LESSONS LEARNED FROM THE DEVELOPMENT AND
Manuficture of ceramic reusable slurface insulation
Materials for the space shuttle orbiters

Ronald P. Banas, Donald R. Elgin, Edward R. Cordia, Kenneth \therefore. Nickel, Edward ${ }^{\circ}$. Gzowski, and Lawrence iguilar Lockheed Missiles \& Spase Company, Inc.
Sunnurale, Caiifornia

SURMARY

Three ceramic, reusable surface insulition materials and two borosilisate Glass coatings were used in the Eabricaticn of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles have been made from these materials for the first three orbiters, Columbia, Challenger and Discovery. Lessons leamed in the development, scale-up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials.

INTRODUCTION

The landing of Columbia after STS-5 on 11 November 1982 demonstrated the reality of a truly "reusable" themal protection system. The concept of a nonablating, rigid, reusable, ceramic insulation materiał was identified by a Lockheed patent disclosure in̆ December 1960. It was recommended as a TPS ₹or Lifting Reentry Vehicles by Lockheed in 1964 (ref. 1) and was pursuej as a low level research and development effort during the early 1950's. A concentrated development effort was started in 1968 (refs. 2, 3, 4 and 5) to parallel the NASA Phase, 8 studies that defined some early Space Shuttle configurations (ref. 6). Many lessons vere learned Juring each phase of the evolution from laboratury development to an initial production facility in 1971 (refs. 7 and 8), and finally to the full production facility (refs. 9 and 10), which produced a shipset of tiles for the arbiter Columbia

Lessons learnsd curing the develcpment and scale-up to production of three rigid, ceramic, Reusable Surface Insulation (RSI) 工aterials and two torosilicate glass coatiags will be discussed. However, the mair empiasis will be on the significant lessons learned from the following manufacturing phases ir the full production facility:

1. Processing of raw zaterials into tile blanks and coating slurries
2. Programming and machining of tiles using numerical controlled milling machines
3. Preparing and spraying tiles with the two coatings
4. Contro:ling material shrinkage during the high-temperature (2100-22750 5) coating glazing cyales
5. Yeasuring the tiles before coating and after coating glazing
6. Loading tiles into plyurethane array frames, shiming th: tiles tc the proper tile-to-tile gup iidti and zachining the innez-mozi-line of all tiles in an array

The RSI materia's incluce Li-900 (Lcckheed insulation at \bar{y} densicy of 3 lb/ft ${ }^{3}$), an all-silica material developed by Lockheed Missiles space Jompany Inc. (LMSC) in 1972. A predecessor, LI-Jj00, (a 15 laft ${ }^{3}$ density a: :silica material; zas developed by MSC $£=19 \mathrm{~m}_{2}$ (ref. i). it ias the lowest weignt prime material for Loc'rieed's revscble lifting zeentry reincle studius (ref. 21) from 1052 until i97 when LI-E00 was developed (re $=$. 12). LI-2200,
 and scaled up to production jy IUSC in 277 . FRCI-12 (Eibrow Rezractory Composite Insulaticn at a density $c=12$ ib, Et ${ }^{3}$; is a composite Duriag desigr, development, test ard. e:aluatior of Columbia, the need for improved thermal frotection tiles was zecognized. St-onger, less dense tiles more resistant to impact lamage vere desired. A ceamic tile zaterfal with these characteristics, in addition to the othe r required properties, was invented by the NASA ARC (ref. 14) and scal.ed up $=0$ production size biliets by LMSC (ref. 15). This zaterial, FRCT, composec of a blend of silica fibers ard aluminum borosilicate fibers, is an cutgrowts of LI-900 and LI-2200 technologies and basic research of high reaperature material:.

The two borosilicate coatings are Ciass ! and Class 2. The Ciass 1 (0036C) coating (ref. 16) is white and has a zatio of solar absorptance to total hemispherical emittance between 0.2 and 0.4 from $-170^{\circ} \mathrm{F}$ to $135^{\circ} \mathrm{F}$, and an emittance 20.7 at $1200^{\circ} \mathrm{F}$. The Class 2 or Reaction Cured Glass (RCG) coating (ref. 17) is black, and has a cotal hemispherical emittance ≥ 0.8 at $2300^{\circ} \mathrm{F}$ and a ratio of solar absorptance to total nexispherical emittance betzeen 0.7 and 1.1 from $170^{\circ} \mathrm{F}$ to $250^{\circ} \mathrm{F}$. It is ised on $\mathrm{I}-900$ tiles that experience surface temperatures from $1200^{\circ} \mathrm{F}$ to $2300^{\circ} \%$ and ail LI-2200 and ERCI-12 tiles.

LI-900 was scaled $1 p$ to production in 1975 anc the first production billet for Columbia was fabricated i: Septem'ver 1976. LI-2200 was i=pleaented as a pilut plant operation to pro ce about 100 tiles per cibitar in October $i 977$. After the final tile deliver s were made for Colambia and Challenger, about 3090 : iles per orbiter were zade irom TI-2200.

The pilct piant operation for FRCI-12 started in January 1979 under a contract from NASA ARC (ref. i5). Facility Iodification and the scale-up to production billet sizes started in Octoter 197o. The first ERCI-12 production billet for Discovery (OV-103) was prodiced in Octoder i981. dbout 2700 FRCI-12 tiles are scheduled for installation on Discovery and Atlantis (OV-104). The processing parimeters involved in the production of these naterials are jescribed in referenze 18.

FRCI-12

FRSI
GHP
IML
IP

LI-2200

LI-900

LMSC
MD
MDI
Mylars

NC
Nested Tile

Nextel 312 (R)

OML

0036B

0036C

0050

A rigid, composite fiber insulation zade of 78% silica fibers, 22% Nextel fibers with 3% by weight of silicon carbide at an average density of $12.5 \mathrm{lb} / \mathrm{ft}^{3}$

Felt Reusable Surface Insulation
Guarded Hot Plate
Inner Mold Line
In-plene direction which is perpendieular to the through-the-thickness direction

A rigid, all-silica fibrous insulation wich about 2% by weight of silicon carbide at an average density of $22 \mathrm{lb} / \mathrm{ft}^{3}$

A rigid, all-silica fibrous insulation with an average density of $8.75 \mathrm{lb} / \mathrm{ft}^{3}$

Lockheed Missiles \& Space Co. Inc.
Master Dimension
Master Limensions Intersections
Tile section cuts put on flexible heary gauge plastic by Rockreli or LMSC and used by LMSC inspectors to measure the sides of complex tiles

Numerical Controi
A tile that is individually measured for plantorm dimensions and has its IML cut while being held in a polyurethane nest

Aluninum borosilicate fiber; a product of Minnesota Mining and Manufacturing Co.

Outer Mold Line; exp riences aerodynamic heating during ascent and reentry

The original ilass 1 coating; a dual iayer coating consisting of porous optically adjusted subcoat and fused glass topzoat

The present Class 1 coating; a single Jayer system that meets the optical property requinements

The original Class 2 coating; a fused silica subcoat and a tupcoat of 7930 frit at $8 \% \mathrm{~B}_{2} \mathrm{O}_{3}$ with a silicon carbide emittance agent

PTX Lot
RCC

RCG

RSI

STS

Terminator or Witness Line

TPS

TTT

A blend of 20 Manviile silica fiber lots
Reinforced Carbon Carbon
Reaction Cured Glass (the Class 2 coating)
Reusable Surface Insulation
Space Transportation System
The line that is put on the sides of most $t=1 e s$ to define the extent of the coating down the sides

Thermal Protection Syster
\cdots
Through-the-thickness cirection; also, the pressing direction during the casting operaticn

RSI LCCATIONS ON COLESTA

Over $30,900 \mathrm{RSI}$ ᄃiles were installed on Coiumbia by Rockwell. About 18,500 of the 23,400 tiles made by LMSC were HRSI, which is either LI- 900 or Li-2200 with the Class 2 coating. The remaining 6000 tiles ware LRSI, which is LI-900 with the Class 1 coating. The losations of the HRSI and LRSI tiles are shown in figure 1 along with the location of the 3CC and FRSI. More details on the composition of these materials and the installation procedures used for all Orbitei TPS materials can he found in referances i9 and 20.

LI-900 PPOCESS DESCRIPTION

. \cdot

Materials

The principal component in LI-900 is all-amorphous silica fibers with an average diameter of 1.2 to 1.4 microns and lengths to $1 / 4$ inch. During development, a major goal was to obtain a stable material that resists devitrification at elevated temperatures. This was accomplished in an extensive development program with the fiber supplier, Manville Corporation. The final product, Q-fiber, is amorphous silica with greater than 99.7 percent purity. These fibers retain their amorphous structure whon erpssed to a temperature environment of $2500^{\circ} \mathrm{F}$ for extended periods. The LI-900 system contains a colloidal silica binder that requires extensive treatment to obtair the purity required for hightemperature morphological stability.

