NASA Conference Publication 2284

Eleventh NASTRAN ${ }^{\text {® }}$ Users'

 Colloquium

 Colloquium}

Procoedinge of a coilogwixan hold ab Sen Francinca, Califormie

May 2-6, 1983

Eleventh NASTRAN ${ }^{\circledR}$ Users' Colloquium

Procerdings of a colloquitum held at
San Francisco, California
May 2-6, 1983

National Aeronautics
and Space Administration
Scient.ic and Technical
Information Branch

FOREWORD

NASTRAN ${ }^{(1)}$ (NASA STRUCTURAL ANALYSIS) is a large, comprehensive, nonproprietary, general purpose finite element computer code for structural analysis which was developed under NASA sponsorship and became available to the public in late 1970. It can be obtained through COSMIC (Computer Software Management and Informaticn Center), Athens, Georgia, and is widely used by NASA, other goverrment agencies, and industry.

NASA currently provides continuing maintenance of NASTRAN ${ }^{\circledR}$ through COSMIC. Because of the widespread interest in NASTRAN®, and finite element methods in general, the Eleventh NASTRAN ${ }^{(6}$ Users' Colloquium was organized and held at the Holiday Inn-Fisherm?n's Wharf, San Francisco, May 2-6, 1983. (Papers from previous colloquia held in 1971, 1972, 1973, 1975, 1977, 1978, 1979, 1980 and 1982, are published in NASA Technical Memorandums X-2378, X-2637, X-2378, X-2893, X-3278, X-3428, and NASA Conference Publications 2018, 2062, 2131, 2151 and 2249.) The Eleventh Colloquium provides some comprehensive general papers on the application of finite element methods in engineering, comparisons with other approaches, unique applications, pre- and post-processing or auxiliary programs, and new methods of analysis with NASTRAN ${ }^{\circledR}$.

Individuals actively engaged in the use of finite elements or NASTRAN ${ }^{\circledR}$ were invited to prepare papers for presentation at the Colloquium. These papers are included in this volume. No editorial review was provided by NASA or COSMIC, however, detailed instructions were provided each author to achieve reasonably consistent paper format and content. The opinions and data presented are the sole responsibility of the authors and their respective organizations.
\qquad
Page
FOREWORD iii

1. BANDIT IN NASTRAN 1
by Gordon C. Chan (Sperry Corporation)
2. NASA/MSFC NASTRAN AUXILIARY I/O ROUTINES 6
by Malcolm Tacg (McDonnell Douglas Technical Services Company) and Bob Thornton (Boeing Computer Supfort Services)
3. USING PAFEC AS A PREPROCESSOR FOR COSMIC/NASTRAN 21
by W. H. Gray (Oak Ridge National Laboratory) and
T. V. Baudry (PAFEC Engineering Consultants)
4. THE GPRIME APPROACH TO FINITE ELEMENT MODELING 33
by Dolores R. Wallace, James M. McKee and
Myles M. Hurritz (David W. Taylor Naval Ship Research and Development. Center)
5. ORTHOTROPIC HOLE ELEMENT 46
by J. W. Markham (Lockheed-Georgia Company) and C. V. Smith (Georgia Institute of Technology)
6. GENERALIZING THE TRAPRG AND TRAPAX FINITE ELEMENTS 76
by Myles M. Hurwitz (David W. Taylor Naval Research and Development Center)
7. ACOUSTICAL MODES OF ARBITRARY VOLUMES USING NASTRAN TRANSIENT HEAT TRANSFER RF9 82
by V. Elchuri, G. C. C. Smith and A. Michael Gallo (Bell Aerospace Textron)
8. AN ALTERNATIVE METHOD OF ANALYSIS FOR BASE ACCELERATED DYNAMIC RESPONSE IN NASTRAN 89
by V. Elchuri, A. Michael Gallo and G. C. C. Smith (Bell Aerospace Textron)
9. A NASTRAN DMAP PROCEDURE FOR CALCULATION OF BASE EXCITATION MODAL PARTICIPATION FACTORS 113
by William R. Case (NASA Goddard Space Flight Center)
10. FINITE ELEMENT ANALYSIS OF FLUID-FILLED ELASTIC PIPING SYSTEMS 141
by G. C. Everstine, M. S. Marcus and A. J. Quezon (David W. Taylor Naval Ship Research and Development Center)11. PROPAGATING PLANE HARMONIC WAVES THROUGH FINITE LENGTHPLATES OF VARIABLE THICKNESS USING FINITE ELEMENTTECHNIQUES161by J. H. Clark, A. J. Kalinowski and C. A. Wagner(Naval Underwater Systems Center)
v
PAGE \qquad intientionally blany
11. PROPAGATION OF FLEXURAL AND MEMBRANE WAVES WITH FLUID LOADED NASTRAN PLATE AND SHELL ELEMENTS 178 by A. J. Kalinowski and C. A. Wagner (Naval Underwater Systems Center)
12. DYNAMIC CERTIFICATION OF A THP:IST-MEASURING SYSTEM FOR LARGE SOLID ROCKET MOTORS 207
Dy R. A. LeMaster and R. B. Runyan (Sverdrup Technology, Inc.)
13. DETERMINATION OF ELEVATOR AND RUDDER HINGE FORCES ON THE LEARJET MODEL 55 AIRCRAFT 226
by Robert R. Boroughs and Viswa Pacimanabhan (Gates Learjet Corporation)
14. A NEW METHOD FOR GENERATING AND MAINTAINING RIGID FORMATS IN NASTRAN 249 by P. R. Pamidi and W. Keith Brown (RPK Corporation)
15. IMPLEMENTATION OF ELASTIC-PLASTIC STRUCTURAL ANALYSIS INTO NASTRAN 255
by Alvin Levy, A. B. Pifko and P. L. Ogilvie (Grumman Aerospace Corporation)
16. ELASTIC-PLASTIC ANALYSIS OF ANNULAR PLATE PROBLEMS USING NASTRAN 281
by P. C. T. Chen (Benet Weapons Laboratory)
17. BOLT IN BORE BUUNDARIES 293
by T. G. Butler (Butler Analyses)

SUMMARY

BANDIT (ref. 1 and 2) has been implemented into the NASTRAN April '83 release. It is now a permanent feature in NASTRAN and will be included in all future releases for all four computing machines (IBM, CDC, UNIVAC, and VAX).

INTRODUCTION

Originally BANDIT operated as a preprocessor of NASTRAN. It read the NASTRAN input cards and produced a set of resequencing (SEQGP) cards that would greatly reduce the computational time required by the matrix decomposition module of NASTRAN for a large structure. In the past, many computer centers had installed BANDIT in their systems together with the NASTRAN program. The user would run the BANDIT program and NASTRAN as if they were one program (or two separated programs depending on how the two programs were actually tied together in the computer systems). In some cases, the user was required to pass the input cards and the output SEQGP cards between the two programs, and in others, the data was manipulated through the use of cataloged disc files. Although there is nothing wrong with this BANDIT-NASTRAN arrangement, there are, however, several shortcomings:

1. Each installation requires patching the BANDIT-NASTDAN operation for each new NASTRAN release.
2. The complete NASTRAN input deck is read and decoder twice, once by BANDIT and once by NASTRAN, which is inefficient and redundant. In addition, BANDIT requires that all continuation cards must follow immediately their parent input cards.
3. BANDIT uses Fortran files which may become dead files for NASTRAN which uses its own GINO files. These dead files are carried along throughout the entire duration of NASTRAN execution.
4. When source code is added to NASTRAN for a new connection element, the element table in BANDIT needs to be updated and recompiled, and the BANDIT executable program regenerated, or the \$-APPEND option must be used.
5. There are four versions of BANDIT for IBM, CDC, UNIVAC, and VAX computters.

The BANDIT in the NASTRAN April ' 83 release has removed all the above deficiencies, and it comes in one version applicable to the four computing machines.

To reduce redundancy and other input limitations, all the input card handling subroutines of the original program were not used. Only thirty-two of the original seventy-two source codings were installed in LINK 1 of NASTRAN. The overlay segment for BANDIT routines is therefore greatly simplified. BANDIT is executed now only when the user's input deck is read in by NASTRAN, decoded, and free of error.

BANDIT IMPLEMENTATION

The implementation of BANDIT in NASTRAN follows two simple guidelines: a NASTRAN user needs no prior knowledge of BANDIT, its theory, and input requirement; and BANDIT should not prematurely terminate the NASTRAN job due to user input error. In addition, most of the useful features and program flexibility of the original BANDIT version are retained in this implementation. Eight options are available to the user to utilize some special features that the program offers. The original BANDIT program uses the $\$$-sign input cards for these options, whereas in NASTRAN, NASTRAN card input (see NASTRAN User's Manual, p. 2.1-2) is used. The following table compares the two methods (with default values underlined):

Origil.al BANDIT in	
BANDIT	NASTRAN

\$GRID=n	(not used)	To inform BANDIT no. of grid points
\$MPS $=$ = NO , YES	BANDTMPC $=\underline{0}, 1,2$	To include MPC's and rigid elements in resequencing (1), rigid elements only (2), or none of these (0)
(none)	BANDTDEP $=0,1$	To inclucle (0) or to exclude (1) dependent grids if BANDTMPC-1, or 2
$\begin{aligned} \text { \$METHOD } & =\text { CM, } \\ & =\text { GPS }, \\ & =\text { botb } \end{aligned}$	BANDTMTH $=1,2,3$,	To use Cuthill-Mckee method (1), Gibb-Poole-stockmeyer method (3), or both (2)
$\$ C R I T=2,1,3$	$\text { BANDTCRI }=\frac{1}{4}, 2,3$	To set criterion for evaluation: rms-wavefront (1) bandwidth (2), profile (3), or max-wavefront (4)
SPUNCH=NO, YES	BANDTPCH $=0,1$	To punch (1) out SEQGP cards and terminate NASTRAN job
$\begin{aligned} \text { \$NASTRAN } & =\text { NO } \\ & =Y E S \end{aligned}$	(not used)	To execute NASTRAN after BANDIT (IBM only)
(none)	BANDTRUN $=0,1$	To generate SEQGP cards unconditionally (1)

| Original
 BANDIT | BANDIT in
 NASTRAN | |
| :--- | :--- | :--- | | OPTION USEAGE |
| :---: |

BANDIT OPTIONS

Currently NASTRAN provides two methods to skip over BANDIT operation. First, the NASTRAN BANDIT=-1 aption can be used. The second method is to include one or more SEQGP cards in the bulk data deck. In this second method, BANDIT would terminate since the user has already stated his choice of SEQGP resequencing cards. However, the NASTRAN BANDTRUN $=1$ option can be used to force BANDIT to generate new SEQGP cards to replace the old SEQGP set already in the input bulk data deck. In all instances when BANDIT is executed, NASTRAN will issue a page of summary to keep the user informed of the basic resequencing computations. The user may refer to reference (1) for definition of the technical terms used.

The NASTRAN HICORE card can be used in the UNIVAC machine to increase the open core for BANDIT operation. In all machines, BANDIT automatically counts the number of grid points used in a NASTRAN job, and it is able to set up the exact array dimensions needed for its internal computation. However, if the user's structure model uses more grid points in the connecting elements than the total number of grid points as defined in the GRID cards, BANDIT will issue a fatal message and stop. In the case where non-active grid points (defined in the GRID cards but nowhere used in the model) do exist, BANDIT will add them to the end of the SEQGP cards, and their presence will not cause fatal crashing in a NASTRAN job.

Rigid elements and MPC's are included in the BANDIT computation only when the BANDMPC=1 (or 2) option is requested, and their depending grid points can be controlled by the BANDTDEP option. The rigid elements are treated as a set of MPC cards (ref. 3). Reference (1) states: "It should be emphasized here that only in rare cases would it make sense to let BANDIT process MPC's. The main reasons for this are that BANDIT does not consider individual degrees of freedom and, in addition, cannot distinguish one MPC set from another."

CONSIDERATION OF SOME SPECIAL ELEMENTS

The axisymmetic elements produce two grid numbers for each grid point (RINGAX) defined in the bulk data deck. Therefore, BANDIT in NASTRAN will use twice the number of grid points in its computation and produce the 1000000 and

2000000 series of grid numbers in the generated SEQGP cards. Other pseudo elements (such as the surface elements used in heat or fluid problems) which are not present in the element definition table (GPTABD data block) of the NASTRAN program are therefore excluded in BANDIT computation. On the contrary, any new element (developed by user), whose specification is defined in the GPTABD data block, is automatically brought into grid point resequencing.

NASTRAN RESTART

A few comments about NASTRAN restart jobs and BANDIT are needed to clarify BANDIT operational procedure:

1. BANDIT is automatically skipped if it is an unmodified restart job. However, the previously generated SEQGP cards are already absorbed into the NASTRAN data base, such as the EQEXIN, SIL, BGPDT, etc. A message is printed to inform the user that BANDIT is not needed.
2. BANDIT is always executed if it is a modified restart job.
3. BANDIT can always be executed if the restart job contains one or more of the NASTRAN-BANDIT options (e.g., NASTRAN BANDTMTH=2). A NASTRAN BANDIT=-1 option can be used to stop BAND $1 T$ execution unconditionally.

At the beginning of' a NASTRAN job, the Input file Processor modules (IFPl and IFP) in LINK 1 read the executive and case control cards and process the complete bulk data deck. The SEQGP cards generated by BANDIT are added directly to the NASTPAN data base (GEOM1 file) at a much later stage. In other words, since these SEQGP cards are not part of the original bulk data deck, they are simply not available for the restart/alter feature of NASTRAN.

nastran bulynata option

A new option (key work BULKDATA) is also added to the NASTRAN card in the April ' 83 release. It allows NASTRAN just to examine the input data deck and echo any user error detected. Since this new option (NASTRAN BULKDATA=1) and any of the BANDIT options share a common switch in NASTRAN internal programming, they cannot be used simultaneously. The BANDTPCH option acts almost like the BULKDATA option, but in addition, the SEQGP cards are punched out.

CONCLUSION

The author wishes to thank Dr. G. C. Everstire for his permission to use his program (BANDIT, release 9.0) for this project.

REFERENCES

1. Everstine, G. C.: BANDIT USER'S GUIDE, COSMIC Program No. DOD-00033, May 1978.
2. Everstine, G. C.: "Reduction of Matrix Wavefront for NASTRAN", 7th NASTRA.y Users' Colloquium, NASA Conference Publication 2062, October 1978, 「 \because 111-122.
3. Pamidi, P. R.: "Addition of Rigid Elements to NASTRAN", 6th NASTRAN Users' Colloquium, NASA Conference Publication 2018, October 197?, pp. 449-468.

N84 15592

NASA/MSFC NASTRAN AUXILIARY I/O ROUTINES
Malcolm Tagg
McDonnell Douglas Technical Services Company and
Bob Thornton
Boeing Computer Support Services

Abstract

Since the initial installation of NASTRAN on the UNIVAC 1100/82 computer at the Marshall Space Flight Center (MSFC), a number of "local" codes have been incorporated as "user routines." This paper describes four of these codes and now interested users may obtain additional information.

INTRCDUCTION

The MAP elements supplied by COSMIC/NASTRAN contain the user subroutine names OUTPT4, DUMOD3, etc., along with corresponding dummy subroutines. Locally generated "user routines" are compiled and the relocatable elements are copied over the dummy relocatables for mapping into the COSNIC/NASTRAN system. Several local codes have been generated for the MSFC computer instailations by BCSS and its predecessors and incorporated into NASTRAN ii: this manner.

The routines were written in the FORTRAII V language as used with standard COSMIC/NASTRAN. All of the appropriate links were mapped using the MAP elements supplied with the COSMIC/NASTRAN package.

The "user routines" are described in the following format: 1) purpose of routine or function, 2! insta?lation of routine into standard COSMIC/NASTRAN, 3) example showing use of the routine. Note that the routine names used in the text differ from the DMAP "calling" n mes.

BACKGROUND/REQUIREMENTS

OUTPT4 -	This module was written to create FORTRAN-written,
	unformatted user tapes containing banded matrix data
	recovered from NASTRAN matrix data blocks as requested
	by the user via the OUTPUT4 DMAP instruction. The data
	is in a simple compact, convenient form and contains no
	special labeling codes.
INPTr $4-$	Companion module to OUPTA, reads matrix data blocks
	from OU'Pri4 tapes.
DUMOD3 -	This module was created to convert NASTRAN tabular data
	blocks into matrix data biock format for convenience in
	manipulation and output, especially by OUTPT4. The
	element or gridpoint identification data is also
	recovered and output separately.

INPTT3 - This routine uses coding supplied by Rockwell International (RI) for reading matrix data in that company's customary format into NASTRAN matrix data blocks. The RI data is in a compact Fortran-formatted coded form, which appears to have quite widespread acceptance in the aerospace field.

PFDR - Print File Data Retrieval post processor originally written to extract OUTPT4 data from the NASTRAN print file, it is particularly useful when data output is required from more than one link execution as occurs frequently during substructure recovery procedures. In such cases, the normal output files are rewound after each link has been executed, thus ensuring that subsequent executions of the output moduies will overwrite earlier ones. The print file is, of course, rewind inhibited. The p.ogram has now been generalized to extract all types of data. The user is required to provide header information to enable the program to find the data on the NASTRAN print file.

IMPLEMENTATION

1. OUTPT4 - Outputs selected matrices to binary file INPI.
A. Entry Point - OUTPT4; SUBROUTINE: WRTAPE
B. NASTRAN Link: LINKI4
C. DMAP Calling Sequence: OUTPUT4 $11,12,13, I 4, I 5 / / V, N, P 1 / V, N, P 2 \$$
D. Input Data Blocks: Ii - Any matrix data block which the user desires to be written on NASTRAN file INP1. Purged data blocks are ignored. Up to five data blocks may be output.
E. Output Data Blocks: None.
F. Method: The OUTPT4 routine checks to determine whether the matrix data block is purged. If it is not, a call is made to subroutine WRTAPE, which writes each column of the matrix onto the user tspe INP1. Parameters P1 and P2 provide controls corresponding to those in the standard OUTPT2 module (q.v.).
G. Example: A comprehensive example of OUTPT4 and INPTT4 usage is provided as part of the description for the latter routine.
2. INPTT4 - reads matrix data from an OUTPT4 file assigned to INP2 into a specified matrix data block.
A. Entry Point: INPTT4.
B. NASTRAN Link: LINK2.
C. DMAP Calling Sequence:

INPUTT4 $/ M D B,,,, / V, N, P 1 / V, N, P 2 / V, N, P 3 \$$
D. Input Data Blocks: None.
E. Output Data Blocks:

MDB - Matrix data block to be loaded with data from user file INP2.
F. Method: Retrieves one matrix from user file INP2 for each call to the routine. This file may be the INPI file generated by the OUTPT4 routine or a similar user-written FORTRAN file. The required format for this file and usage of parameters. P1, P2 and P3 are described in the OUTPUT4 documentation.
G. Examples: The use of both INPTT4 and OUTPT4 is illustrated in the DMAP ALTER sequence of Figure 1. iwo matrices are read from a file previously created by OUTPT4 and subsequently printed using the MATPRN module (Figure 2). The OUTPT4 listing is shown in Figure 3.
H. Notes:

1. The primary use of this routine is to enable the user to obtain NASTRAN generated matrices in a FORTRAN binary format for subsequent use in user-written Fortran programs. Similarly formatted matrices created by NASTRAN OUTPT4 or by user-written Fortran programs can be read into NASTRAN data blocks by using the companion INPTT4 module.
2. The order of retrieval of matrix data blocks must be in the order which they were written.
3. Matrices output by OUTPT4 will be written on file INPI. This tape must be assigned as INP2 in subsequent NASTRAN runs when using INPTT4 to recover the matrices. Parameter usage is discussed in the user documentation.

ORIGINAL PAGE is OF POOR QUALITY

DMAP ALTER SEQUENCE FOR INPTT4 AND OUTPT4

```
IC RI OKFITER
AFP DISPLACEMENT
SCL 1,0
OIAG E
TjME lgi
s
S INFUTS KG.NO INTO KORE,MORO
ALTEF 30
INPUTT4/KURE,.../C,N,193/C,N,193/C,N,Z S
CHKFNT KOFE S
MATPRN nOKE....D/ s
CLTPUI4 KGRO,...//C,N,I/C,N,1 q
ExIT
endaltem
CEAD
```

FIGURE 1

MATRIX AFTER INPTT4 EXECUTION


```
    usho rlue mang- 101
    N0. (06s. = 143
    M10%:2
    CPLN CLOH IfIGIN: 36500
```



```
    ccluma 1
.11%
-2013402469623+CC4
```



```
-436221212009C+CLG -.453436592163730004
-4,
\becauseBe26r02142507%CL4
*
. 73902171766557.CU3
-599106307-c01*[03
-14540517c1661,064
-1144019L41045050
-1601017034624.CL
-1105ce66%21050c0.
- J1A)ne9129060* COC
```



```
-49301cen44005*0c
-545569Cs4035s-c03
-219034C%167s6-COJ
-13017204501910CuJ
-1112ss10971320rLJ
-4201040547444.COJ
.4761540151427.Cl
-201Le3943u6470SUZ
-1641045so1542.cuz
-)13v319361966*C口1
-6209791104a10.rU1
- 345*13J*&100-001
```


-.15327080449680004
-.021361779010 .005 -02131861779010.005 -615S962010045.004 -3310316335123.0us $+361942117613000$ -1720101545117.00 -1s7s?10134381.00 -iscr9chos76a67000 - 51855746036960003 1515162503593.001
.1001142070156001 -19031426701560003 .144656755160003
.0691912139451 .002 .11262356483110003 .45667142624080002 -17435267318170C03

 $-1417192304944 \cdot 003$ -474117520017000 -. 5096046457673.00 $\therefore 1$ YS1850457934000
$\therefore 204305151106.001$ - In13840 J03641:002 1713515463154-001 .1370916371773 .001
-.83095195101920000 .1209519514192000
-.4115550503 c 7 (001 2192404793662.001

3. DUi OD3
A. Entry Point: DUMOD3
B. NASTRAN Link: LINK7
C. DMAP Calling Sequence:

DUMNOD3 TDB,,,,,,,,/MDB,,,,,,,,/C,N,P1/C,N,O\$
D. Input Data Blocks:

TDB NASTRAN Table Data Block.
E. Output Data Blocks:

MDB NASTRAN Matrix Data Blocks.
F. Method: Converts tabular data blocks into matrix data block format. Up to eight data blocks may be converted. The tables are mapped into a PI $\times 8$ matrix and the grid point/element ID's into array LTLID which is listed and punched on cards.
G. Examples: The example illustrates how the SPCFORCE (OQG table) can be reformatted using the DMAP sequence shown in Figure 4. The LTLID array of gridpoint ID numbers is shown in Figure 5. Figure 6 shows the NASTRAN SPCFORCE output and Figure 7 shows the corresponding DUMOD3 matrix, IFLOAD, as output using OUTPT4.

DUMOD3 AND OUTPT4 DMAP INSTRUCTIONS

```
1<0 DUMMOOB OQG.,..IF,IIFLOAD......,IC,N,1OO/C,N,U S
121 CHKPNT IFLOAO s
122 OUIPUTG IFLOAO,O,O/IC,N,O/C,N,I &
```

FIGURE 4

LTLID (ELEMENT/GRIDPOINT ID) ARRAY PRINTED AND PUNCHED BY DUMOD3

FIGURE 5

NASTRAN SFCFORCE OUTPUT LISTING FIGURE 6

NO．COLS．＝ 6
TYFE＝1
HORM＝ 2

CPEN CORE LENGTHE 1130 EG
GINO SYSTEM BUFFERE 1795
USABLE OIEN CORE＝＊＊＊＊＊

COLUAN 1

11 $=$	62 f			
12c68a36－c4	．11991427－33	． $16139570-33$	．DOuloran	－ 0 anuscoo
．47436311－05	－． $23967435-03$	－．15916030－03	－anuriodar	－ 0 －
－10394751－64	．17533747－33			－D3．3nosu
．45：41763－č	－． 45911439.74	．19628555－04	－dourcoun	－DJeunos
－7767962－03	－．459ク4189－92	－．2 L7－5019－34	． 000000000	－nuosncoo
95415525－62	－．42241237－02	． $33662506-94$	． 00000000	－ouvuno
2U664438－し2	－．10313224－01	－．34503365－34	－anacooon	－DCOUTOJ
96903608－4	－．15023900－01	－．77016397－04	－onjosean	－กコゴ＾000
． $34844688-\sim 2$		．3174097－03	－onunocan	－ロこJu0000
．16349189－1．？	－．12） $57344-02$	－．65659036－05	－orpnogan	－nomuna
．4U6と2169－u？	－．60563016－02	－．32447500－34	－onanonos	－nocunoo
26637043－02	． $25970218-01$	－．18936020－03	．00u00007	－oubunasa
$55111363-.2$	．35u5612R－31	－．613＜16：3－14	．anurocus	－วouvnoa
213：3083－43	－． 14 357n36－01	－165＜R504－04	－ongoono	－
．f 163244－L2	．50058757－32	－317 3344 －J5	． 0 OLDORJ0	－Dコ）ungou
． $15868205-41$	－． $1470724 \mathrm{J-01}$	－．1176310－04	． 000 pocen	－nuounoo
．17328559－u1	－． 264.372^{5-02}	．20552760－05	－0Doruoun	．000unor
． $17059880-$－ 3	．59925347－32	． $43690311-04$	－onurodon	00าu5000
67927536－．．2	－．12473242－01	．67462422－04	．onuruooo	．0000na30
． $52956668-42$	－．10516229－01	－． 154×77 R8－03	． 00000000	－Dijunano
． $32178978-\mathrm{c} 2$	．22271459－02	．32844128－04	． 000 rocon	－ 7 Jouno
．26263655－43	－．25998233－01	．81866044－04	．0000000n	－Ocounoso
． $36776596-42$	．14595273－01	．46414777－34	． 00000000	－03nojojo
．48143731－42	－． $11453275-01$	． $15047738-04$	． 09 uncoun	－00007000
－32948604－02	． $47433770-02$	－．45月く586U－04	－0nongoon	－T30un000
－60457099－42	． 27213320101	－．37861124－04	－00500000	－Dununjas
．5451161－02	． 25465954 －01	－．57192513－05	．07000000	－noounes
．5601868t－02	．81564706－02	－．11569742－33	－ 30000000	－ODOURODS
4L049429－02	－．58533918－02	－． $37898161-34$	－onomjouo	． 03000000
1．813013－02	－．2715341A－01	－．41944500－04	．00000000	－noounano
－．43149046－02	．1686265n－01	－．33818517－04	－Onocooos	． 000000000
． $16639614-01$	－．18922612－01	．13395834－05	． 00000000	． 000 l 0000
．68981051－62	－．44736578－02	．54922645－05	． 0000 cooun	－ 000 unoos
．12003521－02	－．12976578－01	－．68774775－04	． 00000000	－DJ037000
． $17899293-47$	－． $23745111-02$	$.5776048 \mathrm{n}-04$	－070000un	．000unoio
－14228348－42	． 23679946 －02	－． $35563966-05$	－3nurosoo	－ 7000000
－45458743－02	－． 11323180001	．31343525－04	． 00000000	．Donunoco
－40059464－u2	．13419974－01	－3141457u－04	－ 0 nondonon	－${ }^{\text {a }}$
． $34691163-02$	－14145413－51	－．62760133－04	．00010000	－סנכטס0J
－56322291－03	．19 u58050－01	－．24402971－04	．00000000	－ououno

．	． 00000097	－ 00300000
．U0，30003	－．00000000	．03300000
	－	－03J003J0
－	.00000030	－03500035
－נכנם	－0000כ300	－¢フJ00000
－0000030J	．00000000	－0030003
． 0030303050	． 00000000	－0030035
－00300303	－0000030	． 03300000
	．00n00030	． 0.5000000
．00350330	．00000050	－00j000ja
－	．00000930	． 00300050
．	． 000000000	． 003000000
－	．00000305	－0．303003
－00300303	． 00000030	．05J00200
．	． 00000500	．03300000
－00370333	－00000000	－05000000
－บกJココכJ	．00000030	． 00300050
－ひJJojosj	－00003J30	． 03300300
－ט0303J0J	． 00000535	－00000003
． 00300003	．00000000	－00000000
．0n30030J	.00000000	． 05000000
－	．00000030	． 0.2300000
－0030030	－00000300	． 03305300
． 000000303	－00000000	－07000050
． 00303503	． 00000000	－05000300
－ 20300209	． 00000000	－00300030
． 00000005	．00000000	－09300000
． 00000503	．00000033	－00j000．j0
．00000503	－00000303	． 00500300
． 0 On00305	.00000000	－00500000
． 00000500	．00000000	．00000000
－ 00030000	.00000300	． 00300000
－0．3053JJ	． 00000500	． 00000000
．00300323	．00009050	． 00000000
－ 0 ajoujos	－000030	． 03300300
． 03500303	． 00000000	－ 00000000
． 000000000	． 00000000	． 00300500
．00309309	－00000300	－00300030
－003JJJj	． 000000000	－03Jnojus
．00300303－－	． 00000030	． 00300000

Figure 7
4. INPTT3 - Reads matrix data from an RI-formatted file assigned to INPT into specified matrix data blocks.
A. Entry Point: INPTT3.
B. NASTRAN Link: LINK2
C. DMAP Calling Sequence:

INPUTT3 KO,MO,,,/KX,MX,,,/C,N,-1/C,N,O/C,N,O \$
D. Input Data Blocks: RT formatted matrices from file INPT.
E. Output Data Blocks: All NASTRAN matrix data blocks.
F. Method: Reads the matrices from an RI-formatted data file into NASTRAN matrix data blocks. Up to five matrices may be read.
G. Examples: Figure 8 shows the DMAP ALTER sequence required for loading two matrices into the Normal Modes Analysis Rigid Format and adding them into the mass and stiffness matrices. The diagnostic messages printed by NASTRAN to indicate successful completion of the INPUTT3 instruction are shown in Figure 9.
H. Notes: The file INPT must be assigned containing the RI-formatted data.

```
ID RI ORBITER
APP OISPLACEMENT
SOL 3.0
TIME 150
$
s INPUTS KO, MO INTO KORB, MORB
ALTER 36
INPUTT3 KO,MO,.,/KORB,MORB,.,/C,N,-1/C,N,O/C,N,O S
CHKPNT KORB,MORB S
S FORMS KFI, MFI AND ADOS KORB, MORE FORMING KFF, MFF
ALTER 71.72
EQUIV KNN,KFI/SINGLE/MNN,MFI/SINGLE S
CHKFNT KFI,MF!S
ALTER 74.75
SCEL USET,KNN,MNN,,/KFI,KFS,PMFL., s
CHKPNT KFS,KFI,MFI S
ALTER 76
AODS KFI,KORE,.,/KFF S
CHKPNT KFF!
ADD5 MFI,MORB,.,/MFF_&..
CHKPNT MFF &
ENOALTER
CEND
```

FIGURE 8

NASTRAN MESSAGE TO DENOTE INPUTT3 MATRIX ENTRY

5. PFDR - Print File Data Retrieval post processor
A. Method:

Repeated executions of OUTPUT4 and other output modules within a single NASTRAN run (especially in DMAP Looping) will cause previously written matrix data blocks on INP1 to be overwritten by subsequent calls to the output module. This being a system characteristic, the problem could not be resolved internally. The matrices were preserved in their entirety, however, when written by OUTPUT4 onto the NASTRAN print file. Hence, the print file is saved for subsequent input to a post-processor which extracts the matrices and writes them to a single file, which may be copied to tape for later processing. This approach enzties the user to obtain the results of a number of níput requests in a single run.
B. Input to PFDR:

The input to the post-processor is simply the NASTRAN printout file itself. This file can be obtained by the instruction @BRKPT PRINT\$/FILENAME on the UNIVAC computer. This instruction simply diverts the symbolic print data to the previously assigned file FILENAME, which can then be read by PFDR.
C. The PFDR Post-Processor:

The NASTRAN print file is converted to ASCII code to enable it to be read by the post-processor. The data "key phrase" is input to the post-processor. If no "key" is given, the processor automatically defaults to OUTPUT4 data.
D. Output Data:

The output data will contain the OUTPT4 matrices or the particular data identified by the key phrase. This data is usually copied to tape for subsequent use. The data formats are described in the user documentation.
E. Implementation:

PFDR is currently not available on the MSFC IBM system.
F. Example: A sample runstream is shown in Figure 10.

