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SUMMARY

Flight data obtained from the Space Transportation System orbiter entries

are processed and analyzed to assess the accuracy and performance of the

Development Flight Instrumentation (DFI) pressure measurement system. Selec-

ted _zessure measurements are compared with available wind tunnel and computa-

tional data and are further used to perform air data analyses using the

Shuttle Entry Air Dzta System (SEADS) computation technique. The results are

=ompared to air data from other sources. These comparisons isolate and demon-

strate the effects of the various limitations of the DFI pressure measurement

system. Yhe effects of these limitations on orbiter performance analyses are
addressed, and instrumentation modificatlons are recommended to improve the

accuracy of similar flight data systems in the future.

INTRODUCTION

During the first five flights of the Space Transportauion System (STS),

the orbiter (OV-102) was instrumented to provide the flight data required to

evaluate and interpret its performance and thereby verify the vehicle's flight

worthiness and mission capability. This instrumentation system, designated

Development Flight Inst_mmentation (DFI), included approximately 4500 measure-

merits of which 200 were surface-pressure measurements intenaed to assist in

the refinement of aerodynamic loads and performance characteristics predic-

tions. It is the primary purpose of this study to evaluate the performance of

this DFI pressure measurement system. This evaluation is based on a compari-

son of flight data obtained from the forward fuselage DFI with wind tunnel and

computational data as wall as results obtained from postfllght analyses

incorporating other entry flight data relative to vehicle attitude and state.

The basis for much of the evaluation and recommendations of thi_ study is

the experience gained im t_edevelopment of the Shuttle Entry Air Data System

(SEADS) (ref. i). The SEADS is a new concept in air data systems and ,tonsists

of an ar_--ay of flush orifices installed in the nose and forward fuselage of the

orbiter. The SEADS will provide research quality air data from Mach 30 to

touchdown. The transducers for the SEADS ere identical to similarly ranged
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DFI transducers and have been rigorously calibrated to provlde pressure data

to a greater accuracy than available from the DFI. The design of the SEADS

and the calibration of the transducers provided generic data applicable to the

DFI transducers and pressure data system in general.

In addition, the DFI data have provided the opportunity to verify (in a

restricted manner because of the lack of nose cap orifices) the SEADS pressure

model incorporated in the data-reduction algorithm. The available data near

the nose have been used to predict angle of attack and free-stre=__m dynamic

pressure. The results of thi3 SEADS/DFI analyslg are compared t_ other
sources of such air data.

This evaluation of the DF£ has resulted in a number of recommendations

which would enhance the accurdcy and usefulness of future flight data systems.

DATA AVAILABILITY

8

The wind tunnel data were obtained in various ground research facilities

using different models. The wind tunnel data _ange spans the reentry Math

number range from hypersonic (M = i0.0) to subsonic (M = 0.25) for three

different forward fuselage models (0.02 - scale, 0.04 - scale, am_ 0. i0 -

scale) (ref. 2). The wind tunnel models were instrumented to dupiieate loca-

tions of selected orbiter surface DFI pressures as shown in figures I-3. The

computational data were obtained from a solution of the three-di_ensional

Euler equations about a modified orbiter geometry using the HALLS (ref. 3J

computer code for the continuum flow regime at hypersonic Math numbers. The

computational data _re also selected to match flight conditions and locations

corresponding to these selected DFI pressure sensors. The flight data used in

this study are limited to the orifices located In the forward fuselage region

because of the limitation of the wind tunnel and computational data (figs.

I-3). Although flight data were measured by the DFI sensors during the

orbiter's first five flights, during STS-I and S_S-4 the DFI recorder

malfunctioned, thereby restricting the data to those obtained from telemetry
after blackout. This limited data to Math numbers of 13 and below. In

addition, due to a power constraint, only a restricted amount of pressure data

was available from STS-2. A complete set of data was, however, obtalned dur-

ing STS-3 and -5, which allowed an analysis of the pressure data as well as

behavior of the data system. W_ere comparisons could be performed, pressure

data from all flights displayed a high degree of consistency.