Material Pretreament

During the development of LI-900, certain pretreatment procedures were developed to finprove uniformity and processability of the constituent materials. Maintaining uiiform shrinkage characteristics was difficult early in the development of the process. This was overcome by heat-treating the fiber before processing it into billets. In addition, unfiberized glass called "shot", if not removed, causes high density, devitrified inclusions in the sintered material. To eliminate the "shot", the fiber is slurried with deionized water and passed through a hydro-cyclone cleaner (fig. 2). The cleaned fiber slurry is transferred into a centrifagal extractor to remove excess water and to form a fiber "cake", in preparation for final drying. Also, silica fiber lots received from Manville exhibit יэriable fiber characteristics that cause variations in billet densities. A blend of 20 samille lots, called a PTX lot, was developed to reduee this variability (fig. 3).

LI-900 Fabricaticn

The LI-9G0 process flow is shown in figure 4. LI-900 billets are cast in two sizes, i5 315×6.5 inches and $10 \times 20 \times 7.3$ inches. The operation is performed in an automated casting live. Preweighed amounts of fiber are loaded into twenty-six hoppers on a carousel that automatically positions and empties the boppers sequentially. Originally, 4.9 lbs of fiber were used for each casting. Later development resulted in a change to 5.2 lbs of fiser along with
a reduced water to fiber ratio (fig. 5). These changes, plus others $=0$ be described later, resulted in improved density distribution within the jillets. The fiber and a pre-determined quantity of water are combined in a tani containing a low shear mixer that uniformy disperses the fiber with minimum chozoing. At the conclusion of the timed mix c;cle, the slurry is attomatically trinsferred into a casting mold positioned directly below the miring tank.

Entrapped air bubbles are removed frou the siurzy x lor to compressing the billet to its final sast size. This is accomplished $\because y$ a combination $=z^{*}$ vibration and stirring. Care must be exercised during ihus operation $=0$ maintain a homogeneous dispersion of the fiber. Water is removed and the cast $=-3$ is compressed to a specified height in the volume adjustment operation. Eoncurrently, a vacuum is applied to the bottom of the mold to remove a specified giEntity of water. At this stage, the standard billet contsins 3.2 lbs fiber and approximately 24 lbs of water. The nevt step in the cas:ing operation is the dispersion of a colloidal silica binder in the compressed casting at the weight adjusfent station. The binder solution components are automatically mixed and Eispensed through metering pumps. The solution is dumped on top of the compressed billet and a vacuum is applied to the bottom of the casting mold. The residual water in the billet is displaced by the binder that is dispersed throughout =he casting to a specified solids concentration. Upon removal from the mold, the wet billet is weighed to prcvide a check that all steps of the casting operation were periormed rorrectly. The current method, described above, is an improvement over the original method which excluded the void reduction and vacuum nater withdrawal (fig. 6).

S ce maintaining a uniform distribution of the collcidal silica jinde= in the casting is important to maintain uniform physical properties, a geining agent is used to set the binder and prevent it from migrating during czring. The billets are dried using either a conventional oven or a microwave sryer. They are weighed after drying to assure that the specified amount of mater is remov d pricr to sintering. Originally, the castings received a firs $=$ and second sintering with an additional binder addition between sinterings (fig. 5). Later jevelopment resulzed in a single sintering combined with the change from 4.9 to 5.2 lbs of fiber. The result is an improvement in billet density distribution and an increase in yield.

An additional improvement in average billet density was obtained Fith the implementation of a fiber compact shrinkage test. A correlation between billet density and sintering schedule was developed for each PTX lot (fig. 7). This allows adjustment of the sintering schedule to accommodate the PTX lot shrinkage characteristics which influence the billet density.

Originally, the dried castings were sintered in specially designes 3-zone tunnel kilns at a peak temperature of $2350^{\circ} \mathrm{F}$. These kilns were used $\mathrm{E}=0 \mathrm{~m} 1975$ to 1982. Early in 1982, the sintering operations were transferred to elevator kilns. Six sife heating is utilized in these kilns compared to five si̇e heating in the previous kilns ($\because: 3.5$). This improves the strength distributise winin the billets. The sintering schedule is adjusted to produce billets wi=j a: average density of $8.8 \mathrm{lb} / \mathrm{ft}^{3}$ by adjusting the sintering time to accoumoda: the PTX lot shrinkage vartations.

Materials

 silicon carbide powier which provides addi＝ienal theral protection if the material is exposed to excessive temperat：$=$ es due to coating loss at the $=$ 二 outer surface．With LI－2200，the fiber he $=5-t$ reatment is umitted，and on＝- he hydro－cyclone cleaning is performed．Unti January 1981，the fiber clean 二ー was perfored by an air bubbling procedure which was less efficient and leEE reproducible than the rresent procedure．

> LI-2\&00 Fabsication

The I I－ 2200 process flow is shown in figure 8 ．The billets are cast $=-\quad$ a specially designed，annually operated casting tow in a $14.4 \times 14.4 \times 8$ ircia size．The mixino process differs from LI－900 in that the preweighed fibers Ere combined with water，SiC，and ammonum hydroxide into a ∇－blender equippea ：－ th an intensifier bar．Since LI－ 2200 requires a signifirantly higher casting énsivg than LI－900，the slurry requires some chopping action to obtain the necessar？ fiber packing．After the blended slurry is transferred into the casting torier and sealed，vuid elimination is accomplished by applying a high vacuum to tee slurry prior to billet formation．The billet is formed by removing part oite water by gravity drain，compressing the slurry to a final thickness，and tier extracting additional water with vacum．

The billets are dried in a batch oven at $450^{\circ} \mathrm{F}$ for 15 hours．The dry eamsity of the LI－ 2200 is approximately $13 \mathrm{lb} / \mathrm{ft}^{3}$ ．Originally，this was the final operation before sintering．However，the billets sometimes exhibited cracks after sintering．An additional drying at $1000^{\circ} \mathrm{F}$ for 12 hours was developec ad impleneited in September 1981 to eliminate Eiis problera．

The LI－ 2200 is sintered in elevator kilns．The sintering schedule is similar to that used for LI－900，except that the geak temperature is $2420^{\circ} \mathrm{F}$ ．The socer time at peak temperature is adjusted to main：ain final densities within a 22 $\pm 2 \mathrm{ib} / \mathrm{ft}^{3}$ density range．Origi：ally，the soak rimes were based on fiber cberfisiry． A more accurate method．based on fiber compact shrinkage，was developed and implemented in June 1981.

FRCT－12 PROCESS DESCRIPTION

haterials

FRCI－12 is a composite fiber material c＝ntaining amorphous silica（ $0-\boldsymbol{f}=$ and aluninum Lorosilicate fibers（Nextel 312 ，a product of Minnesota Min：－s and Manufacturing Company）in a fused fiber zatrix．Silicon carioide powder \equiv added for additiona？thermal protection as $f=$ is in LI－2200．The bulk silica and Nentel fibers are keat treated at $2200^{\circ} \mathrm{F}$ and $2000^{\circ} \mathrm{F}$ respertively to stasi＝－ze and standardize Eiber groperties．Fydro－cyclone cleanizg is performed on silica fibers to zemove particulate contamineats，followed by drying．

The FRCI-12 process flow is shown in figure 9. Sil:? and Nextel fikers are intermixed ard cast into billets using a multi-stage, wet-slury bleading process and automated casting equipment. Castings are dried using a comination of microsave and convection-air ovens to achieve optirum erying rates. Jry castings are sintered in elevatcr kilns using microprocessor controllers to achieve uniform, repeatable heating to the optimum sintering temperature (approximately $2400^{\circ} \mathrm{F}$). The optimum sintering temperature varies as a Enction of FRCI composition and desired final density.

FRCI can be fabricated with a range of compositions and densities to allow tailoring the material to a specific application. An FRCI formulation fith a density of 12 pounds per cubic foot and a silica.to jextel fiber ratio of $78 / 22$, identified as FRCI-12, was developed to replace LI-2200. Other FRCI materials with densities of $8 \mathrm{lb} / \mathrm{ft}^{3}$ and $20 \mathrm{lb} / \mathrm{ft}^{3}$ have been produced. ERCI-12 tiles were substituted for approximately 2764 LI- 2200 tiles on the third orbiter, Discovery. Substitwting FRCI-12 for LI- 2200 saves approximately 870 pounds of weight per orbiter due to the lower density of FRCI-12. Also the tensile strength design value is increased by 50 percent, and the susceptibility to coating impact damage is reduced by eliminating residual tensile strain in the coating due to a better match in coefficient of thermal expansion between FRCI and tile coating materials.

Development of full-scale manufacturing processes for FRCI - 12 required considerable effort by many individuals within NASA, Rockell Intemational, and LMSC from October 1979 through October 1991. Several important lessons were learned during this development about the inter-relationships between processing and fundamental material properties. The development effort was complicated by the requirement to produce a tile material to meet all the existing requirements of the baseine material, while also providing improvements of significant importance to warrant replacement of proven materials.

