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FLYING THE ORBITER IN THE APPROAC_H/LANDINGPHASE

Steven R. Nagel
Johnson Space Center

Houston, Texas
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I.NTROIXICTION

The Columbia has completed a spectacularly success-=ulfour flight Orbital -]ight Test

program as well as the first operational _ssion in which t_o satellites were
deplcyed. As we await the first launch of the next Orbiter, Challenger, it is an
_.ppropriatetime to reflect upon some of the accoml$lishmentsof these five flights as
well as areas of desired improvements. John Young's description of the Orbiter as a
"fantastic flying machine" is an accurate representation of the opinions of all t_,e
crew members who have flown on the Colunl)iato date. It is unprecedented that a

vehicle so complex as the Shuttle could have reached such a state of maturity in so
few missions. This maturity is reflected not only in terms of basic perfcr_ance dur-

ing dynamic flight phases, but also in the outstanding performance of individual
spacecraft systems. Certainly, one purp(_seof this paper is to extend to you, the
designers and developers, the heartfelt thanks of t_e crew members who are very
_leased to have the opportunity to fly your Space S_huttle. When attempting to
describe how the Shuttle flies, one should look at the phase where most of the "hands

on" activity has occurr_-d- Appreciably more CSS ti_ has been logged during entry
and particularly in the approach and landing phase than any other segment of the
mission profile. The di__cussionthat follows, t_erefore, will outline this phase in
some detail including pilot comments, techniques, crew displays and landing aids.

Some problem areas related to landing the Orbiter will be discussed, as well as

possible solutions.
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SETTING UP THE APPROACII

"t"neentry is a progression of events designed to place the Orbiter in a positic_
from which a safe landing can be made. It does this without vin!ating ther_l,

dynamic pressure, or acceleration constraints for those trajectories within

a given dispersion band. Guidance modes for the overall entry fall into

three phases :

o Entry Guidance
o TAEM Guidance

o Approarh/Lan_ing Guidance

The purpose of Entry Guidance is to deliver the Orbiter to the TAEM interface
conditions which are relative velocity of 2500 ft/sec, altitude of approximately

82,000 ft, range of approximately 52 NM, and heading within a few degrees of

that required to fly to the tangency point of the appropriate HAC.

TAEM guidance is divided into four subphases as depicted in figure I. At the
end of TAEM the Orbiter is established on the outer glide slope (OGS), on run-

way centerline and on airspeed.

Approach and Landing (A/L) guidance begins with termination of the TAEM phase
and endswhen the OrbLi_er completes roIlout. The phases of A/L guidance are

depicted in figure 2.

FLYING THE APPROACH

To a large extent the landing point and even quality of touchdown depend upon
flight conditions at the preflare point where the Orbiter is transitioned i
from the OOS to the inner glide slope (IGS). If airspeed, flight path angle,

and position are very close to nominal, the end result will likely be a satis-
factory touchdown at the desired point. On the other hand, if dispersions of

appreciable ,_agnltude exist at preflare, the landing may be salvaged but will

probably not occur at the desired point. To assist the crew member in achievin_
the planned trajectory, several displays and landing aids are available both !

inside the cockpit and on the ground.

In the cockpit are three types of displays: dedicated, CRT, and the HUD.
Dedicated displays are those meters that give classic fl ight parameters such i

as airspeed, altl:tude, angle-of-attack, etc., as well as the attitude and
heading indicators. Steering needles on the attitude indicator reflect

guidance con_nands to remain on or correct to the proper trajectory. See I
figure 3.

The only CRT display that might be used during the approach and landing phase
is the Horizontal Situation Display (figure 4). The HSD presents a hori- j

zontal depiction of the Orbiter's flight path relative to the HAC and final

approach. Its real usefulness is for flying around the HAC, but the HS:D - • - ?) .
may also be .u,sed'onthe oos, espec!ally if weather is present. "

The HUD will be flown for the first time in Challenger and represents a signi- _ _

ficant improvement to the task of flying or monitoring the final approach and
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landing {figure 5 ). All flight critical information is prese__ted on the

HUD combining glass so the crew member does not have to go "hea__s down"

during the approach. Additionally, the HUD has a velocity vector which

depicts the reel time flight path of the Orbiter, thus m_king t_e results
of any correction to glide path or azimuth im_r_diately ap;arent. Ceclutter

n_'_es allow certain symbology to be removed fro_ the HUD when not required.

t_ing these onboard displays the crew member can fly the entire _pproach
by ._atisfying guidance con_'_nds (i e. centerinq the needl._s). Prudence
dictates that one also crosscheck the "raw" data - flight condit-'ons

and position relative to glide path and runway centerline." kn_ _f course,

even though we comoletely trust the onboard indications, it nev_ hurts to
take a look out the window.