DFI FLIGHT DATA ASSESSMENT

As noted in references 2, 4, 5, and 6, several shortcomings in the DFI

pressure measurement and data system have been identified that could have a

significant effect on the interpretation and application of the flight data.
These potential error sources are:

I. Tile Steps and Gaps

2. Port Leakage
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3. TransducerCalibration
4. DataSystem
5. MeasurementLocationand Range

Theseerror sourceshavebeenevaluated andare discussedto quantify DFI
pressureuncertainty. This study has resulted in rec:m_endatlonswhichcould,
if incorporated into the DFIor other flight daLasystems,greatly enhancethe
accuracyand applicability of the data.

Tile Steps and Gaps

The DFI pressure orifices are generally located near the center of the

thermal protection system tile. The orifice penetrates the tile, its bonding
material, and the orbiter's aluminum skin (ref. 7). Each instrumented tile is

" _ surrounded by other tiles which are separated from one another by a thermal

expansion gap. In addition, due to the flexibility of the TPS tile system,

steps exist between adjacent tiles. Attempts to quantify the effects of steps

and gaps were not entirely successful because of their unpredictability and

sensitivity to the thermal environment. Based on t,_e analyses which have been

done, the error induced by steps and gaps is below the resolution of the DFI
system.

Port Leakage

Port leaks generally occur in _he Joint at the strain isolation pad (SIP)

between the TPS tile and the aluminum skin. These leaks are generally caused

when tiles are pull-tested for bond strength and the seal is damaged. Leaks
are categorized by the loss of a gas in cm3/min. Standards for the orifice

installation specify a leak rate of over 80 cm3/min to be unacceptable. A

comparison of data obtained during STS-2 for two transducers located sy_metri-

tally on either side of the fuselage is shown in figure 4. One of the
orifices (VO7PglIS) was icaklng in excess of 200 cmJ/mln, while the other

(V07Pg]!4) was leaking less than 20 cm3/min in tests completed prior to the

flight. In spite of the leak rate difference, the data from the two

transducers are in close agreement. Further evidence that tile leakage is a

minor factor in measurement accuracy is shown in figure 5 for the port

V_7P9871. During STS-I, this orifice was covered by a blank tile, but when

the flight data are compared to ground-based data as shown in figure 5, the

agreement is no better or worse than any oLh_r comparisons.

Subsequent to flight i, the tile at port V07P9871 was replaced with a

properly drilled tile. A comparison of the residuals on a common data arc

obtained from STS-I and STS-3, respectively, was made. While certain

differences appear, their magnitude is small and well within the error b_nd
derived from other pressure measurements.

Additionally, tests conducted at Rockwell International confirmed _. _t

the absence of a pressure port tube through the tile introduced a pressu-e
differential of less than 0.3 psf across the tile. This differential is

below the re_o}..tion of the DFI data system.
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It is concluded that the porosity of the orbiter TPS (gaps) allows bleed-

ing of surface pressure to the sensor, and even if the orifice leaks, the
effects on the final data are insignificant given the uncertainties _ the

existing DFI system.

Transducer r_libration

It is the authors' experience that careful calibration of pressure

transducers is essential to maximize measurement capability and to obtain

accurate, high-resolution flight data. Although the DFI transducers were

calibrated individually and their sensitivity determined for three different

temperatures, the calibration data for transducers of similar range _ere

averaged, and a universal calibration curve was established. While such a

procedure does not use the full capability of the transducers, it is consist-
_ng _Ith the 8-bit data system used in the DFI. In contrast, the SEADS call-

bration program wad designed to take advantage of the full capability of the

transducers and account for the environmental conditions of temperature,

random vibration, acceleration, and mechanical shock. The results of this

calibration showed that the performance characteristics were different enough

from transducer to transducer to require detailed individual transducer

performance characterization.

Forty-nine pressure transducers, identical except for range to existing

DFI transducers, were calibrated at the Langley Research Center in support of

SEADS. Of these 49 transducers, seven failed or failed to meet specifications

and were, therefore, rejected and not included in this study. Analysis of
the calibration data from the 42 acceptable t=ansducers clearly demonstrates

the need for detailed performance characterization. Although the transducers

met procurement specifications, performance differences within tolerance

limits are significant. The output of the transducers at a constant tempera-

ture and essentially zero pressure (0.001 psia) bias had a distribution

(fig. 6) ranging from -2 to +3.5 percent of full scale. The sensitivity
distribution for a constant temperature (fig. 7) has a range of -1.5 to + 1.25

percent of the average sensitivity for the sample. These data establish the

requirement for individual characterization of each transducer included in the

system, as well as a requirement on the data system to handle negative volt-

ages. Individual transducer response characteristics, although highly repeat-

able, are not linear. As a result, simple linear transfer function modeling

cannot be used in the analysis of flight data without introducing a

significant loss of measurement accuracy.