The first significant FRCI problem was encountered during initial scale-up work on the NAS2-10134 contract. Nextel fibers did not readily disperse when blended with silica fibers in the full-scale mixing equipment. Clumps of undispersed Nextel fibers, which varied from $1 / 8$ to $1 / 2$ inches in length and vel? present in the sintered FRCI-12 material, caused unacceptable coating discontinuities on finished tiles. The original laboratory method called for wetting the Nextel fibers prior to introduction into a small lab-scale V-blender containing silica fibers. This lab-scale equipment and procedure prodaced an acceptable mixture of the two fibers in lab-size castings. Howeyer, when the same procedure was used in full-scale production equipment, the Nextel fibers did not disperse and Nextel clumps occurred in the finished material. An interim dispersion method, only marginally acceptible, was devised for the pilot plant operatic? conducted under NAS2-10134. Nextel fiber was preblended in water in a lab-size V -blender to break up Nextel clumps, mixed with an equal amount of silica fiber in the same blender to prevent reaggregation of the Nextel into clump, and then blended with the remaining silica fiber in the full-scale blender to produce a slurry with suitable characteristics for casting. This interim dispersion method reduced the number and size of clumps in the finished material, but the method was not considered suitable for full-scale production due to the need for consjderable coating touch-up. A hiah-speed, high-shear blender was substituted
for the small v-blender for preblending operations in the final production F=oces:. As shown in figure 10, use of the high-shear mixer for preblending iexthl fijers totally elfmisated Yextel clmps in finished tiles (ref. 2I).

The secood sigrificant problem was encountered during characte-ization testing of the pilot-plant material. The apparent ${ }^{1}$ thermal conductivity of the pilot-plant FRCI-12 was bigher than the LI-900 base line value. Rockwell's criterion for substitution of any material for LI-900 or LI- 2200 was that the thermal response must be equal to or lower than that of LI-900. A guarded iot plate (GAP) apparatus is anrmally used to characterize the therzal conductivity of a material. Measurements can be obtained over a ride range =i temperatures and pressures to establish design values. However, the $\pm 18 \%$ uncertainty band asso iated with GHP data rakes comparative mcasureaenrs on different specimens, with minor variations in thermal conductivity, uncertaiz. Comparative measurements are more easily accommodated with the instrumented tile method (ref. 23) shom in figure 11. Tiles fabricated fron different materials can be tested side-by-side in a radiant heating environment at redsced pressures. Efther steady-state or transient heating conditions canbe simulazed. This method yfelds more reliable comparative results than the GIP method which is limited to testing one material it a time. Apparent thermal conductivity values for laboratory FRCI-12 were much lower than the pilot-plant FRCI-12, but still higher than LI-900, indicating that some key parameter(s) zust have been inadvertently varied during scale-up. An investigation of the effects of various compositional and processing variables on FRCI-12 properties showed that apparent thermal conductivity can be affected by several factors, the west important being density change during the billet sintering cycle (ref. 24). Pilot-plant FRCI-12 experfenced a density change of $5.5 \mathrm{lb} / \mathrm{ft}^{3}$ during sintering, whereas laboratory material experienced a change of $4 \mathrm{lb} / \mathrm{ft}^{3}$. Full-scale production FRCI-12, which has acceptable apparent thermai conductivity (ref. 25), experiences only a $2 \mathrm{lb} / \mathrm{ft}^{3}$ density change. Reducing the density change during sintering was accomplished by use of the high dry density concept, producing castings with increased fiber content (i.e. more fibers per unit volume) and sintering at a lower temperature for a shorter time (fig. 12). Reducing the time/ temperature profile during sintering caused a reduction in average tensile stengt: of the material compared with pilot-plant material. However, use of six-sided heating in the kiln in place of the five-sided heating resulted in a more uniform strength distribution within the billets and provided design tensile strength values nearly equal to the pflot plant values by lowering the deviation.

Another significant develnpment problem was encountered when attempts to achieve FRCI-8 ($8 \mathrm{lb} / \mathrm{ft}^{3}$) thermal conductivity equivalent to LI-900 were unsuccessful. Minimizing the change in density during sintering was not sufficient to produce FRCI-8 with acceptable thermal conductivity. A combinazion with other, less significant, thermal conductivity "drivers" was necessary. Experiments showed that reducing the Nextel fiber concentration in the material formulation and reducing the size of the silicon carbide particles in the material, provided the additicnal reduction in thermal conductivity that was required (ref. 26). Pilot-plant FRCI-8 experienced a change in density during sintering of $2.5 .1 \mathrm{~b} / \mathrm{ft}^{3}$, bas a silica to Yextel fiber ratio of $78 / 22$, and contained 320 mesh gilicon carbice particies. Full-scale FRCI-8, which has acceptable

[^0]hermal conductivity, experiences oriy a $1.5 \mathrm{lb} / \mathrm{ft}^{3}$ change in density, has a ;ilica to Nextel fiber ratio of $85 / 15$, and contains 600 mesh silicon carbice sarticles. Reducing the change in density during sintering was accomplished by roducing sastings with higher dry density and sintering at a lower temperature ©or a shorter time (fig. 13). Reducing the time/temperature profile during ;intering and reducing the concentration of Nextel fibers in the formulation :esulted in lower average strength for the full-scale material compared witi the pilot-plant FRCI-8. However, use of six side heating in the kiln instead Jf five side heating, and increasing the heat-up rate to the sintering cemperature (to minimize shrinkage during heat-up and maximize time above the critical Eiber sonding temperature of $2350^{\circ} \mathrm{F}$; resulted in a more uniform strength distribution sithin the billets and provided design allowable strength values nearly equato pilot plant values.

TILE PROCESS FLOW

The sequence of operations performed after the insulation material is cut into cubes is shown in figure 14. After the tiles are machined, they are bea: cleaned to remove organic contaminants, masked to allow an uncoated breather space area along the lower perimeter adjacent to the IMI, sprayed with Class. 1 or Class 2 coating and sintered at 2100 to $2250^{\circ} \mathrm{F}$ in an Ipsen runnel-hearth roller kiln. After vacuum waterproofing with a methyl trimethoxy silane (Dow Corning DC 6070), the tile identification number is painted on the OML and the tiles are checked dimensionally as required prior to the IML cuts.

The tile IML cut is performed either individually, which is called a "nested" tile, or on a group of tiles simultaneously in an array frame, which is known as an ATA.

The dimensions of a nested tile are checked as required prior to the ml cut. The dimensions of the ATA tiles are checked by the r ability to fit into a premeasured polyurethane array frame with the required tile-to-tile gaps, which are generally 0.045 ± 0.016 inch on the lower wings and fuselage and 0.055 ± 0.016 inch on the upper wings, fuselage and verticai fin.

ENG INEERING

Engineering Data Flow

fine the tile and array irame gemer=ies,
Engineering data, which is used tc define the ing assembly drawings, tile is recelved from Reckwell in the form of engineering assembly (fig. 15). Only 115 of the bounding plane data and lnerlout for $0 V-102$ are defined by conventional engineering 23,400 tiles that Lockheed made drawings. tained as surface definitions described in the Master Dimensions Specification Book, Document No. MD-V70, Rockwell International. The MDI data are transforfec from an ozbiter coordinate system to a local tile/array coordinate system that is compatible with the APT language. These transformed data are stored in a geametry file that is accessed by the NC programer for use in preparing the part program to maciine tiles.

A tile machining drawing is used to determine the proper tila shrinkage compens tion factor isee rile Measurement and Shiming Methods section) to incluce in $:=$ =ile part program.

The geometry file, which contains the tile boundary planes and the om and IML surfaces, is also used to wrice the NC part program to machine the array :rame. LMSC fabiicated 739 array frames for Columbia. Product Assurance Enspection Standards are also prepared for use in inspection of the tiles on the zordax measuring machines.

Master Dimension Rerinements

Almost 18,500 of the 23,400 :iles LMSC made for OV-102 sere witiles, Which are definedin a grid of X, Z, Z coordinates ance corresponding normal pectors. The remaining tiles are the more complex MD tiles, which have their zeometries Jefined in the Master Dimensions Specifications jock. Substantial refinements hive occurred in the proceduies used to define tioc 4900 MD tiles. Originally, fard calculators or personal computers were use co calculate points to approximate coaplex surfices, tile and array corner points, Product Assurance inspectior Standards, and points to check the accuracy of inspection aids (जylars) furnished by Rockwell (table I). Surfaces which could not be analyrically defined were approximated by calculating points and passing a curve through these points.

Software, in the form of APT and FORTRAN computer programs, is now being used to calculate tile and array comer points and to provice accurate blank sizes. Additional seftware and a CAD/CAM system are both used to develop and check the accuracy of complex surfaces. This same CAD/Chil syster is used to provide mylars to check hard-to-inspect tiles, reducing the time required for tile inspection. The accuracy of certain Rockwell furnished mylars is checked at LMSC using she CADiCAM system if a discrepancy is noted durirg the inspection process.