KEY:
PRXXXX - FILE TO WHICH PRINTOUT IS DIVERTED
OPXXXXX - FILE 「O WHICH EXTRACTED DATA IS WRITTEN
31 - ALTERNATE PRINT FILE DYNAMICALLY ATTACHED TO OPXXXX
C*NASTRAN.X - EXECUTABLE ELEMENT OF PFDR
OP4TP - TAPE TO WHICH OPXXXX IS COPIED
MHSP

- DENOTES PHYSICAL UNIT FOR PRINTER

FIGURE 10

SUMMARY

The MSFC COSMIC/NASTRAN Auxiliary I/O routines provide useful, additional capabilities for input and output of various matrices and tables between external files and NASTRAN. The PFDR print file post-processor allows the user to extract anv type of datu that is available from the NASTRAN print file. These routines are in frequent use on the MSFC UNIVAC 1100 and IBM systems.

In conclusion, the authors would like to acknowledge the work rf Messrs. J. Moorman, P. Halford and D. Harper, who contributed various enhancements under the aegis of the MSFC Engineering Systems Branch of the Huntsville Computer Complex.

Prospective users may obtain further information irom AH33/W. E. Galloway, NASA, MSFC, AL, Telephone: 205-453-2294.

USING PAFEC AS A PREPROCESSOR FOR COSMIC/NASTRAN*

W. H. Gray
Fusion Energy Division
Oak Ridge National Laboratory Oak Ridge, Tennessee
T. V. Baudry
PAFEC Engineering Consultants Knoxville, Tennessee

SUMMARY

Programs for Automatic Finite Element Calculations (PAFEC) is a general purpose, three-dimensional linear and nonlinear finite element program (ref. 1). PAFEC's features include free-format input utilizing engineering keywords, powerful mesh generating facilities, sophisticated database management procedures, and extensive data validation checks. Presented here is a description of a software interface that permits PAFEC to be used as a preprocessor for COSMIC/NASTRAN. This user-friendly software, called PAFCOS, frees the stress analyst from the laborious and error prone procedure of creating and debugging a rigid-format COSMIC/NAṠTRAN bulk data deck. By interactively creating and debugging a finite element model with PAFEC, thus taking full advantage of the free-format enginee:ing-keyword-oriented data structure of PAFEC, the amount of time spent during model generation can be drastically reduced. The PAFCOS software will automatically convert a PAFEC data structure into a COSMIC/NASTRAN bulk data deck. The capabilities and limitations of the PAFCOS software are fully discussed in the following report.

INTRODUCTION

Numerous general purpose programs are currently available to assist engineers during the data preparation phase of a NASTRAN finite element method problem. The goal of these preprocessors is to accept a minimum amount of user data and create the rigid-format input data structure required by the COSMIC/NASTRAN Bulk Data (NBD), since the NBD is devoid of any sophisticated automatic data generation schemes. Two such sets of software (ref. 2 and 3) based upon other programs were presented at last year's CO¢MIC/NASTRAN conference. Many others have been presented in previous years. Properly designed preprocessing aids, like these, can greatly reduce the time spent by an engineer in creating the rigid-format required by the NBD. If these aids are interactively executed, much correcting and debugging of a finite element model can be accomplished prior to submission of even the first COSMIC/NASTRAN execution for a new problem. Although most of the available preprocessing aids for COSMIC/NASTRAN meet their design goals, the authors of this paper prefer to use the free-format data preparation and automatic mesh generation capabilities of the PAFEC suite of finite

[^0]element computer programs. This paper describes software developed for utilizing PAFEC as a preprocessor for COSMIC/NASTRAN.

At the Oak Ridge National Laboratory (ORNL) COSMIC/NASTRAN is leased upon IBM computer equipment. It is generally executed in a batch processing mode. Serving as an interactive front-end to the IBM machines are several DECsystem- 10 computers. Within ORNL's computer environment, users generally prefer to interactively create data and IBM Job Control Language (JCL) on the user-friendly DECsystem-10s and then to route these jobs to the IBM mainframe batch queues for number crunching. Because PAFEC can best be utilized in an interactive environment, the DECsystem-10s were chosen as the computers upon which to execute PAFEC.

The PAFEC suite of program modules is executed as a collection of ten separate phases that create and operate upon a database called the Backing Store (BS) file. Among other capabilities, PAFEC has extensive mesh generation facilities; a freeformat, engineering-keyword-oriented, modular data preparation scheme; extremely simple methods to represent repetitive data values; autowatic load generation facilities; and a complete graphics software package to display the created finite element data. An optionally available interactive program, the PAFEC Interactive Graphics Suite (PIGS), can be obtained to enhance all the above mentioned capabilities. PAFEC is not simply a preprocessor. Solution sequences exist for linear static and dynamic structural mechanics problems as well as for treating certain classes of nonlinear structural mechanics and heat transfer problems.

On the ORNL DECsystem-10s an additional facility has been implemented in the PAFEC control scheme that will automatically invoke the PAFEC to COSMIC/NASTRAN preprocessor for a stress analyst. Mnemonically designated PAFCOS (ref. 4), this software contains several subroutines. The main subroutine, called PAFNBD, serves as a controller for the other subroutines. The other subroutines convert the PAFEC BS internal format for the axis systems, nodal points, material properties, element topologies, element properties, and single- or multipoint constraints into the rigidformat of the COSMIC/NASTRAN NBD. Unique rigid-format continuation card mnemonics are generated as necessary. Upon successful completion of PAFEC PHASE 4, the user's job will have created a disk file, <name>04.NBD, that contains the COSMIC/NASTRAN NBD (<name> symbolically represents the user's PAFEC finite element model job name and 04 is appended to the job name to indicate the file was created in PHASE 4). Thus, the stress analyst can interactively generate, debug, and display a finite element model with PAFEC; convert a model to COSMIC/NASTRAN rigid-format bulk data using user-friendly software; and then solve the model using COSMIC/NASTRAN upon one of the larger mainframe computers at ORNL.

ORGANIZATION

Pirst, a discussion of the most salient features of the model generating capabilities of PAFEC is presented. (Although PAFEC has complete solution capability, it will not be discussed here as it is not germane to the subject of this report.) Secondly, in the remainder of this report, we describe the details of subprogram PAFCOS, its supporting software, and the modifications to the PAFEC executive control. Finally, an example using this software is presented.

The PAFEC modular data system has many advantages. Prom the user's standpoint, the finite element data are very easy to input and are intelifgible witiout additional documentation. Additionally, data prepared for other finite element programs can be used as input data by PAFEC with less text-editing manipulation. Fron the system's standpoint, the data modules are easily scanned to deternine the solution sequence and the software required to perform the user's specific finite element task (ref. 5).

A PAPEC data module consists of three parts: (1) the module header card, (2) the module contents card, and (3) the free-format numerical data. The module header card and the numerical data are required for every module that the user inputs for a particular finite element problem. (Only those data modules that are needed are entered as data.) The contents card is optional and is used to alter the default definition of certain parts of the data or to change the order of the numerical data located in the third part of the data module. An example of the NODES data module, a fundamental data module, is presented to demonstrate the three parts of the PAFEC modular data:

NODES		
$\mathrm{Z}=0.0$		
NODE	X	Y
1	0.0	0.0
2	0.0	1.0
3	1.0	1.0
4	1.0	0.0

The first card represents the module header card, the second card is a constant contents data card, the third card is a contents data card, and the last four cards present the free-format nodal numerical data.

Other data modules can be used to define nodal coordinates; among these are:

NODES

AXES

SIMILAR.NODES

LINE.NODES

ARC.NODES

The NODES module can be used to define nodal coordinates in any axis set.

The AXES module can be used to define different axis sets.

Once any number of nodes have been defined, the SIMILAR.NODES module can be used to define other nodes that are similar but perhaps more conveniently located in another axis system.

The LINE.NODES module can be used to define any number of nodes to lie upon the same straight line.

Similar to the LINE.NODES module, the ARC.NODES module can be used to define any number of nodes to lie upon the same circular arc.

When used in conjinction with the MESH module, the PAFBLOCKS module rill cause two- and three-dimensional blocks of nodes and elements to be generated.

Several data modules are used in the description of finite element topology, types, material properties, and thicknesses. These modules include:

ELEMEITS

PAFBLOCKS

REFERENCE.IN.PAFBLOCKS

PLATES. ANJ. SHELLS

BEAMS

MASSES

SPRINGS

The ELEMENTS module describes the element type, properties, group number, and topology for individual elements.

When used in conjunction with the MESH module, the PAFBLOCRS module will cause two- and three-dimensional blocks of nud?s and elements to be generated.

The REFERENCE.IN. PAFBLOCKS module permits modification of generazed elements within a F.SFI.OCK.

The PLATES.AND. SHELLS module describes element thicknesses, material number, and other liformation for membrane, bending, and axisymmetric finite element analysis.

The BEAMS module describes pertinent information for beam elements.

The MASSES module is used in dynamic finite element analyses to add mass at nodes.

The SPRINGS module is used to input simple axial and torsicnal springs into a finite element analysis.

The GROUP.OF.SIMILAR.ELEMENTS module copies selected elements into new elements by simply incrementing element topology. This facility can be used to conveniently describe finite element geometries that contain repetitious sections.

PAFEC examines the data modules describing a structure and the user's control module to determine how many degiees of freedom to permit at each nodal coordinate. To apply constraints at individual or groups of nodes, the following data modules can be used:

RESTRAINTS

ENCASTRE

The RESTRAINTS module is the most generally used module for describing the degrees of freedon to be constrained. Each row in the data module can be used to describe the constraints at one node, or, by using the PLANE and possibly AXIS entry, all the nodes that lie on a line or on a plane can be constrained at once.

The ENCASTRE module can be used to constrain all the degrees of freedom for a set of nodes.

SIMPLE.SUPPORTS

DISPLACEMENTS.PRESCRIBED

REPEATED. FREEDOMS

HINGES.AND.SLIDES

LOCAL.DIRECTIONS

GENERALIZED.CONSTRAINTS

The SIMPLE.SUPPORTS module can be used to constrain all the translational degrees of freedom for a set of nodes while leaving the rotational degrees of freedom unchanged.

The DISPLACEMENTS.PRESCRIBED module can be used to apply nonzero displacements at certain nodes.

The REPEATED.FREEDOHS module is used to constrain two or more nodes to move by an identical amount in a particular direction. This module is useful when there is slippage possible at some joint in a structure. By arranging two nodes to be coincident and therefore to have separate and unrelated degrees of freedom, the REPEATED. FREEDOMS module can be used to define those degrees of freedom that are to be coatinuous across the joint.

The HINGES.AND.SLIDES mcdule is the complement of the REPEATED. FREEDOMS module. Instead of specifing constrained degrees of freedom, this module is used to specify unconstrained degrees of freedom.

The LOCAL.DIRECTIONS module does not describe constraints directly. However, this module can be used to force PAFEC to resolve degrees of freedom in different directions other than the global coordinate axes directions.

The GENERALIZED.CONSTRAINTS module permits writing arbitrary linear functions relating displacements among any number of nodes. Rigid links may be specified with this module.

THE PAFCOS SOFTWARE INTERFACE

The PAFCOS software developed at ORNL permits the user to define a finite element model, using the previously discussed modular data dictionary, and then to automatically create a rigid-format, COSMIC/NASTRAN bulk data deck. Subroutine PAFNBD serves as a controller for severai other subroutines, individually discussed below, that are collectively located in the PAFCOS subroutine library. When the user includes the COSMIC/NASTRAN control directive in a PAFEC control module, then a call to subroutine PAFNBD will be inserted in the PHASE 4 FORTRAN generated for the job. Execution of the PAFNBD subroutine will cause the axis systems, nodal coordinates, material properties, element topologies, element properties, and constrained degrees of freedom to be successively converted from internal PAFEC BS format to COSMIC/NASTRAN bulk data rigid format. Upon successful completion of the constraint conversion, subroutine PAFNBD returns to the PHASE 4 FORTRAN and normal PAFEC execution.

The PAFCOS software is written in FORTRAN-66 and uses the PAFEC series R09800 subroutines exclusively for accessing the data nodules contained in the user's BS file. Therefore, this software is easily implemented in any system where parEC has been installed. (A FORTRAN-77 version of the software is being created.) The next several sections discuss the functions of the individual subprograms contained within the PAFCOS software library.

Subroutine PNCOOR

Subroutine PNCOOR performs the processing of axis definitions from PAFEC BS to COSMIC/NASTRAN format. This subprogram processes each entry of BS module 68 (the internal storage number given to PAFEC axis sets) and writes the appropriate COSMIC/NASTRAN CORD2R, CORD2C, or CORN2S data cards, depending upon whether the PifEC coordinate system is rectangular, cylindrical, or spherical, respectively. Unique continuation card mnemonics are generated as necessary.

Subroutine PNNOD

Subroutine PNNOD generates COSMIC/NASTRAN GRID cards from the PAFEC BS module 1 (the internal storage number given to PAFEC global, cartesian nodal coordinates). All GRID cards are specified in global coordinates. If PAFEC BS module 4 is not empty, then the GRID card will also contain the appropriate output coordinate system designation. Otherwise, the output coordinate system will be the global rectangular coordinate system.

Subroutine PNMAT

Subroutine PNMAT creates COSMIC/NASTRAN MATI data cards from the PAFEC BS module 31 (the internal storage number given to the PAFEC materials data). Only isotropic elastic materials are converted, a subprogram PNMAT limitation. Each material in the data module is reformatted and written onto the output file with unique continuation card mnemonics.

Subroutiale PNETOP

Subroutine PNETOP processes the element data stored in PAFEC BS modules 1 ? and 18. Each element definition is processed ináividually with mappings from PAFEC element types and topologies to COSMIC/NASTRAN element types and their corresponding topologies. The following element mappings are currently supported.

PAFEC element mnemonic	COSMIC/NASTRAN element card	Element type
30100	CELAS2	Spring element
30200	CMASS2	Mass element
34000	CBAR	Simple beam element
34200	CBAR	Offset beam element
34400	CROD	Simple rod element
36100	CTRMEM	Triangular membrane element
36200	CQDMEM1	Quadralateral membrane element
37100	CIHEX1	8-node brick element

37120	CIHEX2	20-node brick element
37130	CIHEX3	32-node brick element
37200	CWEDGE	6-node wedge element
41320	CTRIA2	Triangular plate element
43110	CTRSHI	6-node triangular plate element
44100	CTRIA2	Triangular plate element
44200	CQUAD2	4-node quadralateral plate element

Unique continuation card memonics are generated for each element type requiring a multicard element topology. Also, special processing is required for each PAFEC spring element (number 30100) and mass element (number 30200) since each of these elements may yield as many as six COSMIC/NASTRAN CELAS2 or CMASS2 element data cards. (Unique element numbers are generated for any newly created elements.)

Subroutine PNPROP

Subrout ine PNPROP performs generation of COSMIC/NASTRAN element property cards. Several PAFEC BS modules are examined and the following mapping is used to create the appropriate COSMIC/NASTRAN property cards.
PAFEC element

mnemonic \quad| COSMIC/NASTRA |
| :---: |
| property car |
| 30100 |\quad PELAS

Subroutine PNDOF

Subroutine PNDOF processes constraint data stored in PAFEC BS module 2. Each degree of freedom is examined for constraint codes. Any constrained degree of freedom generates an appropriate COSMIC/NASTRAN SPC data card. PAFEC REPEATED. FREEDOMS are output as COSMIC/NASTRAN MPC data cards for the repeated degrees of freedom.

If GENERALIZED.CONSTRAINTS are defined via PAFEC BS module 143, then subroutine PGCMPC generates appropriate COSMIC/NASTRAN data cards for each generalized constraint. An arbitrary limitation of three independent nodes for any dependent node has been set in subroutine PGCMPC. Unique continuation card mnemonics are generated as necessary.

InTEGRATION OF THE PAFCOS SOFTWARE INTERFACE INTO THE PAFEC MACRO DICTIONARY

Minor additions to the PAFEC MACRO dictionary were all that was necessary to completely implement the PAFCOS software into the PAFEC PHASE execution scheme. The PAFEC MACRO dictionary is used by the PAFEC driving program to create FORTRAN and job control information for a particular PAFEC PHASE. Within each PAFEC user data file there exists a control module and possibly several sets of data modules. (The PAFEC control module is analogous to the executive and case control cards of a COSMIC/NASTRAN data deck.) Based upon the user-specified PAFEC control directives, the PAFEC driver program determines which PHASE and what subroutine within the PHASE should be executed. In order to permit a user-friendly interface between the PaFEC system and the PAFCOS software, a single new control directive, appropriately named COSMIC/NASTRAN, was added to the PAFEC MACRO dictionary.

PHASE 4 was chosen as the appropriate PHASE to create a COSMIC/NASTRAN NBD, due to finite element model generation completeness. The MACRO dictionary was modified to condittonally include a call to subroutine PAFNBD (the driver for the PAFCOS software) in the PHASE 4 FORTRAN, based upon the presence or absence of the COSMIC/NASTRAN control directive. Similarly, an instruction was inserted to conditionally include the precompiled PAFCOS relocatable object module in the linkage edit step of the PHASE 4 job control. Therefore, to access the PAFCOS software all the user must do is to simply insert the phrase COSMIC/NASTRAN following the PHASE=4 PAFEC control directive somewhere within his control module. For example, the following few lines represent a valid PAFEC control module that would invoke the PAFCOS software:

CONTROL
NAME.ABCD
PHASE=4
COSMIC/NASTRAN
STOP
CONTROI. END

AN ILLUSTRATIVE EXAMPLE

This rather academic example demonstrates most of the capabilities of the PAFCOS software. It is intentionally brief 80 that a very small COSMIC/NASTRAN bulk data deck is created. The following listing is a copy of the PAFEC data deck that generates the small three-dimensional plate finite element model shown in figure 1.

TITLE PAFCOS TEST
CONTROL
SAVE.RESULTS

CONCATENATE. OUTPUT
SAVE.PLOTS
NAME.T
PHASE=4
COSMIC/NASTRAN
URIGINAL PAGE IS

STOP
CONTROL.END
NODES

NODE.NO X.IN	Y.IN	Z.IN	
1			
2	1.5	0	0.8
3	3.0		
4	0	5.0	
5	0.75	5	0.4

$6 \quad 1.5 \quad 5.0$
PAFBLOCKS
ELEMENT=44200
N1 N2 TOPOLOGY.OF.BLOCK

1213462005
MESH
REFER SPACING
12
$2 \quad 21.51$
PLATES.AND.SHELLS
MATERIAL THICKNESS.IN
10.81

MATERIALS

MATERIAL	E	NU	RO
1	$27 E 6$.27	7.7

RESTRAINTS
NODE PLANE DIRECTION
1020
MODES.AND.FREQ
AUTOMATIC.MASTERS
10
MODES
4
END.OF.DATA

After successful execution of PHASE 4 on an ORNL DECsystem- 10 computer using the above PAFEC data, a file, T04.NBD, is created containing the COSMIC/NASTRAN bulk data deck. For completeness this data deck is listed below:

GRID	1	0.000	$0.0 \cup 0$	0.000	0	
GRID	2	1.500	0.000	0.800	0	
GRID	3	3.000	0.000	0.000	0	
GRID	4	0.000	5.000	0.000	0	
GRID	5	0.750	5.000	0.400	0	
GRID	6	1.500	5.000	0.000	0	
GRID	7	0.000	2.222	-0.000	0	
GRID	8	1.167	2.222	0.622	0	
GRID	9	2.333	2.222	0.000	0	0
GRID	10	-0.000	3.889	-0.000	0	0
GRID	11	0.917	3.889	0.489	0	
GRID	12	1.833	3.889	0.000	0	+ MAT001
MAT1	$12.70 E+071.06 E+07$	$2.707 .70 E+000.00 E+00$				
+MATOO1						

SPC	10000	1	123456			ORIGINAL PAGE I OF POOR QUALITY		
SPC	10000	2	123456					
SPC	10000	3	123456					
SPC	10000	4	6					
SPC	10000	6	6					
SPC	10000	7	6					
SPC	10000	9	6					
SPC	10000	10	6					
SPC	10000	12	6					
CORD2R	1	0	0.0	0.0	0.0	0.0	0.0	1.0+C2R001
+C2R001	1.0	0.0	0.0					
CORD2C	2	0	0.0	0.0	0.0	0.0	0.0	1.0+C2C002
+C2C002	1.0	0.0	0.0					
CORD2S	3	0	0.0	0.0	0.0	0.0	0.0	$1.0+\mathrm{C} 2 \mathrm{SOO} 3$
+C2S003	1.0	0.0	0.0					
CQUAD2	1	1	1	2	8	7		
CQUAD2	2	1	2	3	9	8		
CQUAD2	3	1	7	8	11	10		
CQUAD2	4	1	8	9	12	11		
CQUAD2	5	1	10	11	5	4		
CQUAD2	6	1	11	12	6	5		
PQUAD2	1	1	0.81					

All that remains for the user to do is to merge the above file with the IBM JCL procedure for executing COSMIC/NASTRAN at ORNL, add an executive and case control deck, and then submit the job.

CONCLUDING REMARKS

For production problems, using PAFEC and the PAFCOS software as a preprocessor for COSMIC/NASTRAN eliminates a large majority of the cards necessary for a finite element analysis. This software has been used to preprocess several large magnet structural analysis problems at ORNL and has demonstrated an over 95\% reduction in the total number of cards typed for these problems. Future improvements are planned to convert and/or create even more of the data.

REFERENCES

1. PAFEC 75 Systems Reference Manual. PAFEC LD., Nottingham, England, November 1978.
2. Durocher, L. L. and Gasper, A' F.: An Interactive Review System for NASTRAN. Tenth NASTRAN Users' Colloquium, NASA CP-2249, May 1982, pp. 45-64.
3. Hirt, E. F. and Fox, G. L.: Recent Developments of NASTRAN Pre- and Post-processors: Response Spectrum Analysis (RESPAN) and Interactive Graphics (GIFTS). Tenth NASTRAN Users' Colloquium, NASA CP-2249, May 1982, pp. 18-44.
4. The firgt implementation of this software was called PAFNAS and was doc'mented In the following raference: Baudry, T. V. and Gray, W. H.: PAFNAS, A PAFEC to COSMIC/NASTRAS Conversion. First U. S. A. PAFEC Users' Conference, June 1981.
5. PAFEC For the Enginerr. PAFEC LD., Nottingham, England, Feburary 1981.

Figure 1. The finite element mesh for the example pioblem showing the element and nodal numbers.

Dolores K. Wallace, Janes 14. HcKee and Myles M. Hurwitz

David W. Taylor Naval Ship R\&D Center
Bethesda, Maryland 20084

SUMMAKY

GPRIIE, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX $11 / 780$ minicomputer. This system includes three canponents: 1) GPRIME, user-friendly geonetric language and a processor to translate that language into geanetric entities, 2) GGEN, an interactive data generator for 2-D models; and 3) SOLIDGEN, a 3-D solid modeling program. Edch conponent has a conputer-user interface of an extensive command set. All of these programs make use of a conprehensive b-spline mathenatics subroutine library, which can be used for a wide variety of interpolation problens and other geanetric calculations. Many other user dids, such ds autonatic saving of the geonetric and finite element data bases and hidden line renoval, are available. This interactive finite elenent modeling capability can produce a conplete finite elenent model, producing an output file of grid and elenent data.

INTRODUCTIUN

Finite element analysis has becone the predaninant method for perforning structural analyiis on digital computers of all types. Almost any conceivable structure, from a snall valve to an entire ship, may be analyzed by the finite element method.

However, the creation of a finite element model of the structure to be anelyzed by this method is a major task. Even a samall problem can require large amounts of geonetric data, with nany details to be considered. An engineer can spend a vast anount of tine defining the nunerical model of a structure and verifying the correctness of this data. The extreme generality of this engineering method has frustrated attenpts to create an effective autanatic finite elenent data generat.. with conparable generality. Finite element models frequently need refinenents which require a return to the geanetry for more infonation and details to conplete the modeling. Hence, complete geonetric data, and efficient management of that data, are essential to make these modifications simple.

The tern "geanetric nodeling" appears frequently in current computer graphics and computer-aided design literature. Many scientists and engineers maintain (correctly) that they have been "nodeling geonetry" in traditional ways for a great many years. Most recent geanetric modeling in the computer-based science has been evolving for more than a decade, but the distinctions between the old technique and the new are significa.t, even if they sonetines appear to be rather subtle. Al though the older geonetric techniques could be said to perinit the modeling of any required shape, there was little consistency in the representation of different types of objects (ref. 1). Today, good mathematical tools, such as B-spline
functions, are making possible the reality of representing all objects by sets of cont $£$ nuous, well-behaved functions. This development makes possible not only better finite eleaent toodeling but also solutions for a wide range of problems in several disciplines of physics.

With GPRIME (ref. 2) the finite elenent modeling process is autonated by providing a geanetric representation of the structure while retaining the broad generality of the finite element method. With this conplete geonetric data base of the structure, both the general data generator GGEN (ref. 3) and the 3-D data generator SOLIDCEN (ref. 4) may be used to produce the finite elenent model necessary for structural analysis. The basic assunption of the GPRIME approach is that, if a systenatic and accurate mathenatical model of the geonetry of a structure could be stored in the canputer, the task of creating general finite element data generators would be greatly siaplified. The advent of low cost, interactive computer graphics takes the GPRIME approach even tore attractive, since problem areas in an autonatically generated nodel can be easily resolved by interactive methods at the graphics screen.

The Navy and DTNSRDC have long been interested in geonetric nodeling techniques. Since 1976, the Nunerical Structural Mechanics Branch of the Computation, Mathematics and Logistics Department has been developing a geonetric modeling system consisting of the B-spline mathenatical tools to define geonetric representations, a geometric language to access this modeler, and the interface needed for implementing it interactively on a computer. This lansuage, called GPRIME, was originally formulated to support finite element data generation for structural analysis. As indicated earlier, two data generation prograns are now available for use with the GPRIME geometry: GGEN, for general interactive modeling including the two-dimensional shell-type elenent and SOLIDGEN, for generating three-dinensional solid models. GPRIME, GGEN, and SOLIDGEN were first developed for use on the CDC 6000 and CYBER canputers under the NOS and NOS/BE operating systeas, and are now also operating on the DEC VAX $11 / 180$ miniconputer. The graphics capabilities assune that Tektronix storage-tube type graphics terninals will be used. The programs may be used in batch or interactive-graphics modes, or mixed modes. The programs use the RATFOR pre-processor for structured FORTRAN.

GPRIME COMPUTER GRAPHICS: A GEOHETRIC MODELING SYSTEM

Geometric Constructions

* Classical primitives of geometry
- B-spline mathenatical functions, in 1, 2, and 3 dinensions
- Parametric representations independent of analysis model
* Rotations, translations, scaling of geonetry
* Geonetry generation foul digitized data, keyboard or cursor definition, or combination

Graphic Display and Viewing Uptions

- Hidden line removal
- Rotating, transiatins, scaling display of geometry
- Selection of gemetry itens to be displayed
* Status of all viewing, plot, axes parameters
- Program-to-user messages
- Annotation of geonetries, definitions, n.aes, at screen

Generation of Finite Element Models

* Data generation for 2-D plate/shell elements, seneral elenents
* 3-D solid elenent generator
- Uutput forinatter

Processing Controls

* Interactive and batch operating modes
- Restart capability
* HELP messages on definitions, commands: as requested by user

Applications

* Hydromechanics modeling, structural finite element analysis, ship magnetostatic signatures, thernal analysis
* Potential application in ship vulnerability, infrared detection, cost and weight estimation, CAD/CAM, composite studies.

EVOLUTION OF GEOMETKIC hODELING: THE PATH TO GPRIME

During its evolution, geanetric modeling has taken many foras. Its "correct" dessription is discussed in many foruns today. Designer's sketches and engineering drawings have long been thousht of as geonetric models. The fact that this type of representacion is heavily laced with graphic shorthand and engineering insight becomes obvious when we besin to ask computers to translate these drawings into instructions for aanufacturing the parts described on these drawings. Achieving this autanation requires tilat a computer be provided with all the details of the draftsman's shorthand, so that it can "understand" the old drawings, or that it be provided with sufficient geonetric infornation rather than engineering temas such as "fillet" in model descriptions. Both developnents are taking place, i.e., direct reading from blue prints and more conplete nunerical input data, but the complete geonetric representation appears to be the key to large-scale autonation.

Discrete finite eleaent models are now routinely used for structural analysis. These models are usually thought of as rather elegant gearotric models, but are of no use in defining a machine cutter path, and really of little use to a finite element analyst who requires models with a more detailed inesh. Coordinate information for constructing finite elenent models is defined at a discrete number of points-pariod. Some sort 0: interpolation may be used on this data to find intermediate points, but because the finite elenent data points were created to weet the requirenents for one specific analysis, those points may not represent the basic detailed geonetric shape of the structure.

From work with eariy computers and primitive computer graphics techniques, autanatic drafting programs energed. These programs "spoke" in the language familiar to draftsmen. Soon designers wanted to connect this type of program to programs that guided nunerically controlled tools. These marriages have becane or are now evolving into computer-aided design and computer-aided manufacturing (CAD/ CAM) systens. To accomodate these new denands, the designer's language has
evolved iron the draftsman's, with the addition of a vocabulary of geometric shapes and geonetric operations. Intersections of classical cylinders with complex "scul ptured surfaces," (ref. 5) as in Figure 1, inake the definition of true threedinensional geanetric representations considerably easier than drawing with the draftsinan's two-dimensional notation.