Linear and second-order least-squares analyse_ w_re used to assess trans-

ducer nonlinearity and hysteresis at a constant temperature. The dlstribntion

of the data (fig. 8) indicates a variation from 0 to 0.5 percent of f_ull

scale with approximately 75 percent of this variation due to nonlinearity

alone. Repeatability of these data was better than 0.02 percent of full

scale, demonstrating that a higher order transfer fttuctlon will significantly

improve pressure measurement accuracy.

Temperature affects both the sensitivity and the zero-pressure output

(bias) of the transducers. While the SEADS transducers were calibrated at

five temperatures between -79°C and I13°C, figure 9 _ows the distribution in

the thermal zero-pressure coefficient considering only the end and midpoint
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temperatures as was done for the DFI transducers. TI-2 coefficient is -=hown

to vary from nearly 0 to 0.05 percent full scale per oegree centigrade. In

addition, figures i0 and !i show that while transducer sensitivity is =ely

slightly affected by temperature (O to 0.011 percent per degree cem_-tigrade),

the zero-pressure (bias) dependent= on temperature is not only noniXnear but

also significantly different in character for each _zansducer. The_Be results

substantiate the need for a thorough temperature calibration.

On the basis of these calibration results, it is concluded tha_ the_error

in the DFI transducers could be as large as 5.0 percent of full sce.le. To

reduce this error and obtain the max/P.,m accuracy (0. I percent of _---rillicale),

it is necessary to obtain in-flight measurements of transducer temp,eraL_re and

zero-pressure bias as well as the accomplishment of a thorough calibration of

each transducer and the use of the individual calibration curves co_rre "c:ed for

temperature in data reduction.

Analysis of the random vibration test data over a 20- to 2000-#h:ertz range

at 22.6 grms level, performed primarily to insure transducer survi_ablllty,

resulted in an output noise level of I0 milllv._Its. Detailed callh_ratlsn pre-

and postshock and thermal cycle should be obtained to characterize flight-

to-flight repeatability. (The majority of the transducer failures _uccu_u-red

during the random vibration and shock calibration tests thereby demonstrating

the importance of such tests.) The static acceleration tests at 2 g a_-_ 5 g

for a 5-minute duration showed an output change of approximately 0.GI0 =/lli-

volts. To avoid this error source, transverse _ounting of transducers is best
although not critical.

Measurements of the transducer output noise level under zero-_ess-_re

load ludlcated an rms noise level of 5 to 10 milllvolts generated h_ the

trausducer's 20-KBz carrier frequency. Although the noise is indlsc/ng_dsh-

able within the resolutiom of =he DFI data system, any improvement _ resolu-

tion would dictate the need for output filters in the system to mi_ze the

effects of this high-frequency noise.

Five transducers were recalibrated after a period of approxlmacaly 2

years. Four of the transducers changed sensitivity less than 0.I pe_rcemr.

The zero-pressure output showed changes between -0.6 percent to +0.5 percent

of full scale. In general, the nonlinearity and hysteresis changed lass than

0.I percent of full scale. These data lllustzate the stability of =_nese
transducers over long periods of time.

Data System

Data rate and resolution are critical to the accurate interpret.miles of

data such as that obtained during the flight of the STS. Data resoLu_tlu2 is

dependent on the ability of the meas'arement sensor to detect small c_an_.s in

the measured value and on the data system's capability to process th_ese _ata
at a comparable resolution.