Mylars were seldom used for Columbia tiles. However, for ${ }^{\text {Ch}}$ Challenger and Eiscovery, mylars were used extensively for hard-to-measure tiles. For example 123 complex hinge cover tiles, which contatin conical surfaces, ruled surfaces and through holes, were recently delivered for Discovery ahead of schedule. This success was die to a joint LMSC-RI effort to make 28 mylars that were used to inspect these tiles.

NC Programing Refinements

Initially, an attempt was made to automate tile programming by using a cut package to program each family of tiles (table II). Each minor difference in til gecnetry required a टifferent cut package which was inefficient and often difficult to use. Limited knowledge of the unusual and complex surfaces involved made the progranming task very difficult and time consuming. Prograrnens experienced many failures befort being able to visualize a tile, working from just the master dimensions deta. ti required 90 NC programmers working for ten montis, using more than $16 i$ iou-s fer week of Univac 1108 computer time. An interactive graphics syster was not arasill: to program tiles.

Tiles uith planar sides were programned Es planar surE三ces．This＝esulted in corner sirinkage when the tile coating was glazed（see Tile Sirinkage section）． coe cutting icol was used to machine most tilas．Bince no＝oating terminator line was machined an compley tiles，problems were encountezed viten these tiles －rere masked for spraying and a higi rejectio occurred for files with insuffi－ giont breather araa（fig．16）．The use of differeni fixtures to locate different size blanks on the threє Danley Corp．NC macioines caused a＝elatively jigh zercentage of tiles to be scrapped due to operatce error $i=$ locaring ine slank．

Programing and tile machining are now wore afficient jue $=0$ knowiedge and experiencs gained over the life of the rogr？ required to develop the proper part programs for the tiles on Columbia．About $: 400$＝col tries were required in connection jith design changes on Chailenger and about 600 tool tries as a result of design changes were raquired on Jiscovery．Planar sides are now programed as cFlinders with 900 －inch radii to reduce tile corner shrinkage．About 30 三iecrroplated Eiamond tools ranging in diamete－from $1 / 8$ to 2 inches were desiged auring the Eirst year of production and are 50 used to reduce machining time．λ coating terfing and reduce the number added to most complex tiles to facilitate crat breather area．The same fixture is of tiles scrapped or reworked due to incorrak，＝egardless of size．This change has also used on the NC wills to locate all oraped jecause of operator erfor in greatly decreased the number of tiles scrapyed． lovating the blank on the bed of

Interactive Graphics

The recent use of an interactive graptics system（CITLA）to program the The recent use of complex tiles has demenstrated that this method of programm－ ing reducas the number of tooi tries required before an arceptabie part can be made．The NC programer tas the ability to replay the outter moiton on the graphics system terminal and correct any efors observec prio：to machining the first tocl try．

The expanded use of an interactive graphics system 三or the redesign of the more complex HRSI tiles would markedly racuce both the cost and time required to manufacture these $t i l e s$（fig．17）．An example of how this systea would work follows．A three dmensional engineering rodei of a given tile is constructed on the system．The tile nodel can be rotated on the timinal scope，showing all facets and all surface intersections．The model is then sccessed，the cutter all fon is added，the cutter notion is replayed to check for and correct errors， ard then a tape is produced and sent to tee machine stc＝for a tool try．Any eriors encountered during the tool try car be eusily corrected using the same eng：neering model．However，as the NC programmer becomes more proficient ith the ？－D model，this sequence should minimize the number of tool tries．In addition，Product Assurance can access the same enginee＝ing model and extract the atiributes necessary to inspect the tile．

BOROSILICETE COATINGS

Class Coazing
Developnent of the Class 1 （white）＝oating was a signizicant challange
because of the stringent optical property and weight requirements．Tze optical proserty requirements are a ratic of solar absorptance to total hemispherical emiztance between 0.2 and 0.4 ，to achieve low temperatures while on crift，and an emittance of 0.7 at $1200^{\circ} \mathrm{F}$ to allow maximum re－radiation of the convective hearing energy during reentry（fig．18）．An．intensive development program was successiul in producing a dual layer conting that was started in procurtion in Octover 1977．This coating（003GB）consisted of a fused，water－imprasous topcoat of clear glass plus zinc oxide，over a porous suocoat that coatained aluainua oxidc for high reflyctance and silicon carbide for high emitzance． The subcoat recuirec drying at 1300° E prior to sprajing the tupcoet．After bot：lajers were applied，引lazing at $2100^{\circ} \mathrm{F}$ was requir ${ }^{\circ}$ to produce a water－ impミrvicus，dual lajer coating．

In Iid 197S，effort was directed toward combining the dual layers while retaining both the optical propertics and the water imperyousness．A single layer coating（ $0036 C$ ）was successfully developed，qualified and implemented intc production in Early 1978．During this period，the maximum coating weight requirement was increased from 0.09 to $0.12 \mathrm{lo} / \mathrm{ft}^{2}$ to alleviate a coasing cracking problem which was tiavoidable with a 0.008 inch thick coating．This coating zas successfully applied to about 5700 tiles fot orbittr 102 ．For Challenger，OV－099，the maximum coating weight requirement was increased to $0.17 \mathrm{lb}!^{\prime} \mathrm{It}^{2}$ ．While in production for $0 \mathrm{~V}-102$ ，a major water imperviousness problem affected the Class 1 coating．A three month investigation revealed that the cause was large frit particle size that precluded complete fusion（ref．27）． A complete partirle size distribution requirement was determined and imposed on the frit supplier．Corning Glass Works．Particle size controls were also instituted for the coating slurry（fig．19）to assure complete fusion during the $2100^{\circ} \mathrm{F}$ coating glazing cycle．

Class 2．Coaこing

The class 2 （Gray）coating（0050），developed in 1974 （fig．20），ras a dual layer system that contaired Corning 7930 frit with a boria content of 3% and a silicon carbide emittance agent．Because of a high coating residual zensile strain （values of 200－300 microinches per inch），crack propagation was not inhibited．This coating vas replaced in June 1976 with a NASA ARC－patented Reaction Cured Glass （RCG）coating．The RCS coating is a singie layer system that meets ail the optical jroperty iequirements and also has lower coating residual tensile strains． It was inplemented into production in May 1976 and was used on 195 tiles that were installed on the lower mid－iuselage of the Enterprise，which was used for all the subsonic aerodymamic tests at the NASA Dryden Flight Research Center． Subsequeatly（ref．28），the RCG coating was shown to be suscep：ible to both coc：ing inpact damage and crack propagation．However，this susceptibility is probably common to any thin glass moting；RCG is a single laver reating system that was easy to scale up to a production operation auc wnich proved to be repairable when damage occurred．

The Class 2 frit used in the RCG coating also encountered a particle size ancmaly in January 1976 when the coating process was transferred to LVSC Erom NASt．ARC（ref．29）．Examples of coating anomalies that are saused by 500 zany fines（particie size less than l＇micron）are shown on the left side of figure 19. Within 2 gonths after the implementation of both the Class 1 and Class 2 ccatings into the production facility，both frits and slurries were controlled by full particle size distribution requirements（ref．30）．

Universal Patch

Rigidized $\begin{aligned} \text { iborous insulation } \\ \text { is subject to casting voids and to scratches }\end{aligned}$ and gouges durdng handling. The Enitial method for Eilling these voids was to fill them with cured silica slip 三or Class 1 coated =iles and with RCG coating for Class 2 coated tiles. This process required mui=iple fill and drying cycles. Also, thare kas concern that the den;e filis could $\because i b r a t e$ loose, and further enlarge the volds.

A unfversai patch material was developed that jas a dersity approximately equal to that of the tile, is applizable to both siitica and EECI tiles, is comparible witr the coating glazing cycle, is capabiき of repairing iile edges and corners, and is easily and rapidly applied. Existing, appro\%ed Shuttle materials which are used to compcint the patch material are silica fibers, colloidal silica, acrylate solution, deionized water, and a combination of fuchsin and methyline blue dyes. The slurry is siroly piaced into a" itc at twice the void volume, and Eiat ened with a teflon spatula. After patching, the tile is dried at $1200^{\circ} \mathrm{F}$ for 8 mimutes, and is then seady for coating. Full patch cure occurs during coating zlazing. Excellent bonding of patch to tile has been demonstrated, and no crjstallization occurs from exposure to a temperature of $2300^{\circ} \mathrm{F}$ for 15 hours. The scrap rate for deaaged tiles was significantly reduced after this procedure was introduced into production.