To assist in the problem of visually acquiring the OGS and IGS, --brae aids

have been placed on the ground: aim point,markings, PAPI's, and the Ball-

Bar. Markings have been placed at the ground intersection points for the

OGS (figure 6 ). The standard OGS aim point is a rectangle located 7500 ft

from the runway threshold _aile the high ;4Ind OGS aim point is a triangle
placed 1000 ft closer. 14hen on the OGS the Orbiter is on a collfsion course

:vith the appropriate aim point until preflare. _s a matter of f_t, the

velocity vector in the HUD {_-) should overlay this aim point _vhile on the
OGS.

Of course, just aiming at the proper point on the ground does not assure

the correct flight path angle (normally 19°). To provide a visual aid for

gan_a (y} Precision Approach Path Indicator (?API) lights are ins,tailed at

the aim points (figure 7 ). Each light has a split beam the,uppe_- half ef
which is _vhite and the lower half red. The four lights are set at 22 °, 20_,

18°, and 16° elevation respectively. Thus, when one flies Cown a 19 ° y

glide path he will see two white lights and two red lights. Like._ise, three
red and one white light indicate that at that moment the Orbiter .s on a
17 ° _ glide path, and so on.

¢

After many attempts at visual aids for flying the 1 I/2 ° y IGS, the Ba11-Sar

was d_veloped (figure 8 .) The Ball-Bar is so straight forwa.rd and simple
one would wonder how it belongs in the Space Program. Placed besi_le the

runway and 2200 ft from the threshold, the Bar is an array of six _roups
of red lights, all set two feet above the ground. In front of the 3at 500 ft

is the Ba11, a cluster of three _hite lights on a pole 15 ft tall. A line

drawn from the Bar through the Ball subtends an angle of 1.5 ° from the hori-

zontal. Thus, when the pilot flies the Orbiter to line up t_weBal _.and Bar,
he is on the proper IGS - and it works extremely well.

PILOT CO_._NTS AND PROgLEM AREAS

The first five Shuttle ,_issions have had varying amounts of _nual _ying on

the HAC and final approach. All landings thus far have bcen._anual. During
ST.S-i aQd 5 the commanders _..'ere'in CSS frcm approxinately 33,C00 ft all the

v_ay totouchdown. On STS-2, 3, and 4-t.here _vere varying mixt_:res of AUTO
ahd C_ through this phase depending upon the te_tobjectives for e_ch
particular mission. - ..
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In general, the pilot assessments of the Orbiter subsonic handling qualities
are quite favorable. "Smooth, crisp, and precise" are terms that have been

used to describe the FCS. Although it is a rate command system, the rate

deadbands are so tight that the FCS behaves almost as an attitude hold

system. Most pilots have stated that the Orbiter is tighter and more re-
sponsive than the Shuttle Tralning Aircraft (STA/Gulfstream i!). The only

sllght exception to this statement might be with regard to the speedbrake
which has rather slow response and poor anticipation for speed control when

in AUTO. Many pilots use the technique of manually setting the s_eedbrake

until close to ti._desired airspeed, then a11owing AUTO to assume vernier
con troI.

Along with all thegood things that may be said about the Orbiter, there are

a couple of areas in which problems may arise sooner or later. Those two
areas are tb_ last key events of any mission - landing and stopping.

The Orbiter is not a straightforward and easy airplane to land for at least
two reasons. Conventional aircraft exhibit positive speed stability such

that for landing the pilot is continually applying increasing aft stick to
"hold the airplane off" during the final flare. The Orbiter, with its very

tight rate command system, will essentially hold attitude with the RHC in
detent. Thus, in landing the Orbiter, one makes sho_t, pulse inputs for

fine corrections in the fl,are, as opposed to increasing back pressure.