The DFI data system digitizes the analog output of the transducmrs. The

nominal output range is 0 to 5 volts, whereas both calibration and fflighr

data show that negative voltages occur at 0 or low pressures. Such megazive

biases are, therefore: not read, and their omission compromises the mccuracy of
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the data. An 8-bit pulse-code modulator (PCM) is used, and the data are

recorded at a rate of I sample per second. The resulting resolution of the

DFI pressure dat_ is approximately 11.25 psf for the 0-20 psla transducers,

8.44 psf for the 0-15 psia transducers, 0.586 psf for the 0-150 psf
transducers, and 0.293 psf for the 0-75 psf transducers. Studies_, 6 have

shown that the DFI data rate and resolution introduce uncertainties into _h_

flight data restricting the ability to verify the performance of the flight

system through flight and ground-based data correlations. To resolve such

shortcomings, a mo e thorough analysis of the problem to be solved is

mandatory --_nen specifying system resolution and response. The orbiter experi-

ment progra:_ (OEX), designed to provide highly accurate, research quality

data, uses a 12-bit PCM system and data rates between 2 and 150 samples per

second depending on the data type.

- _he i_corporatlon of high resolution into z data system complicates the

overall design because of the system's new sensitivity to electromagnetic

interference (EMI) and electronic noise. EMI effects must be minimized _y

using shielded components, particularly shielded cable, as in the Forward

Fuselage Support System for OEX. In a typical pressure system_ the transducer
is a source of noise; therefore, the transducer design must consider the data

resolution requirement. The inclusion of integrated filter circuits in the

transducer is desirable, but as in the case of the SEADS transducers, these

filter circ,a_it requirements were net defined prior to manufacture. Circuits

designed based on component tests were incorporated into the data system's

PCM slave. In addition, the increased system resolution re_ul=s in an

increased sensitivity within the data system to supply voltage and tempera-

ture, both of which must then be monitored for postflight data correction.

Finally, in general, the data system should retain _ flexibility Lo be
modified as a result of end-to-end system level tests.

Measurement Location and Range

As noted by Scallion (ref. 5) and Siemers (ref. 6), the number of

pressure orifices in the DF! is quite small, and considerable Judgment must be

exercised in the interpretation of the data. A review of the basic flow field

phenomena assoclated with a complex vehicle such as the Space ehuttle orbiter,
which incorporates both a reaction control system and aerodynamic control sur-

faces, indicates :hat the spatial distribution, limited number, and limited

range of the measurements severely restrict analysis of the flight system.
This conclusion has been confirmed by an inability to isolate specific flow

phenomena such as control surface flow separation, RCS/control surface

interaction, and the cause of lofting on ascent based on available flight

data. An inability to resolve these problems from the flight data indicates

that a substantially more elaborate measurement system would be required to

isolate and define the flow field phenomena involved. Even though many of the

flow field phenomena were predicte d (allowing the proper loc_tion of pressure

orifice and ranging of the transducers), some were not. Therefore, the

measurement system must retain a flexibility whlch will allow the addition of

new orifices, the relocation of others, and the change-out of transducers not

o_ the proper operational range. In his study of Reaction Control System

performance, Scallion (ref. 5) observed that "about half of the transducer

pressure ranges were exceeded (the g=ges became saturated)." This gage

saturation severely limited the thoroughness of the analysis. Because of
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sa:vration, a limited DFI transducer change-out was accomplished at two

locations in an attempt to better understand the pressure distributions
relative to ascent lofting. _ny times, however, the inclusion of a high-

ramge =ransducer will result in an unacceptable decrease in data resolution at

l_er pressures. Under these circumstances, it would be necessary to

Incorporate dual transducers at these pressure ports. This design will

provide the capability to obtain the data over the entire pressure range with

go_ resolution. Such a dual system as incorporated in SEADS would have

cc_slderab!y enPanced much of the DFI data.

DFI FLIGHT DATA COMPARISONS

In _ e_ the shortccmings thus far described, u_eful resule_ were

obtained from the pressure data analyses performed. One objective of the

evalua:ion of the STS-I-5 pressure data was to define flight pressure

distributions for comparison with wind tunnel and computational data and

to identlf7 inconsistencies, if any. These comparisons contribute both

to the validation of t._e orbiter's design and the demonstration of its flight

worthiness, as _ell as provide a valuable data base for evaluating ground-

ba_ed research capabilities. In addition, these comparisons determine the

need fcr improvements in existing capabili:ies or requirements for new

capabilities. Typical results from selected _orts from STS-3 and -5 are

shown in figures 12 through 16. Symbol identification is given in Table i.