Tile Coating Applicatisn

Class 1 and Class 2 borosilicate glass coatings are applied to tile blanks by spray application of a slurry. Tile blanks are set up on holding Eixtures, nasked to provide a breather space near the IML suriace, and patched as.necessary to cover surface deformities. Cłass liles are sesl-coated with a suspension of culiuidal silica in water and dried prior to appication of the coating. Class 2 tiles are wetted with alcohel prior to appication of the coating.

The amount of slurry applied to each tile is controlled by maintaiaing slurry viscosity, line pressure, and the number of coats within pyedetermined limits. The coating weight is determined "wet" anc a conversion factor is applied to calcrlate "dry" weight. Coating weights are tstween 0.07 and $0.17 \mathrm{lb} / \mathrm{ft}^{2}$ for Class 1 tiles and between 0.09 and $1.17 \mathrm{lb} / \mathrm{ft}^{2}$ for Class 2 tiles. The corresponding coating thicknesses are 5 to 15 mils for Class. 1 tiles and 8 to 15 mils for Class 2 tiles.

Several significant problems with the coating process were encountered during production of tiles for Columbia. One problem involved robot sprayar: which were initially used in 1977 to coat the less complex tiles. The first 3000 to 4000 tiles, primarily Cless 2 , that were coated using the robots had excessively high reject and /or rework rates for cozting deficiencies such as runs, non-uniformity and excess or insufficient coating thickness. Extensive experimentatice with adjustments and programming of the robots indicated that the following problems could not be resolved with the existent capabilities of these fir:t generation robots:

1. "They were unable to accomodate ainor variat lous ir viscosity typically encountered with production jatches of slurry.
2. There was no capability to change the speed of the robot from that used during the programing (teaching) phase.
3. Rojots used twice as much slurry as manual spraying !i.e. only 45 tiles jer 5 gallon batch were sprayed compared to as many as $80-100$ illes per batci for manual spraying).
4. The cassette tapes used to contre: =he robots were not interchangeable between robots so each robot hac to be taught (progranmed) individually.
5. Dift on the tape heads caused unplanned and uncontroilajle motion in the retots.
6. There aas no feedback loop in the system during the zocuction spraying phase that could chang? the speed or the rate at winch the slurry was bet-3 sprayed.

It was Eound that experienced coating teciniciuns could accomodate the variations in tile geometry and slurry viscosity ard provide a yield in excess of for this operation (fig. 21). Jse of robots was discontinued for spraying production tiles in March 1979. Curreat, moze rophisticated robots, with advanced technology such as control by floppy disk or cosputer, and active feedback loops, could probably handle the mechanical problems. However, the ability to distinguisin subtle changes in slurry viscosity and apply in-process corrections still appears io be handled best by skilled operators. A qualified sprayer can adjust the spra;ing speed to overcone any subtle changes in viscosity and can alsc touch up the tile as required at any time in the spraying sequence.

Another significant problem was high rejection rate for coating weight discrepancies. Coating weights were initially determine after glazing. Excess or insufficient coacing caused the tile to be scrapped. A method of determining the coating weight while still "wet" was developed. The "wet weight" is determined by the operator and corrections are made lf necessary before the cating difes. Jnderweight Etles receive an extra coat of siurry and overweight tiles are stripped ard recoated (fig. z. . Anothri problem was changes in slury visconity sith time. Slurry viscosity de \quad raded with time to the point where i= was tuo "thin" to be sprayed without running and sagging. Investigation showed that trace amounts of iron coniamination were introduced by processing equipmeat at the frit manufacturer's roduction facility. The iron oxidized with time Li the zade-u? slurry at LMSC, destabilizing the particle suspension. A heat treating procedure at $1000^{\circ} \mathrm{F}$ was used initially to oxidize the iron before maing the coating slurrles. Later, the cource of the fron contamination at the marufacturer was identified and eifminated.

Another significant problem was wide variation in tile shrinkage race and - gree of coating fision. Investigarion showed that a narrow and relpeatable iperature range is required to provide the desired dimensional tolerances and un: rm degree of fusion. The degree of fusion not only affects appearance, but also wa:er imperviousness. The original glazing kins (stage tunnel kilns) were not capable of holding the desired temperat"re tolerances". Tunnei heart zolier isilas (Ipsen Inc.) were obtained that maintain temeratures within $\pm 10^{\circ} \mathrm{F}$ between 2100 and $2300^{\circ} \mathrm{F}$. Tile glazing problems were virtually eliminated fy using these kilns.

Tile Waterproofing

Initially, the tiles weie rendered nydrophobic (waterproof) by immersior. in a hexayethyl - disilazane silicone/freon solution. Tile weight gain was about 1.0 percent. Several hundred grams of freon solvent evaporated from each tile during thermal exposure. The process provided good water imperviousness, but left a dark, carbonaceous residue when heated to between 800° and $1000^{\circ} \mathrm{F}$, resulting in an increase in the ratio of solar absorprance to hemispherical emittance to above the 0.4 specification limit.

The present method involves release of a trimethoxysilane vapor into a vacuum chamber containing the tiles. The tile weight gain is only 0.1 percent. Also, the material sublimes in a char-free condition, and no change in optical properties is encountered.

Tile Strinkage

During the development of LI-900, dimensional control had nct been identified as a problem since little was known about tile gap heating, and the =ile dimensional toleranzes were not defined. Tile shrinkage and warpage were not fully understood and the significant factors that influence file - behavior during the glazing cycle were not known.

In 1976 a series of test programs led to the realization that tile shrinkage could be correlated to a single factor, tile thickness, if all other parameters were held constant. Tinis knowledge was aided by tive utilization of precisinn Bendix Cordax machines, which provide accurate, :epeatable miasurement data for each tile. This enabled Löckheed engineers to levelop a ciear and complete picture of tile dimensional changes during glazing.

The initial results showed that tile length or width rhaages ware related to the glazed tile thickness. A best-fit, least-squares logarithmic equation was developed using the avallable data. Reference 31 describes the details or this activity.

A plot of the basic offset equation, which reflects the use of the Richmond III glass melt, is shown in figure 23. Notice that the curve crosses the dashed line of zero shrinkage at a sintered tile thickness of 2.1 inch. This means that "thin" tiles experience a net shrinkage, while thick tiles "grow" due to addition of the coating on the sides.

The basic offset equation was used for most of the 15,000 NC tile part , programs that lockheed wrote for $0 V-102$. These programs are relatively expensive software and are not easily changed. After a new glass melin, Waterville 1, was put into L e , it was discovered that tiles made from the new glass melt fibers did not. shrink the same as tiles from thr orfoinal Rirtmond TTT glass melt. Taerefore, another test program was conducted and a new offset equation mas developed.

A plot of this new equation is shown in figure 23. Waterviile 1 tiles sarink more than Richmond IiI tiles. The difference is signifisant when compared to the allowable side toltrance of $\pm .008$ inch. Since it was not costeffective to revise the $N C$ part programs to correct for the increased shrinkage
of the new melt, it was decided to continue using the existing NC software and to apply an offset correcion at the time the tile is machined. Figure 23 shows the offset For a given glazed tile thickness. A table of tile machining offsets was developed and implemented by enzering a letter code on the IBM travel card that accompanies each tile. New softuare was written which allowed the NC machine to "read" the letter code and apply the corresponding offset to each tile side during rachining.

As new glass melts were introduced into the manufacturing process, test programs were conducted to develop the appropriate offset tables (ref. 31). To dare, seven melts have been used for all orbiters and an eighth melt is being processed. Approximately 110,000 tiles have been made from these melts to date.

TPS tiles were originally machined with planar vertical sides. Subsequent snrinkage investigations revealed that special offsets were necessary to tuntrol shritikage during coating glazing (fig. 24). These special offsets are classified into three categories: planar, which is the type of shrinkage discussed above, side-slope and radius-type compensation. The planar type shrınkage, which is the largest of the three, accommodates planform shrinkage during the glazing cycle. The side-slope and radius compensations are smaller in magnitude and accommodate distortion shrinkages. The side-slope distortion occurs because the omL edge shrinks more than the base of the tile. Radius compensation is necessary because the corners shrink more than the middle sile of the tile. 2.1 adjustments are made in an equal and opposite sense and constitute typical adjustments made tc NC machine part programs.

The solution to the side slope distortion problem was simple and ecorsmical. Since the original part programs used the coating terminator line as the drive path, a conically shaped tool having the same dlameter at the tip as ine cylindrical tool was designed (fig. 26). The cone angle was designed to give optimum offset to a majority of tiles that were manufactured by LMSC. With the same diameter at the tip as the cylindrical tool. the same part programs could be used with no changes.

The radius type compensation is made ty simply machining a cylinder through a point at the center of the tile side. This results in more material left at the corners to accommodate the "pillow" type distortion.