We have used the term "old geometry" to collectively refer to the many different canputer methods used to describe geanetric shapes, which, by their nature, are limited to certain special dpplications. Sone of these methods are the closed forn polygonal approxinations of spheroids end ellipsoids, the ellipsoidal modeling of dirplanes and submarines, and point by point finite element descriptions. Similarly, we have used "new geanetry" to refer to evolving tnethods of geometric description. These cescriptions attempt to be mathenatically complete for any application and to permit manipulation of all geanetric forms without having to resort to special processing for different combinations of valid representations. For exanple, the B-spline mathenatical functions afford good data representations of a structure. The new geometry has obvious roots in the old; however, the new approach represents attempts te develop a general solution to the geonetric modeling problem, whereas the older geanetries were developed to solve particular problens.

The new geonetry has not cone into the world without. its share of growing pains. As new capability is added to older techniques, progran developers have attempted to maintain conpatibility between the old forms and the new forms of geanetry. As more of the properties of the new geanetry are exploited, it becanes more difficult to maintain conpatibility. Either the old forms will have to be abandoned, or translators will have to be created to produce an equivalent new form for the old definitions. Similarly, once we have a very convenient way to represent geonetry and to combine forms easily, the nodeler's creativity can quickly outstrip the available mathematics. For exanple, volune intersections conputed using "old" techniques may yield only edges of boundary which can be drawn; this is insufficient to completely define a new volune because there is not infornation on how the function varies through the volune. These problems are evident in the tecnnique known as "conbinatorial jeomecry," (ref. b) which pernits boolean operations on three-dinensional solids. If simple unions and intersections are permitted without restriction, it is easy to inagine how a few simple shapes could mushroom into a conputationally-intractable situation. Often, these problens can be avoided by limiting the nunber of conbinations or by deferring the boolear. operations until they can be handled by later applications prograns in which d knowledge of the final product can simplify the choice of functional representation.

The need for complete geonetric description has also been evolving in other areas of computer simulation. Finite elenent and finite difference modeling can be easily automated if an adequate geonetric description is available. Nunerical solutions, which require that new ineshes be generated at various points in the computation, denand such a representation, once the models advance from simple classical shapes to the complexities of the real world. The rest of this report briefly describes: GPRIME for providing geonetric representations and LiGEN and SOLIDGEN winch use this geanetry for finite elenent modeling.

Uverview

As the finite element method gained popularity with structural engineers, the need for an accurate finite elenent nodel that could be developed in a reasonable time at reasonable cost becane obvious. The computer progran GPRIME, a geometric modeling system, provides the geanetry for these finite elenent methods. GPRIME addresses the requirements for a practical geonetric modeling system-mathematical representation, man-machine interface, data base managenent, and implementation (ref. 6). The geometry is defined in GPRIME via a geonetric language of definitions and commands that simplifies the creation of complex nodels. Classical shapes are defined using straight-forward expressions, and more general curves and surfaces can be defined using digitized coordinate data. By using the B-spline mathematical functions, GPRIME can provide the engineer with a complete geometric model, constructed with well-behaved continuous functions, independent of the discrete model used in the analysis.

The GPRIHE processor itself uses interactive computer graphics to define sennetric entities and to aid in visualizing the model being created. The processur areates a geonetric data base (referred to as UMF - user master file) which toly be used for restarting the definition process at later sessions and for communication with user's programs. The implementation of GPRIME allows the user various controls over the entire system.

The Geometry Modeler

Fron construction drawings, tool cutter data, digitized data, measurements, or other forms of model description, the engineer way begin to define a geometric nodel with a conbination of either general curves and surfaces, or with classical forms of geonetry. These classical forms inciude points, lines, arcs, circles, cylinders, cones, spheres, and surfaces of revolution. These entities are represented internally by b-spline functions, which are also useful in smoothing and fitting applications, as shown in Figure 2. The parametric representations of these entities make it easy to locate points and curves of intersection in complex geometric configurations. In fact, the intersection capability provides a very useful tool for data-checking of models of conplex structures.

Rotations, translations, and scaling of the geometry are available throush the GPRIME language. GPRIME was designed for use in creating finite element structural analysis models, but it can be applied wherever a gearetric description of an object is required. A set of user-callable subroutines is available for user access to the internal B-spline definitions stored on a UMF (user master file fron GPRIME) data base. These subroutines are referred to as the GFRIME Data Base Access Capability (GDBAC).

Design Aids

Special GPRIME comnands provide the capabilities of controlling model changes, viewing options and other user aids. The user may delete or change any part of a constructed geanetrical model, and the GPRIME processor will autanatically change any of the components dependent on or affected by the geonetrical changes.

Viewing options allow the user to control the viewpoint, as well as te effect translations, hidden line renoval, and rotations. The hidden lines have been removed in the propeller shown in Figure 3. Plotting options permit plots of all or soue of the curves, surfaces, points or user-defined groups of data. An optional status table shows the current status of plotting, viewing, printing, and axes options. The printing options are provided for annotation of various tables on the screen. A command also permits the user to obtain an output file containing the definitions and conmands used in a session. An interactive call for HELP gives the user instructions as needed in using these commands and definitions. Executive control permits the initial session to begin with an input file of definitions and to restart later sessions from the saved geometric data base. GPRIME also provides a macro facility which contains a user-defined set of GPRIME commands. For frequently used procedures, such as defining two surfaces and their curve of intersection, or frequently used viewing options, the user can, via the macro comand, execute in one line several previously defined statements.

In sumary, GPRIME provides powerful generation algorithms for developing a geometrical model fron which finite element models may be generated. The geometry may be used in a variety of applications, such as smoothing functions, datachecking, ship vulnerability studies, or wherever geometry is required. Additional GPRIME capabilities include viewing, plotting, editing, and file options enabling the ensineer to significantly reduce the time required for model generation. Finally, the GPRIME data base is available for use by user prograns.

INTERACTIVE DATA GENERATOR: GGEN

Overview

With the availability of a general geometric language processor, such as GPRIME, which provides a data base of a representative geometric model, finite element modeling becomes easier and more complete. GGEN is a computer program for creating finite element models from an interactive computer terminal. LGEN is different from most other finite elenent data generators in that it references geometric information that has been defined using the GPRIME geometric language. One advantage of the CPRIME-GGEN approach includes the ability to define interactively a three-dinensional model from a two-dimensional terminal screen or digitizing board.

GGEN Yrocedures

The GGEN generator has been implenented as a module of the GPRIME language processor. This implementation pernits GiEN to use many of the graphics and data manasenent features of GPRIME. These features include GPRIME processing of changes, print options, HELP messages, new geanetry, and access to existing geometry. All these processes may be perfonned interactively, one at a time, with program control remaining in GGEN. However, if the user wishes to return to GPRIME, GGEN will autanatically save GGEN data.

Any GPRIME geonetry, such as points, curves, surfaces, or groups of these, may be referenced by GGEN at any time during an interactive session. The first curve or surface activated is the default, that is, the curve or surface from which new
elements are created, unless another curve or surface is referenced by a given command. The number of curves, surfaces, and groups which may be active at one time is limited by user speciried parameters. Commands are provided to renove unneeded items, including points, from the list of active geonetries.

Data Generation and Display

Node points and elements can be created in a bulk mode by using one connand with various options. These options include generating points, elements, or both. Such bulk generation will produce a "uniform" thesh on the specified reference curve or surface. Prior to the bulk generation, the user may enter another comand to cause broad variations in the aesh.

Al though CGEN dutonatically nuniers nodes and elements, an option exists to assign numbers to the nodes and elements. Points and elements may also be defined individually or in sinall groups. In one command, both passive (type-in) and interactive (cross-hairs, tracking cross) methods are used. In the other, the user selects from a user-menu, that is, a set of instructions printed on the screen, to perform the various creation functions interactively.

Deletion of nodes and elements is similar to the creation process, either by using a type-in comnand or by making a menu selection. Note: GGEN assunes the usage of a storage tube type terminal, meaning that any item drawn remains until the entire screen is erased. Deleted itens will be marked deleted with an "X" until the picture is redrawn. Any item so marked can be restored later, if the item was deleted by mistake.

By entering the EDIT conmand, the user may perform most CGEN functions under interactive control. In this mode the user selects a function to be perfonaed from a list, called the menu, displayed on the right side of the screen. (see Figure 4.) The user indicates the desired function by moving the terminal's crosshair cursor inside the box enclosing the function name on the menu. Alternatively, the function may be selected using the keyboard by entering the character displayed at the left of the name of that function. GGEN acknowledges the user's selection by highlighting the box that encloses the name of that function.

The wenu functions pernit the user to delete and create aodes and elenents by selecting node points a. elenents on the screen with che cross hair cursor.

The user can selectively display GGEN points, curves, surfaces, and elements as in GPRIME. Items may also be identified with labels as the user chooses. One command allows the redisplay of all currently defined items under the control of the current plot paraneters. The piping tee in Figure 5 uses the option to shrink element representation away from associated node points. Any new items included in the paraneter list of this comnand will also be plotted.

Output

All generated finite elenent data may be passed to a local file, "FEDATA," using a punch coanand. Point data, element data, or both can be put on this file. All current data can be entered or, optionally, only those items that have changed
since the last usage of the conmand. This output file is available to the user for direct input to finite edement programs or for later editing.

GENERATING THREE-DIMENSIUNAL SOLID STRUCTURES: SOLIDGEN

Overview

The first proposed application of the GPRIME geometric modeling approach was for the generation of three-dimensional solid finite element models. The groposed concept consisted of two parts. First, GPRIME surfaces would be defined to bound the structural model. Then, a data generation program would generate brick-like solid elements on the interior of a defined volume.

The SOLIDGEN program was developed to implement the data generation concept. There was no restriction on the GPRIME surface used to bound a SOLIDGEN model and those boundary surfaces may either define a face of the model or extend beyond the region being defined, whichever the user finds more convenient. The shape of the generated elements is governed by the bounding surfaces and additional reference surfaces provided by the user.

SOLIDGEN Technique

To generate a satisfactory finite element model with SOiIDGEN, the user must first visualize the general shape of the generalized model. For example, will the elements lie in more or less concentric rings about a cylindrical recess or will they make up a rectangular brick-work? This type of information is conveyed to SOLIDGEN by selecting and ordering the reference surfaces in such a way that they form a mesh of six-sided super elements, called zones. The generated elements will follow the general pattern defined by these zones.

The three diagrams of Figure 6 demonstrate the procedure from sketch through the geometry to the solid eleuent model of a globe valve. The designer has marked an octant of the symetric valve with reference surfaces shown in Figure 6a. Together, these six-sided super elements define the boundary of the solid model. The geanetry required by SOLIDGEN here is not an exact detailed structure but rather the general bounding surfaces or surfaces of revolution seen in Figure 6b. SOLIDGEN builds the brick elements of Figure 6 c from these surfaces. The output file contains all the grid point and element data.

CONCLUSION

Although GPRIME's biases are toward the solution of research and development problems, obviously there are many other areas of potential application. Fron early in its development it was clear that GPRIME would provide a powerful geometric capability useful for many scientific applications. Thus, it comes as no surprise that GPRIME is being used for hydronechanics modeling, for ship vulnerability studies, and for infrared modeling as well as for generating finite elenent data. It offers potential use in simulation, in finite elenent modeling of camposites, and in cost and weight estimation problens. In the manufacturing area, its possible applications to computer-aided design and conputer-aided manufacturing procedures seem obvious.

A library of b-spline subroutines makes it a simple task for progran developers to include GPRIME geonetry in their prograns. The data generators GGEN and SOLIDGEN were the first exanple of using these internal routines for specialized applications, in this case, to address the needs of finite elenent. analyses.

GPRIME and its data generators have been providing a strong geonetric capability, at the forefront of geanetry modeling. In their present form, they to require continual maintenance on several computer systems in order to ensure their usefulness. However, tany extensions can be inade that would entance their userulness to Navy programs. For example, the machenatics routines can be expanded to include nultiple intersection points. Better display characteristics and improved user-conputer interface methods would help the user. Uther enhancenents could pernit graphical changes in the geometry, a more general output fonnat, and the addition of more elements. Improved data-handling techniques could make the data base access even more efficient. As these mathenatical and canpiter science ideas becone realities in GPRIME, it will becone easier co solve larger and more complex problems.

REFERENCES

1. HcKee, J.M. ; and K.J. Kazden: GPRIME B-Spline Manipulation Package--Basic Mathenatical Subroutines. DTNSRDC Report 77-0036 April 1977.
2. McKee, J.M. et al.: GPRIME: A Geqnetric Lansuage for Finite Elenent Modeling Program Manual. DTNSRDC Report 82/062 Sep 1982.
3. Wallace, D.K. and J.M. McKee: GPRIME/GGEN Interactive Finite Elenent Data Generator. DTNSRDC Report (in publication).
4. Kazden, R.J.: The GPRIME-SOLIDGEN Finite Elenent Modeling Capability. Second Chautauqua on Productivity in Engineering and Lesign, the CAD Revolution, Nov. 15-17, 1982.
5. Requicha, A.A.G.; and H.B. Voecker: Solid Modeling: A Historical Sumary and Contemporary Assessuent. IEEE Computer Graphics and Applications, pp. 9-24, March 1982.
6. Requicha, A.A.G.: Representations for Rigid Solids: Theory. Methods, and Systems, ACM Computing Surveys, Vol. 12, No 6, pp. 437-464, December 1980.

Criging ind is
Of POCR yid.iy

Figure 1 - Two-Surface Intersection

Figure 2 - Ship Hull

Figure 3 - Marine Propeller, Hidden Lines Removed

A.	REDRAW WORKSPACE
B.	SWITCH TABLET/CROSS
C.	ALIGN MENU (UL,LR)
D.	ALIGN ORTH (PT1,PT2,PT3)
E.	E N D (INPUT/EDIT)
G.	DELETE NODES
H.	(CHANGE)
1.	(LAST)
J.	DELETE ELEMENTS
K.	(CHANGE)
L.	(LAST)
M.	CREATE NODES
N.	CREATE ELEMENTS
0.	ELEMENTS + NODES
P .	2 NODES/ELEM.
0.	3 NODES/ELEM.
R.	4 NODES/ELEM.
2. REPEAT MESSAGE	
* TASK COMPLETED	
** IMPROPER OPTION	
*** MISSED BOX	
**** POINT NOT ON C/S	
***** OTHER	
0	ZVAL
* 1	S1
2	S2
3	C3

Figure 4 - GGEN/EDIT Menu

Figure 5 - Piping Tee, Element Shrink

ORIGINAL PAGE IS OF POOR QUALITY

Figure 6c - Solid Element Model

Figure 6 - Globe Valve, from Sketch to Solid Elements

ORTHOTROPIC HOLE ELEMENT
J. W. Markham

Lockheed-Georgia Company
C. V. Smith

Consultant
Georgia Institute of Technology

SUMMARY

Abstract

A finite element was developed to adequately represent the state of stress in the region around a circular hole in orthotropic material experiencing reasonably general loading. This has been achieved through a complementary virtual work formulation of the stiffness and stress matrices for a square element with a center circular hole. The element has been incorporated into COSMICNASTRAN as a "dummy" element. Sample problems have been solved and these results are presented.

INTRODUCTION

Mechanical fastening is the most used joining method in present flight vehicle structures. This results in connection details that contain many circular holes. These connections are subjected to very general loading with the additional complications of load transfer through fasteners and the use of nonisotropic materials in the connection. Because of the high stresses in these areas, it is important that an accurate evaluation of the local stresses around each hole be obtained to evaluate the performance of the joint.

The finite element method is an effective way to treat problems with complex geometry, material, and loading. However, because of the complexity of the stress state around fastener holes, a large number of conventional elements would be required to provide an adequate representation of the hole neighborhood. This means the cost of the analysis, both in computer costs and manhours, will be high.

A solution to this problem would be an efficient special purpose finite element which provides an accurate representation of the state of stress around a hole without the need for many conventional elements. This has been done previuusly for isotropic materials. In 1981, under a contract with NASA-Langley, Lockheed-Georgia Co. developed an orthotropic hole element (Ref. 1).

ELEMENT GEOMETRY

The orthotropic hole element is considered to be a thin plate in a state of plane stress with displacements on the external boundary specified so as to insure displacement continuity with adjacent elements. The element is a variable-noded total element and is defined via ADUM7, CDUM7, and PDUM7 input cards into NASTRAN. The user may specify the number of nodes on each of the three boundaries as shown in Figure 1. The nodes on the exterior of the element have two cartesian degrees of freedom whereas the nodes on the hole wall have only a single radial degree of freedom. The ratio of element width to hole diameter is determined from grid point locations and is thus a user choice; however, a ratio of four is recommended. The material properties may be isotropic or orthotropic and are defined by MATl or MAT2 cards. Characteristics which are not defined for this element include mass properties, thermal loading, material nonlinearity, and differential stiffness.

ELEMENT INPUT

A great deal of user flexibility has been retained in the input for this element. Defaults have been provided and therefore the input can be quite simple. The following input is required for the element:

```
o Total number of nodes
- Element and property identification
o Grid point connection
O Material identification
0 Thichnē̃
```

The following input is optional:
o Number of segments on each of the three boundaries
o Number of integration intervals per segment for each of the boundaries

- Number of Gaussian integration points per interval for boundary integration
- Number of integration intervals per volume octant
o Number of stress terms with powers of $r>-2$. Input for each of the four symmetry conditions.
o Number of stress terms with powers of $r<-2$. Input for each symmetry condition.
- Definition of stress output locations.

ELEMENI ADVANTAGES

Use of the orthotropic hole element can result in a substantial savings in computer costs and manhours. Savings in computer costs can be obtained particularly with models containing multiple holes because the congruency feature of NASTRAN can be used conveniently. This means that several hole elements of similar geometry can be included in the model and the stiffness matrix is only generated once. For complex geometries involving conventional elements, the congruency feature is impractical.

Use of the hole element can also result in substantial savings in manhours. A single hole element can replace dozens or even hundreds of conventional elements, therefore reducing the time required for modeling. Typically, an orthotropic hole element can be defined with eight input cards, thus no data generators or preprocessors are required for these areas of the model. Another advantage that results in manhour savings is the stress output generated by the hole element. The user can obtain stress components at any location within the element. With a conventional model, obtaining stresses at desired locations can be a laborious task because of the need to manipulate data and because of the large number of elements involved.

The exanple problems which follow were solved with the COSMIC-NASTRAN program at Luckheed-Georgia Company with the orthotropic hole element implemented. They are intended to demonstrate the performance of the element in a variety of applications.

Isotropic Plate with Uniaxial Tension

The orthotropic hole element can be used in isotropic applications by simply specifying isotropic elastic coefficients. This is demonstrated by presenting the solution for an infinite isotropic plate with unit uniaxial tension at infinity (see Figure 2). The finite element model is shown in Figure 3. The plate width is 20 times the hole diameter, which represents an essentially infinite plate. Poisson's ratio is set at 0.3205 .

Table 1 presents results for the three stress components at four values of radius and four values of θ. The hole element stiffness and stress matrices were based on a geometry of 8 exterior nodes and 12 interior nodes (on the hole boundary). The hole boundary is given by $r=1$. Note the excellent satisfaction of the zero radial stress boundary condition; the results were typically 10^{-6} times the magnitude of external loading. The circumferential stress results are also very good, with an error of only 0.2% on the maximum tension stress concentration factor and 1.5% on the maximum compression stress. The zero shear stress condition is perfectly satisfied since it was included in the original stress assumptions.

The stresses away from the hole boundary are also very well represented by the hole eltment results.

Isotropic Plate with Half Cosine Loaded Hole

A load transfer problem for which a comparison solution is available (Ref. ?) is that of an infinite isotropic plate with Poisson's ratio equal to 0.25 , loaded with uniform traction on one end and a cosine variation of radial tractions on the hole boundary (see Figure 4). The total load on the end is equal to 2 P , and the radial tractions on the loaded hole boundary are given by

$$
T_{r}=\frac{4 P}{\pi} \cos \phi, \quad-\frac{\pi}{2}<\phi<\frac{\pi}{2}
$$

The fintce element model is shown in Figure 3. Table II presents results for the egicn around the hole, wised on a geometry of 8 exterior nodes and 16 interior nodes. The value of P is set equal to 1.0 .

Stresses at the hole boundary are very well represented by the finite element results. The radial stresses follow the cosine curve over the loaded region and are of the order of 10^{-2} on the unloaded portion of the boundary. The variation of circumferential stress is reasonably accurate, with an error of 3% on the maximum str.ss concentration.

In the region around the hole, the results from the hole element solution continue to give a good description of the stress state.

$$
\pm 45^{\circ} \text { Laminated Plate }
$$

The example problems with isotropic material serve to confirm the basic theoretical approach and to partially validate the computer solution. There remains to demonstrate satisfactory performance in applications with orthotropic materials. The first material selected has material properties as follows:

$$
E_{x}=E_{y}=E, \quad G_{x y}=1.697528 E, \quad \nu_{y x}=\nu_{x y}=0.735
$$

Note that even though $E_{x}=E_{y}$, this material is rather "far" from isotropic, with some unspecified measure, due to the large value of Poisson's ratio and the fact that E, G, and v do not satisfy the isotropic relationship. These properties describe the $\pm 45^{\circ}$ graphite/epoxy laminate considered in Reference 4 .

The first loading is unit tensile tractions in the y-direction, applied as shown in Figure 2 with the finite element model given in Figure 3. The computed radial stresses at the hule boundary were of the order 10^{-6} times the exterior loading thus satisfying traction boundary conditions. Figure 5 shows the variation of circumferential stress around the hole boundary for a hole element geometry consisting of 8 exterior nodes and 12 interior nodes. Also shown is the exact solution for an infinite plate, given by

$$
\tau_{\theta}=\frac{3.05786 \cos ^{2} \theta-1}{2.8809072\left(\cos ^{4} \theta-\cos ^{2} \theta\right)+1}
$$

which can be deduced from Reference 5, p. 175. The orthotropic hole element results contain the essential feature that the maximum stress concentration does not occur at the familiar location of $\theta=0^{\circ}$. The error in maximum stress is only 0.7%.

The hole loaded with half-cosine distributed tractions has also been solved; see Figure 4. The resulting radial stresses on the boundary are essentially identical to the results achieved in the case of isotropic material. The maximum circumferential stress on the hole boundary is $\tau_{\theta}=0.79$ at $\phi=125^{\circ}$, which can be c mpared with the hole element results for isotropic material of $\tau_{\theta}=0.84$ at $\phi=85^{\circ}$. Again, it is seen that the location of maximum stress has shifted around the circle from the familiar location.

Plywood

The next material selected has properties as follows:

$$
E_{y}=E, \quad E_{x}=2 E, \quad G_{x y}=0.11667 E, \quad v_{x y}=0.036
$$

These properties describe a plywood material for which Reference 5 contains many results for an infinite plate. Note that the plywood properties are quite different from the $\pm 45^{\circ}$ lamination properties, both in magnitudes and relationships. This provides further checks on the ability of the hole element to handle different types of orthotropic material.

The types of loading considered are unit tensile tractions in the y-direction (Figure 2), unit compressive tractions in the x-direction with constraint in the y-direction (Figure 6a), and uniform unit internal pressure on the hole boundary (Figure 6b). For all cases, the finite element model is shown in Figure 3; and the element geometry contrins 8 exterior nodes and 24 interior nodes.

For the uniaxial tension, there is the usual excellent satisfaction of traction boundary condition, with τ_{r} of the order 10^{-6}. Circumferential stresses around the hole boundary are shown in Figure 7. Also shown are the exact results for an infinite plate, given by

$$
\tau_{\theta}=\frac{4.8557 \cos ^{2} \theta-0.7071}{-6.9994 \cos ^{4} \theta+7.4994 \cos ^{2} \theta+0.5}
$$

which can be deduced from Reference 5 p. 175. The general features of the variation of stress are demonstrated by the hole element results.

The constrained compression results satisfy the iole boundary conditions, with τ_{r} of tive order 10^{-5}. Circumferential stresses around the boundary are shown in Figure 8. The exact results for infinite plate are given by

$$
\tau_{\theta}=\frac{1.1155-6.5174 \sin ^{2} \theta}{-13.9989 \sin ^{4} \theta+12.9989 \sin ^{2} \theta+2}
$$

deduced from Reference 5 p. 179.

The internal pressure results provided boundary radial stresses of the magnitude -1.00002, which is again excellent satisfaction of boundary conditions. Circumferential stresses around the boundary are shown in Figure 9, compared to infinite plate exact results given by Reference 5 p. 173.

$$
\tau_{\theta}=\frac{4.8829-15.8432 \sin ^{2} \theta+13.9989 \sin ^{4} \theta}{2+12.9989 \sin ^{2} \theta-13.9989 \sin ^{4} \theta}
$$

A class of problems which is of particular interest to the aircraft industry is that of pin-loaded holes in orthotropic laminates. Finite element solutions for a variety of graphite epoxy laminates were presented by Crews (Ref. 6). The finite element model used for these analyses was quite detailed, as shown in Figure 10. These results are used here as a basis of comparison to results obtained using the orthotropic hole element.

A NASTRAN model was constructed as shown in Figure 11. The particular case presented here is for $W / d=20$. The load is applied at the center of the fastener and is reacted on both edges of the model in order to more closely approximate an infinite sheet. A feature of Lockheed-Georgia's version of COSMIC-NASTRAN was invoked to properly account for the contact area of the fastener. The hole element geometry consisted of 16 exterior nodes and 20 interior nodes. Six different laminates were considered. These were (l) quasiisotropic (2) 0° (3) 90° (4) $\left[0^{\circ} / 90^{\circ}\right] \mathrm{s}$ (5) $\left[\pm 45^{\circ}\right]_{s}$ and (6) $\left[0^{\circ} / \pm 45^{\circ}\right]_{s}$. Figures $12-17$ present plots of the tangential and radial stress components obtained by the hole element for these respective materials in comparison to the results obtained by Crews using a detailed classical model.

These plots indicate that a reasonable correlation was obtained for the tangential stress distribution at the hole boundary. Peak tangential stress differed by no more than 12%. Excellent correlation of radial stress distribution was obtained for all cases.

Multiple Holes

Figurel8 shows a finite element model of a plate containing five holes. For economy in modeling, it is desirable to develop the hole element stiffness matrix only once and then transform this matrix as necessary to represent all the hole elements. This is possible in NASTRAN by using the congruency feature, and this feature has been checked by determining the solution to Figure 18 with tension applied parallel to the row of holes. The material is isotropic with Poisson's ratio of 0.3205 .

The maximum stress concentration factor is given in Reference 7, p. 194 for an intermediate hole in an infinite row of holes. In order to simulate the infinite row, the displacements of each loaded end of the model were constrained to be uniform across the width of the plate. The finite element result for stress concentration is 2.78 , based on a hole element geometry containing 8 exterior nodes and 12 interior nodes. Reference 7 gives 2.65 ; there is a 5% difference in results.

Concluding Remarks

The performance of the orthotropic hole element in solving a variety of problems has demonstrated that it can produce acceptable results with significant advantages in computer costs, model preparation time, and post-processing of data. Even though the emphasis in this paper has been on problems concerning fastener holes, the use of this element is applicable to any isotropic or orthotropic plate containing circular holes.

TABLE 1
STRESSES FOR AN ISOTROPIC PLATE SUBJECTED TO UNIAXIAL TENSION

	$\begin{gathered} \theta \\ \text { deg } \end{gathered}$	$\tau_{\mathbf{r}}{ }^{*}$	$T_{r}^{* *}$	$\tau_{\theta}{ }^{*}$	$\tau_{\theta}{ }^{* *}$	$\boldsymbol{T}_{\mathbf{r} \theta}{ }^{*}$	$\boldsymbol{T}_{\mathbf{r} \theta}{ }^{\text {** }}$
$r=1$	0	0	0	3.006	3.000	0	0
	30	0	0	2.005	2.000	0	0
	60	0	0	-0.006	0	0	0
	90	0	0	-1.015	-1.000	0	0
$\mathbf{r}=2$	0	0.279	0.281	1.221	1.219	0	0
	30	0.327	0.328	0.923	0.922	0.572	0.568
	60	0.422	0.422	0.325	0.328	0.571	0.568
	90	0.467	0.469	0.028	0.031	0	0
$\mathbf{r}=3$	0	0.145	0.148	1.076	1.074	0	0
	30	0.295	0.296	0.815	0.815	0.516	0.513
	60	0.594	0.593	0.296	0.296	0.516	0.513
	90	0.739	0.741	0.031	0.037	0	0
$r=4$	0	0.083	0.088	1.036	1.037	0	0
	30	0.278	0.278	0.784	0.784	0.482	0.482
	60	0.659	0.659	0.284	0.278	0.488	0.482
	90	0.851	0.850	0.010	0.025	0	0

[^1]TABLE II
STRESSES FOR AN ISOTROPIC PLATE WITH LOAD TRANSFER

	$\underset{\mathrm{deg}}{\phi}$	$\tau_{\mathrm{r}}{ }^{*}$	$\tau_{\mathbf{r}}{ }^{* *}$	$\tau_{\theta}{ }^{*}$	$\tau_{\theta}{ }^{\text {** }}$	$\tau_{r \theta}{ }^{*}$	$\tau_{\mathbf{r} \theta}{ }^{* *}$
$\mathrm{r}=1$	0	-1.271	-1.273	0.372	0.412	0	c
	30	-1.099	-1.103	C. 467	0.470	0	0
	60	-0.649	-0.637	0.649	0.612	0	0
	90	-0.041	0	0.834	0.810	0	0
	120	-0.012	0	0.415	0.373	0	0
	150	0.003	0	0.056	0.053	0	0
	189	0.003	0	-0.094	-0.065	0	0
$\mathrm{r}=1.2$	0	-0.995	-0.977	0.314	0.348	0	0
	30	-0.844	-0.829	0.358	0.381	0.035	0.021
	60	-0.445	-0.429	0.460	0.443	0.046	0.029
	90	0.038	0.034	0.477	0.415	-0.032	-0.031
	120	0.055	0.078	0.289	0.274	-0.097	-0.081
	150	0.023	0.038	0.070	0.088	-0.064	-0.051
	180	0.006	0.024	-0.015	-0.011	0	0
$\mathrm{r}=1.5$	0	-0.726	-0.726	0.232	0.241	0	0
	30	-0.604	-0.609	0.256	0.253	0.042	0.026
	50	-0.288	-0.293	0.295	0.266	0.046	0.028
	90	0.045	0.037	0.266	0.231	-0.047	-0.045
	120	0.094	0.086	0.179	0.152	-0.119	-0.105
	150	0.055	0.049	0.062	0.055	-0.083	-0.070
	180	0.035	0.033	0.010	0.012	0	0

* Hole Element Results
** Reference 3

ORIGINAL PACE IS OF POOR QUALITY

Figure 1. Orthotropic Hole Element Geometry

UniGrivit Frige is OF POOR QUALITY

Figure 2. Unit Tensile Traction in the Y-Direction

originfl pace is OT: POOR QUALITY

Figure 3. Finite Element Model

Figure 4. Load Transfer Problem

Figure 5. Circumferential Stress at the Open Hole Boundary for a $+45^{\circ}$ I 9 minate with Unit Uniaxial Tensile Traction

ORIGANAL FACs : OF POOR QUALITY

(a) Constrained Compression

(b) Internal Pressure

Figure 6. External Loadings

Figure 7. Circumferential Stress at the Open Hole Boundary for Plywood with Unit Uniaxial Tensile Traction

ORSMNE f:
OF POCR QUANITG

Figure 8. Circumferential Stress at the Open Hole Boundary
for Plywood with Unit Constrained Compression

Figure 9. Circumferential Stress at the Hole Boundary for Plywood with Unit Internal Pressure on the Boundary

ORIGINAL PAGE IS OF POOR QUALITY

Figure 10. Detailed Finite Element Model for Analysis of Orthotropic Laminates with Pin-Loaded Holes

ORIGINAL PAGE IS
 OF POOR QUALITY

Figure 11. Finite Element Model with Hole Element

Figure 12. Stresses in the quasi-Isotropic Laminate

Figure 13. Stresses in the 0° Laminate

Figure 14. Stresses in the 90° Laminate

Figure 15. Stresses in the $\left[0^{\circ}, 90^{\circ}\right]$, Laminate

Figure 16. Stresses in the $\left[\underline{+45^{\circ}}\right]_{s}$ Laminate

Figure 18. Finite Element Model for a Plate with Multiple Holes

REFERENCES

1. Smith, C. V.; Markham, J. W.; Kelley, J. W.; and Kathiresan, K.: Development of an Orthotropic Hole Element. NASA CR165759, August, 1981.
2. Timoshenko, S. P.; and Goodier, J. N.: Theory of Elasticity. Third Edition, McGraw-Hill Book Company, New York, 1970.
3. Bickley, W. G.: The Distribution of Stress Round a Circular Hole in a Plate. Philosophical Transactions of the Royal Society of London, Series A, Vol. 227, 1928, pp. 383-415.
4. Hong, C. S.; and Crews, J. H.: Stress Concentration Factors for Finite Erthotropic Laminates with a Circular Hole and Uniaxial Loading. NASA TP1469, May, 1979.
5. Lekhnitskii, S. G.: Anisotropic Plates. Second Edition, Gordon and Breach, New York, 1968.
6. Crews, J. H.; Hong, C. S.; and Raju, I. S.: Stress-Concentration Factors for Finite Orthotropic Laminates with a Pin-Loaded Hole. NASA TP1862, Yay, 1981.
7. Peterson, R. E.: Stress Concentration Design Factors. John Wiley and jons, New Tork, 1953.