Additionally, the Orbiter !s a large delta wlng airplane with an unusually

high ratio of elevon area to total wing area (the elevons comprise more than
15% of the total wing area). The well known result is that a pitch command
in one direction results in an initial translation tn the opposite direction

due to the CL5 e effect until the aircraft rotates enough forCL: to produce
the desired response (figure g.) The bottom line is that any large _C
deflections just above the runway are taboo. All this works very well for

a good setup with no gust upsets or other_unforseen occurrences. Given off

nominal conditions, however, the pilot may have to increase the magnitude of

RHC inputs and the result may well be a hard landing. After main gear touch-
down the nose gear is lowered to the runway, nominally at 180 KEAS. On STS-3

during the derotation, a pitch instability was discovered. Subsequent analysis
confirmed the existence of this instability with welght on main wheels, low

pitch attitudes, and forward C. G.'s. Several candidate modifications to
the CSS pitch axis for slapdown/rollout were examined in the Shuttle Engineer-

ing Simulator (SES). One of the simplest proposals turned out to be the most
satisfactory; switching the CSS flight control configuration to the AUTO loop

gains at weight on main gear resulted in a very tight, well damped pitch
axis.

Once on the runway and derotated, the final objective is to bring the Orbiter

safely to a stop. Original design requirements called for touchdown speeds

in the neighborhood of 150 KEAS. With several years of weight growth in
the design, however, landing speeds have increased drastically. For example,
the reference to_ichdown speed for STS-6 end of mission Is 185 KEAS and abort

touchdown speed is_QS,KEAS. Although _hey have been improved, the .___kes_i_;i{

and tire) aren_a'rginal_for heavywelght aborts into sho_t, runways. :
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POSSIBLE SOLUTIONS

Considering first the stopping problem, there are several candi_aze solutions,
some of which are more reasonable than others.

I. Lengthen the short runways

2. Install a dr_g chute in the Orbiter
3. Install runway barriers

4. Improve brakes, t_re_s, axles

5. Optimize pilot braking technique

6. Develo.r,a-closed loop sPeedbrake logic to reduce landing
d_3per_ions

The last three options on this list show some. promise and number 5 in particular

i_ interesting. Presently the speedbrake closes at 4000 _t, 2506 ft, or lO00
ft altitude, depending upon energy, and remains closed until tcuchdown. The

"smart" speedbrake logic proposes to control velocity versus x distance from

the runway to cross the runway threshold at a given delta above reference
touchdown speed. For a nominal landing this delta would be +25 KEAS whereas

for an abort it would be +5 _SAS. The result, for example at Dakar, would be

a touchdown 2000 ft down the runway at 15 KEAS below nominal touchdown speed.

Orbiter landing handling qualities remain a concern. Se,)ral proposed modi-

fications to the CSS pitch axis for landing are presently undergoing evaluation
in various engineering simulators. It remains to be seen if any one of these

candidate FCS changes is sufficiently better than the baseline system to

warrant incorporation. As stated before, to a great extent, th_ problems
close to the runway are related to the physical configurdtion of a delta

wing with large elevons. One way to a11eviate this problem is to incorporate,
active canards. Ca'nards could produce benefits to the Orbiter in many
different areas, a few of which are:

,

.

Active canards for pitch control could eliminate the adverse

CL6e effect and thus solve the landing longitudinal control
problem.

With active canards the elevons could be deflected down during
landing to sffrve also as flaps. The decreased touchdown speeds

would solve the stopping problem and save the expense of frequent
brake refurbishment.

\

3. Canards woulo increase L/D, thereby -ermittinG a shallower
steep glideslope and decreased pilot workload.

4. By reducing landing speeds and controlling pitchover, canards

could reduce the large negative lift loads on the gear and
tires resultinn from up elevons at nose .,eat touchdown.

Af _e_-derota t_on "c.'_negatl ve angl e of _ttacK. _r.ay._de_. des Irable
aerodynamic braking but"also ;ip}poseslar.ge loads ozl the gear "'"

and tires.: WiEh;reduced landingspeeds provi"ded by Canards,'"

the nose gear could be extended to allevi_.te t'his gear load
problem.
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CONCLUSION

The Shuttle has continued to impress all of us with its capabilities

and performance throughout the envelope. It enters the operational
phase backed by many years of develomment and testing as well as a

successful four flight test program. Future flights will see implementa-

tion of new elements and design features as the program moves towards

even better performance. Along with th_se changes will come unforeseen
problems that will be solved as have those in the pa_t. But one thing

is certain - the Shuttle concept is a sound one and will allow us to

attain a routine presence in space.
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HUD FORMAT
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