During the early stages of Columbia tile delivery, simple (square-flat) tiles were manufactured. When more complicated tiles were fabricated, dimensional problems occurred. Tiles whose sides were not parallel or normal to each other (i.e., tiies with a wrap-around OML) had a high dimensional rejectior. rate. An investigation revealed that the shrinkage normal to the in-plane direction, which is defined as the through-the-thickness direction, is about three times larger than the in-piane shrinkage (fig. 27). The in-plane direction usually denotes a plane that is parallel to the orbiter surface. The shrinkage and distortion of these surfaces follow a complex relationship. Since the numerically controlled machines have limitations in application of automatic offsets to on ly the in-plane direction, which usually lies parallel to the machine bed, no letter ofiset method eziats to adjust the part programs. As a result, a fixed offset is used in the NC part program for through-the-thickness shrinkage corrections. For example, all elevon cove tiles receive a fixed through-the-thichness offset for a specific silica glass melt. Wraparound and step tiles are treated in a similar manner (fig. 27).

Most of the OV-102 tiles had to be measured and verified for planfora dimensional conformance prior to loading into array frames to machine the IML (fig. 14). Consequently, an automated system to measure tiles was implemented. Two Corday measuring devices were programed to automatically summon the inspection standards from a host computer, locate the tile on the machine bed and automatically determine the acceptability of the tile by using a series of 6 to 12 predetermined touch points on the tile sides, and 5 touch points on the GML surface.

The average time to measure a tile using a Corday machine is 5 to 15 minutes. Another device, the "maxi-measure" (fig. 28) was developed to reduce, . the load on the Corday measurement machines. Ti sis device consists of two parallel plates that measure the maximum dimension of tiles with parallel sides. The average measurement time for the "maxi-measure" device is less than one minute.

After about 70% of the tiles were fabricated for $0 V-102$ the "load-and-go" concept was implemented to res., the time required to dimensionally inspect tiles and to increase the rate of int deliveries to Rockwell. As shown in figure 29 , the concept consists of an initial measurement of the array frames with aluminum templates or by probe on a large ted NC mill. The tiles are then loaded into the frame and shimmed tc the proper o gaps. If the proper tile-to-tile gaps are obtained, the IML's of all tiles in the array are cut as a group on one of the two large bed NC mills. The ATA's are then shipped to Rockwell. The advantages of the "load-and-go" concept are:

1. The number of tiles that must. be checked for planform dimensions is greatly reduced.
2. Tile planform dimensional outages greater than $\pm .015$ inch per side are allowed but the proper tile-to-tile gaps are maintained, and the overall array dimensions are to print.
3. ATA's that did not shim to the minimum tile-to-tile gap were reworked by refining an entire row of oversized tiles to reduce their planform dimensions (Fig. 30).
4. If the ilA cannot be shimmed to the maximum tile-to-tile gap selected, tiles are remade to allow the ATA to shim properly.

For OV-102, about 3600 tiles were shipped to Rockwell in 170 ATA's using the "load-and-go" concept. For OV-099, which was the first shipset to use the "load-and-go" concept for all FA's, 3,200 tiles were shipped as nested tiles and 20,500 tiles were loaded into 745 ATA's under the "load-and-go" concept. Fol Orbiters 103 and 104 , which have about 18,200 LMSC +files, about 2,100 tiles are nested and 15,800 tiles will be loaded into 535 arrays under the "load-and-go" concept.

Material Physical Properties
LMSC has had responsibility for material characterization tests of all the ceramic RSI materials. Rockwell has had responsibility for performing the systems tests on all RSI materials including RCC and FRSI. Figure 31 shows typical average room : ©

LI-900, LI-2200 and FRCI-12. More detalled data along with values at both elevated and cryogenic temperatures can be obtained in refeience 19.

CONCLUDING REMARRS

This paper has presented a multitud of lessons learned in the development and scale-up to production of three ceramic RSI materials and two borosilicate coatings that were used in the manufacture of tiles for the firse three orbiters: Columbla (late 1976 to early 1979), Challenger (April 1979 to March 1982), and Discovery (March 1982 to present). These improved mechods, which $\mathrm{dr}=$ summarized in Table III, are presently being used in the fabrication of tiles for Atlantis, the fourth orbiter.

The effectiveness of the lessons learned is revealed in the overall tile yields: 48% for about 23,400 tiles for Columbia, 81% for about 23,800 tiles for Challenger and 88% for about 18,200 tiles for Discovery. Wita the deletion of certain planform measurements of nested tiles on 1 February 1983 as a result of an expanded process control progran, the overall yield on Atlantis tiles is expected to be about 90%. While some of the increase in yield can be attributed tc modified requirements, the majority of the yield increase is due to the iaproved methods discussed herein, primarily the ajiition af coating terainator lines on most tiles, the addition of homing devices on the NC mills, the reliance on real time process control for coating weight, and the "load-and-go" concept.

Experience since the start of production in October 1976 has shown that ceramic fiber reusable surface insulations stili retain some "art" in their fabrication processes as opposed to all "scfence". Consequently, Faking a consistent, repeatable product requires good process control and all changes to the process must be thoroughly evaluated prior to implementation and tighty contrclled after implementation.

Another lesson that has been illustrated through the development of LI-900 (ref. 12), LT-2200 (ref. 13) and FRCI-12 (ref. 15) is that the RSI materials can be "tailored" to the application as with fiber-reinferced composites. This "tailoring" is also evidenced in the recent advanced studies of FRCI using ratios of Nextel to silica of up to $80 / 20$ (ref. 32). Hence, these fanilies of RSI materials offer the designer a very flexible design concept.

Einally, if LMSC were to introduce a new, man-rated ceramic RSI material into pioduction for an adranced Shuttle cr Orbital Transfer Vehicie, the minimum changes that would be introduced are:

- Yacuun degassing of casting slurries

0 Addition of silicon carbide particles to the billets for emittance retention of the R.SI in the event of coating loss during entry

- Use cf an interactive graphics system like CATiA or CADiM for the design of tile geome:ries and to provije an automated method to write NC fart programs
- Iaplementation of real-tine process control in critical manufacturing areas
- Consideration of different coating and tile concepts if rewaterproofing is required after every fight (i.e., tiles with larger planform dimensions and fewer if any material shrinkage problems in the absence of a coating slazing cycle)

1. Thermal P=otection Concepts for Lifting Entry Vehicles. Lockheed Missiles \& Space Co. Report 6-62-64-5, May 5, 1964.
2. Hammitt, ․ L.: Lightweight Insuation, LI-15, Test Sumary. Jociteed Missiles and Space Co., LMSC-685434, Code 9999, Apr. 26, 1968.
3. Rusert, E. L.: Development of a Rigidized Surface Insulative Theraz Proteczion System for Shuttle Orbiter, Final Report. VASA $\widehat{\Omega}-12-973$, Feb. 15, 1971.
4. Banas, R. ב.; Kural, M. H.; Deruntz, J. A.; Burns, A. B ; Cainn, A. J.; Lambert, R.; Ritz, J. D., Vanwest, B.; and Woneis, J. T.: Space Sauttle Thermal Protection System Development. Lockheed Report IMSC-b152738, Lockheea Missiles and Space Co., Space Systems Divisica, Jan. 17, 1972.
5. II-1500 Heat Shield, Independent Development Program C548. Lockheed Missiles and Space Co. Report LMSC-D153908, Dec. 24, 1971.
6. Space Shuttle Concepts. Final Report for NAS8-26362, Lockheed Missiles and Space Co. Report LMSC-D153024: Mar. 15; 1972.
7. Developmeat and Design Application of Rigidized Surface Insulation Thermal Protection Systems. Lockheed Missiles and Space Co. Report LMSC-D282673, Dec. 30, 1972.
8. A Proposal for Space Shuttle Orbiter High-Temperatura Reusable Surface Insulation. Lockheed Missiles and Space Company Repo. ' LMSC-D336595, Mar. 14, 1973.
9. Forsberg, R.: Producing the High-Temperature Reusable Surface Insuiztion for the Thermal Protection System of the Space Shuttle. Presenter at XIVe Congress International Aeronautique, Paris, France, June 1979.
10. Burns, A. Bruce and McCarter, C. R.: Manufacture of Reusable Sarface Insulation (RSI) for the Space Shurtle Orbiter. Presented at the 1980 SAE Aerospace Congress \& Exposition, Oct. 15, 1980.
11. Banas, R. P.; Eulton, T. A.; Housten, S. J.; and Wilson, R. G.: Lifting Entry Vehicle Thermal Protection Review. Proceedings of Thermodynamics and Thermophysics of Space Flight. Palo Alto, Califoria, 1970, pp. 239-276.
12. Improvement of Reusable Surface Insulation Material. Final Report Eor NAS9-12137. Lockheed Missiles and Space Co. Report LMSC-D266204, Mar. 1, 1972.
13. Goldstein, H. E., Smith, Marnell and Leiser, Daniel: Silica Reusacize Surface Insulation. United States Patent 3,952,083, Apr. 20, 19.5.
14. Leiser, Daniel B., Goldstein, Howard, E. and Smith, Marnell: Eibrcrs Refractory Composite Insulation. United States Patent $4,148,752$, Apr. 10. 1979 (FRCI-12).