Myles M. Hurwitz

Lavid W. Raylor Naval Silip R\&D Center Bethesda, Maryland 20084

SUMIARY

The NASTKAN TRAPRG and TRAPAX finite elenents are very restrictive as to shape and grid point numbering. The elements must be trapezoidal with two sides parallel to the radial axis. In addition, the ordering of the grid points on the eleaent connection card must follow strict rules. The paper describes the generalization of these elements so that these restrictions no longer apply.

INTHUDUCTIUN

Since NASTRAN's inception in the early 1970^{\prime} s, the axisymmetric trapezoidal ring element TRAPRG inds been an accurate, efficient element used in solid a.:isymmetric problens. More recently, the TKAPAX elenent was introduced to handle nonaxisymmetric loading for such structures. While these two elements usually perform very well, the restrictions imposed upon the user in the specification of che elements can be considered, at best, difficult, at worst, unreasonable, in light of today's autanatic data generators. The restrictions require that the elenents be trapezoidal, rather then generchly quadrilateral, with the top and botcon edges parallel to the radial axis. Also, the specification of the grid points on the connection card I st be fiven countercloakwse starting with the grid point with sinaller radial coordinate of the two grid points with the saaller axial coordinate. This paper presents the reasons for these restrictions, how the restrictions have been removed, the imposition of a new, vut less stringent restriction, and an exanple problein.

THEURY

The stiffness matrix for a finite elenent is usually represented as

$$
\begin{equation*}
[K]=\int_{v}[B]^{T}[D][B] d v \tag{1}
\end{equation*}
$$

Where $[B]$ is the matrix of strain-displacenent relations and $[D]$ is the materials matrix describing the constitutive relations. The NASTRAN Theoretical 'lanual (ref. 1) defines $[B]$ for TKAPRG and TRAPF.X elenents. The uanual shows that, in order to evaluate the integral of Equation (1), the integrals

$$
\begin{equation*}
\int_{A r} \mathrm{P}_{z} \mathrm{q}_{\mathrm{drdz}}, \mathrm{p}=-1,0,1,2,3 \text { and } \varphi=0,1,2 \tag{2}
\end{equation*}
$$

ORIGINAL PAGE IA
 OF POOR QUALITY

must be evaluated over the cross-sectional area of the element. The NASTRAN Programuer's Manual (ref. 2) describes how the integrals (2) are conputed analytically. It is tecause of the nature of the expressions involved in the exact representation of these integrals that the original restrictions on the elenents were inposed. The restrictions have been renoved by replaciny the exact integration with Gauss quadrature, as follows.

The three-point quadrature is given as

$$
\begin{equation*}
\int_{A} r^{p_{z}} q_{d r d z=}^{3} \sum_{1=1}^{2} \sum_{m=1}^{=} r_{z}^{p_{z}\left(\xi_{1}, \eta_{m}\right) H_{1} H_{m}\left|J\left(\xi_{1}, \eta_{i n}\right)\right|} \tag{3}
\end{equation*}
$$

Where

$$
\begin{aligned}
& r=\sum_{i=1}^{4} N_{i} r_{i} \\
& z=\sum_{i=1}^{4} N_{i} z_{i} \\
& N_{i}=1 / 4\left(1+\xi \xi_{i}\right)\left(1+\eta n_{i}\right), \text { the linear isoparametric shape function } \\
& \quad \begin{array}{l}
\text { over the square } \xi=-1 \text { to }+1 \text { and } \eta=-1 \text { to }+1
\end{array}
\end{aligned}
$$

$r_{i}, z_{i}=r, z$ coordinates of the grid points at the four corners of the element
$\xi_{1}, \eta_{n}=$ isoparametric coordinates at wnich $r^{p}{ }_{2}$ is evaluated in a three-point Gauss quadrature
$H_{1}, H_{\text {m }}=$ quadrature weights corresponding to ξ_{1}. $\eta_{\text {in }}$
$\left|J\left(\xi_{1}, \eta_{m}\right)\right|=\underset{\text { at }\left(\xi_{2}, \eta_{m}\right)}{\operatorname{dec} s n \text { inant of the Jasobian, }}\left|\begin{array}{ll}\frac{\partial r}{\partial \xi} & \frac{\partial z}{\partial \xi} \\ \frac{\partial r}{\partial \eta} & \frac{\partial z}{\partial n}\end{array}\right|$, evaluated

With this formulation, the restrictions on the brapezoidal shape and grid point numbering can be removed.

There is, however, one situation which can cause numerical problems. Note that, in integrals (2). if $p=-1$ and $r \rightarrow 0$, then the integral $\rightarrow \infty$. Two cases can be examined. Tre first is the core element, a TRAPRG elenent with exactly two grid points with zero radius. (NASTRAi does not allow the TRAPAX elenent to be a core element since it does not allow a RINGAX ring to have a zero radius.) At these two points, the radial displacement must be zero. This condition can be assured as

ORIGINAL PAGE IS
 OF POOR QUALITY

follows. If u and w are the radial and axial displacenents, respectively, at some point within an eleoent, then the assuaed displaceaent functions are (ref. 1)

$$
\begin{align*}
& u=B_{1}+B_{2} r+B_{3} z+B_{4} r z \tag{4}\\
& w=B_{5}+B_{6} r+B_{7} z+B_{8} r z \tag{5}
\end{align*}
$$

Where the b_{i} are unknown coefficients. Then,

$$
\left\{\begin{array}{c}
u_{1} \\
w_{1} \\
\vdots \\
u_{4} \\
w_{4}
\end{array}\right\}=\left[\mathrm{H}_{\mathrm{Bu}}\right]^{-1} \quad\left\{\begin{array}{c}
\mathrm{B}_{1} \\
\vdots \\
\mathrm{~B}_{8}
\end{array}\right\}
$$

where u_{i}, H_{i} are the displacenents of the i th grid point. If $r_{i}=0$, then u_{i} aust be 0 , which 1 seans that the $\left(2_{i}-1\right)$ th col van of $H_{b H}$ can be zeroed. In addition, from Equation (4), $0=4=B B_{3}+3^{2}$ for all 2 . Inerefore, $0=B_{1}=B_{3}$, which can be assured by zeroing the first and third coluns of $H_{\text {H日 }}$. However, 3the only terns of $H_{\text {Hu }}$ which contain a form of (2) whth $p=-1$ are in the first and third colunns. Therefore, for a TRAPRG core eleaent with $r_{i}=0$, no nunerical probleas exist.

Now consider a second case - one where some r_{i} is small conpared with some otiner r_{j} in the eleuent. Cauparisons between the analytical integration and the ciauss quadrature show that if

$$
\begin{equation*}
\frac{r_{\operatorname{miX}}}{r_{\min }}>10 \tag{7}
\end{equation*}
$$

then the dauss yuadrature results begin to significantly degrade ($r_{\text {max }}=\max r_{j}$, $1=1$, 4). Therefore, inequality (7) is not allowed. This resteriction should impose a hardship tainly when a TRAPAX core element is desired. This hardship however should require only an extra elenent or two to transition to larger radii.

SAMPLE PROBLEA

The sample problen for this work was a normal modes analysis of a thick-walled cylinder of inner radius 5.0 inches, outer radius 6.25 inches, and lengtin 3.5 inches. The finite eleaent anodel for the unnodified version of NASTRAN is shown in Figure la and, for the version which removes the restriction, in Figure 1 b . Both models used the THAPAX elenent. The results are shown in Table 1. The canparison of the resusts shows a desradation at the hishest mode conputed. However, this can be expected because of the severity of the non-uniform aesh.

REFERENCES

1. The NASTRAN Theoretical Manual (Level 17.5), NASA SP-221 (05). Dec. 1978.
2. The NASTRAN Progranmer's Manual (Level 17.5), NASA SP-223 (05), Dec. 1978.

TABLE 1. COMPARATI VE RESULTS

MODE	NATURAL FREQUENC IES (CPS)	
	RESTRICTI VE ELEMENTS	GENERAL ELEMENTS
	1090.003	1090.000
2	1660.250	1660.864
3	1760.034	1760.101
5	1988.622	1989.121
6	2071.862	2071.920

ORIGINAL PAGE R OF POOR QUALITY

Figure 1. Finite Element Models

N84 15597

ACOUSTICAL MODES OF ARBITRARY VOLUMES USING NASTRAN TRANSIENT HEAT TRANSFER RF9

V. Elchuri, G. C. C. Smith, A. Michael Gallo Bell Aerospace Textron, Buffalo, New York

original page is OF POOR QUALITY

SUMMARY

An equivalence between temperature and pressure, heat conduction and 'stiffness', and heat capacity and 'mass' is defined, enabling acoustical modal analysis of arbitrary three-dimensional volumes. The transient heat transfer analysis rigid format in NASTRAN, RF9, has been ALTERed providing the acoustical analysis capability. Examples and AITERs are included.

INTRODUCTION

A twenty-node isoparametric acoustic finite element model was developed in Reference 1 for analyzing the acoustic modf of irregular shaped cavities. In the present paper,

1. the existence of an identical element in NASTRAN (IHEX2) and,
2. the recognition of the similarity between the acoustical matrices of Reference 1 and the thermal matrices of NASTRAN
have enabled the posing and solution of the acoustics eigenvalue problem for arbitrary three-dimensional cavities bounded by 'hard' acoustic surfaces. A simple modification of the transient heat transfer rigid format RF9 provides the acoustics analysis formulation in NASTRAN.

SIMILARITY OF ACOUSTICAL AND THERMAL MATRICES

Sumarizing the finite element formulation of Reference 1 , the pressure p in a voiume V bounded by a surface S satisfies the three-dimensional wave equation and boundary corditions:

$$
\begin{align*}
\nabla^{2} p+\left(\omega^{2} / a_{0}^{2}\right) p & =0 \text { in } v, \text { and } \tag{1}\\
\nabla p \cdot \hat{n} & =0 \text { on } s, \tag{2}
\end{align*}
$$

where ω is the frequency of vibration of the acoustical mode, a_{0} is the speed of sound, and $\hat{\mathrm{n}}$ is the outward normal to S . Representing the volume V by an assemblage of three-dimensional finite elements, the corresponding eigenvalue problem becomes

$$
\begin{equation*}
\left[K-\omega^{2} M\right]\{p\}=0, \tag{3}
\end{equation*}
$$

where for the ith element

$$
\begin{equation*}
[k]_{i}=\int_{v_{i}}[B]_{i}^{T}[B]_{i} d V \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \left.\left.[m]_{i}=\int_{v_{i}} \frac{1}{a_{0}^{2}} L N\right\rfloor_{i}^{T} L N\right\rfloor_{i} d V, \quad \text { and } \tag{5}\\
& {[B]_{i}=\left[\begin{array}{l}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right]\lfloor N\rfloor_{i}} \tag{6}\\
& \text { OF POOR QUALITY }
\end{align*}
$$

The shape function $L N j_{i}$ approximates the pressure within the ith element in terms of the nodal pressures $\{p\}_{i} a=$

$$
\begin{equation*}
p=\left\lfloor N J_{i}\{p\}_{i} .\right. \tag{7}
\end{equation*}
$$

A comparison with the NASTRAN heat transfer analysis capability (Ref. 2) indicates that,

1. equation (4) is identical to the heat conduction matrix, if the thermal conductivity is unity, and
2. equation (5) is identical to the heat capacity matrix, if the thermal capacity per unit volume is $1 / a_{0}^{2}$.

The temperature degrees of freedom in the thermal analysis are taken to correspond to the pressure degrees oEfreedom in the acoustics analysis.

The above correspondence together with the real eigenvalue analysis module ' READ) permit the determination of the acoustical modes and frequencies. An ALTER package to be used in HEAT APPROACH RF9 is included in the Appendix.

EXAMPLES

The two examples of Reference 1, shown in Figures 1 and 2, were analyzed using the modified RF9. The results, generally in agreement, are presented in Tables 1 and 2, and Figure 3. It is noted that the missing geometric dimensions in Figure 2 were scaled from the figure of Reference 1.

CONCLUDING REMARKS

With a simple modification, and a 'redefinition' of thermal conductivity and capacity, the transient heat transfer rigid format in NASTRAN has been used to determine the acoustical modes and frequencies of arbitrary volumes. The volume can be modelled by any of the solid elements permitted by RF9. Although only acoustically hard surfaces have been considered in this paper, simple extensions to other boundary conditions are considered to be possible.

1 Petyt，M．，Lea，J．，and Koopmann，G．H．，＂A Finite Element Method for Detfr－ mining the Acoustic Modes of Irregular Shaped Cavities，＂Journal of Sound and Vibration（1976）， 45 （4），pp 495－502．

2．NASTRAN Theoretical Manual，NASA SP－221（05），December 1978.

APPENDIX

```
$ ALTEFF HEAT F゙F 9 (NASTFAN FELEASE AF'KIL. 1.98``)
$
ALTEF 26,26 & SET NOMGG=1 BECALJSE OF EFFOK IN IHEXO LOGIC.
FMG HEST,CSTM,MFT,HIT,GEOMO,/HKELM,HNLICT, LUM1,ILM2,HEELM,HEDIC:T/
    #ッN,NOK゙GGX/ L/ S.N.NOEGG $
ALTEFF 67,67 $ COMFUTE ANH FFINT MOMES
OFI LIYNAMTCS,GFIL,HSIL,HUSET/GFIN,HSILII,HUSETM,TFFOOL,HIMLT,g,
    HNLFFT,HTFL, EELI,HEQLIYN/HLUSET/S,N,HLUSEIT/123/S,N,NOMILI/
    123/123/S,N,NONLFT/S,N,NOTFLLS,N,NOEEEM/S,N,NOUF $
F'AFAM //*MF'Y*/NETGU/1/-1 $
HEALI HKAAA,HEAA, , EELI,HUSET,CCASELC/L...AMA,FHTA,gOEIGS/
    *MCIMES*/S,N,NEIGU $
OFF'OELGSyLAMAy,y,// $
GLF1. HUSET,yFHTA,,:!1g0,GM,y,"/FHTG,y/1/*FETG* $
```



```
    HEST,,/, (OF'FGG, ,FFFHIG/*FETC* $
OFF OFHOC,%,ッ,// 韦
FLLOT FLITFAK,GFSETS,ELSETS,CASECC,HGFOT,HEOEXIN,HSIF, FFFHIG,HGFEGT,
    /FLLOTXZ/LNSIL_/HL.USEF/JUMFFLOT/FLLTFLG/FFTLEE $
FFTMSG FLLOTXZ// $
ENIIAL.TEF
```

TABLE 1．ACOUSTIC FREQUENCIES OF A RIGHT－ANGLED PARAILELOPIPED（cyc／T）
（a）Symmetric Modes

Mode	Exact Frequency ${ }^{\star}$	Ref．1	Tnis Paper
$1,0,0$	699	702	
$2,0,0$	1398	1542	680
$0,0,1$	1500	1506	1495
$1,0,1$	1655	1664	1460
$2,0,1$	2057	2155	1613
$3,0,0$	2097	2525	2090
$3,0,1$	2579	--	2448
			2925

TABLE 1. ACOUSTIC FREQUENCIES OF A RIGHT-ANGLED PARALIELOPIPED (cyc/T) (Contd.)
(b) Antisymmetric Modes

Mode	Exact. Frequency*	Hef. 1	This Paper
0, 1, 0	1250	1255	1255
1, 1, 0	1432	144 C	1430
2, 1, 0	1876	1988	1952
0, 1, 1	1953	1963	1928
1, 1, 1	2074	2089	2048
2, 1, 1	2401	2499	2440
3, 1, 0	2442	2875	2808
3, 1, 1	2866	3346	3233
${ }^{*} f_{\ell, m, n}=\frac{a_{0}}{2}\left(\left(\frac{l}{l}\right)^{2}+\left(\frac{m}{l_{y}}\right)^{2}+\left(\frac{n}{l_{z}}\right)^{2}\right)^{\frac{1}{2}} \text {, (Ref. 1) }$			
$\ell_{x}, \ell_{y}, \ell_{z}$ sides of the parallelofiped			

TABLE 2. ACOUSTIC FREQUERCIES OF MODEL JAN (cyc/T)
(a) Symmetric Modes

Ref. 1

Mode	Experimental	Calculated	This Paper
1	606	593	562
2	1174	1150	1104
3	1549	1556	152.4
4	1613	1605	158:
5	1817	1829	1751
5	1992	2026	1993

(b) Antisymmetric Modes

Mode

1	1220	1168	1118
2	135%	1317	1245
3	$167 j$	1634	1568
4	1996	1956	1940
5	2021	1997	1968
6	2176	2187	2109

4 IHEX2 Elements

FIGURE 1. DETAILS OF RIGHT-ANGLED PARALLELOPIPED

8 IHEX2 Elements

FIGURE 2. DETAILS OF MODEL VAN

Mode 1

Mode 3

Mode 5
FIGURE 3. SYMMETRIC ACOUSTIC MODES OF MODEL VAN (Figure 2)
accelerated dynamic response in nastran
V. Elchuri, A. Michael Gal'ว, G. C. C. Smith

Bell Aerospace Textron, buffalo, New York

SUMMARY

An alternative method of analysis to determine che dynamic response of structures subjected to base accelerations is presented. The method is exact as opposed to the approximate technique of using unusually large masses and loads to enforce desired base accelerations. This paper presents the relevant equations of motion, ALTERs for direct and modal frequency-, random- and transient-response rigid formats, and illustrative examples.

INTRODUCTION

Dynamic environments of industrial structures and structural components are frequently specified in terms of base accelerations. The dynamics analysis capabilities of NASTRAN, however, provide for the specification of loads rather thin accelerations. An approximate technique is therefore, generally practiced wherein the structural degrees of freedom with known (base) accelerations are assigned very large masses (or mass moments of inertias, of the order of 10^{6} to 10^{12} times the total structural mass) and subjected to correspondingly large loads to enforce the desired base accelerations (ref. 1). This method can, in some instances, lead to erroneous results as shown by the frequency response function in Figure 1. The function represents $\sigma_{x x, 1}$ in element 2 when the cantilevered plate, shown in Figure 2, is subjected to a unit base acceleration $\ddot{z}(f)=1$. A concentrated mass of 10^{\S} units was used in the z (translation) degree of freedom at grid point 1. The solution was obtained using the direct frequency and random-response rigid format DISP RF 8. A viscous damping matrix proportional to the structural stiffness matrix, $B D D=2.0 \mathrm{E}-6 \mathrm{KDD}$, was used enabling a direct comparison of the results with those from the alternative method.

The method discussed in the following sections avoids the use of fictitious large masses thereby eliminating any associated conditioning problems. For a modal formulation of the problem, the modal basis currently available in NASTRAN rigid formats is used. These modes are the base-relaxed modes including rigid body modes, and constitute a plausible basis for base excited dynamic response calculations. The prevailing boundary conditions are satisfied by all modes. The user directly specifies base accelerations on existing JASTRAN bulk data cards.

NOMENCLATURE

Note: A consistent set of FLT units has been used throughout this paper.

```
    :'?
    Damping matrix, FL }\mp@subsup{}{}{-1
    Viscous damping, FL +1
    f Frequency, T T
    g Modal damping coefficient
    i \sqrt{}{-1}
    K Stiffness matrix FL 
    k Stiffness, FL 
    M Mass matrix, FL }\mp@subsup{}{}{-1}\mp@subsup{\textrm{T}}{}{2
    m Mass, FL, -1 T
    P Load vector, F
    p Derivative operator }\frac{d}{dt},\mp@subsup{T}{}{-1
    t Time, T
    u Displacement vector, L
    \ddot{y},\ddot{z}}\mathrm{ Translational accelerations, LT }\mp@subsup{}{}{-2
    \omega}\quad\mathrm{ Circular frequency = 2mf, T T
    \omega
    $ Modal matrix
    \sigma
    Subscripts:
    a, d, h, \ell, p, r NASTRAN displacement sets
    D \equivd-r set
```

 METHOD OF ANALYSIS
 Direct Formulation
 After the application of constraints and partitioning to both structural and
 direct input matrices, the equation of forced motion is
 $$
\begin{equation*}
\left[\left[M_{d d}\right] p^{2}+\left[B_{d d}\right] p+\left[k_{d d}\right]\right]\left\{u_{d}\right\}=\left\{p_{d}(t \text { or } \omega)\right\} \tag{1}
\end{equation*}
$$

The displacement vector u_{d} is partitioned as

$$
\begin{equation*}
\left\{u_{d}\right\}=\left\{\frac{u_{D}}{u_{r}}\right\} \tag{2}
\end{equation*}
$$

Onisma pata eg
OF Puije QuAly
with u_{r} representing the base accelerated degrees of freedom. Equation (1) can now be rearranged into the following two equations:

$$
\begin{align*}
& \left.=\left\{\frac{\mathrm{P}_{\mathrm{D}}-\left[\mathrm{M}_{\mathrm{Dr}}\right]_{\mathrm{p}}{ }^{2}\left\{u_{r}\right\}}{\left[M_{r r}\right] \mathrm{p}^{2}\left\{u_{r}\right\}}\right\}\right\} \text {, and } \tag{3}
\end{align*}
$$

Given the base accelerations $p^{2} u_{r}$, equation (3) is solved for $u_{d}, p u_{d}$ and $p{ }^{2} u_{d}$. Fquation (4), in turn, can be solved for P_{r} the loads required on the base degrees of freedom to cause the desired base accelerations.

Modal Formulation
The displacement vector u_{d} is written as

$$
\left\{u_{d}\right\}=\left\{\begin{array}{c}
u_{D} \tag{5}\\
-\frac{u_{r}}{-}
\end{array}\right\}=\left[\begin{array}{l}
\phi_{\mathrm{Dh}} \\
\frac{\phi_{r h}}{-}
\end{array}\right]\left\{u_{h}\right\}=\left[\phi_{d h}\right]\left\{u_{h}\right\}
$$

where the modal matrix ϕ_{dh} has been appropriately expanded to include any extra points (ref. 2). Substituting equation (5) in equation (3), and premultiplying both sides by $\phi_{\mathrm{d}}^{\mathrm{J}}$, the resulting equation of motion is

$$
\begin{equation*}
\left[\left[M_{h h}\right] p^{2}+\left[B_{h h}\right] p+\left[k_{h h}\right] j\left\{u_{h}\right\}=\left\{P_{h}\right\}\right. \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& {\left[M_{\mathrm{hh}}\right]=\left[\phi_{\mathrm{dh}}\right]^{T}\left[\begin{array}{c:c}
M_{\mathrm{DD}} & 0 \\
\hdashline \mathrm{O}_{0} M_{\mathrm{rr}}^{-}
\end{array}\right]\left[\phi_{\mathrm{dh}}\right] \text {, }} \\
& {\left[\mathrm{B}_{\mathrm{hh}}\right]=\left[\mathrm{B}_{\mathrm{hh}}^{1}\right]+\left[\phi_{\mathrm{dh}}\right]^{\mathrm{T}}\left[\begin{array}{c}
\mathrm{B}_{\mathrm{D}}{ }^{\prime} \mathrm{B}_{\mathrm{Dr}} \\
\hdashline-0 \\
-0
\end{array}\right]\left[\phi_{\mathrm{dh}}\right] \text {, }} \tag{7}
\end{align*}
$$

$$
\left.\left\{P_{h}\right\}=\left[\phi_{d h}\right]^{T}\left\{\frac{P_{D}-\left[M_{D r}\right] p^{2}\left\{u_{r}\right\}}{\left[M_{r r}\right] p^{2}\left\{u_{r}\right\}}\right\} \begin{array}{c}
\text { ORIGINAL PAGE IS } \\
\text { OF POOR QUALITY (continued) } \tag{7}
\end{array}\right\}
$$

Consistent with the existing capabilities of NASTRAN rigid formats for modal frequency- and random-, and transient-response analyses (DISP RFs 11 and 12), the modal damping matrix $B_{h h}$ consists of contributions due to,

1. the damping mat $-i x \mathrm{~B}_{\mathrm{hh}}^{1}$ proportional to the mass matrix as

$$
\begin{equation*}
\left[B_{h h}^{\perp}\right]=\left[\omega_{n}^{h} g\left(\omega_{n}^{h}\right)\right]\left[\phi_{d h}\right]^{T}\left[M_{D D}^{M} M_{0}^{M} M_{0}\right]\left[\phi_{d h}\right] \tag{8}
\end{equation*}
$$

with the elements of the diagonal matrix corresponding to all extra points set to zero, and
2. the direct input matrix.

Given the base accelerations $p^{2} u_{r}$, equation (6) is solved for u_{h}, $p u_{h}$ and $p^{2} u_{h}$. Equation (5) is used to recover the displacement vector u_{d} and its rates $p u_{d}$ and $\mathrm{p}^{2} \mathrm{u}_{\mathrm{d}}$. Equation (4) can be used to recover the loads P_{r}. The damping terms $\mathrm{B}_{\mathrm{r} D}$ and B_{rr} are partitions of the directly specified damping matrix B2PP.

IMPLEMENTATION IN NASTRAN

The method of analysis discussed in the previous section has been implemented in NASTRAN April 1982 release in the form of DMAP ALTERs. The ALTER packages for the displacement approach rigid formats 8, 9,11 and 12 are given in the Appendis. Fxisting NASTRAN utility modules have been used to partition and merge various matrices for the rearranged equation of motion. The functional module FRRD2 for the frequency response rigid formats has been modified to solve coupled equations of motion. These modifications are also included in the Appendix.

In using these ALTER packages, the following points are to be considered.

1. The base accelerated degrees of freedom are specified on the SUPORT bulk data card.
2. The base accelerations are specified on RLOADi or TLOADi bulk data cards akin to specitying loads.
3. The base accelerated degrees of freedom must have non-zero mass (or mass moment of inertia). No fictitious large masses are required.
4. In rigid formats 8 and 11 , external loads can be applied to all ($p-r$) set degrees of freedom.
5. In rigid formats 9 and 12, external loads can be applied to all (d-r) set degrees of freedom.
6. An OLOAD request for the base accelerated (r set) degrees of reedom in RFs 8 and 11 results in the loads on these degrees of freedom necessary to cause the
specified base accelerations. specified base accelerations. $\mathrm{p}^{2} \mathrm{u}_{\mathrm{d}}$ in distinct data blocks.

Such a request in RFs 9 and 12 will output the This is due to the non-availability of $p u_{d}$ and
7. If OLOADs are requested for the base accelerated degrees of freedom in RF8 and 11, a real diagonal matrix named FREQ must be input on DMI bulk data cards with entries sorted in an ascending order from the FREQ or FREQi bulk data card. The order of the FREQ matrix must be equal to the entries on the FREQ or FREQi bulk data card.
8. Mode acceleration method of data recovery is available both in RFil and RF12.
9. The data recovery procedures in all the four rigid formats remain unchanged, with the exception of stress recovery. The stresses are computed usiug displacements (or modal displacements) relative to the base. This is due to the fact that in problems with specified base accelerations, the absolute displacements can become extremely large. The subsequent stress calculations, as a result, are based on small differences of large numbers, and can be in error as shown by the stress response at very low frequencies in Figure l. It is to be noted that any limitations imposed by these AL'íR packages are as a direct result of utilizing existing functional and utility modules, with the necessary exception of FRRD2. These limitations can easily be overcome by creating new (dummy) modules.

ILLUSTRATIVE EXAMPLES

Two problems (Figures 2 and 3) are considered to illustrate the alternative method of determining base accelerated dynamic response. The problem in Figure 3 is used to illustrate the accuracy of all the four ALTER packages. The problem in Figure 2 is used to compare response calculations with those shown in Figure 1.

Figure 3 shows a 2-degree of freedom system subjected to a known base acceleration at mass m_{1}. The problem is to determine the acceleration response of mass m_{2}. The following steps are followed in ootaining and cross-checking the solution by various ways:

1. RF8 with ALTERs is used to determine $\ddot{y}_{2}(f)$ and $P_{1}(f)$, given $\ddot{y}_{1}(f)$.
2. RF8 without ALTERs is used to determine $\ddot{y}_{1}(f)$ and $\ddot{y}_{2}(f)$, given $P_{1}(f)$.
3. Steps 1 and 2 are repeated with RF11.
4. RF9 with ALTERs is used to determine $\ddot{y}_{2}(t)$, given $\ddot{y}_{1}(t)$.
5. Step 4 is repeated with RF12.

