25. Cross-sectional measurements of heating at six axial station_

are presented along with the predicted impingement heating for each v_lue of

x/h. Wir_-_unnel measurements indicate that flow impingement moves off of _h=

_pper side fuselage near x/L = 0.65 for _ - 40 ° , so only data for x/L < 0._>_

are used P_re. The next downstream array of orbiter instr_ents is at--x/L =

D.696. _7r._heating distributions superimposed on =he data points were taken

frzm wind-:unnel phase-change paint measurements for M_ = 10.36, Re® =

2.37 x i06 at _ = 40 ° and normalized by the predicted impingement heating.

The flight heating data generall/ _o_form to the =rend and magnitude of the

projected _istributions. This seema to indicate that the impingement heatimg

predictio_ is near the correct level.

Flight late a= x/L = 0.497 and x/L = 0.542 contain sonde heating measure-

ments that are approximately 80 and 120 percent above the mean loca] values,

respectively. Figure 26 shows that these pulses of high convective heating

are associated with large and erratic excursions in surface temperature which

occur at later entry times. Si,milar temperature fluctuations affect many of

the side fuselage thermocouple locations at slightly different times, but

these variations are always confined to the high Reynolds number portion of

the trajectory. The anomaly at x/L = 0.497 is above the impingement line

while at x/L = 0.594 it is well below the impingement location. Many similar

heating "spikes" were observed in the wind-tunnel data for _ch 6 and Mach lO,

but only at locations above the impingement line. This is illustrated in

figure 27 .using cne of the Mach 6 test c_es for which Reynolds m=ber is tb__

same as for the STS-3 trajectory point. The average increase over local

heating nssoeiated with these features in the wi_ tunnel w-as about 70

percent. _e phase-change paint data revealed that the phenomena are highly

localized, a_ indicated by the slender heating profile in figure 27. _is

sane profile was dpplied to the data in figure 25 using dashed lines in order

to distinguish actual flight measurements from normalized wind-tunnel heating.

It is suggested that these elevated local heating rates are caused by

embedded vortices which are generated by visc_._s Interactio_-s during the

impingement process. Embedded vortices are beliewed to be caused by boundary-

la_er cross-flow instabilities. 18 _References 19 _ 20 are _o examples of

the many studies on the relation between embedded streamwise vorticity and

flow impingement, Figure 28 contains a photograph sho_ng a sequence of

uniformly _=-_aced streaks in phase change paint above, and originating from,

tP_ impingement location on the orbiter model's side fuselage at a Mach 6 test
condition. -Each streak is thought to represent a very thin line of vortex

impingement which produces locally higher hea_ing, and the __agnitude of heat-

in_ decreases along its length. Side fuselage "streak" heating has also been

noted on an early phase B orbiter configuratioa and on the ._o_ET entry

ve_hlcle. 22 A larger number of streaks were observed in the These-change palm=

test_ with increesing Reynolds number and higher angles cf _t=ack. Streaks

_re present for all test conditions except a = 20 ° and 30 = for Mach I0.
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Thesetrends indicate that side fuselage"streak" heatingmaywell beexpected
to occur in the entry flight regimecontaining the selected STS-3trajectory
point. In addition, the changingnumberof streaksand variations in the
spacingbetweenthemat different free-streamconditions andanglesof attack
meanthat embeddedvortices on the orbiter _n flight will movelongitudinally
on the side fuselage. This motionwill causea numberof individual vortices
to sweepacrossa fixed location resulting in intermittent locally higher
heating. This could explain the large temperaturevariations at later entry
times shownin figure 26. Verylarge side fuselageSTS-2heating rates _.bat
havebeenpreviously documented23mayalso be causedby the onset of embedded
vorticity.

CONCLUDINGREMARKS

A methodhasbeendevelopedfor extrapolating a wind-tunnel-developed
empirical heating techniquefor th_ SpaceShuttle orbiter's leewardcenterline
to flight conditions. Thedistribution of heatingalong the vehicle's leeward
meridianwasfoundto be primarily a function of Reynoldsnumber. Axial heat-
ing trends in flight correspondto those in the windtunnel for whichthe
Reynoldsnumberis approximately40percentof the flight value. Only those
wlnd-tunnel leeslde fuselage flow patterns at intermediatevalues of
displayed significant andconsistent sensitivity to changesin Reynolds
number. Theeffect of Machnumberonheating predictions wasdetermined
throughlimited _seof the flight data. Application of the extrapolatedheat-
ing methodto the flight environmentsof STS-2andSTS-3producedgenerally
favorable comparisons. It wastentatively __n__!ude_the'. "_h_ETS-2_=-eatla_
measurementswereof lower quality than thoseof STS-3. Thetheory may
providea somewhatconservativeindication for the time of transition from
laminar to turbulent flow. Heatlngpredictions afforded by this procedureare
adequatefor "thedesignof upperfuselagethermalprotection systems.

A newtechniquefor computingside fuselage impingementheating was
briefly described. Tb/smethodis derived from the leewardcenterline
theory. Althoughstill underdevelopment,the side fuselageheating method
wasshownto a6ree well with wind-tunnel data and with selected STS-3 flight

measurements The comparison with flight data revealed that, as in the wind

tunnel, there are areas of locally enhanced heating at side fuselage locations

well away from the impingement line. Fne associated heating rates were

approximately I00 percent higher than nearby undisturbed levels. It is

suggested that this phenomenon is caused by embedded vortices resulting from
viscous interactions that are perhaps related to flow reat=achment at

free-stream conditions which satisfy critical values of Mach number and

Reynolds number at a given angle of attack• The existence of these features

•_III have an impact on thermal protection requirements of future winged entz-y

vehicles which experience flow impingement on the side fuselage.
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Figure i.- Locations of entry heating rate measurements

on Shuttle orbiter's fuselage.

Figure 2.- Flow field model used to ccmpute local leeside properties

for leeward centerline heating the(,ry.
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Figure 3.- Upper fuselage surface pattern showing measurement of flow angle.
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at !_ = 6, Re = 5.4 × I0 , and _ = 40 °.
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