15．Banas，R．P．and Cordia E．R．：Advanced High－Temperature Insulation Material For Reentry Heat Shield Applications．Presented at ith Annua： Conference On Composites and Advanced Materials，Ceramic－Metal Syste＝s Division－American Ceramic Society，Jan． 1980.

16．Wheeler，W．H．，Garofalini，S．H．and Beasley，R．M．：Development of an Unusual Coating System for the Space Shuttle Orbiters．Paper presented at American Ceramir．Society Meeting in Cincinnati，Ohio， May 4， 1976.

17．Goldstein，H．E．，Leiser，D．B．and Katvala，V．W．：Reaction Cured Glass and Glass Coatings．United States Patent．No．4，093，771，June 6， 1978.

18．Banas，R．P．，Gzowski，E．R．and Larsen，W．T．：Processing Aspects of the Space Shuttle Orbiter＇s Ceramic Reusable Surface Insulation． Proceedings of the 7th Conference on Composites and Advanced Materials， Ceramic－Metal Systems Division－American Ceramic Society，Cocoa Beacin， Fla．．Jan．16－2．1， 1983.

19．Korb，L．J．and Clancy，H．M．：Shuttle Orbiter Thermal Protection System： A Material And Structural Overview．Presented at the 26 th National Symposium Society for the Advarsement of Materials and Processes Engineering，Paper No．STS 81－0219，Apr．28－30 1981.

20．Dotts，R．L．，Battley，H．H．，Hughes，J．T．and Neuenschwander，w．Ë．： Space Shuttle Orbiter－Reusable Surface Insulation（RSI）Flight Performance．AIAA paper No．82－0788－CP，May 1982.

21．Holmquist，G．R．and Cordia E．R．：Advances in Reusable Surface Insiilation for Space Shuttle Application＇．MATERTAis 1980－Proceedings of the 12th National SAMPE Technical Conference，Volune 12．Society fo： Advancement of Materials and Processes Engineering，Oct 1980.

22．Banas，R．P．and Cunnington Jr．，G．R．：Determination of Effective Thermal Conductivity for the Space Shuttle Orbiter＇s Reusable Surface Insulation（RSI）．AIAA Paper No．74－730，Thermophysics \＆Heat Transíer Conference，Boston，Ma．，July 1974.

23．Williams，S．D．and Curry，D．M．：Nonlinear Least Squares－An Aid to Thermal Property Determinction．NASA TM X－58092，June 1972.

24．Holmquist G．R．，Cordia E．R．and Tomer，R．S．：Effects of Composition and Processing on Thermal Performance of a Rigidized Fibrous Ceramics Insulation Material．Ceramic Engineering and Science Proceedings－ 5tin Annual Conference on Composites and Advanced Materials，Volume 2， American Ceramic Society，July 1981.

25．Elgin，D．and Schirle，J．：Themal Perfornance of a Fibrous Refractory Composite Insulation（FRCI）．Presented at 5th Annual Conference on Composites and Advanced Materials．American Ceramic Society．Merritt Island，Florida．Jan．18－22， 1981.
26. Tomer, R. S. and Cordia, E. R.: Development of an Improved Ligintweight Insulation Material for the Space Shuttle Orbiter's Thermal Prctection System, Ceramic Engineering and Science Proceedings - 6th Annual Conference on Composites and Advanced Materiàs. Volume 3, American Ceramic Society, pp. 601-611, Sept. 1982.
27. Tanate, T. M. Izu, Y. D.: Influence of Particle Size Distribution on Ceramic Coating Characteristics. Presented at 32nd Jacific Bcast Regional Meeting of American Ceramic Society, Seattle, Washing=on, C=E. 24-26, 1979.
28. Jotts, R. L., Smith, J. 1., and Tillian, D. J.: Space Shuttle Orbiter Revsable Surface Irsulation Flight Results. Shuttle Performance: Lessons Learned, NASA CP-2283, Part 2, 1933, pp. 949-9C6.
29. Creedon, J. F., Banas, R. P. and Stern, P.: Results of Lockheed Missiles $\&$ Space Co. Studies of NASA/ARC Reaction Cured Glass Coating for the Space Shuttle Orbiter. Presented at American Ceramic Society's 29th Pacific Coest Meeting under Ceramic-Metal Systems Division, San Francisco, Ca.,Nov. 2, 1976.
30. Nakano, H. N. and Izu, Y. D.: Significance of Particie Size Distribution on Zerracrory Frit Sintering. Presented at 12th Annual Meeting of Five. Particle Society - Powder and Bulk Solids Conference, Rosemont, Illinois, May 12-14, 1981.
31. Fitchett, B. T.: Dimenstonal Control of Space Shuttle Tíes during Manufacture. Proceedings of the 7 th Conference on Composites and Advanced Materials, Ceramic - Metal Systems Division, American Ceramic - Society, Cocoa Beach, Fla., Jan. 16-21, 1983.
32. Leisez, D. L., Smith, M., Stewart, D. and Goldstein, H.: Thermal and Meizanical Properties of Advanced High-Temperature Ceramic Composite Insalation. Proceedings of the 7 th Conference on Corforites and Advanced Materials, Ceramic - Metal Systems Division - American Ceramic Society, Cocca Beach, Fla., Jan. 16-21, 1983.

ORIGINAL METHOD		IMPROVED METHOD
- hand calculaticn of tile corner POINTS\&PA STANDARDS.		
		CALCULATE CORNER POIITS \& PA
		STANDARDS.
- hand calculation of blank sizes.		- softhare developed to provide
		blank Sizss.
- APPROXIMATION OF COMPLEX SURFACES.		cal camdeye
		COMPLEX SURFACES.
- PRODUCT ASSURANCE POINTS FOR HARD-TC-INSPECTTILES.		- CAD/CAM DEVELOPED UYLARS TO
		INSPECT COMPLEX TILES.
		- CAD/CAM CYECK OF ROCKWELL MYLARS.
Tible 1 I.- NC PROGRAMMING REfINEMENTS		
ORIGINAL METHIOD - CRUDE Cut packages to prograam tile FAMILIES.		IMPROVED METHOD
		- optinized cut packages to
		FACILTATE PROGRANMIMG \& REDUCE
- ONE INCH DIAMSTER CUTTER USED FOR MOST MACHIN:NG.		- abolt 30 Cutter geometries wepe USED TO REDUCE MACHINE TIME
- no coating line cn complex tiles.		- comting terminator lime added to COMPLEX TLLES REDUCED SCRAP.
- SEPARATE fixtlines for different BLANK SIZES.		, SAME FIXTURE FOR ALL BLANKS REDUCED SCRAP.
- PLANAR SIDES PROGFAMMED AS PLANAR SURFACES.		- flanar sides programmed as
		CYLINDERS TO REDUCECORNSR
		SHRINKAGE
- LIMITFD KNOWLEDGE OF こOMPLEX SURFACES.		- EXPERIENCE REDUCED PROGRAMMING \& MACHINING TIME.
- LIMITED USE OF CAD/CAM SYSTEM TO -PROGRAM TILES.		- CAD/CAM SYSTEM SHOULD REDUCE TOOL tries.
- No Check for reference point		- hOMING DEVICES INSTALLED ON N/C MILLS ASSURE PROPER REFERENCE POINT

 -interlag :erisesera.

 : i-9:c by:iets.

 the biliets.
 apparent f ferzal coeduc:ivity

 wade till fabricatina acre eftisteris-
 gaster diaension surfacea.

\therefore trle fabrichision
 cur correctly.
 the delfictect liex.

 dianstonal requireatacs.

 stisets.
 further toprovel the tile dimensicas ydeld,
; COATINGS AND Therr applichitoy
 and craters in the \mathbf{g} : wed coastags.

- Man in a sore efflcient tile frayer zan rowit.
 anoma:!es.
 scrapped ter coatary ve'ciht.
0 The propensicy for cracks in :

 tata.

 for an over-ize ecnesition.
 detecaina:tan of acieptability comparea to the "th! comiaer flies.
- TOTAL RSi CERAMIC TILES - 30,812 (LMSC 23,40@)
- REINFORCED CARBON/CARBUN (RCC) (44 PANELSINOSE CAP)
- FELT REUSABLE SURTACE INSULATION (FRSI) (3,581 FT²)

Figure 1.- TPS locations on Columbia (OV -102) .

Figure 2.- Pretreatment of silica fibers for LI-900.

Figure 3.- Blending J-M fiber lots for LI-900.

Figure 5 - Changes in LI-900 cesting and sintering procedu=es.

Figrire 6.- iI-900 void reduction and vacuuf assisted casting zethods.

OFIGHIAL PAEE YO
OFIGHIAL PAEE YO

TINE

Figure 7.- Silica fiber compact test for LI-900.

Figure 8.- LI-2200 process flow.

Eigure ll.- Thermal performance evaluation methods.