Figures 4 and 5 show the results of steps 1 through 3 which compare well with the theoretical results given by

$$
\begin{equation*}
\ddot{y}_{2}(\omega)=\left[\frac{k+i \omega c}{k+i \omega c-\omega^{2} m_{2}}\right] \ddot{y}_{1}(\omega) \quad \text {, and } \quad p_{1}(\omega)=m_{1} \ddot{y}_{1}(w)+m_{2} \ddot{y}_{2}(,) . \tag{9}
\end{equation*}
$$

ORIGINAL PAGE R
 OF POOR QUALITY

ri.........f e..pps 4 and 5 with theorv Thr

$$
\ddot{y}_{2}(t)=1-\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta_{2}^{2}}} \cos \left(\sqrt{1-\zeta^{2}} \omega_{n} t+\gamma_{0}{ }^{\circ}\right) \text {, }
$$

where

$$
\begin{align*}
& \zeta=c /\left(2 \sqrt{k_{m_{2}}}\right) \\
& \omega_{n}=\sqrt{k / m_{2}} \quad, \text { and } \\
& \gamma_{0}=\tan ^{-1}\left(\frac{\zeta}{\sqrt{1-\zeta^{2}}}\right) \tag{10}
\end{align*}
$$

for

$$
\begin{aligned}
\ddot{y}_{1}(t) & =0, t<0 \\
& =1, t>0 .
\end{aligned}
$$

Figure 7 presents the frequency response function of Figure 1, using RF8 with base acceleration ALTERs. For comparison, a damping matrix proportional to the structural stiffness matrix was used in both solutions (BDD $=2.0 \mathrm{E}-6 \mathrm{KDD}$). The response does not rely on the selection of any fictitious large masses. The error in the stress response at low frequencies is also eliminated.

CONCLUDING REMARKS

1. An alternative method of determiniug base accelerated dynamic response in NASTRAN has been piesented and demonstrated, avoiding the use of fictitious large masses.
2. Although this paper discusses the problem and its solution in terms of absolute degrees of freedom, a number of variations can be simply achieved to suit particular problems. As an example, the introduction of the degrees of freedom relative to the base degrees of freedom, at least in the absence of extra points, can be easily accomplished by the transformation
with

$$
\begin{align*}
& \left\{u_{d}\right\} \equiv\left\{u_{a}\right\}=\left\{\begin{array}{l}
u_{\ell} \\
\hdashline u_{r}
\end{array}\right\}=\left[\frac{1}{0} ; \frac{D}{I}\right]\left\{\begin{array}{c}
u_{\ell} r_{2} \underline{1} 1_{0} \\
u_{r}
\end{array}\right\}, \quad \text { (set e null) } \tag{11}\\
& {[D]=-\left[k_{\ell \ell}\right]^{-1}\left[k_{\ell r}\right] .}
\end{align*}
$$

This is useful in addressing shock spectrum response problems, and can lead to symmetric coefficient matrices and uncoupled (modal) equations of motion.
4. The method can form the basis fo: considering displacement and velocity base excitation problems in NASTRAN.

1. MSC/NASTRAN Application Manual, Vol. I, January 1981.
2. NASTRAN Theoretical Manual, NASA SP-221(05), December 1978.
3. Myklestad, N. O., Fundamentals of Vibration Analysis, McGraw-Hill Book Company, Inc., 1956.

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX


```
                    ORIGINAL PA3E IS
                    OF POOR QUALITY
LABEL
    LBLIBE $
EQUIV PFEF,PIF/IMIT
CONL L.BLIBC,OMIT $
VEC USETM/UECDO/*FE**/*以*/*O* *
FARTN FFEF, VECMO/PBLIF,FOF,g / 1 $
MFYALI GOIIFOF,FOBLF/ PLIF/ 1
LABEL LELI8C
ALTER 123.123 $ USE FOL INSTEAD OF PFF
ULKR CASEXX,ERIMN,USETIIODUF,FOL,XYCLIB,/OUIUCI /*FREQRESF*/
    *IIRECT*/S,N,NOSDRT2/S,N,NOL/S,N%NOF/O $
ALTEFG 139,139 $ USE FOL. INSTEALI OF F'F'F
SDF2 CASEXX,CSTM,MPT,IIT,EQLYN,SILD,F,BGFLF,FOL,QFC,UFUC,EST,XYCLE,
    FFF/OFFC1,OQFC1,DUFUC1, DEFC1,FUFUC1/*FRERRESF*/
    S/N,NOSORTA *
UEC USETLI / UN2 / *LI*/*A*/*E* *
UEC USETII/ UA2 / *A*/*L*/*R* $
FAFTN UDUF, VIZ / UAUF,UEUF,g/ 1 $
PAKTN UAUF,,VA2 / ULUF,URUF,y/ 1 %
MFYALI LMMUFUF,ULUF / ULUFF//0/1-1 $
UMERGE USETII,ULUFF, / UAUFF/ *A*/*L*/*R* $
UMEFGE USETIIDUAUFF,UEUF / UDUFF/ / *I*/*A*/*E* $
ERIJTV ULUFFFUFUCF/NOA $
CONII LELI9A,NOA $
SMK1 USETHy,UNUFF,y,GOL,GML,g%,/ UFUCF,%/ 1/*LYNAMICS* $
LAHEL.. LELISA $
SLK2 CASEXX,CSTM,MFT,IIT,EQLIYN,SILII,, EGGFLIF,FOL, UFVCF,OEST,
    XYCIB,/,y,OESC1,%/*FREQRESF*/SyN%NOSORT2 $
ENLIAL.TER
```


ORIGINAL PA sic is
 OF POOR QUALITY

\$ ALTERS TO SOL 9 (NASTRAN APRIL 1982) FOR BASE ACCELERATION.	
\$ ${ }^{\text {d }}$	
ALTER 87	\$
RBMG1	
RBMG2	KLL / LLLL
RBMG3	LLL,NLR,NRR / IM \$
ALTER 125,125 \$	
VEC	USETD/UH/*D*/*COMF*/*R* \$
PARTN	PDy, UD/FD1, FD 2 , $/ 1$ (
PARTN	
PARTN	
PARTN	
MERGE	
MERGE	
MERGE	KDD11, KDD12,yUn,/ KıLI /-1/0/1 \$
MPYAD	MDD12,PD2,FD1/ FDni $/ 0 /-1$ \$
MPYAII	MnD22,PD2, / FOn2 10 \$
MERGE	
TRD	CASEXX, TRL, NLFT, IIIT, KIN1, EDI1, MDII, FLDI/ UDUT,PNLD / *IIRECT*/NOUE/1/S,N,NCOL/C,Y,ISTAKT \$
ALTER 139,139 ${ }^{\text {(}}$	
SDR2	CASEXX,CSTM,MFT, IIT, EQUYN,SILD, , EGGFIF,TOL, QF, UFV,EST, XYCDE,PFT/OPF1,OQF1,OUFV1,,OEF1,FUGU/*TRANRESF* \$
VEC	USETI / Un2 / *II*/*A*/*E* \$
VEC	USETH / UA2 / *A*/*L*/*F* \$
PARTN	UDUT, UDI / UAVT,UEUT, / 1 \$
PARTN	UAUT, ,VA2 / ULUT,URUT, / 1 \$
MPYAII	Im, URUT, ULUT / ULUTF / 0/-1
UMERGE	USETH.ULUTP, / UAUTF / *A*/*L*/*F*
UMERGE	USETL, UAUTF, UEUT / UDUTF / *L*/*A*/*E* \$
ERUIV	UDUTP, UFUTF/NOA \$
COND	LEL19A,N0A
SUR1	
LABEL	LRL19A \$
SLR2	CASEXX,CSTM,MPT, DIT, EQIYN,SILD,, EGFIF, TOL, ,UFUTF,EST, XYCLIB,/,,,OESI," /*TRANRESF* \$
ENDALTER	

ORIGINAL PAGE IS OF POOR QLiALITY

\$
\$\$ ALTERS TO SOL 11 (NASTKAN APRIL 1982) FOR BASE ACCELERATION.
\$
ALTER 93 *
PARAK //*ADD*/KDEK2/NOGENL/NOSIMF *
ALTER 95,96
PARAM //\&ADD*/NOBGG/-1/0 *
PARAM //*ADD*/NOK4GG/-1/0 \$
GKAD USETD,GM,GO,KAA,,MAA,,K2FP,M2FF,R2PF/
 DIRECT/O.0/0.0/0.0/NOK2FP/NOM2FF/NOB2FF/MFCF1/SINGLE/
OMIT/NOUE/NOK4GG/NOBGG/KIDEK2/U,Y, MODACC-- -1 *
EQUIV B2DD,BDD/NOBGG/M2DL,MDL/NDSIMF/K2DD,KLH/KLEK2 *
FRLG CASEXX,USETI,DLT,FRL,GMI,GOD,IIT,/FFF,FSF,FDF,FOL,FHF/ *DIRECT*/FREQY/*FREQ* *
EQUIV PPF,PDF/NOSET \$
UEC USETI/UF/*P*/*COMF*/*R*
UEC USETD/UI/*ロ*/*COMF*/*F*
PARTN PFF, UP/FPF1,FFF2,,/1 \$
PAR CN PDF,, ULI/PMF1,PDF2,,/1
PARTH MDII, UL,/MDD11,MLD21,MLDD12,MDI22 $\$$
PARTN BDD, VI,/HDD11, GLD21,BLD12, BDLO2 \$
PARTN KDD,UI,/KLIL1,KLI21,KHL12,KLLO2
MERGE MDH11,f,MDI22,U口,/ MLII /-•/0/1 \$

MFYAD MDN12,FFF2,FDF1/ FLIFF1 /0/-1 \$
MPYAD MDI22,FFFF, / FDFF? 10 \$
MERGE PIFF1,FLIFF2,, ,OL/ FLIFF /1/0/2
GKAM USETI,PHIA,MI,LAMA,IIIT,,,,CASEXX/ MXHH,EXHH, KXHH,FHILH/NOUE/C,Y,L.MODES $=0 /$
$\mathrm{C}, \mathrm{Y}, \mathrm{LFREQ}=0.0 / \mathrm{C}, \mathrm{Y}, \mathrm{HFREQ}=-1.0 /-1 /-1 /-1 /$ S,N,NONCUF/S,N,FMODE $\$$
MFYAD FHILIH,FIIFF,/PHF/1/1/0/0
SMFYAL FHILH, MLLII, FHILH, , $/$ MHH $/ 3 / 1 / 1 / 0 / 1$ \$
SMFYAL PHIDH,KDD1,FHIDH,,$/ K H H / 3 / 1 / 1 / 0 / 1$ *
PURGE B2HH/NOB2FF \$
CONI LELI3A.NOB2FF $\$$
SMPYAD FHILH,BDD1;FHIIH,:,/B2HH/3/1/1/0/1 \$
LABEL LELI3A \$
EQUIV MAA,MiLIN/NOUE
COND LBLISB,NDUE \$
VEC
MERGE MAA,,, VII,/ M1LIM/-1/0/1 \$
LABEL LBLI3B
FARTN M1ML, UL,/M1LDII, sM1LLI2, \$

SMPYAD PHIDH,M1DW2,FHIIH, , /M1HH2/3/1/1/0/1 \$
IIIAGONAL MXHH/MINV/*SQUARE*/-1.0 \$

URIGINAL PAGE IS
 OF POOR QUALITY

SMPYAII	MINV, EXHH, MIHHZy\% / TEMF1/3 3
ADL	TEMF1, B2HH / BHH \$
PARAM	//*ADL*/NONCUP / 1/0 \$
ALTER	99,100
FRRI2	
LIMR1	UHUF, FHILH/ULUF $\$$
ALIL	FREQ, /OMEGAI / (0.0,6.283185) \$
ADII	FREQ, /OMEGA1/(6.283185,0.0) \$
IIAGONAL.	OMEGA1/OMEGA2/*SQUAFE*/2.0
MERGE	MLIL , M M
MEFGE	Enn21, BDL22, Un, $/ \operatorname{BnD2} / 1 / 0 / 2$ (
MERGE	KHH21, KLIL2, Un, / KnH2 /1/0/2
SMFYAII	M 122 , ULUF, OMEGA2, $/$ / TEMP2 / 3/-1 ${ }^{\text {\% }}$
SMFPYAL	EID2,UHUF:OMEGAI\%\% / TEMP3/3*
AIII	TEMF2,TEMP3 / TEMP4 \$
MFYALI	KLI2, URUF, TEMF4 / FFFP / 0
MEFGE	
ERUIV	FFF, F'NEF/MF'CF 1 \%
CONT	LBL15A, MF*CF 1
UEC	USETI/ UECNEM/*F*/*NE*/*M* \$
FARTN	FFF, VECNEM/FENEF,FMF, $/ 1.1$
MFYAII	GMI,FMF, PGNEF/ FNEF / 1 \$
LABEL	LHL 15A \$
ERUIV	FNEF, FFEF/SINGLE ${ }^{\text {/ }}$
CONI	LEL 15 F , SINGLE ${ }^{\text {S }}$
VEC	USETI/VECFES/*NE*/*FE*/*S*
FAFITN	FNEF, VECFES/PFEF,F'SF, , / 1 \$
LABEL	LFLISE
ERUIV	FFEF, FIIF, OMIT \$
CONLI	LHL 15C.0MIT \$
UEC	USETU, UECLD/*FE*/*D*/*0*
FAFilN	
MFYALI	GOL, FOF, PELIF/FLIF/ 1 \$
LABEL.	LRL. 15C ${ }^{\text {c }}$
AL.TEF 101	1,101 \$ USE FOL INSTEAII OF FFFF
UIIF	CASEXX, ERLYY, USETH,UHUF,FOL, XYCLB,/OUHVC1,/*FFEQRESF*/ *MOLAL */S,N,NOSORT2/S,N,NOH/S,N,NOF/FMODE *
AL.TER 116	6.116 S USE FOL INSTEALI OF FFF
LILF?	USETI,ULUIF,FLF,K2LI, E2LII, MLII,FOL, LLL, HM/ UחU2F, UEUF,FAF/*FFEQRESF*/NOUE/REACT/FRQSET \$
ALTEF 122	2,122 \$ USE FOL TNSTEAII OF FFF
SHR2	```XYCIE,FPF/OFPC1,OOFC1,OUFUC1,OESC1,OEFC1,FUGU/*FFER*/ S,N:NOSORT2 *```
AL.TEF 128	8,128 \$
SLIRS	CASEXX,CSTM,MFT, IIT,ERIYN,SILD,, , LAMA, QF'H,FHIFH,EST,XYCDE,/ , IOF1,IFHIF1, IEF1,/*MMREIG*/S,N,NOSORT2 \$
AL.TEF 129	9.129 \$ USE FOL INSTEAN OF FFF
SLR2	OPFCA, , , , /*FREQ*
UEC	USETL / UL2 / * [*/*A*/*E* \$

UEC
FARTN
FAFITN
MFYYAII
UMERGE
UMEFIGE
SLIF 1
SIRA

ALTEF $134,134 \$$ USE FOL. INSTEAI OF FFF
 ZUFUCZ, ZQFCZ, ZESC2,ZEFCZ, $\$$
ALTEF 138,138 USE FOL INSTEAII OF FFF
ILFMM CASEXX,UHUF,FDL, IFHIF1,IQFI,IESI,IEF1, ,EST,MFT,IITT/ ZUFVC1,ZQFC1,ZESC1,ZEFC1, \$
ENIALTEF

ORGGINAL PAGE IS OF POOR QUALITY

\$\$
\$\$ ALTERS TO SOL i2 (NASTRAN AFRIL 1982) FOR BASE ACCELERATION.
\$
ALTER 88 \$
FARAM //*ADD*/KDEKA/NOUE/NOK2FF
PARAM //*ALH*/KDEK2/NOGENL/NOSIMF \$
EQUIU $\mathcal{A} A$ คKIID/KDEKA $\$$
ALTEF $96: 91$ \$
FARA:' //*ALI\#/NOBGG/-1/0 \$
PARA: $1 /$ *ADLI*/NOK4GG/-1/0 \$
GKAII USETH,GM,GO,KAA,,MAA,,K2FP,M2FF,R2PF/
KHI, EDL, MHL, GMD, GOL, K2DD, M2HL, B2DL/*TRANRESF*/*IISF*/
IIFECT/C,Y,G=0.0/C,Y,W3=0.0/0.0/NOK2PF/NOM2FF/NOB2FF/
MFCF1/SINGLE/OMIT/NOUE/NOK4GG/NORGG/KLEK2/V,Y,MOLACC=-1 *
EQUIV H2LD,HDN/NOGPLT/M2LI,MDL/NOSIMF/K2DI,KHD/KDEK2 *
GKAM USETI,FHIA,MI,LAMA,IIT,,;"CASECC/
MXHH, EXHH,KXHH,FHILH/NOUE/C,Y,LMODES=0;
$\mathrm{C}, \mathrm{Y}, \mathrm{LFREQ}=0.0 / \mathrm{C}, \mathrm{Y}, \mathrm{HFREQ}=-1.0 /-1 /-1 /-1 /$
S,N,NONCUF/S,N,FMODE \$
VEC USETH/UI/*I*/*COMF*/*F* $\$$
ERUIU MAA,MIIIINOUE \$
CONI LELI2,NOUE \$
UEC JSETI/VII/*IH/*A*/*E*
MERGE MAA,, , VIIt,/ M1HLI/-1/0/1 \$
LABEL iBLI2 $\$$

MERGE M1HL11,,M1DI12,,VI,/ M1HI2/-1/0/1 \$
SMFYAL FHILH,M1DD2,FHIDH, , /M1HH2/3/1/1/0/1 \$
DIAGONAL MXHH/MINU/*SQLAFE*/-1.0 $\$$
SMFYAI MINU,EXHH,M1HH2,, /E1HH/3 $\$$
ALTEK 19:99 \$
TFLG CASEXX,USTYI, LLLT,SLT, EGFIT, SIL,CSTM,TKL,DIT,GML,GOL, EST,
MGG/FFT. : ST,FIIT,FIM,TOL / S,N,NOSET/NCOL $\$$
ALTER 101.101 \$
FARTN FL, ULIFH1,FH2,,/1 $\$$

MEFGE HLIII, ELILI?, , :II,/ ELILI /-1/0/1 \$

MFYAL MMLI2,FD2,FD1/ FHD1 /O/-1 $\$$
MFYAD MLD2. F.2. / FHLI /0

MFYAI FF, LIH, FPLII, FFH/1/1/0/0\$
SMFYAD Fi,ILH, MLLI, FHILHH, $/ /$ MHH $/ 3 / 1 / 1 / 0 / 1 \$$
SMPYAI FHIDH,NKLI,FHILH, , $/ \mathrm{KHH} / 3,1 / 1 / 0 / 1 \$$
EQUIU BIHI,EHH,NOE2FF $\$$
CONI LELIBA,NOB2FF $\$$
SMFiALI FHILIH, BDII, FFHIDH, , R1HH/EHH/3/1/i/O/1

ORIGINAL PAGE IS
 OF POOR QUALITY

LABEL LBLI3A $\$$
PARAM //*ADLI*/NONCUF/1/0\$
TRA CASEXX,TRL,NLFT,IIT,KHH,EHH,MHH,FH/UHUT,FNLH/ *MOLAL*/NOUE/NONCUF/S,N,NCOL/C.Y,ISTART \$
ALTER 128,128\$
 XYCDF,/,IQP1,IFHIF1,,IEF1,/*RMFEIG* \$
ALTER 129 \$
UEC USETH UR2 / *I*/*A*/*E*
UEC USETI / UA2 / *A*/*L*/*K* \$
FARTN PHIDH, U ULT / PHAUT,FHEUT,, / 1 s

MFYAL LIM,FHEUT,FHLUT / FHLUTF / 0 / -1 \$
UMERGE USETD,FHLUIF, / FHAUTF / *A*/*L*/*F* $\$$
UMERGE USETH,FHAUTF,FHEUT / FHIIUTF ; *IL*/*A*/*E* \$
 SHR2 CASEXX,CSTM,MFT,HIT,EQNYN.SILD,, ,LAMA, FHIFHF,EST, XYCDE,/,, IES1, /*MMKEIG*/S.N,NOSORT2 \$
ENIALTER

ORIGINAL PAGE R OF POOR QUALITY

- / CHANGE NAME =FFHOE
- $/$ NUMBEF $\operatorname{SEG} I=70$, NEW $1=71$, INCF $=1$, INSERT=YES

COMMON FRIDBC IS INCTIALIZEI BY ROUTINE FRRD2.
COMMON /FRHOBC/ IH
./ NUMHER SEQ1=410,NEW1=411,INCR=1,INSERT=YES
IF IH=O, USE COMPLEX HOUELE FRECISION AKITHMETIC.
IF (IH .EQ. O) ITY = 4
/ NUMBEF SEQA $=500$, NEW $1=510$,INCR $=1$,INSERT=YES
CALL MAKMCH(ML,OUT, IKOW,IFO,ITY)
/ MELETE SEQ1=510,SEQ2=510
. 1 CHANGE NAME =FFHOC
./ NUMBEF SEQ1=120,NEW1=121,INCR=1,INSERT=YES
C
C
COMMON FRLIZBC IS INITIALIZEII BY ROUTINE FRFRI.
C
COMMON /FFH2BC/ IH
./ NUMBEF SEQI=240,NEW1=241,INCR=1,INSERT=YES
C
C
C
IF $I H=0$, USE COMFPLEX IOUBLE FRECISION AFITHMETIC.
IF (IH , EQ. O) IOUT = 4
NIMMBEF SEQT=370,NEW $1=371$, INCK=1, 1 NSEFT $=$ YES
IF IH:=O, THEN IO NOT USE INCORE CAFABILITIES BECAUSE FOK IH=0 COMFLEX IOURLE FRECISION ARITHMETIC WILL BE FEQUESTEII ANL SUBROUTINE INCORE CALLED BY FRD2C IS WRITTEN ONLY FOR COMPLEX SINGLE FRECISION MATFICES.

IF (IH EEO. ()) GO TO 102
/ NUMBEF SEQ. $=1070$,NEW $1=1071$, INCF $=1, I N S E R T=Y E S$
C
C IF IH=O, USE COMFLEX IIOUBLE FRECISION AFITHMETIC.
e
TF (TH •EO. (0) IOUT $=4$
. $/$ CHANGE NAME =:FFRLD2
./ NUMBEF SEQI=27(),NEW1=271,INCF=1,INSERT=YES
C.

C BOMMON FRH2BC WJLL EE USEI EY ROUTINES FRD2E ANI FRD2C.
C
COMMON /FRHORE/ IH
NUMBEF SEUI:-440,NEWI $=441$, INCR $=1$,INSERT $=$ YES
C
C IF GHHL TS PURGEL ANI MACH NUMEER IS NEGATIUE THEN
C SOLUE THE COUFLELI EQUATION $=(-W * * 2 . M+I W+E+K) U=F$
C USING COMFLEX IUOURLE FRECISION AKITHMETIC.
C VAKTABLE IH WTLL EE USEE TO CONTFOL SOLUTION LOGIC IN

FOUTINES FRRD2, FRD2B AND FRD2C.
IF (MCB(1).LE.O .AND. M.LT.0.0) NONCUF $=1$
c
+/ NUMBER SEQ1=720,NEW1=721,INCR=1,INSERT=YES

IF $\mathrm{IH}=0$, THEN CREATE NULL TRAILERS FOR SCF2(QHR) AND SCR3(QHI). THESE IATA GLOCKS ARE NORMALLY GENERATED BY FRDI2A IF IH IS NOT EQUAL TO ZERO EACH TIME THRU THE LODF ON NFREQ IN THIS ROUTINE, SINCE FRII2A IS NOT EXECUTEÍI IF IH EQUALS ZERO THEN AFTER THE FIFST FASS THE TFATLEFS FOF SCR2 ANI SCF3 WOULI BE INCDRRECT SINCE SCR2 ANI SCR3 ARE ALSO USED EY FRM2C AS SCRATCH RATA SETS.

IF (IH .NE. O) GD TO 38
CALL MAKMCE(MCE,SCK2,0,0,0)
CALL WRTTRL(MCE)
MCE (1) $=$ SCR3
CALL WRTTRL(MCE)
38 CONTINUE
C
./ NUMBER SERI=1480,NEW1=1481,INCF=1,INSERT=YES
C CREATE A FSEUNO FFL IATA RLOCK ON SCR1 FFOM IIATA BLOCK FOL FOF C INFUT TO FOUTINE FFH2F. (NO TRAILEF IS NECESSAFY).
C THE FREQUENCIES FROM FOL HAUE REEN REAII INTO IZ(1) nURING THE C SET-UF AT THE REGINING OF THIS ROUTINE. THESE FREQUENCIES MUST C BE CONUEFTEL TO RALIAN FREQUENCIES FOR FRL ($W=2 F I * F$).

CALL GOFEN(SCR1,IZ(IEUF1),1)
HO $210 \mathrm{~T}=1$, NFFEQ
$Z(I)=Z(I) * T W O F I$
210 CONTINUE
CALL WRITE(SCR1,Z,NFREQ,1)
CALL CLOSE (SCR1,1)
CALL FRLISF(MHH, EHH, KHH, SCFi, 1, NLOAI, NFREQ, FHF, UHUF)
./ DELETE SEQ1=1490,SEQ2=1490

Figure 1. Stress Response $\sigma_{x x, 1}$ in Element 2 of Example 1 (Figure 2), RF8 With Large Mass.

OF POOR QUALITY

Base Acceleration Input for Figures 1 and 7

Figure 2. Example 1

ORIGINAL PAGE is

 OF POOR QUALITY

Base Acceleration Input for Figures 4 and 5

Base Acceleration
$\ddot{y}_{1}, L T^{-2}$

Base Acceleration Input for Figure 6

Figure 3. Example 2

Figure 5. Load Required on Mass m_{1} of Example 2 (Figure 3), Frequency Response

Figure 6. Acceleration Response of Mass m_{2} of Example 2 (Figure 3), Transient Response

Figure 7. Stress Response $\sigma_{x x, 1}$ in Element 2 of Example 1 (Figure 2), RF8 with Base Acseleration ALTERs and no Large Mass.

N84 15599

A NASTRAN DAP PROCEDURE FOR CALCULATION OF BASE EXCITATION MODAL PARTICIPATION FACTORS
by

William R. Case
Instrument Systems Branch
Instrument Division Goddard Space Flight Center
Greenbelt, Maryland

SUMMARY

A common analysis procedure at the Goddard Space Flight Center is to analyze a structure to predict responses that will occur during a sinusoidal or random vibration test in which a predetermined motion is input by the shaker at the shaker/structure interface. Often the loads produced in these tests are a controlling factor in the design of the structure. The response analyses are generally performed in two stages: a modal analysis to determine the undamped eigenvalues and eigenvectors of the structure "cantilevered" at the interface where the structure will attach to the shaker, followed by a subsequent steady state frequency response analysis using the modal information. The output of the modal analysis, while giving information that is useful in comparing with the eigenvalues and eigenvectors obtained in the test, does not give a sufficiently clear indication of which eigenvectors will be important contributors in the subsequent frequency response analysis. The reason for this is that the vibration test loading is really a distributed inertial loading on the whole structure known in terms of the input acceleration as opposed to some known force at a given location in other forced response analyses.

By using the eigenvector data obtained in the normal mode analyses, a modal participation factor can be calculated which gives a clear indication of the relative importance of each calculated mode in terms of its response to any base acceleration input. This factor, like the generalized mass or generalized stiffness already calculated in NASTRAN, is a property of the structure. In addition, however, it is also a property of the base excitation.

This paper presents a technique for calculating the modal participation factors for base excitation problems using a DMAP alter to the NASTRAN real eigenvalue analysis Rigid Format. The DMAP program automates the generation of the "seismic" mass to add to the degrees of freedom representing the shaker input directions and calculates the modal participation factors. These are shown in the paper to be a good measure of the maximum acceleration expected at any point on the structure when the subsequent frequency response analysis is run.

Structures that are analyzed to predict what their responses will be in a vibration test quite often have one feature in common; namely that they are rigidly attached to a vibration shaker at a number of interface degrees of freedom. Such situation, therefore, can be analyzed by multi-point constraining all of the interface degrees of freedom to any convenient single interface grid point with specification of the shaker motion at this grid point. T're shaker motion, or base excitation, as it were, is then specified for a nonredundant set of degrees of freedom (DOF) that can easily be identified on a NASTRAN SUPORT bulk data card. In the following derivation of the base excitation modal participation factors, it is assumed that the structure to be analyzed is to have a base motion at a nonredundant set of DOF and that the interface DOF have been constrained to this set of nonredundant DOF. In addition, the derivation is restricted to systems with real eigenvectors.

DERIVATION OF MODAL PARTICIPATION FACTORS

To derive an equation for the modal participation factors due to base excitation consider a general structural model, as shown in Figure 1. Presumably this structure would be rigidly connected to the shaker at several points, denoted in this example as 1 through 4. This situation can be simulated by creating some central point, r, and connecting 1 through 4 to r via rigid elements. Then r is a set of nonredundant DOF at which the shaker motion can be specified. The equations of motion of this structure, using the displacement set notation of NASTRAN, and ignoring damping for the moment, are *

$$
\begin{equation*}
M_{9 y} \ddot{u}_{j}+K_{95} u_{i f}=P_{3} \tag{1}
\end{equation*}
$$

Where P_{q} contains the loads necessary to drive the r DOF by the specified base motions imparted by the shaker.

Following elimination of multi-point constraints (via MPC or rigid element cards), single point constraints (SPC's) and DOF omitted via Guyan reduction (OMIT's), M, in equation (1) is reduced to \boldsymbol{U}_{μ} and the equations are

$$
\begin{equation*}
\boldsymbol{M}_{a a} \ddot{u}_{a}+K_{a s} u_{a} . P_{a} \tag{2}
\end{equation*}
$$

where

$$
\mathbf{u}_{u}=\left\{\begin{array}{l}
\mathbf{u}_{1} \tag{3}\\
\mathbf{u}_{r}
\end{array}\right\}
$$

[^2]
ORIGINAL PAGE IS OF POOR QUALITY

The Ar DOF are identified on SUPORT bulk data cards ard M_{ℓ} are all remaining DOF in M_{a}. Partitioning equation (2):

where P_{r} are the forces exerted by the shaker on the structure and result in the base motions Mr. The forces Pr_{r} are not known, a priori; rather the motions (accelerations, velocities or displacements) at the r DOF are known. In this context the forces in P_{r} are recily forces of constraint which are necessary to produce the desired base motion. Notice in equac.on (4) that there are no applied loads for the X DOF. The situation being simulated here is one in which the only excitation comes about due to the shaker driving the structure at the r DOF.