Dm=a from the pressure port nearest the nose on the lower surface are

shoal in figures 12 and 13. This orifice ha_ two transducers collocated a:

the s_ port with two different pressure ranges. The 0 to 15 psi transducer

(V07PgIO0) data are shown in figure 12. Its data resolution for the 8-bit

da__a system is 8.44 psi. For regions in the upper atmosphere, where pressure

leTels are low, the transducer output appears extremely noisy, but this i_ in

actuality only a function of the resolution of the data system. Data below

Mach iO are much smoother. Both the wind tunnel and the HALLS data for this

location match the flight data well, within the error band of the _light

da:a. Where angle-of-attack excursions (aeromaneuvers) are noted in _he

flight pressu _ lata, corresponding ground-based information gives similar

no-Jdi_nsio_ cessure levels. This can be noted in this and other figures

for Math 15 LiS) during STS-3.

The other transducer located at this same port has a 0 to 150 psi range

(_37P9451). Its da_a resolution is 0.586 psi, and due to its location near

the stagnation point and its shortened data range, the transducer is saturated

shortly after the orbiter comes out of blackout. This transducer, with much

better data resolution, gives a smoother set of flight data In the upper

a==osp_re, as evidenced in the STS-3 plot. The HALLS calculations matched

weil in the hypersonic region and predicted the correct pressure level at Mach

15 during the STS-3 aeromaneuver. In this and other plots, both the wind
t_.nel and HALLS data follow the shape of the flight data curves. For this

transducer, however, the ground-based data are slightly h_gher than the flight

da:a.

Figures 14 through 16 show comparisons of typical flight data with

gr;und-based data. All of these DFI ports _ave 0 to 150 psi transducers -_Lich
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_rovide good data resolution. All of the ground-based data are well within

:he flight data error band. Saturation of these transducers occurs around
l_ch 1.5 for each flight. This array of transducers is an excellent example of

=he calibration/bias uncertainties. The V07P9453 and V07P9461 transducers have

_known negative biases. For V07P9453, the flight data are consistently lower

_han the ground-based data for all three flights indicating that a bias

_orrection could result in better agreement among data sources. The data

:btained for V07P9461 are slightly higher than ground-based data. A bias

zorrection would not help the agreement. This is an indication that the bias

Lay be only slightly negative and may be a function of temperature. This sllg.h=

iisagreement could also be caused by the use of the "universal" calibration
_urve. Yhe V07P9457 :ransducer has a positive bias which is subtracted from the

flight data presented. Even though subtraction of the on-orbit bias lowered

:he flight data and provided good agreement with the ground-based data, the

flight data _e _till slightly above ground-based results indicating possible

zemperature variation of the bias.

A review of the data presented in this Faper and in refereL,ces I and 2

reveals that, in splte of the many uncertainties in the flight data due to the

limitation of the measurement/data system, the agreement is generally good

between the flight and ground-based data. Generally, the ground-based data

retch the shape of the flight data, and observed biaE_s are within the expected

3FI measurement system error bands. Confidence in the data base could be

improved with the incorporation of an improved measurement/data system.

Ali DATA PARAMETER EXTRACTION FROM DFI PRESSURES

Another objective, only partially atzalnable due to data limitations and

zhe nonoptimal location of the DFI orifices for this purpose, was a test of

=he capability of the SEADS method to extract typical air data from DFI pres-
sures. The method used for this purpose is an'adaptation of the SEADS flight

data computational technique described in detail in references 6 and G. The

basic SEADS technique derives vehicle attitude and free-stream dynamic

pressure from the nose region pressure distribution.

For Shuttle orbiter flights STS-I-5, DFI pressure measurements were

available at the ports shown in figures _-3. Only three orifices were consid-

ered far enough forward to furnish reliable data representable by the SKADS

pressure model. Some of the farther aft orifices on the bottom of the fuse-

lage were considered and were determined to degrade the analysis accuracy.
The data from the top orifice wa_ suspect due to possible flow separation at

high angles of attack (a), and then the transducer saturated at lower angles

(and altitudes), furnishing no useful pressure data for this study. This

analysis has thus been restricted to the front fuselage orifices located on

_he bottom, (Pb), and port side, (Pp). Since no orifice was located on the

forward starboard side, the sideslip angle (8) was not obtained. The two

pressures, Pb and Pp, permit the solution for on/y two state variables:

angle of attack (a) and free-stream dynamic pressure (q_)- These physical

limitations of the DFI result in the introduction of two simplifying

assumptions, neglectin_ sideslip angle and ambient pressure.
[



A_ain, since the DFI recorder did not operate durin_ the STS-I _nd STS-4

_issions and the complete DFI system was not ac:ivated d_rin_ STS-2, only

STS-3 and STS-5 have provided complete sets of data for cbis part of the

study.