ORIGINAL METHOD LABORATORY AND PILOT PLANT

5 Sioe kiln heati.:G

- thermal conductiviry
$K_{\text {FRC! }-e^{-2}}=25-55 \%>K_{\text {LI- }}$.
- tensilestrength "a" value THRU-THiこKNESS $=22 \mathrm{LB} / \mathrm{IN}^{2}$

IMPROVED METHOD fuliscale equipment

a sioe riluhtatima

\therefore DENSITY $=125$

- thermal conductivity
$K_{\text {FRCI- }}=\mathrm{K}_{\mathrm{LI}-900}$
- tensile staength "a" jalue THRU-THICKNESS $=2 B L B / N^{2}$

Figure 13.- FRCI-8 high dry density concept.

Figure 14.- The tile process ficr.

Figure 15.- The engineering data flow.

APPLYING MRSKING TEMPLATE

PATCIING VOIDS

Figure $\mathbf{1 5} .-$ Examples of complex tiles without coating terminator lines.

ORTGMAL PAOE M OF POOR QUALITY

Figure 17.- An interactive graphics method showing a Shuttle infrared leeside temperature sensing tile.

ORIGINAL COATING

REQUIREMENTS:

- $0.2<\alpha / \epsilon<0.4-\left(135^{\circ} \mathrm{F}\right.$ to $\left.+250^{\circ} \mathrm{F}\right)$
- $\mathrm{e} \geq 0.8 \mathrm{AT} 1200^{\circ} \mathrm{F}$
- WEIGHT $\leq 0.09 \mathrm{lb} / \mathrm{tt}^{2}$
- CRACK FREE AND WATER IMPERVIOUS

STATUS:

- PRODUCTION START IN OCT. 1977
- THIN COATING CRACKED EASILY

IMPROVED COATING

ADVANTAGES

- ALL COMPONENTS IN ONE LAYER
- MINIMIZED WATER IMPERVIOUSNESS PROBLEM
- LESS RESIDUAL STRAIN

STATUS:

- USED ON COLUMEIA AT $0.12 \mathrm{lb} / \mathrm{ft}^{2}$
- USED ON CHALLENGER AT $0.17 \mathrm{fb} / \mathrm{ft}^{2}$

Figure 18.- Class 1 coating optimization.
ORIGINAL FAEE TS OF PCOR QUALITY

status:

- NO CLASS 1 FRIT SIZE CONTROL OTHER THAM 90\% THROUSH 325 MESH AND A 50\% PCINT REOUIREMENT
- USE OF SLURRY IMMEDIATELY AFTER PREPARATION ELIMINATED VISCOSITY VARIATIONS
- NO CLASS 2 FRIT SIZE CONTROL OTHER THANA 50\% POINT REQUIREMENT

IMPROVED METHOD

- Defined full particle size DISTRIBUIION FOR CL.1/CL. 2 FRITS AND SLURRIES

ADVANTAGES:

- SLURRY VISCOSITY CONTROL IS IMPROVED
- SPHAYING CHARACTERISTICS ARE MORE UNIFORM
- Coating cracks during glazing are ELIminated
- FUSION OF Class 1 and Class 2 COATINGS IS ASSURED
Figure 19.- Effect of glass frit particle size effects on glazed coarings.

ORIGINAL COATING

JUAL LAYER COATINO (0050)

CHARACTERISTICS:

- EMTTANCE ≥ 0.8 AT $\mathbf{2 3 0 0}{ }^{\circ} \mathrm{F}$
- high restbual tensile strains (200-300 $\mu \mathrm{K}$) - HIGH CRACK PROPAGATION
- GLAZED AT 2500F
- FOAMED DURING EXPOSURE TO PLASMA TESTS

IMPROVED COATING

SINGLE LAYER COATIMG (RCO)
CHARACTERISTICS:

- WEIGHT $\leq 0.17 \mathrm{lb} / \mathrm{ft}^{2}$
- GLAZED AT $2200^{\circ} \mathrm{F}$
- EMITTANCE ≥ 0.8 AT $2300^{\circ} \mathrm{F}$
- LOW RESIDUAL TENSILE STRAINS ($50-100 \mu \epsilon$) - Minimal crack propagation
- REUSABLETO 2300F
- GOOD FOR SINCILE EXPOSURE TO $2700^{\circ} \mathrm{F}$

Figure 20.- Class 2 coating ontimization.

CRIGINAL PJETV
OF POOR QUNLITY

PROCEDURE:

- MACMINE TILE
- WEIGH BEFORE SPKAYING IN INSPECTION
- WEIGH AFTER COATING GLAZING IN INSPZCTION
- SCRAP TILES FOR LOW OR HIG A COATING WEIGHT
- machine new tile

DISADVANTAGES:

- TILES SCRAPFER FOR HIGH/LOW COATIH:G WEIGHT
- time lost to rebiachine tiles

Figure 22. - Methods to control coating weight.

Figure 23.- In-plane machining offsets for LI-900.

- DIMENSIONAL REQUIREMENT - Q016-INCH (LENGTH \& W!UTH) AND - 00tO-INCH (THICKNESS) FOR MOST TILES
- EACH TILEREQUIRES COMPENSATION FOR MATERIAL SHRINKAGE DURING coating glazing
- Shrinkage varies with
- GLASS MELT
- TILE THICKNESS
- TILE PLANFORM

Figure $24 .-$ Tile fabrication requirements.

> CFTO: FIES IG
> OF POCR QUALITY

Figure 25.- Implementarion aspects of tile machiaing Iette offsets.

CYLIMDRICAL CUTTING TOOL PROBLEMS

- wider tile-to-tile gaps at the outer MOLD LINE THAN AT THE TILE INNEF MOLD LINE
- STEPPED WITNESS LINE RESULTED IN UNACCEPTABLE TILETO TILE GAPS
- STEPPED WITNESS LINECAUSED SIDE COATING CRACKS

IMPROVED METHOD

CONICAL CUTTENG TOOL ADVRNTAGES:

- NEAR UMIFORA TILE-TO-TILEGAPS
- PROVIDES AH UNDERCUT WITNESS LINE THAT MINIMLCES SIDECOATING CRACKS
- TILES MADE TO THE GEQU!FED CONFIGURATKON

Figure 26.- Sutting tcol configuratica changes.

WRAPAQOUND

ELEVGN COVE

- ALL REQUIRE TTT SHRINKAGE COMPENSATION

- ALI "FIXES" CONTAINED IN HC PART PROGRAMS

Figure 27.- LI-900 tile shrinkage in the through-the-thickness direction.

Figure 28.- Tile measurement methods.

Figure 29.- The load and go concept.

Drianct pate th
OF POCR QUALIEY

DENSITY ($\mathrm{b} / \mathrm{tt}^{\mathbf{3}}$)	14.900	LI-2200	FRCL-12
	8.5-9.5	20-24	11.9-13.5
TENSILE STRENGTH* ($\mathrm{lb} / \mathrm{in}^{2}$) THRU-THE-THICKNESS IA-PLANE	$\begin{aligned} & 24 \\ & 67 \end{aligned}$	$\begin{array}{r} 73 \\ 180 \end{array}$	$\begin{array}{r} 31 \\ 257 \end{array}$
COMPRESSIVE STRENGTH* ($\mathrm{b} / \mathrm{ln}^{\mathbf{2})}$ THRU-THE-THICKNESS IN-PLANE	$\begin{aligned} & 28 \\ & 70 \end{aligned}$	130 230	$\begin{aligned} & 132 \\ & 285 \end{aligned}$
THERMAL EXPANSION* (in/in - "F) THRU-THE-THICKNESS IN-PLANE	$\begin{aligned} & 4 \times 10^{-7} \\ & 4 \times 10^{-7} \end{aligned}$	$\begin{aligned} & 4 \times 10^{-7} \\ & 4 \times 10^{-7} \end{aligned}$	$\begin{aligned} & 7 \times 10^{-7} \\ & 7 \times 10^{-7} \end{aligned}$
```APPARENT THERMAL CONDUCTIVITY* (BTU-in/ft }\mp@subsup{}{}{2}\textrm{hr}-\mp@subsup{}{}{-F THRU-THE-THICKNESS 70'F@ 10-4 ATM 1000'F@ 10-4 ATM IN-PLANE 70"F @ 1 ATM 1000*F @ 1 ATM```	$\begin{aligned} & 0.10 \\ & 0.28 \\ & 0.44 \\ & 1.08 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.41 \\ & 0.73 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.3 \\ & 0.53 \\ & 1.13 \end{aligned}$
SPECIFIC HEAT* (BTU/Ib - FF)	0.17	0.17	0.17

- average value

Figure 31.- Typical physical properties of LI-900, LI-2200 and ERCI-I.


[^0]:    1 For porous matertals, the term apparent thermal conductivity is used to denote heat transfer within the material by solid conduction, gas conduction and ridiation (ref. 22).