The por \hat{U}_{ℓ} call be considered to be made up to two terms:

$$
\begin{equation*}
u_{i}=u_{l}^{e}+u_{l}^{r} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& U_{l}^{r}=\text { displacements of the } i \text { DOF when the } r \text { DOF are fixed } \\
& U_{l}^{r}=\text { rigid body displacements of the } l \text { DOF dine to the } r \text { DOF }
\end{aligned}
$$

Thus Me would be the displacement DOF for a structure that was "cantilevered" or fixed at the V DOF. The displacements, N' at the A DOF due to the V DOF not being fixed can be determined simply from geometric considerations and is

$$
\begin{equation*}
u_{1}^{\prime \prime} \quad D_{1} u_{1} \tag{6}
\end{equation*}
$$

where matrix $P_{\text {er }}$ is data block DM generated by module RBMG3 in NASTRAN whenever SUPORT bulk data cards defining the existence of r DOF is present. The columns of Dir are rigid body displacements at tiee (DOF due to a unit motion at one of the r DOF. The: are rigid body displacements due to the fact that the P DOF are a nonredundant set. Substituting (5) and (6) into (4) the two matrix equations for the unknowns \mathcal{A}_{i}^{c} ard P_{i} (since U_{r} is known) are

$$
\begin{gather*}
M_{\mu} \ddot{u}_{i}^{c}+K_{c k} u_{i}^{e}-\left(M_{u c} \boldsymbol{D}_{t r}+M_{t r}\right) \ddot{u}_{r} \tag{7}\\
P_{r} M_{t r}^{i} \ddot{u}_{i}^{e}+K_{d r} u_{i}^{c}+\left(M_{l r}^{\prime} D_{c r}+M_{r r}\right) \ddot{u}_{r} \tag{8}
\end{gather*}
$$

where use of the fact that

$$
\begin{aligned}
& \mathbf{K}_{r r}=\mathbf{K}_{\mathbf{l r}}^{\top} \mathbf{K}_{u r}^{-1} \mathbf{K}_{l r}, \\
& \mathbf{D}_{\text {er }}-\mathbf{K}_{u \mu}^{-1} \mathbf{K}_{d r}
\end{aligned}
$$

$$
\begin{equation*}
\mathbf{K}_{i l} \boldsymbol{D}_{i r}+\mathbf{K}_{\text {lr }}=\boldsymbol{\theta} \tag{9}
\end{equation*}
$$

has been made. This is discussed in the NASTRAN Theoretical Manual, Reference 1. Equation (7) is the well known form for base acceleration input where the problem is solved for the motions \mathbb{M}_{l}^{k} as if the base were fixed but with an equivalent inertia loading on each of the DOF that is the rigid kudy inertia force due to the base moving. Equation (8) merely solves for the forces required to drive the base at the specified motion. A better form for P_{r} results if equations (9) and (7) are used to eliminate the stiffness term in (8). The result is

$$
\begin{equation*}
P_{r}:\left(M_{i 2} D_{i r}+M_{i r}\right)^{\prime} \ddot{u}_{i}, \bar{M}_{r r} \ddot{u}_{r} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{r r}=D_{\lambda r}^{\prime} M_{\mu} D_{2 r}+D_{\mu r}^{\prime} M_{2 r}+M_{k r}^{\prime} D_{2 r}+M_{r r} \tag{11}
\end{equation*}
$$

is the rigid body mass matrix of the structure relative to the SUPORT DOF and is data block MR generated by NASTRAN in module RBMG 4 when SUPORT bulk data cards are used. Equation (7) can be diagonalized with a modal transformation using the "cantilevered" modes of the structure (that is, the modes of the structure when constrained at the r DOF). Define

$$
\begin{aligned}
& \phi_{l}^{j}=j^{\text {in }} \text { eigenvector of structure when constrained at } r \text { DOF. } \\
& \boldsymbol{L}_{l n}=\left\lfloor\phi_{l}^{\prime} \phi_{l}^{2} \ldots . \phi_{l}^{n}\right\rfloor=\text { matrix whose columns are eigenvectors, }
\end{aligned}
$$

Then the modal transformation is

$$
\boldsymbol{u}_{i}^{*} \quad \boldsymbol{\Phi}_{i n} \boldsymbol{\xi}_{n} \quad\left[\left.\begin{array}{lll}
\boldsymbol{\phi}_{1}^{\prime} & \boldsymbol{\phi}_{i}^{2} & \cdots
\end{array} \boldsymbol{\phi}_{1}^{n} \right\rvert\, \begin{array}{c}
\xi_{1} \\
\xi_{2} \\
\vdots \\
\xi_{n}
\end{array}\right)=\sum_{i=1}^{n} \boldsymbol{\phi}_{i} \xi_{i}
$$

where E ξ_{n} is a vector of modal DOF $t . \quad(i=1,2 \ldots \ldots)$
n) with in being th he number of modes used in the dynamic analysis. Substituting (12) into (7) and premultiplying by $\mathbf{3}^{\top}$ the result is

$$
\begin{equation*}
M_{n n} \ddot{F}_{n} 1 \mathcal{E}_{n n} \xi_{n}--\mathcal{S}_{i n}^{T}\left(M_{l \mid} D_{\ell r}+M_{l r}\right) \ddot{U}_{r} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{m m}=\Phi_{n, m}^{\prime} m_{n} \Phi_{1 m} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{k}_{\mathrm{nn}}=\boldsymbol{\Phi}_{i n}^{\top} K_{\mathrm{n}} \boldsymbol{\Phi}_{i n} \tag{15}
\end{equation*}
$$

are both diagonal matrices with $\mathrm{M}_{n n}$ containing the generalized masses (denoted as m_{j}) and $K_{n n}$ the generalized stiffnesses (denoted as k_{j}) of the cantilevered modes.

With the addition of damping, each individual modal equation in equation (13) is, after dividing through by the generalized mass:

$$
\begin{equation*}
\ddot{\xi}_{i}+2 y_{i} \dot{A}_{j} \xi_{i}+\omega_{i}^{2} \xi_{j}=-\frac{1}{M_{i}} \dot{F}_{i}\left(M_{\lambda l} D_{i r}+M_{i r}\right) \ddot{M}_{r} \tag{16}
\end{equation*}
$$

The damping factor, g_{j}, is specified through use of the TABDMP bulk data card. Define

$$
\begin{equation*}
f_{r}^{\vdots}=\frac{1}{m_{i}} \dot{f}_{i}^{i^{T}}\left(M_{x k} D_{k r}+M_{l r}\right) \tag{17}
\end{equation*}
$$

The row matrix f_{r}^{\prime} contains as many terms as there are DOF identified on the SUPORT card, that is, those that will be given a known motion from the shaker. Each term in f_{r} is identified as being a modal participation factor since the solution to equation (16) For some specified base motion at one DOF will be proportional to the corresponding term in f_{r}^{j}

As an example of this consider the situation when the base motion is a steady state sinusoidal input at some resonant frequency (1); with an acceleration (complex) magnitude $\overline{4}$. In this case:

$$
\ddot{u}_{r}=\bar{u}_{r} e^{i u_{i} t}
$$

The solution to equation (16) for the modal acceleration $\xi_{;}$is

$$
\begin{array}{lll}
\ddot{ } & \because & i n i \\
i & \quad & i_{i}
\end{array}
$$

where

$$
\begin{equation*}
\xi_{j}^{\theta_{i}} \because-i\left(f_{r}^{i} Q_{i} u_{r}\right) \tag{18}
\end{equation*}
$$

and

is the modal amplification in mode 1 . Equation (18) indicates the modal acceleration is, of course, lagging the base acceleration input by 90 degrees.

The significance of the modal participation factors in f_{r}^{\prime} is evident from equation (18). Lt resonance, the modal acceleration magnitude is equal to the product of the modal amplification, the participation factor and the magnitude of the input shaker acceleration. For systems with relatively small damping, the magnitude of the accelerations at grid points throughout the structure can be approximated by a single mode response (the resonating mode) so that, for example, using only one mode in equation (12)

$$
\begin{align*}
\bar{u}_{k}^{e}(w) & \therefore \dot{\phi}_{h}^{j} \ddot{i}_{i}^{i} \\
& =i \phi_{k}^{i} f_{r}^{i} \dot{u}_{r} \tag{19}
\end{align*}
$$

The modal participation factors, together with the eigenvectors calculated in a real eigenvalue analysis can therefore be used to obtain estimates of what the magnitude of the grid point accelerations will be in a subsequent forced base response analysis. The modal participation factors can be easily calculated during the real eigenvalue analysis run (in Rigid Format 3, for example). A matrix of all participation factors for all modes is:

$$
\begin{equation*}
\boldsymbol{F}_{n r} \quad\left\{\boldsymbol{f}_{r}\right\} \quad \boldsymbol{m}_{n n}^{\prime} \Phi_{2, n}\left(\boldsymbol{M}_{k i} \mathbf{D}_{u r} \boldsymbol{M}_{x i}\right) \tag{20}
\end{equation*}
$$

That is, each row of $F_{n r}$ is an f^{i} (the participation factors for one mode). Each column of $F_{n r}$ gives the participation factors for all modes for one DOF of base acceleration. For example, column 1 of $F_{n r}$ contains the participation factors for base acceleration in the first DOF entered on the SUPORT card.

The modal participation factors can be used to easily calculate what is commonly referred to as modal mass. .Consider equation (10) for the base loads (the shaker forces required to produce i_{r}). Using the modal transformation in equation (12) the loads $\mathcal{F r}_{r}$ in equation (10) can be written as

$$
\begin{equation*}
B_{r}=\sum_{i \cdot 1}^{i} p_{r}^{i}+\operatorname{sicr}_{r}^{i} \tag{21}
\end{equation*}
$$

where

$$
\boldsymbol{P}_{r}^{i}=\left(\boldsymbol{M}_{\lambda 1} \boldsymbol{D}_{1 r}+\boldsymbol{M}_{\text {sr }}\right)^{i} \boldsymbol{\phi}_{2}^{i} \xi_{j}
$$

Using equation (18), the complex amplitude of P_{r}^{i} is \vec{F}_{r}^{i} where

$$
\begin{aligned}
& F_{r}^{j}=\operatorname{Fi}_{r}^{j} e^{i \omega t}
\end{aligned}
$$

Using equation (17):

$$
\begin{align*}
& =-i \text { Mir }_{\text {Mi Mr }} \tag{22}
\end{align*}
$$

where
is the $j^{\text {th }}$ mode modal mass matrix. It is a square matrix of size r and from equations (21) and (22) it is seen that its use is in determining the $j^{\text {th }}$ mode contribution to the base forces (required shaker forces). For systems, with small damping the forces P_{r} at a resonance w_{j} would be approximately P_{r} so that equation (22) would give an approximation to the total forces. It is interesting to note that if the sum of all modal mass matrices is denoted as

$$
\begin{equation*}
\sum_{i=1}^{n} \lim _{r r}^{j}=\text { anrrorr} \tag{24}
\end{equation*}
$$

and if all of the eigenvectors are used $(n=l)$ then:

$$
\begin{equation*}
m_{r r} \cdot\left(M_{k s} D_{l r}+M_{d r}\right)^{\top} M_{s i}^{-1}\left(M_{2 s} D_{1 r}+M_{2 r}\right) \tag{25}
\end{equation*}
$$

If there are no masses at any of the r set of D.O.F then

$$
\begin{equation*}
m_{r r}=\bar{M}_{r r} \tag{26}
\end{equation*}
$$

That is, the sum of the modal masses is the rigid body mass matrix (data block MR from module RBMG4) when all masses are at the r set of DOF. Thus, modal masses can be calculated in a real eigenvalue analysis and can be used to estimate how many modes will have to be used in the subsequent base excitation dynamic analysis to make sure a high percentage of the complete system mass is included (since modal truncation, in effect, truncates mass). This would be useful in transient analysis where the single mode response at resonance is not a valid approximation. The modal mass matrix ${ }^{\prime} m_{r r}^{j}$ can easily be determined from the modal participation factors $\boldsymbol{f}_{\mathrm{r}}^{j}$. $\mathrm{Mrr}_{\mathrm{rr}}$ from equations (17) and (23) it is seen that

$$
\begin{equation*}
m_{r r}^{j}=m_{i} f_{r}^{j r} f_{r}^{j} \tag{27}
\end{equation*}
$$

UMAP ALTER DESCRIPTION

The DMAP Alter package for calculating the modal participation factors and modal masses is described in detail in Appendix A. The calculations are done, of course, in the real eigenvalue analysis NASTRAN Rigid Format and in particular in either COSMIC Rigid Format 3 or MSC Rigid Formats 3 or 25 . The description in Appendix A is an alter package for MSC Rigid Format 25 or COSMIC Rigid Format 3. However, calculation of the modal masses in the COSMIC version is not convenient at this time due to a limitation in the COSMIC version of module DIAGONAL.

As recommended in the MSC documentation, Reference 2, base motion problems are solved by putting all DOF wh h are to have a specified motion on SUPORT cards and also connecting fictitious large masses to these DOF. If the large masses are very large in comparison to the complete structure mass then, when a force is applied to these DOF, their acceleration will be determined to be very nearly the force divided by the large mass. Making the force equal to the large mass times the desired acceleration at these DOF will then result in the NASTRAN solution for these accelerations to be the desired base accelerations.

Thus, the first portion of the DMAP Alter automates the inclusion of the large (seismic) massegs at the [OF identified on SUPORT bulk data cards. The large mass is taken as 10° times the diagonal of the rigid body mass matrix (data

ORIGINAL PAGE IS
 OF POOR QUALITY

block MR calculated in module RBMG4). The bulk data deck for the real eigenvalue analysis with the DMAP Alter program should include SUPORT cards for the nonredundant DOF at which base motion is desired. As mentioned previously, the actual base DOF that are connected to the shaker are to be rigidly constrained to some nonredundant set of DOF that are then included on SUPORT cards. (and not single point constrained) to identify them as the base motion DOF.

The second part of the DMAP Alter calculates the matrix $F_{n r}$ which contains the modal participation factors. These are printed out as matrix data block FNR.

The third.part of the DMAP alter calculates the diagonal terms of the modal mass matrix $\mathrm{mpr}_{\text {. }}$. These can only be calculated in the MSC version since they require 1 feature in the DIAGONAL module (namely raising all elements of a matrix to a power) not available in the COSMIC DIAGONAL module. The matrix which contains the diagonal terms of $m_{r r}^{j}$ is data block MJRR and row j of this matrix contains the diagonal terms for mode j. This matrix is also printed out in terms of percent of the corresponding mass in the rigid body mass matrix as matrix data block MJRRP. Addition of each column should give a value of 100 if all modes are used and if there are no masses (other than the fictitious large mass) at the \mathfrak{i} set of DOF.

SAMPLE PROBLEM

Figure 2 shows a sample problem using the DMAP Alter for a beam which is to be given a base motion at grid point 11. The aluminum beam is 2.54 m (100 inches) long with a mass of 9.1 kg (beam weight is 201 b$)_{4}$ Sectior properties for the beam are: . $0013 \mathrm{~m}^{2}\left(2.0 \mathrm{in}^{2}\right)$ area and $8.33 \times 10^{-7} \mathrm{~m}^{4}\left(2.0 \mathrm{in}{ }^{4}\right)$ moment of inertia. The wof which are to be given base motion should be the higher numbered DOF in the problem to avoid numerical problems with the large fictitious masses added to these DOF. The fact that the sample problem initially has a nonredundant interface with the shaker (at grid point 11) is of no consequence. As mentioned earlier, if the interface where the structure is to be connected to the shaker is redundant, the interface points can be rigidly connected to some one point that is then called the base motion point.

Appendix B contains selected pages from the NASTRAN run for this sample problem including the bulk data deck listing. The input data is seen to resemble any real eigenvalue run for the beam cantilevered modes except that some of the DOF at the cantilever point (grid point 11) are identified on a SUPORT bulk data card instead of constrained. For the sample problem these were taken to be DOF 1, 3 and 5 signifying that these will be the DOF that would be given a base motion in subsequent dynamic analyses. The remaining DOF at grid point 11 are constrained.

As mentioned previously, the DMAP Alter automates the inclusion of the large fictitious masses at the DOF identified in the r set. The values of these masses are contained in matrix data block MAAB output in the DMAP Alter and included in Appendix B. As seen from MAAB, the large masses are 10^{8} times the rigid body masses output from the grid point weight generator (taking into account the latter is in weight units and MAAB is in mass units).

The eigenvalues for the sample problem are included in Appendix B. The first three are rigid body modes due to the three DOF on the SUFORT card. The remaining modes are those that would have been found if the SUPORT DOF had been constrained instead. This is due to the fact that large masses are connected to the SUPORT DOF in order that the elastic modes will be the same as if these DOF were constrained. Several of the modes are shown on Figure 3.

The modal participation factors are shown in Appendix B as the matrix data block FNR. These are also shown in Table 1. Each column in the table is a column of $\boldsymbol{F}_{n r}$
and there are 3 columns; one each for the SUPORT DOF. Each row in the table shows the terms in $F_{n r}$ (which are the rows f_{r}^{j}) which are the participation factors for the mode corresponding to that row of the table.

The second column of Table 1 gives the participation factors for base motion in DOF 3 at grid point 11; namely lateral shaker motion. From Table 1 it is seen that mode 1 , with a frequency of 10.9 hz , has a participation factor of 1.56 while mode 5 does not contribute at all. This is due to the fact that mode 5 , as seen from Figure 3 is an uncoupled longitudinal mode of the beam and could have been so identified by visual inspection of the mode shapes for this simple beam problem. For more complicated structures the participation factors are more helpfill in identifying significant modes for various base excitations than the visual inspection of the eigenvector data.

The use of the participation factors in estimating grid point accelerations that would be found in a steady state sinusoidal shaker simulation is demonsitrated on Figure 4. The figure shows comparison O : data from an actual frequency response run using Rigid Format 8 along with the estimated accelerations based on the modal participation factors in table 1.

The solid line is the acceleration at the beam tip as a function of the shaker frequency, , with an input acceleration in the z lateral direction of 1.5 g 's at grid point 11. The simple calculation using the participation factors and a single mode response with equation (19) gives acceleration magnitudes indicated by the data points on Figure 4. The good agreement shows the value of knowing the participation factors when the modal analysis is run rather than waiting to determine the frequency response in a later run. The data point for the 490.6 hz mode on Figure 4 is not a mode in resonance since the 490.6 mode is a longitidinal mode and the base response in the example is lateral.
The output in Appendix B also shows the diagonals of the modal mass matrices $m_{r r}^{j}$ as output matrix $1 . J R R$. Expressed as a percent of he corresponding mass term in the complete structure rigid body mass matrix, $\bar{M}_{r r}$ the result is output matrix MJRRP. As mentioned previously, 1 r there are no masses at the DOF (other than the fictitious large mass put there for use calculating the participation factors) and if all modes of the structure art used, the columns of MJRRP should add to 100. Table 2 shows the terms from MJRRP. As with the modal participation factors these also clearly indicate which modes are significant in terms of base mocion in certain directions. For general base excitation problems, the data from MJRRP is useful in identifying significant modes to be included in the analysis. The columns of Table 2 do not add up to 100 percent for base motion DOF 1 or 3 since the set did have mass. The beams' mass was distributed to all eleven grid points so that the end grid points (1 and 11) each have 5 percent of the total.

CONCIUSICNS

Knowledge of the modal participaticn factors for base motion can ke useful in determining the significant modes to be used in forced base motion problems. Obtaining the participation factors when the modal analysis is ru:, allows estimates to be made of the subsequent etrteture responses to tr: : se motion prior to running the base motion dynamic ana?ysis. The particjation factors use for steady state base motion f"?quenc\% response aralyses was demonstrated; however they are equally as valid fc: trassient analysis.

REFERENCES

1. The NASTRAN Theoretical Manual (Level 17.b), NASA SF-221(05), December 1978
2. MSC NASTRAN Applications Manual, MSR-32 (VAX), The MacNeal/Schwendler Corporation, May/June 1981

Table 1

Modal Participation Factors for Bes.a Problem

Modal Participation Factors Jrom
for Base Acr:eleration at G.P.12 In:

Mode No.	Frequency (Hz)	DOF-1	DOF-3	DOF-5
4	10.94	0.	1.550	-113.590
5	67.82	0.	-. 8418	17.800
6	188.0	0.	. 4736	-6.124
7	364.5	0.	-. 3137	2.923
8	490.6	1.2706	0.	0.
9	595.9	0.	. 2161	- 1.590
10	878.2	0.	-. 1593	. 9801
11	1202.	0.	$.137^{\circ}$	-. 7370
12	1460.	-. 4165	0.	0 :
13	1545.	0.	. 1154	$\cdots .5618$
14	1861.	0.	-. 0806	. 3669
15	2086.	0.	-. 0453	. 1987
16	2393.	-. 2414	0.	0.
17	3267.	$-.1632$	0.	0.
18	4061.	. 1171	0.	0.
19	4755.	-. 0854	0.	0.
20	5332.	. 0613	0.	0.
21	5777.	-. 0414	0.	0.
25	6081.	. 0240	0.	0.
23	6234.	-. 0079	0.	0.

Modal Masses for Beam Problem

Diagonals of Modal Mass Matrices* for Base Acceleration at G.P. 11 In:

Mode No.	DOF-1	DOF-3	DOF-5
4	0.	61.073	97.030
5	0.	18.854	2.4995
6	0.	6.4685	. 3228
7	0.	3.3013	. 0856
8	80.724	0.	0.
9	0.	1.9882	. 0321
10	0	1.3149	. 0149
11	0.	. 9087	. 0078
12	8.6749	0.	0.
13	0.	. 6166	. 0044
14	0.	. 3585	. 0022
15	0.	. 1171	. 0007
16	2.9142	0.	0.
17	1.3315	0.	0.
18	. 6854	0.	0.
19	. 3647	0.	0.
20	. 1878	0.	0.
21	. 0858	0.	0.
22	. 0288	0.	0.
23	. 0031	0.	0.
Totals	95.0002	95.0008	100.000

*Expressed as percent of total rigid body mass of structure.

ORIGINAL PAGE 日
 OF POOR QUALITY

12

Note: Points 1-4 Are Actual Structure/Shaker Rigid Interface Points, Simulated by Single Point r

General Base Excitation Problem

Figure 2
Sample Beam Problem
With Base Excitation At Grid Point 11

Mode 2
riode 1
Rigid Body \times Translation

Mode 3
Rigid Body y Rotation

Mode 5
2nd Bending, 67.82hz

Mode 7
4th Bending, 364.5hz

- - - - - Indeformed

Deformed

Mbde 4
lst Bending, 10.94 hz

Mode 6
3rd Bending, 188.0hz

Fode 8
lst Longitudinal, 490.6 hz

Figure 3
Beam Mode Shapes

ORIGINAL PAGE IS OF POOR QUALITY

100.

Frequency (hz)
Figure 4
Acceleration at G.P. 1 of Beam due to
1.5 g Sinusoidal Base Acceleration at G.P. 11

DMAP Alter for Determining Base Excitation Modal Participation Factors (Real Eigenvalue Analysis Rigid Formats)

Explanation of DMAP Alter Statements

I. Generation of Large Masses for SUPORT Points for Base Motion Analyses

1. DMAP statements 2 through 14 are inserted after module RBMG4 has run. For COSMIC Rigid Format 3 (April 1982 version) the Alter is at $a_{1}=69$ and for MSC Rigid Format 25 (Dec. 1981, version 61 B) a_{1} is 140.

2-4. PARAM modules set the values of several parameters to be used. Parameter GRAV is the inverse of the regular WTMASS parameter.
5. DIAGONAL extracts the diagonal of the rigid body mass matrix, MR (Mrrin equation (11)) and calls the result matrix data block MRD.
6. Matrix data block WRD is MRD multiplifd by parameter GRAV $=1$ /WTMASS so that WRD is generally in weight units if a PARPM WTMASS card is used in the bulk data.
7. Matrix data block MBASE is 10^{8} times MRD. These give the large fictitious masses which are put or the r DOF for base motion problems.

8-9. Module MERGE, using partitioning vector CP generated in module VEC, expands the large fictitious mass matrix, MBASE, up to full "a" set size. Output matrix MAAB has the large fictitious masses for the r DOF but in a matrix of "a" size.
10. The large masses are printed out and can be seen to only exist at the r DOF.

11-12. The large masses are added to the normal mass matrix MAA and the result equivalenced back to MAA so that when MAA is celled for in later modules the sum of the normal MAA and the large masses MAAB will be used.

13-14. The real eigenvalue analysis module, READ, uses the rigid body mass matrix, MR, when there are SUPORT DOF. Since the large masses were added at the r DOF, the sum of the MR (from the finite element model) and the large masses (in MBASE) is to be used for $M R$ in module READ.
II. Generation of Modal Participation Factors
15. Following module READ and the output of the eigenvalues and eigenvalue analysis summary, the statements 16 through 23 are inserted for calculation of the modal participation factors. For COSMIC Rigid Format 3 (April 1982) the alter is at $a_{2}=77$ and for MSC Rigid Format 25 (Dec. 1981 version 613) a_{2} is 146.

ORIGINAL PAGE IS
 OF POOR QUALITY

16-17. Module PARTN extracts the eigenvectors for the l DOF and module GKAM extracts from this the elastic ($\omega>0$) eigenvectors. The result is called PHILN and is matrix $Z_{\text {en }}$ used in equation (12). Matrix data block MGNN is the matrix of generalized masses, $\mathrm{M}_{n n^{\prime}}$ in equation (14).
18. Convert MGNN to weight units if a PARAM WTMASS bulk data card is present.

19-20. Calculate $\left(M_{11} D_{1 r} M_{1 r}\right)$ and call the result matrix data block ML3. Note that matrix data block DM is matrix $D_{i r}$. Matrix data blocn WL3 is ML3 in weight units if PARAM WTMASS is present in bulk data.
21-23. Calculate $F_{n r}=m_{n n}^{1} \boldsymbol{E}_{\mathrm{sn}}^{i}\left(M_{i d} D_{2 r}+M_{\lambda_{1}}\right)$ and print out $F_{n r}$, the matrix of modal participation factors.
III. Statements 24 through 31 calculate and print the modal masses. These cannot currently be calculated in COSMIC NASTRAN since the COSMIC version of module DIAGONAL does not have a feature which allows calculation of a matrix which contains the terms of some input matrix raised to some specified power.
24. Module DIAGONAL calculates a matrix, MJRRO, whose terms are the squares of the terms in the modal participation factor matrix, FNR.

25-26. By multiplying MJRRO by the generalized mass (or weight) matrix the diagonal terms of the modal mass matrices are obtained. Matrix MIRR is so arranged that its j th row is the diagonal of the j modal mass matrix, $\mathbf{M}_{r r}^{\prime \prime}$, in equation (27). Tt.is matrix is printed out.

27-31. The modal mass terms are divided by the corresponding rigid body mass terms for the complete structure and multiplied by 10C. The resulting matrix, MJRRP, is printed out and gives the diagonals of the modal masses (in the rows of MJRRP) in percent of the rigid body mass. If there are no masses (other than the large fictitious masses) at the r DOF then the columns of MJRRP should add to 100 if all modes are used.