The first tr7 (using no external data sources) at ob_:alning _ _ml 0_ is

shown in figures 17 and 18. This analysis was =erminate_ at approximately

M = 3, where the low-range transducer Pp satura=es. It i__ seen that ".he trend

of trajectory determined a (labeled BET._ was followed well "_Ith an error of

approximately 2 _ t= 3 _. The importance of a hi_n-resolucicn data system is

also obvious in _he flight data as the data scatter increo-_es greatly below

H = i0 where Pb makes a transition from the 0-! psi to t._e 0-15 psi transducer.

Because of the limitations imposed by lack of pressure orifices in the

nose region, the ang1_ of attack derived from using the .__ADS algorithm with

che DFI pressures may be questioneo when compared to a de-_ived from trajectory

or navigation data. Severtteless, the trends in a are mc_.eled _ell, and the

dynamic pressure Is predicted quite accurately. Analysis indicates that

distinct Improvements in thls SEADS method will result wt_n pressure

distributions on the nose cap are available.

Comparisons of the final SEADS/DFI derived q_ from _TS-3 and STS-5 with

other sources of q_ show that in the hypersonic flight r_ime the SF_DS/DFI

- q_ a_r._es with the G & C - q but differs from the Best r_stimate Trajectory

_BET)-q. by a small, though percentagewise, significant z_1ount. Additional

analysis by LaRC (refs. 9, i0), JSC, and Rockwell International has shown that

the BET-q,, in this region leads to values of the_ aerodynmmlc coefficients at

_arian_e with their predicted values. While resolution o_ this discrepancy

must await a Shuttle orbiter flight with SEADS onboard, r_p SEADS/DFI derived

value has b_cn accepted as representative in the hyperso _v-_c region and has

been Included in the LaRC BET in this region for STS-3 an_ -5.

Although significant results have thus far been obtained as a result of

".he analyses conducted using the BFI pressure data from S'KTr-I through STS-5,

=hese results are severely _imi=ed because of the llmltacions which _ been

_hown to exist in the DFI. Design of future pressure _easurement systems for

flight system performance evaluations shou)a incorporate _be following

Improvement s.

I. Design the data system to provide the data accur_cy, resolution, and

frequency required to evaluate the flow field phenomena of interest _ well as

_ccepting the bias or other idiosyncrasies of the measurement system.

2. Proper selection of number and location of measurements l's d_pendent

-='-_ available ground data base.

3. Proper ranging of transducers based on predicted pressure-fleld

•n_lysis and available ground data base is necessary.
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4. .Measurement system should be of a desi_ to allow changes resulting
from preflight end-to-end system tests as wei] as initial flight tests to
improve the quantity or quality of the data.

5. Component temperature mcni=oring and calibratl_n based cn _ominal

temperature profile_ are required. Since the response uo temperature

variation is highly nonlinear, calibration should be performed throughout the
expected temperature range.

6. individual calibration curses of all :ransducer_ in the system should

be used. _Family" calibrations are not adequate.

7. Transducer b!ases, both poqitive and negative, should be accommodated
in the data system.

8. In situ reference values (for example, on-orbit ._ressure zeros, supply
voltage, and temperature) should be used in data reducti_n.

SUMPARY AND CONCLUSIONS
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Pressure data obtained from the Space Shuttle orbiter's Development

Flight Instrumentation in the forward fuselage region during the STS-[ through
-5 reentries have been compared to ",rindtunnel and computational data.

Ground-based data across the speed range matched the flight data within the

uncertainty c=iculaced for the DFI system. An analysis of tke DFI dara system

and the calibration procedures associated with the in-fllght behavior of the

transducers has provided a better understanding of the _FI system a_d

explained differences between the ground-based data and d_e flight data.