ID TEST.OMAPBASE
APP DIS'
SOL 25.0
TIME 2
DIAG B, 14
PLTER $140 / / C, N, N O P / V, N, T=-1 ~ S ~$
PARAMR $/ / C, N, D I V / V, N, G R A V O / C, N, T . O / V, Y, W T M A S S=-1 . O ~ \$ ~$
PARAMR $/ / C, N, C O M P L E X / V, N, O U T R / V, N, G R A V O / C, N, O . O / V, N, G R A V ~ \$ ~$
DIAGONAL MR/MRD/C.N.SOUARE \$
MRD. /WRD/V, N, GRAV
$\begin{array}{ll}\text { ADD } \\ V E C & \text { URDTT/CP/C.N.A/C,N.L/C.N.R }\end{array}$
MERGE, $\quad . \quad$ MBASE.CP./MAAB/C.N,-1 \$
MATGPR GPI USET, SIL, MAAB//CN,R/C,N R
GPL, USET,SIL, MAAB//C,N,R/C,N,R \$
ADD
MAAB,MAA/MAAT $\$$
EQUIV MAAT,MAA/T $\$$
EQUIV NEWMR,MR/T S
132
ALTER 146
PARTN PHIA,.CP/PHIL.PHIR.,/C.N,1/C.N.2/C.N,2/C.N,2 2
GKAM. .PHIL,MI.LAMA.....CASECC/MGNN.,KGNN,PHILN/C,N,-I/C.N.O/
C. Y.LFREQ = $000001 / \mathrm{C}, \mathrm{Y}, \mathrm{HFRED}=1 . \mathrm{E} 20 / \mathrm{C}, \mathrm{N},-1 / \mathrm{C}, \mathrm{N},-1, \mathrm{C}, \mathrm{N},-1 /$
$V, N, N O C U P / V, N, F M O D E$
$\begin{array}{ll}\text { ADD } & \text { MGNN./WGNN/V.N.GRAV } \$ \\ \text { MPYAD } & \text { MLL.OM.MLR/ML3/C,N.O/C.N.I/C.N.O/C.N. } 2 \\ \text { ADD } & \text { ML3./WL3/V.N.GRAV } \\end{array}
MPYAD PHILN,WL3./FNRO/C,N,1/C,N,1/C,N,O/C,N,2 2
SOLVE WGNN.FNRO/FNR/C.N. 1 S
MATPRN FNR....// \$
DIAGONAL FNR,MURRO/C,N,WHOLE/C,N,2.O \$
MPYAD
WGNN, MJRRO./MJRR \$
MURR M MMURRT ${ }^{\text {M }}$
TRNSP MJRR/MJRRT \$
SOLVE WRD.MURFT/MJRRDT/C.N. 1
ADD
MJRRDT./MJRRPT/C.N.(100,.0.) s
TRNSP MJRRPT/MJRRP
MATPRN MURRP..../f \$
ENDALTER
CEND

LONGITUDINAL AND LATERAL MODES

CARD
COUNT
1
2
3
4
5
6
7
8
9
CASE CONTROL D E CK

CARD
TITLE = TEST OF OMAP PROGRAM TO GEN. MODAL PART FACTORS FOR BASE ACCEL
SUBTITLE = CANTILEVERED BEAM
LABEL = LONGITUDINAL AND LATERAL MODES
ECHO = UNSORT
METHOD $=1$
OUTPUT
VECTOR = ALL
SPCF = ALL
BEGIN BULK

LONGITUDINAL AND LATERAL MDDES

TOTAL COUNT = 32
M O
$\begin{array}{llllll}2.000000 E+01 & 0.000000 E+00 & 0.000000 E+\infty & 0.000000 E+00 & 0.000000 E+00 & 0.000000 E+00\end{array} \quad 0.000000 E+00 \quad 2.000000 E+01 \quad 0.000000 E+\infty \quad 0.00000 E+\infty \quad 0.0000$
$\begin{array}{llllll}1.00000 E+00 & 2.000000 E+01 & 0.000000 E+00 & 0.000000 E+00 & 0.000000 E+00 & 1.000000 E+03\end{array}$
$\begin{array}{lllll}0.000000 E+00 & 0.000000 E+00 & 2.000000 E+01 & 0.000000 E+00-1.000000 E+03 & 0.000000 E+00\end{array}$
$\begin{array}{lllllll}0.00000 E+00 & 0.000000 E+00\end{array}$
$\begin{array}{rlrrrrrr}* & 0.000000 E+00 & 0.000000 E+00 & -1.000000 E+03 & 0.000000 E+00 & 6.700001 E+04 & 0.000000 E+00 & * \\ 0.000000 E+00 & 1.000000 E+03 & 0.000000 E+00 & 0.000000 E+\infty & 0.000000 E+00 & 8.700001 E+04\end{array}$
$\begin{array}{llll} & 1.000000 E+\infty & 0.000000 E+00 & 0.000000 E+\infty\end{array}$

$*$	$1.000000 E+\infty$	$0.000000 \mathrm{E}+00$
	$0.000000 \mathrm{E}+\infty$	
$*$	$0.000000 \mathrm{E}+\infty$	$1.000000 \mathrm{E}+\infty 0$
	$0.000000 \mathrm{E}+00$	

 DIRECTION

TEST OF DMAP PROGRAM TO GEN MODAL PART.FACTORS FOR BASE ACCEL CANTI!EVERED BEAM
LONGITUDINAL AND LATERAL MODES

	$\begin{aligned} & \text { MODE } \\ & \text { NO. } \end{aligned}$	EXTRACTION ORDER	eigenvalue	R EALLEI EANS	ALUES cyCLES	GENERALIZED MASS	GENERALIZED STIFFNESS
	1	11	0.0	0.0	0.0	5. 182000E +06	0.0
	2	22	0.0	0.0	0.0	5. $\cdot 32000 E+06$	0.0
	3	23	0.0	0.0	0.0	1.735970E+06	0.0
	4	21	4.727787E+O3	$6.875890 E+01$	1.094332E+01	1. 305586E-02	6. $172530 \mathrm{E}+01$
	5	20	$1.815695 \mathrm{E}+05$	$4.261097 E+02$	$6.781746 E+01$	1.369489E-02	2.486573E+O3
	6	19	$1.395168 E+06$	1.181172E+03	$1.879894 \mathrm{E}+02$	1.494427E-02	$2084977 E+04$
	7	18	$5.246433 E+06$	2.290509E +03	3. $645459 E+02$	1.738694E-02	9. $121943 \mathrm{E}+04$
	8	10	9.503404E+06	$3.082759 E+03$	4.906363E +02	2.591000E-O2	2.462332E + C5
	9	17	1.401962E+O7	3.744278E +03	$5.959203 \mathrm{E}+\mathrm{O}^{\text {2 }}$	2.205616E-02	3.092:89E+05
	10	16	$3.044624 E+07$	$5.517811 \mathrm{E}+03$	$8.781869 \mathrm{E}+\mathrm{O2}$	2.686599E-02	8. $179664 \bar{z}+175$
	11	15	5. $704086 E+07$	$7.552540 E+03$	1. $202024 E+03$	2.504681E-02	1.428692E+06
	12	9	8. $413236 E+07$	9. $172369 \mathrm{E}+03$	1.459828E +03	2.591000E-O2	2.179870E +06
	13	14	9.420654E+O7	9.706006E+03	1.54475.7E+03	$2.398174 \mathrm{E}-\mathrm{G2}$	2.259237E+06
	14	13	$1.367145 E+08$	1. 163250E + 04	1.860919E - 03	2.858839E-02	$3 \mathrm{908448E}+06$
	15	12	$1.717434 \mathrm{E}+08$	1. $310509 \mathrm{E}+04$	$2.085740 \varepsilon+03$	$2.950574 \mathrm{E}-02$	5.067415E+06
	16	8	2. $260851 \mathrm{E}+08$	$1.503613 \mathrm{E}+04$	$2.393074 \mathrm{E}+03$	$2.591000 E-02$	5.857865E +06
	17	7	$4.214662 E+08$	$2.052964 E+04$	3.267394E+03	$2.591000 E-02$	$1.092019 E+07$
	18	6	$6.511505 \mathrm{E}+\mathrm{OB}$	$2.551765 E+04$	$4.061260 E+02$	2.5s - $000 \mathrm{E}-02$	$1.687131 E+07$
\cdots	19	5	$8.926549 \mathrm{E}+\mathrm{O8}$	2.98773:E+04	$4.755125 E+03$	2.591000E-02	$2.312869 E+07$
$\stackrel{\sim}{\sim}$	20	4	1.122339E+09	3.3501"3E404	5. $351902 \mathrm{E}+03$	2. $591000 \mathrm{E}-02$	2.907981E+07
,	21	3	1.31772CE+09	$3.630042 \mathrm{E}+04$	5.777391E+03	2.591000E-02	3.414214E+07
	22	2	1. . 5 59f73E +09	3.820567E+04	$6.080621 E+03$	$2.591000 E-02$	3.782013E+07
	23	,	$1.534302 E+09$	$3.917017 \mathrm{E}+04$	6.234125E ${ }^{\text {co3 }}$	$2.591000 E-02$	$3.975376 \mathrm{E}+07$

```
            TEST OF DMAP PROGRAM TO GEN.mODAL PART.FACTORS FOR BASE ACCEL. FEBRUARY 15. 1983 NASTRAN 12/ 1/81 PAGE 13 CANTILEVERED BEAM

\section*{LONGITUDINAL AND LATERAL MODES}
```

MATRIX FNR (GINO NAME 101 I IS A DB PREC 3 COLUMNX 20 ROW RECTANG MATRIX

COLJNAN	Rows	55	THRU	20							
5)	1. $27060+00$	$0.00000+\infty$		$0.00000+00$	$0.00000+00-4.1 E 530-01$		$0.00000+00$	$0.00000+00$	$0.00000+00$	-2.41420-01	-1.63190-01
15)	1.17080-01	-8.5408D	-02	6 12800-02	-4.14210-02	2.40080-02	-7.87020-03				
COLUMN	2 ROWS	51	THRU	12							
ROW											
11)	1.55690+00 -	-8.44630-	-01	4.73600-01	-3.13670-01	$0.00000+09$	2. 16130-0:	-1.59260-01	1.37120-01	$0.00000+00$	1.15420-01
	-8.06100-02	-4.53390-	-02								
COLUMNROW	3 ROWS	S 1	THRU	12				----------			
1)	$-1.13590+02$	1. $78000{ }^{+}$	401 -	-9. $12380+\infty$	$2.92310+00$	$0.00000+00$	$-1.59000+\infty$	9.800-0-01	-7.3703D-01	$0.00000+00$	-5.61800-01
11)	3.66890-01	1.98690	-01								

THE NUMBER OF NON-ZERO TERMS IN THE DENSEST COLUMN = 10
THE DENSITY OF THIS MATRIX IS 50.00 PERCENT
$\underset{\infty}{\omega}$

TEST OF DMAI PROGRAM TO GEN. MODAL PART.FACTORS FOR BASE ACCEL CANTILEVERED BEAM

LONGITUDINAI. AND LATERAL MODES
MATRIX MJRI? (GINO NAME 101) IS A DB PREC 3 COLUMN $x \quad 20$ ROM RECTANG MATRIX

COLUMN	1	ROWS	5	THRU	20							
5)	1.6	01	$0.00000+$	+00	$0.00000+00$	0.00000+00	$1.73500+\infty$	$0.00000+00$	$0.00000+\infty$	$0.00000+00$	5.82840-01	2 66290-01
15)	1.3	01	7.2945D	-02	3.7552D-02	1.71570.02	5.76380-03	6.19400-04				$266290-01$
COLUMN	2	ROWS	1	THRU	17			-------	----------			
ROW												
1)	1.2	01	3.77070+	+0	$1.2937 D+\infty$	6.50260-01	$0.00000+00$	3.97650-01	2.62980-01	1.8174D-01	$0.00000+00$	1.23310-01
11)	7.	- 02	2.34090-									
COLUMN	3	ROWS	- 1	THRU	12							
ROW												
$\begin{array}{r} 1) \\ 11 \end{array}$	$\begin{aligned} & 6.5 \\ & 1.4 \end{aligned}$	+04	$\begin{aligned} & 1.67460+1 \\ & 4.49570-1 \end{aligned}$		2. $16300+02$	$5.73380+01$	$0.00000+00$	2.15210+01	$9.95930+00$	$5.25110+\infty 0$	$0.00000+00$	$2.92130+00$
the number	OF	ERO	TERMS IN	THE	OENSEST CO	UMN =	10					

THE NUMBER OF NON-ZERD TERMS IN THE DENSEST COLUMN = 10
THE DENSITY OF THIS MATRIX IS 5000 PERCENT

FINITE ELEMENT ANALYSIS OF FLUID-FILLED ELASTIC PIPING SYSTEMS

ORIGINAL PAGE IE OF POOR QUALITY

, N84 15600

G.C. Everstine, M.S. Marcus, and A.J. Quezon
David W. Taylor Naval Ship R\&D Center
Bethesda, Maryland 20084

Dedicated to the Memory of James M. McKee (1942-1983)

SUMMARY

Two finite element procedures are described for predicting the dynamic response of general 3-D fluid-filled elastic piping systems. The first approach, a low frequency procedure, models each straight pipe or elbow as a sequence of beans. The contained fluid is modeled as a separate coincident sequence of axial members (rods) which are tied to the pipe in the lateral direction. The model includes the pipe hoop strain correction to the fluid sound speed and the flexibility factor correction to the elbow flexibility. The second modeling approach, an intermediate frequency procedure, follows generally the original Zienkiewicz-Newton scheme for coupled fluid-structure problems except that the velocity potential is used as the fundamental fluid unknown to symmetrize the coefficient matrices. From comparisons of the beam model predictions to both experimental data and the 3-D model, the beam model is validated for frequencies up to about two-thirds of the lowest fluid-filled lobar pipe mode. Accurate elbow flexibility factors are seen to be crucial for effective beam modeling of piping systems.

Introduction

The vibrations that occur in fluid-filled piping systems are of interest in a variety of industrial, aircraft, and shipboard applications. The interesting dynamic behavior includes both water hames (a transient phenomenon) and the steady-state (time-harinonic) vibrations caused by unbalanced rotating machinery such as pumps, for example.

Over 30 years ago, Callaway, Tyzzer, and Hardy (Ref. 1) recognized in their experimental work the importance of the coupling between the vibrations of the liquid and the pipe wall, even for nominally straight pipes. Since then, a number of investigators have proposed various techniques of mathematical modeling for design and analysis purposes.

Most of these techniques have been restricted to straight pipes. Some recent work, for example, was reported by El-Raheb (Ref. 2,3), who analyzed the acoustic propagation in a perfect, finite length th, fluid-filled, thin elastic cylindrical shell. El-Raheb obtained eigenfunction expansions for Goiter's consistent shell equations and the Helmholtz equation governing the fluid field.

There have also been sane finite element analyses of 2-D fluid cavities of general shape (Ref. 4,5). These approaches, however, avoid the fluid-structure coupling by requiring as input the impedance of the pipe wall.

URIGINAL PAGE IS
 OF POOR QUALITY

There has been relatively little fluid-structure interaction work involving general 3-D piping systens containing joints such as elbows and tees. The first such analyses were probably performed by Davidson, Saith, and Sansury (Ref. 6.7). They recognized that simplified bean nodel should suffice for the relatively low frequencses which are often of interest. Low frequency dynamic behavior is characterized by pipes whicn respond only in their bean (rather than lobar) modes a.ci by fluid waveleng ths which are large conpared to the pipe dianeter. Thus, for such situations, the fluid wave proparation throurh the pipes is essentially planar. This procedure, although fully general in concept, was iaflenented in a special purpose cumputer program linited as to the generality and size of probleas which could be handled.

The same assumptions formed the basis of a finite elenent procedure developed by Howlett (Ref. 8) for aircraft hydraulic systens. This procedure modeled the fluid inside the pipe as a bean having zero bending stiffness. Elbows and tees were not modeled explicitly. Instead, compatibility at a joint (elbow or tee) was enforced as an additiona! constraint requiring the conservation of fluid mass passing through the oint. The !lowlett analyses, however, apparently omitted two essential ingredients: (1) une correction to the fluid sound speed to account for the elasticity of the pipe walls, and (3) the flexibility factor correction for the elbows to account for the fact that curved pipes are considerably more flexible than straight pipes of the same cross section (Ref. 9).

More recently, the transfer matrix approach was used by El-Raheb (Ref. 10) to calculate the bean-type dynanic response of $3-\mathrm{D}$ multiplane piping systens consisting of straight sections and elbows. Une of El-Raheb's conclusions was that the onedinensional acoustic assunption is valid for frequencies up to about one-half the frequency of the lowest acoustic mode having two waves around the circumference ($n=2$).

Schwirian and Karabin (Ref. 11) developed another finite elenent procedure which was similar to Howlett's (Ref. 8) except that the fluid inside an elbow was apparently modeled with a single straight axial nenber ("spar" elenent) with fictitious properties assigned to simulate properly the fluid mass and conpressibility. This model also included the pipe hoop strain correction to the fluid sound speed and the flexibiiity factor correction to the elbow flexibility. No experinental validation of the model was included in the paper.

One additional modeling procedure was formulated by Hatfield and Wiggert (Ref. 12). They used a transfer function approach involving separate analyses of liquid and solid sanponents, followed by synthesis of the component solutions. The scheale was validated for planar piping systems by comparison with experimental data.

In general, beam models of fluid-filled elastic piping systems are very attractive because of their simplicity. Finite element approaches have the added feature of allowing essentially arbitrary specification of geanetry, boundary conditions, loadings, and output requests. In addition, finite element models of piping systems can easily be conbined with toodels of the support structure.

In this paper, we will develop further the finite elenent approach for low frequency predicticn by combining ideas from the papers just mentioned. Our nodel is mathematically equivalent to the Lavidson-Smith-Sansury model (Hef. 6,\%), a nonfinite elenent approach. Our modeling schene is similar to those of Howlett (Ref. 8) and Schwirian and Karabin (Ref. 11) except chat we model elbows explicitly by a polygonal set of beam elenents for the pipe and axial nembers for the fluid. We will

ORIGINAL PAGE IS
 OF POOR QUALITY

also show the importance of assigning the correct flexibility factors to the elbows. (In general, most classical weans of calculating fiexibility factors are not adequate for elbows with straight pipe extensions at the ends (Ref. 13,14)). The modeling approach will be validated in two ways. First, for a simple planar system, conparisons will be made with both experimental data and a general s-D finite elenent model which models the pipe as a shell and the contained fluid with 3-D fluid finite elements. Second, for a conplex non-planar system, conparisons will be made between a beam solution and a general 3-D finite elenent solution. Since the latter includes the essential physies of the fully-coupled problem, it provides a good test for the approximate models.

The 3-D finice element solutions to be presented use the generally classical procedures which evolved from the work of Zienkiewicz and Newton (Ref. 15). In our analyses, we make use of the recent inprovement (Ref. 16) which shows how to obtain symetric matrix equations.

LOW FREQUENCY BEAM MODEL

For low frequency dynanic excitation of tluid-filled elastic piping systems, the pipes respond only in their beain (rather than lobar) modes, and the wave propagation in the fluid colunn is essentially planar. It is assumed either that the fluid is initially at rest, or that the average flow speed is so mall compared to the sound speed that the acoustic response is unaffected. The fluid-structure coupling is assumed to occur only at pipe benjs and other joints. Thus, the fluid is allowed to slide without friction in straíht sections of pipe. The circular pipe cross section is assumed to remain circular. The equation satisfied by either the fluid pressure or the axial conponent of fluid displacenent is the scalar wave equation; thus the fluid can be modeled by an axial structural nember (rod).

Finite elenent nodels are prepared using the following procedure: Beam elenents are used to model both the straight sections and the elbows. If straight bean elenents are used, a minimum of three elenents is recomaended (on the basis of some numerical testing) for $y 0$-degree bends, regardless of the spacing of grid points in adjacent straight sections. In straight sections, the grid point spacing is dictated by the need for accurate normal modes of vibration in the frequency range of interest.

Since a pipe bend is more flexible than an equivalent length of straight pipe, the manents of inertia for the beam elenents in each elbow should be divided by the appropriate flexibility factor. For piping systems with straight sections not significantly longer than the arc lengths of the elbows, the elbow stiffness plays an important role in the dymamic response and must be accurately modeled. Thus the flexibility factors assigned to each elbow should apply to the elbow as it is configured in the piping systern. In particular, the fle:ibility factors for yodegree elbows with straight pipe extensions are sensitive to the lensth of those extensions (Ref. 13, 14). As show by Quezon and Everstine (Ref. 14), idealized approaches such as those used in the ELBOW canputer progran (Ref. 17) are generally not adequate for predicting the flexibility factors of y0-degree elbows with straight pipe extensions.

For the acoustic fluid inside the pipe, a duplicate set of grid points is defined to coincide witi the pipe grid points. The fluid is modeled with elastic rod elements (sometimes called spars), which are equivalent to beam elements with zero
flexural and torsional stifiness. These elements are assigned the actual mass density ρ for the fluid ar a Young's modulus E given by

ORIGINAL PAGE IS OF POOR QUALITY

$$
\begin{equation*}
E=\rho c^{2} \tag{1}
\end{equation*}
$$

In Equation (1), c, the effective sound speed in a fluid colunn contained in an elastic circular thin-walled pipe, is obtained from

$$
\begin{equation*}
c=\sqrt{B / \rho} / \sqrt{1+B D / E_{s} t} \tag{2}
\end{equation*}
$$

where B is the fluid bulk modulus of elasticity, ρ is the fluid mass density, D is the mean dianeter of the pipe, E_{s} is the Young's modulus of the pipe material, and t is the pipe wall thickness. Since the numerator in Equation (2) is the actual speed of sound in the fluid, the denaninator (which is always greater than unity) is the corrective factor which accounts for the elasticity of the pipe. This correction is well known (Ref. 1d); according to Krause, Goldsaith, and Sacknan (Ref. 19), this relation was first derived by Joukowsky (Ref. 20) over $\mathbf{d 0}$ years ago. Equations (1) and (2) can be conbined to yield

$$
\begin{equation*}
E=B /\left(1+B D / E_{S} t\right) \tag{3}
\end{equation*}
$$

The fluid, which is modeled with axial members, musc have only one independent degree of freedon (DOF) at sach grid point. The three rotational DOF are restrained at all fluid points. Both transverse translational DOF at each fluid point are constrained (using multipoint constraints or rigid links) to inove with the corresponding structural point. The only reaaining DOF, the axial DOF, is free to slide relative to the beam. These constraints are applicable in both the straight sections and the elbows. It is therefore convenient to define for each elbow a separate cylindrical coordinate system whose axis is perpendicular to the plane of the elbow and intersects the center of curvature. For elbows, the independent DOF is thus the azimuthal translation. For each straight section, it is convenient to define a separate Cartesian system with one axis coincident with the pipe axis. It is emphasized that the single independent fluid unknown is the axial displacement, not the pressure. The fluid pressure can be recovered from the finite element program in the usual way by requesting that stresses in the fluid elements be calculated and printed.

The modeling of fluid-filled tees is handled differently from that of elbows. Since fluid entering one leg of a tee can flow out both of the other two branches, the proced ure must ensure that the total fluid mass flowing into one branch of the joint equals the total mass flowing out the other two branches (Ref. 8). (This condition is automatically satisfied for an elbow, a two-branch joint.) In the finite element model, we define at the intersection of the tee branches nue structural grid point and three fluid grid points, as shown in Figure 1. As with other fluid grid points in the system, each of these three points is permitted to move only in the axial direction for the branch in which it lies. In addition, the three axial DOF

Figure 1 - Low Frequency Model of Piping Tee
ire not independent (because of conservation of mass) and must satisfy the relation

$$
\sum_{i=1}^{3} A_{i}\left(\xi_{i}-u_{i}\right)=0
$$

mere u_{i} and ξ_{i} are the axial components of structural and fluid displacenents, repectively, and $A_{\text {i }}$ is the fluid cross-sectional area for branch i of the tee. 'hus, a tee introduces two independent fluid DOF into the model.

As with elbows, flexibility factors should be used with the bean elements which odel the tee. Unfortunately, even less is known about tee flexibilities than about :lbow flexibilities. The procedure that we find convenient for conputing tee flexiilities is to perform a separate finite element analysis for a tee modeled as a thell. This analysis can be easily made since a tee data generation progran (Ref. :1) has been interfaced with NASTRAN by Quezon (Ref. 22) so that, given a few basic arameters, an analysis can be perforned within a few hours. No tees are included in he examples in this report.

Damping in the piping system can be directly incorporated in the finite element 'odel by entering the dakining loss factor as a material damping constant, which : esults in complex material moduli.
;

ORIGINAL PAGE IS
OF POOR QUALITY
Because of the versatility of finite element computer codes, various boundary conditions on the fluid coluan are possible. At a free surface (where the pressure vanishes), the fluid DOF (the axial displacenent) is left free, a natural boundary condition. At a fixed boundary, the unknown is restrained. If the pipe modeled is part of a very long system, in which case a non-reflecting fluid r undary is needed, the plane fluid waves can be absorbed by attaching to the fluid DOF a dashpot whose constant (ratio of axial force to velocity) is $\rho C A$, where ρ is the fluid rass density, c is the effective sound speed as given by Equation (2), and A is the crosssectional area of the fluid column. For a pipe that opens into a large volume of fluid (e.g., the sea), the appropriate boundary condition is that of a piston in an infinite baffle (Ref. 23), in which case the scalar added mass

$$
\begin{equation*}
M_{a}=8 \rho a^{3} / 3 \tag{5}
\end{equation*}
$$

is applied, where ρ is the fluid mass density and ' a ' is the radius of the opening. For a pipe with a closed end, the axial fluid displaceaent at the end is tied to the axial structural displacenent using a multipoint constraint equation or rigid link.

The beam model just described can be applied using most general purpose finite element structural analysis codes without nodification. The analysis is performed in a single pass with the fluid-structure coupling included in the model. The resulting model has seven independent degrees of freedom at each grid point location, six for the pipe and one for the axial canponent of fluid displacenent. For matrix bandwidth reasons, each fluid grid point should be sequenced adjacent to its corresponding structural point. The major limitation of the model is frequency: this is a low frequency model. More will be said about this limitation later.

INTERMEDIATE FREQUENCY 3-D MODEL

For the dymamic response prediction of piping systems at frequencies for which beam models are not valid, general three-dimensional finite elenent models are required. In general, this approach models the pipe with shell elements and the contained fluid with 3-D acoustic finite elements. Thus the pipe need not respond only as a beam (for which the cross sections are rigid), and non-planar fluid response is allowed. Such a noodel generally requires thousands of degrees of freedom, even for simple piping systems. Thus, although j-D models may find only linited use (given current coaputing power), it is worthwhile to describe the model's formulation and demonstrate its application. A j-D model is particularly useful for validating approximate models such as bean models since the limitations of the approximate model can then be determined. The purpose of this section is to describe the general 3-D finite elenent modeling of non-planar fluid-filled elastic piping systems. We are not aware of any previous finite element analyses of the size to be considered here for the fully-coupled fluid-structure problen.

Most general finite element work involving an elastic structure coupled to an acoustic fluid (for which the fluid pressure satisfies the wave equation) can be traced to the work of Zienkiewicz and Newton (Ref. 15). In their work and in many subsequent papers by others, the fundanental fluid unknown was taken to be the pressure. A few investigators (e.g., Handi, Ousset, and Verchery (Ref. 24)) selected the fluid displaceaent as the unknown.

ORIGINAL PAGE IS
 OF POOR QUALITY

Everstine (Ref. 25-27) showed how general purpose structural analysis oodes could be used, without modification, to solve the common field equations arising in mathematical physics (including the wave and Helmholtz equations of acoustics). He also showed how the codes could be used to solve mixed field problems such as coupled structural-acoustic problems.

More recently, he showed (Ref. 16) that, if the coupled fluid-structure problem were formulated with velocity potential rather than pressure as the fundmental fluid unknown, the nonsymmetric matrices of the pressure formulation would be symuetric. For some situations, including steady-state problems involving damped systems (which are of interest here), significant computational advantages result.

If both fluid and structure are modeled with finite elements, the following matrix equation arises (Ref. 16,28):

$$
\left[\begin{array}{ll}
M & 0 \tag{6}\\
0 & Q
\end{array}\right]\left\{\begin{array}{l}
\ddot{u} \\
\ddot{q}
\end{array}\right\}+\left[\begin{array}{ll}
B & A \\
A^{T} & C
\end{array}\right]\left\{\begin{array}{l}
\dot{u} \\
\dot{q}
\end{array}\right\}+\left[\begin{array}{ll}
K & 0 \\
0 & H
\end{array}\right]\left\{\begin{array}{l}
u \\
q
\end{array}\right\}=\left\{\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right\}
$$

Where G, the fundarental unknown in the fluid, is the time integral of pressure and hence proportional to the velocity potential. The unknown q is a vector with a single unknown at each fluid wesh point. In Equation (6), u is the vector of disFplacenent components in the structure, M and Q are the mass matrices for the structure and fluid, K and H are the stiffness matrices for the structure and fluid, A is the area matrix wich converts fluid pressure at interface points to structural loads, B and C are the damping coatrices for the structure and $f l u i d$, and f_{1} and f_{2} are the structural and fluid applied loads. If the pressure gradient (or equivalently, fluid motion) is specified at a fluid boundary, f_{2} takes the form

$$
\begin{equation*}
f_{2}=-\left(A_{s} \partial q / \partial n\right) / \rho \tag{7}
\end{equation*}
$$

Where A is the area matrix for the boundary surface. In Equation (6), the required "nateris̊ constants" for the fluid elements are

$$
\begin{equation*}
G_{e}=-1 / \rho, E_{e}=10^{20} G_{e}, \rho_{e}=-1 / \rho c^{2} \tag{8}
\end{equation*}
$$

where G_{e}, E_{e}, and ρ_{e} are, respectively, the "shear modulus," "Young's modulus," and "mass density" assigned to the fluid finite elenents (Ref. 16,28).

In the fluid-filled piping systems of interest here, damping is introduced by specifying an overall system loss factor. In that case, the matrices K and H in Equation (6) are conplex, and $B=C=0$. The loss factor n, if uniform, is given by

$$
\begin{equation*}
\eta=\operatorname{Im}(K) / \operatorname{Re}(K)=\operatorname{Im}(H) / \operatorname{Re}(H) \tag{9}
\end{equation*}
$$

ORIGINAL PACE ID OF POOR QUALITY

All matrices in Equation (σ) except A are automatically formed by the finite element program once the elenents are defined. The area matrix A has nonzeros only at rows and colunns corresponding to interface degrees of freedon. For p..ping systems which involve only cylinders and tori, the area contribution at each point is easily calculated analytically, so that A can be generated by an automatic data generation preprocessor.

This finite element scheme can be implemented on any general purpose structiral code which allows the user to enter matrix elenents directly fron the input str:am. We used NASTRAN for the analyses described in this paper.

EXAMPLE 1: A PLANAR PIPING SYSTEM

The formulations described in the preceding sections will be illus',rated first on a simple planar piping systen for which experinental data are available (Ref. 6). This system, shown in Figure 2, consists of two straight sections of stanaard 4 -inch ccpper-nickel pipe connected by an elbow. The system is filled corpletely with lubricating oil. Table 1 sumarizes the pertinent properties of the systen.

Figure 2 - Planar Piping System

Pipe (4-inch 70-30 $\mathrm{Cu}-\mathrm{Ni}$)

outside dianeter (O.D.)	4.5 in
minimun wall thickness	0.203 in
norninal wall thickness	0.232 in
Young's taodulus	$22,000,000 \mathrm{psi}$
Poisson's ratio	$0.294 \mathrm{ib} \mathrm{in}^{3}$
weisht density	$0.323 \mathrm{ib}^{2}$

Elbow

bend radius (R)	4 in
bend angle	90 degrees

Fluid (2190 TEP oil

actual bulk modulus	$282,000 \mathrm{psi}$
effective bulk roodulus in pipe	$228,000 \mathrm{psi}$
weight density	$0.0315 \mathrm{lb} / \mathrm{in}^{3}$

As seen in Figure 2, one end of the pipe was fixed, and the fluid was driven by \therefore piston designed to excite only the fluid. The other end of the system was free. yeasurenents (Ref. 6) included the fluid pressure at the piston and the inplane comsonents of structural velocity at the free end.

Both beam and 3-D models were prepared for this piping system using the finite Z lement approaches described in the preceding section. The beam model consisted of jen beam elenents in each straight section and eight elenents in the elbow. For this 2-D problen, each fluid and structural gid point had, respective? y, one and three legrees of freedon (DOF). The beam model thus had 112 jOF. The elbow flexibility factor used for the beam analysis was 8.14, which was computed by the ELBON computer progran (Ref. 17). For inplane manent loads on elbows with long straight sections, ILBOW has been shown to be satisfactory, although it does overestimate t're flexibil(ty factors slightly (Ref. 14).

The mesh used for the 3-D model is shown in Figure 3. The structural element ased is a low-order four-node quadrilateral pl fin (NASTRAN'S QUAD2). Because of symmetry, only half of the circumference (180 degrees; was modeled. The model had .en elenents in the circunferential direction, 19 eleaents longitudinally in each ;traight section, and nine elements in the elbow. The dry pipe thus had about 2800 , OF. As shown in Figure 3, the fluid finite elenent wesh had two elenents (a conitant strain wedge and an eight-node isoparanetric hexahedron) in the radial direcior between the center of the pipe and the shell. With the fluid added, the size of ine s-D model increased to about s 900 DOF.

The assumed uniform loss factor used for all calculations for this piping system vas 0.0262 , independent of frequency. This value was selected on the basis of pre'ious experimental experience with similar systens.

ORIGINAL PACE E

 OF POOR QUALITY

Fisure 3-Finite Element Model of Planar Piping System

The results of the analyses of this sjstem are shown in Figures 4 and 5 over the frequency range 10 Hz to $10,000 \mathrm{~Hz}$. MoDility responses (thte ratio of velucitiy response to driving force) are shown for both analytical models and the Davidson-Saith experimental data (Ref. 6).

The two analytical solutions show in Figures 4 dnd 5 are in reasonably good agreement even for frequencies above the first lobar ($n=2$) frequency, where the modal density is high. The $n=2$ lobar frequency for a long pipe can be estimated from the

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4 - Mobility of Planar Piping System: Transverse Response at Free End classical fomilla (Ref. 29) for the piane strain vibrations of a ring. for a dry ring, the lowest $n=2$ frequency is

$$
\begin{equation*}
f=(1 / 2 \pi) \sqrt{3 E_{B} t^{2} / 5 \rho_{8} r^{4}\left(1-v^{2}\right)} \tag{10}
\end{equation*}
$$

Where E_{s}; ρ_{g}, and v are, respectively, the Young's modulus, mass density, and Poisson's râtio for tho? pipe material, t is the wall thickness, and r is the mean radius. Thus, from Equation (10), for \forall-inch $\mathrm{Cu}-\mathrm{Ni}$ pipe, the lowest $n=2$ 'obar node occurs at about 1066 Hz for dry pipe.