As a result of the analyses presented, certazn conclusions are noted

here. Agreement between ground-based and flight data, although good, is

limited by the reso!utio-a of the flight data system and the preflight

calibration of the tra_ducers. Improved data system resolution and more

thorough transducer calubratlon could reduce the uncertainty from 5 percent to

0. I percent full scale. More pressure measurements and transducers of

different ranges (more applicable to the reentry environment) are needed

onboard the orbiter for accurate pres3ure modeling. Orifice leakage and tile

steps and gaps are uot important to he response and accuracy of the DFI

flight pressure data glven the resolution and quality of the system. Both the

wind tunnel tests completed on the forward fuselage models and the KKLIS

computer program predict in-flight forward fuselage pressure distributions

well. Both ground-based techniques can be used confidently, alzho_gh HALIS

data are currently restL-icted to the windward surface. The technique

developed for SEADS to derive accurate air data parameters f;om forward

fuselage pressures has been demonstrated with the DFI data.
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]:'ABLE 1

SYi_,/IBOL IDENTIFICATION FOR DATA PLOTS

FLIGHT DATA

HALLS WIND TUNNEL

• Mach 20.

#h Mach 18.

• Mach 15.3

Ill Mach 10.

0 Mach 10.

[] Mach 6.

0 Mach 4.63

/k Mach 3.5

IX Mach 2.96

r',. Mach 2.3

a Mach 2.

0 Mach i.5
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VO7P9807

VO7P9810

VO7P9805

Figure i.- Upper surface DFI pressures.
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\ - _ / / \ vo,,,_,oo
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Figure 2.- Lower surface DFI pressures. !
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, VO7P9888

ST 115

VO7P9873 VO7P9887

Figure 3.- Port and starboard DFI pressures.

Q VO7P9114

• VO7P9115
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5.0

/
2,1 .t
76000 76200 76400 76600

GMT-TTME

| I
76800 77000

Figure 4.- STS-2 pressure data for V07PglI4 and V07PglIS.
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ORIGINAL PAGE Ig
OF POOR QUALITY
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6530(

VO7P9871

WIND TUNNEL DATA

FLIGHT DATA

t I _ r
65400 65500 65600 65700

GMT-T',ME

658OO

Figure 5.- STS-I pressure data for VO7P9871 compared
to wind tunnel results.
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Figure 6.- Zero balance distribution (_i transducers).
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Figure 7.- Sensitivity distribution (42 transducers).
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Figure 8.- Nonlinearity and hysteresis distribution (41 transducers).
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Figure 9.- Thermal zero-coefficient distribution (42 transducers).
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(3
3

t-

.42

E
:3

Z

o
8 g lO 1_ 12 x 10.4
_ange/_

Figure I0.- Thermal sensitivity coefficient distribution (42 transducers).
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Figure ii.- Typical transducer _e=perature var_atlons.
(See table i.)

P/Q

V07P'9100

3_, /
2 - /4 STS-5
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I

52570

3--
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0
5600O

STS--3

I I I I
56400 57600568OO 572OO

GMT-TIME

J
58000

F_ure 12.- STS-3 and STS-5 pressure data for V07P9100 compared

to ground-based results. (See table i.)
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V07P9451

ORIQI_tAL PAGE L_

OF POOR QUALITY

0

o oa%_ STS--5

50970 51370 51770 52170 52570

ol I I I

5eooo 56400 .c8800 57200

O

°O_t_
813-3

I I
576OO 580OO

GMT-'I'I_

Figure 13.- STS-3 and STS-5 pressure data for V07P9451 compared

to groumd-based results. (See table I.)
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°

580OO

d r____ I 813-3 I
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Figure 14.- STS-3 and STS-5 pressure data for VO7P9453 compared
to ground-based results. (See table I.)
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lie1.

50570

V07P9457 ORIGINAL PAGE _3
OF PO0_ QUAL'.,'FY

I 1 I I ]
500.70 51370 51770 52170 52570

P/Q

ZI1.0

5000O

STS-3 I

56400 56800 57200 57600 58000

GMT-TIME

Figure 15.- STS-3 and STS-5 pressure data for VO7P9457 compared

to ground-based results. (See table I.)
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FiMl_re 16.- STS-3 and STS-5 pressure data for VO7P9461 compared

to ground-based results. (See table I-)
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Figure 17.- STS-3 DFI/SEADS derived angle of attack.
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Figure 18.- STS-3 DFI/SEADS derived dynamic pressure.
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