Figure ; - Mobility of Planar Piping System: Axial Kesponse at Free End

The corresponding fluid-filled frequency can be estimated if ρ_{s} in Equation (10) is replaced by the effective density $\rho_{\text {eff }}$ for the structure-fluid cunabination:

$$
\begin{equation*}
\rho_{e f f}=\rho_{s}+o r / 2 t \tag{11}
\end{equation*}
$$

where ρ is the fluid mass density. Witi. this correction, the lowest $n=2$ lobar frequency for oil-filled 4 -inch $\mathrm{Cu}-\mathrm{Ni}$ pip, about 888 Hz .

Although the results for the planar system show good agreament between the bean results and both the $3-D$ results and the experimental data, this planar systen does not provide an adequate test of a bean model. One difficulty which arises with non-planar systems is that the flexibility factor k is hard to calculate. Although idealized approaches for calculating k do not distinguish between inplane and out-of-plane cases, it has been shown (Ref. 14) that, for 90-degree elbows with straigint pipe extensions, the out-of-plane flexibility factor differs considerably from the inplane factor. In addition, fany piping systems of practical interest have straight sections which are not so long (relative to the elbow arc length) as in the planar system of Example 1. We would expect the elbow flexibilities to becone more important to the overall dynamic response for systems with shorter straight sections.

Here we consider a conplex 3-D piping system also built with 4 -inch Cu-Ni pipe. As shown in Figure 6, the system consists of four straight sections and three elbows (two 90-degree elbows and one 45-degree elbow). The pipe is filled completely with

Figure 6 - Finite Eler 3 nt Model of Non-Planar Piping System (Two Views)
fresh water. Fluid free suriaces are assumed at both ends of the system. (Experimentally, such conditions could be simulated approximately by capping the ends with flexible rubber membranes.) The loading for this system is a time-harmonic force applied to the structure in the axial direction at point 1. The entire system is assumed to be freely suspended. No experimental data are available for this system.

Both beam and 3-D finite elenent models were prepared for this piping system. The beam model, which consisted of 21 beam elements, had 154 DOF. The 3-D model (Figure 6) had about 7500 DOF (dry) and 9900 DOF (fluid-filled). The assuned loss factor used for both analyses was 0.02 , independent of frequency.

The response predictions for this system are shown in Figures 7 and 8. Since the same pipe size is used as in the planar system, the lowest $n=2$ dry lobar mode occurs at the same frequency, 1066 Hz . This pipe, however, is filled with water rather than oil, so the lowest fluid-filled $n=2$ lobar frequency is slightly lower: 867 Hz .

Figure 7 - Acceleration Response of Non-Pianar Piping System: Drive Point Aocelerance

Figure 8 - Acceleration Response of Non-Planar Piping System: Transfer Point Accelerance

The flexibility factors for the 90 -degree elbows in the beam model were estimated from the tables published by Quezon and Everstine (Ref. 14) for 90-degree elbows with various lengths of pipe extension. The flexibivity factors for the 45 -degree elbow in this system were estimated from similar tables nc heing compiled for 45 -degree elbows. (These tables will be published soon.) The f bility factors used in this beam analysis are listed in the second and thirc slums of Table 2.

As seen in Figures 7 and 8, the two analyses (bean and $3-D$) are in very close agreement up to about 550 Hz , which is about 63% of the lowest $n=2$ fluid-filled lobar mode (867 Hz) of the pipe. This agreement indicates that the bean model is a valid model for low frequencies.

SENSITIVITY OF RESPONSE TO FLEXIBILITY FACTORS

Here we use the beam model of the non-pianar piping system to determine the effects of errors in the flexibility factors used in the analysis. As we indicated

TABLE 2 - FLEXIBILITY FACTORS FOR NON-PLANAR PIPING SYSTEM

ELBOW	FLEXIBILITY FACTORS			
	BASED ON REF. 14		$\begin{aligned} & \text { ELBON } \\ & \text { PROGRAM [17] } \end{aligned}$	EFFECT IGNORED
	INPLANE	OUT-OF-PLANE		
1 (90-deg. SR)	5.0	2.8	7.8	1.0
2 (90-deg. SR)	5.4	2.8	7.8	1.0
3 (45-deg. LH)	4.2	3.7	5.2	1.0

in the preceding section, the flexibility facters used were based on tables for 90degree elbows published by Quezon and tverstine (Ref. 14) and other (as yet) unpublished tables for 45 -degree elbows with various lengths of straight pipe extensions. Because the low frequency beam results using these factors agree well with the s-D model results in Figures 7 and 8, these flexibility factors are considered reasonably accurate.

For comparison purposes, analyses were also made using two other sets of flexibility factors. The first set was that calculated by the ELBOW computer program (Ref. 17). ELBON is probably typical of the idealized approdches used by piping designers. ELBOW's flexibility factors are in close agreement (Ref. 17) with the current ASME code (Ref. 30), which, for zero internal static pressure, uses the relation

$$
\mathrm{k}=1.65 \mathrm{r}^{2} / \mathrm{tR} \quad \begin{align*}
& \text { ORIGINAL PAGE I3 } \tag{12}\\
& \text { OF POOR QUALITY }
\end{align*}
$$

where k is the flexibility factor, r is the mean radius, t is the wall thickness, and R is the bend radius. The ELBOW program flexibility factors are listed in column 4 of Table 2.

The second additional set of flexibility factors used for an analysis was obtained merely by setting $k=1.0$ for all factors. This analysis would show the consequences of ignoring the flexibility factor effect entirely.

The response predictions for all three sets of flexibility factors are shown in Figure 9, in which the drive point accelerances (the ratio of deceleration to force) are plotted over the frequency range 100 Hz to 1000 Hz (the low frequency regine). Figure 9 clearly indicates the inportance of using accurate flexibility factors in the analysis.

DISCUSSIUN AND CONCLUSIONS

We have described two different finite elenent modeling procedures for predicting the dynamic response of general s-D fluid-filled elastic piping systems. The beam model, a iw frequency procedure, was, for the non-planar system considered,

Figure 9 - Sensitivity of Non-Planar Piping System Response to Flexibility Factor
valid for frequencies up to about 63% of the lowest fluid-filled lobar ($n=2$) pipe mode. For frequencies between that and 100% of the $n=2$ mode, the general finite element modeling procedure described could be used. For still higher frequencies, where the modal density is high, the finite element approach remains theoretically valid, but the analyst is probably wiser to use statistical energy analysis (S.E.A.) techniques (Rei. 31) instead. The S.E.A. techniques are particularly well suited to the high modal density regime.

It was show that the accuracy of beam analyses of piping systems depends strongly on the accuracy of the flexibility factors used. Such factors are not required in the $3-D$ finite element model since they are implicit in a shell model of the pipe.

Finally, the beam analyses presented here used straight beams to model the bends (elbows). It would clearly be preferable to use instead curved beam elements, if available.

1. Callaway, D.B., F.G. Tyzzer, and H.C. Hardy, "Resonant Vibrations in a WaterFilled Piping System," Journal of the Acoustical Society of America, vol. 23, no. 5, pp. 550-553 (1951).
2. El-Raheb, M., "Acoustic Propagation in Finite Length Elastic Cylinders. Part 1: Axisymotric Excitation," Journal of the Acoustical Society of America, vol. 71, no. 2. pp. 296-306 (1982).
3. El-Raheb, M., "Acoustic Propagation in Finite Length Elastic Cylinders. Part II: Asymetric Excitation," Journal of the Acoustical Society of America, vol. 71, no. 2, pp. 307-317 (1982).
4. Joppa, P.D., and I.M. Fyfe, "A Finite Elenent Analysis of the Impedance Properties of Irregular Shaped Cavities with Absorptive Boundaries," Journal of Sound and Vibration, vol. 56, no. 1, pp. 61-69 (1978).
5. Astley, R.J., and W. Eversman, "A Finite Element Method for Transmission in Non-Uniform Ducts Without Flow: Comparison with the Method of weighted Hesiduals," Journal of Sound and Vibration, vol. 5\%, no. د. pp. 367-388 (1978).
6. Davidson, L.C., and J.E. Smith, "Liquid-Structure Coupling in Curve Pipes," The Shock and Vibration Bulletin, bulletin 40, part 4, pp. 197-207 (1969).
7. Davidson, L.C., and D.R. Samsury, "Liquid-Structure Coupling in Curved Pipes II," The Shock and Vibration Bulletin, bulletin 42, part 1, pp. 123-136 (1972).
8. Howlett, J.T., "Applications of NASTRAN to Coupled Structural and Hydrodynanic Responses in Aircraft Hydraulic Systens," NASTRAN: Users' Experiences, NASA IM X-2378, National Aeronautics and Space Administration, Washington, DC. pp. 407-419 (1971).
9. The M.W. Kellogg Company, Design of Piping Systems, second edition, John Wiley and Sons, Inc., New York (1964).
10. El-Raheb, M.. "Vibrations of Three-Dimensional Pipe Systems with Acoustic Coupling," Journal of Sound and Vibration, vol. 78, no. 1, pp. 39-67 (1981).
11. Schwirian, R.E., and M.E. Karabin, "Use of Spar Elements to Simulate Fluid-Solid Interaction in the Finite Elenent Analysis of Piping Systen Dynamics," Fluid Transients and Structural Interactions in Piping Systems (edited by P.H. Rothe and D.C. Wiggert). The Anerican Society of Mechanical tingineers, New York (1981).
12. Hatfield, F.J., and D.C. Wiggert, "Fluid-Structure Interaction in Piping by Conponent Synthesis," Fluid Transients and Structural Interactions in Piping Systems (edited by P.H. Rothe and D.C. Wiggert). The Anerican Society of Yechanical Engineers, New York (1981).
13. Rodabaugh, E.C.. S.K. Iskander, and S.E. Moore, "End Effects in Elbows Subjected to Moment Loadings," Report ORNL/Sub-2913/7, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1978).
14. Quezon, A.J., and G.C. Everstine, "Stress Indices and Flexibility Factors for 90-Degree Piping Elbows with Straight Pipe ixtensions," DTNSRDC/-CMLD-82/05, David W. Taylor Naval ※nip R\&D Center, Bethesda, MD (1982).
15. Zienkiewicz, O.C.. and R.E. Newton, "Coupled Vibrations of a Structure Submerged in a Compressible Fiuid," Proceedings of the International Syaposium on Finite Element Techniques, Stuttgart, pp. 359-379 (1969).
16. Everstine, G.C., "A Symetric Potential Formulation for Fluid-Structure Interaction," Journal of Sound and Vibration, vol. 79, no. 1, pp. 157-160 (1981).
17. Dodge, W.G., and S.E. Moore, "ELBOW: A Fortran Progran for the Calculation of Stresses, Stress Indices, and Flexibility Factors for Elbows and Curved Pipe," Report ORNL-TM-4098, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1973).
18. Streeter, V.L., Fluid Mechanics, third edition, McGraw-Hill Book Company, Inc.. New York (1962).
19. Krause, N., W. Goldsmith, and J.L. Sackman, "Transients in Tubes Containing Liquids," International Journal of Mechanical Sciences, vol. 19, no. 1, pp. 53-68 (1977).
20. Joukowsky, N., "lyer den Hydraulischen Stoss in Wasserleitungsrohren," Memoir de l'Academie, vol 9, 8 Ser., no. 5 (1900).
21. Gantayat, A.N., and G.H. Powell, "Stress Analysis of Tee Joints by the Finite Eleaent Method," Report US SESM 73-6, Structural Ensineering Laboratory, University of California, Berkeley, California (1973).
22. Quezon, A.J., and G.C. Everstine, "Comparison of Finite Eleaent Analyses of a Piping Tee Using NASTRAN and CORTES/SA," Ninth ivaStran Users' Colloquium, NASA CP-2151, National Aeronautics and Space Administration, Washington, DC, pp. 224-242 (1980).
23. Ross, D., Mechanics of Underwater Noise, Pergamon Press, Inc., New York (1976).
24. Hamdi, M.A., Y. Uusset, and G. Verchery, "A Displacenent Method for the Analysis of Vibrations of Coupled Fluid-Structure Systens," International Journal for Numerical Methods in Engineering, vol. 1s. no. 1, pp. 1sy-150 (1918).
25. Everstine, G.C., "Structural Analosies for Scalar Field Problens," International Journal for Numerical Methods in Engineering, vol. 17, no. s, pp. 471-476 (1981).
26. Everstine, G.C., E.A. Schroeder, and M.S. Marcus, "The Dynamic Analysis of Subuerged Structures," NASTRAN: Users' Experiences, NASA TM X-3278, National Aeronautics and Space Administration, Washington, DC, pp. 419-429 (1975).
27. Eve, - ine, G.C., "Finite Element Solution of Torsion and Uther 2-D Poisson Equations," Tenth NASTRAN Users' Colloquiun, NASA CP-2249, National Aeronautics and Space Administration, Washington, DC, pp. 153-164 (1982).
28. Everstine, G.C., "Structural-Acoustic Finite Eleaent Analysis, with Application to Scatterirg," Proceedings of the Sixth Invitational Symposium on the Unification of Finite Elenents, Finite Differences, and Calculus of Variations (edited by H. Kardestuncer), University of Connecticut, Storrs, CT, pp. 101-122 (1982).
29. Den Hartog, J. P., Mechanical Vibrations, fourth edition, MeGraw-Hill book Company, Inc. . New York (1956).
30. American Society of Mechanical Engineers, "ASME Boiler and Pressure Vessel Code. Section III, Rules for Construction of Nuclear Power Plant Canponents" (1980 edition).
31. Lyon, R.H. . Statistical Energy Analysis of Dynamical Systems: Theory and Applications, MIT Press, Cambridge, Massachusetts (1975).

K84 15601 D//

propagating plane harmonic waves through finite length plates

OF VARIABLE THICKNESS USING FINITE ELEMENT TECHNIQUES

J. H. Clark, A. J. Kalinowski, C. A. Wagner
NAVAL UNDERWATER SYSTEMS CENTER
NEW LONDON, CONNECTICUT 06320

ORIGINAL PAGE IS OF POOR QUALITY

SUMMARY

Closed form solutions exist in the literature for propagating plane harmonic waves through infinitely long uniformly thick plates which are immersed in fluids. These solutions fail to account for the edge effects present in finite length plates and address only plates of uniform thickness. This paper presents an analysis using finite element techniques which addresses the propagation of a uniform incident pressure wave through a finite diameter axisymmetric tapered plate immersed in a fluid. The approach utilized in developing a finite element solution to this problem is based upon a technique for axisymmetric fluid structure interaction problems presented in the Tenth NASTRAN Conference (ref. 1).

The problem addressed in this paper is that of a 10 inch diameter axisymmetric fixed plate totally immersed in a fluid. The plate increases in thickness from approximately 0.01 inches thick at the center to 0.421 inches chick at a radius of 5 inches. Against each face of the tupered plate a cylindrical fluid volume has been represented extending five wavelengths off the plate in the axial directon. The outer boundary of the fluid and plate regions have been represented as a rigid encasement cylinder as was nearly the case in the physical problem.

The primary objective of the analysis is to determine the form of the transmitted pressure distribution on the downstream side of the plate. A secondary purpose is to demonstrate the feasibility of employing the ref. 1 fluid-structure interaction technique on a large D.O.F. problem, and in fact running this large problem uncovered a basic error in the NASTRAN coding for 32 bit machines (e.g., VAX or IBM 360,370 , or 3033) when employing MPC or DMIG cards. These errors could impact any rigid format.

The finite element model used consists of 7455 nodes comprising 7191 axisymmetric ring elements. Both the fluid and the plate structure have been represented using axisymmetric CTRAPAX and CTRIAAX elements. The fluid (seawater) elements and structure (plate) elements are linked together along their boundary by utilizing a duplicate set of nodes and a direct matrix insertion capability within NASTRAN. This enables the incorporation of the stiffness and mass coupling terms in the stiffness and mass matrices respectively.

The plate is loaded with a uniform harmonic pressure wave ($f=100,000 \mathrm{~Hz}$)
which propagates axially through the incident side fluid, into the plate, and then out into the transmitted side fluid.

Presented results consist of plots of pressure along both the incident and transmitted surfaces of the tapered plate. In addition, pressure and piase contours throughout the modeled fluids are presented.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The measurements and calculations were made in U.S. Customary Units.
$\Delta A=$ associated area (eq. (1))
$c=$ value of term entered on diagonal of damping matrix
$c_{f}=$ sound wave velocity in fluid
$f=$ frequency of propagating wave
$k_{f}=$ bulk modulus of the acoustic fluid
$n_{r}=$ normal to a surface in radial direction
$n_{2}=$ normal to a surface in axial direction
$U_{z}=$ displacement in axial direction
$\rho_{f}=$ mass density of acoustic fluid

INTRODUCTION

Sternberg, et al., (ref. 2) have experimentally demonstrated the frequency independent characteristics of acoustic filter plates with regards to beamforming characteristics. Mathematical approaches have been undertaken to analytically account for this phenomena with varyil 1 degrees of success. The objective of this project was to utilize the finite element method to model the transmission of a plane harmonic wave through a filter plate of variable thickness immersed in sea water. This filter plate effect, if used in conjunction with an acoustic lens, develops beams which are independent of frequency and of constant width. A typical configuration is shown in Figure 1 and has been experimentally tested.

The analysis presented accounts for the rigid containment cylinder, the tapered circular steel filter plate, the transmission side fluid inside the
containment cylinder and the incident side fluid which theoretically extends to infinity. The rubber acoustic lens discussed briefly above has been excluded from this analysis in order to isolate the effects of the filter plate.

Since the actual structure is axisymmetri:: the finite element model utilized is also axisymmetric. The filter plate has been analyzed by using the displacement method within NASTRAN. The fluid has been inodeled in accordance with an axisymmetric pressure analogy (ref. 1). The driving force consists of a plane harmonic wave at 100 kHz at normal incidence to the steel plate. pressure and phase distributions throughout the incident and transmitted fluid volumes are to be computed. To enhance the presentation of the rather extensive pressure and phase data, pressure and phase contcurs throughout the internal and external fluid have been presented. In addition, plots of pressure along the incident and transmitted surfaces of the filter plate are presented.

Model Development

As detailed in ref. 1 the development of a finite element model for any axisymmetric fluid structure interaction problem requires several steps. For large degree of freedom problems model sizing, element sizing, and element selection are reasonably straightforward, however, they must be addres:ied cautiously in order to avoid both technical misjudgments and excessive computer cost.
I. Sizing. The particular piece of hardware modeled is well defined. As shown in Figure 2 the encasement cylinder is $5^{\prime \prime}(12.7 \mathrm{~cm})$ in length and $0.5^{\prime \prime}$ $(1.27 \mathrm{~cm})$ thick. The filter plate is $10^{\prime \prime}(25.4 \mathrm{~cm})$ in diameter and tapers from $.08 "(0.203 \mathrm{~cm})$ at the center to $0.421 "(1.06 \mathrm{~cm})$ at a $4^{\prime \prime}(10.16 \mathrm{~cm})$ radius. The location of the driving surface is $2.5^{\prime \prime}(6.35 \mathrm{~cm})$ away from the filter plate surface and at the end of the containment cylinder. The area between the filter plate and driving surface is fluid filled. On the downstream side the modeled fluid extends to the end of the containment cylinder. The fluid within the containment cylinder extends 4 wavelengths off the plate.

The important aspect relating to element sizing for steady state fluid structure interaction problems is that the disiribution of nodes throughout the model be such that plane harmonic waves at wie frequency of interest can adequately be described. As developed in ref. 3 adequate representation of the pressure waves is ensured by using ten nodes per wavelength or in this case where $f=100 \mathrm{kHz}$ the node spacing becomes $0.06^{\prime \prime}(0.152 \mathrm{~cm})$. This is based upon a wave propagation velocity in seawater of $60000 \mathrm{in} / \mathrm{sec}(152400 \mathrm{~cm} / \mathrm{sec})$. With node spacings this small and a model geometry as described above, the number of degrees of freedom approaches the limits of COSMIC NASTRAN on the VAX 11/780.

Since an axisymmetric pressure analogy solution has been invoked for the fluid elements, the selection of mating element type is limited. Several axisymmetric elements exist within COSMIC NASTRAN, however, previous success with CTRAPAX ar.d CTRIAAX elements determined selection. These elements have been used to represent both the fluid and filter plate. As will be discussed in the
next section, the containment cylinder and driving surfaces are represented as boundary or load conditions. The finite element model developed according to the above discussion is shown in Figure 3.
II. Boundary Condition. The boundary condition addressed next is the coupling of the fluid elements (modeled within an axisymmetric pressure analogy) to the structure elements (modeled within the displacement method). This coupling when using axisymmetric elements requires duplicate nodes along any iluid structure boundary. These duplicate nodes are then utilized in formulating the off diagonal coupling terms within both the mass and stiffness matrices for each of the elements involved. The details of the couplirg proocedure are given in ref. 1 and are not repeated here.

The mass terms are given as, $-A^{W} \rho_{f} k_{f} n_{r}$ and $-A^{W} \rho_{f} k_{i} \quad z$
and stiffness terms are given as, $\Delta \mathcal{A}_{1} n_{r}$ and $\Delta A n_{z}$
The physical nature of the iilter plate hardware enables representation of the cylindrical containment cylinder as a rigid outer fluid boundary condition, and is expressed as

$$
\frac{\partial p}{\partial n}=0
$$

where p is the fluid pressure.
This boundary condition is implemented within the pressure analogy by freeing all constraints along the containment cylinder/fluid interface (i.e., no surface tractions).

The external fluid boundary is teminated with fluid dampers in suci a way that the fluid appears to extend to mathematical infinity. Since NASTRAN does not contain any axisymmetric dashpot elements, this effect was developed using a direct matrix insertion technique similar to that required along the fluid/ structure boundary. To each node along the fluid boundary the magnitude of the lumped damping term to be inserted in the damping matrix is given as

$$
c=\frac{\Delta A^{b_{k}}{ }_{f}}{c_{f}}
$$

As with the stiffness and mass terms described previously, the location of the damping term within the damping matrix is developed in ref. 1.
III. LJading. Plane harmonic pressure waves will be the predominant load type seen by the filter plate. The plane harmonic wave utilized in this problem is at a frequency of 100 kHz and has a magnitude of $1 \mathrm{psi}(6895 \mathrm{P}$). Ti,is wave emanates from the outer fluid boundary parallel to ch.e flat metal surface and impinges on the filter plate at normal incidence. The boundary conditions and loading scheme are shown in Figure 3.

ORIGINAL
OF POOR QUALITY

Initial attempts to execute NASTRAN and develop solutions for the pressure field resulting from the tapered filter plate were unsuccessful. Several out of the ordinary problems were encountered while making these initial checkout computer runs. The first of these relates to the use of the DMIG card or MPC card option with larger problems on a 32 bit machine (in this case the VAX 11/780).

After considerable time and expense, it was discovered that the problem arises when a model has a large number 32 of nodes such that the combined row and column internal node number exceeds 2^{32} (the 32 bit word can no longer represent an unsigned integer of this size). As a result when NASTRAN attempts to order the list of row and column ID's in a monitonically increasing order, the large internal node numbers actually appear as smaller negative numbers because the sorting routine processes the 32 nd bit as a plus or minus sign. As a result the DMIG card coupling terms were arbitrarily associated with a node elsewhere in the matrix thus voiding the coupling effect. Coding changes were suggested by RPK Corporation and ultimately corrected this error. The coding change alters the internal node sorting rcutine in such a way that the 32nd bit is read as part of the node number and not as a plus (+) or minus (-) sign. Subsequent runs deionstrated propar placement of the DMIG card coupling terms.

The second, less serious $p \cdots: n$ encountered relates to the mass distribution for elements which are very close to the centerline.

NASTRAN calculates the lumped mass of an: axisymmetric element by first determining the centroid of the elements nodes. This radius is then used to determine the circumference of the ring element. Knowing the length and height of the element then enables a determination of the area and therefore mass of the entire ring element. This mass is allocated equally to each of the four nodes comprising the elements connectivity. For large radii this allocation sc.eme is very accu:ate, Howzver, when the radius to ihe centroid of the element is less than five times the node spacing significant errors result (as much as 40\%). This error has been corrected by using the elements outer and inner radii to calculate ring areas relative to the centroidal radius. This divides each ring element into an outer ann ius and an inner annulus. The mass of the outer anmilus is allocated to the two outer annulus nodes. The mass of the inner annulus is allocated to the two inner nodes. The FORTRAN coding changes made to the TRAPAD and TRIAAD subroutine in NASTRAN are shown in Figures 0 and 5. The lines that haye changes are mainiy in the lines without the column 73-80 card number designators.

RESULTS

The NASTRAN solution to a steady state fluid structure interaction problem consists of the pressure and phase distribution throughout the fluid. For very large problems this data is mabersome to interpret, consequently two data pre-
sentations have been developed. The first consists of a plot of the pressure along the upstream and downstream sides of the tapered metal plate. This data shown in Figures 6 anc 7 show several areas of higher pressure transmission through the tapered plate. The major peak to peak fluxuations along the plate surface in the pressure plots correlate with the submerged plate flexure wavelengths existing in a constant-thickness submerged plate whose thickness is the average type thickness.

A finer mesh distribution radially along the centerline is needed in order to properly model the stiffness in the plate and thus pick up the transmitted pressure. This is why the transmitted and incident pressures are too large at the centerline. Subsequent runs with a fluid plate (field solution is known) demonstrated that this error near the centerline was localized to two or three elements.

A second and, in this case, more useful presentation of this data is a color graphics format of pressure and phase contours. Pressure contours are shown in Figure 8. A noticeable effect depicted by these pressure contours is the redirection or focusing of the pressure towards the centerline. Equally important, the appearance of annular regions of increased energy transmission are evident. There are regions where more energy transmits through the plate than in similar neighboring regions. The phase contour shown in Figure 9 is evidence of the transmission of an actual plane wave from the driving boundary through the incident side fluid. The bands of constant and repeating phase angles verify this plane wave. The discontinuities in the phase contours in the downstream fluid correlate with certain redirected pressure contours evidert in Figure 8. These acoustic characteristics of filter plates, while experimentally verified, have not been readily predictable. The technique utilized here establishes a reasonable prediction capability. The development of a predictive capability for both the redirection of the pressure field and the regions of higher energy transmission were objectives of this effort.

REFERENCES

1. Kalinowski, A. J.o and Nebelung, C. Wo, "Solution of Axisymmetric Fluid Structure Interaction Problems with NASTRAN" (U), 10th NAST?AN User*s Colloquium, NASA CONF Publication 2249, 1982.
2. Sternberg, R. L., and Anderson, W. A., "A Comparison of the Useful Aperture Diameter, Directivity Index and Beam Width for an Acoustic Lens and an Acoustic Lens-Acoustic Filter Plate Combination", Naval Underwater Systems Center Technical Memorandum No. 771187.
3. Kalinowski, A. J., and Nebelung, C. W., "Media-Structure Interaction Computation Employing F, squency Dependent Mesh Sizes with the Finite Element Method", Shick and Vibration Bulletin, Vol. 51, 1981.

FIGURE 1 a typical tapered filter plate and acoustic lens configuration

Figure 2. the tapered filter plate finid associated hardware

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3. A FINITE ELEMENT MODEL OF THE TAPERED FILTER PLAT̄E, SURROUNDING FLUID, AND STRUCTURAL BCUNDARIES

ORIGINAL PAGE IG OF POOR QUALITY


```
        6,R9P,RTP,27P,7,7P,AR1A,FWMST,FMASI4,F*AS2T,FNMASS(4Y
```



```
        nOnOn440
        NONOO440
```



```
    EG!!VAT.F'CE POTC*S.OTCT(E))
    EO'IVVAT,F'CE (IRARFP,FCOTPI')
    EOVIVA'ENCF P,IECFT(2,.5CDJ(2)).(IFPPT(7).ECPT(3)).(JFCPTP4I.
1ErtT(A)).(.1FrPT(E).ECEP(5))
    TS^RT = nonon7no
    uACr= nonon7*
```



```
「事事事弈
~ SORT NODF NUMBPRS ACCOQDTMC TO STZF-SNALTEST FTRST
「聿貄韩
    TF (MMTNXX.EO.NONNIMMPNI)) RO T^ 9998
    rif T^ 99`9
    9999 1FILTE.1FTL!*1
        :FTC?=\J
        co tn 0997
    9999 CONTTNHE
        *RITF(*.9992)JFIT2.IPADEL
    9092 FOQ:4TPIX, HAVING TQOIBTE FTLPING LUMPED WASS MATRIX IN TRIMAN SU
```



```
    9997 AK,IMP(,IFTLT-1)*3+1)=FNMASS(JFIf,2)
```



```
ゼもも事聿
C STRIME NMOF NITT TF OPOFRTNG (LOW IC MIGH) OPERASTON
CH*###
    NONNIMPSFIT,2)=4 E+9
```



```
r FYD PHMNPES
Cも車事戠
    6月0 CONTTNHE
    n!^T(2) ? 00004720
r
```



```
    00004730
    QFTTIJRN
NOCO4740

FIGURE 4 FORTRAN CODING CHANGES IN NASTRAN SUBROUTINE TRAPAD FOR CTRAPAX ELEMENTS
    C tllPFD mass ratclulatyons manNlPD HFRF
```



```
    X R(4)午(Z(1)-7(`)))/?
```



```
    C*** \0 920 1=2.17
    M02n BRI(T) AM, (I)
~
~
    C FMASI4 E NASE CF HBLE NFAR CFNTEQLTNF
    CPMAST3 = MASE İF HALF AWAY FQCM CE&TERIINE
```



```
    -20}=P0(1)+ -(7))/7.non
    730=(2(4)+7(7)1/2.00n
    720 = (7.1) + 7(7))/?.n0n
    AR14 E (P(1)*(720
    * + 03D*(Zf4) - 220) + (1)*(7(1) - 27P))/2.0R0
        FMAST = PHMDE(D(1) + R(2) + D(T) + R(4)J#AR/A/DDC
```



```
        EMASO3 = FVAST - FMAS14
    C******
    C CHANTES AS PFR ANK 1O/12/B7
    ("も事車戠
~ FOMPHTF PUMDFD MASS AT NODFS A,B,C.C (I.0. 1,2,3,4)
    FNVASS(1'sFmaS14/?.0NO
    TNMASS(2IEFMIS'3/7.nNo
    EN*ASSP31EEMAST3/2.0NO
    EVVASSPAIEएMAS14/7.0NO
```



```
    "CnN"*(4)={FRPT(5)
```



```
C INPIDUM(A)
    .%F!'=^
    nn 970 I=1.4
```



```
    `O 9000 .TJ=1.4
Cも%*も疌
C SORT NODF MUVRFR ACCORNING TC SIVE (SMALYEST FTRST)
「申車車事
    TFPNMINXY,FO.NP.UNU'4(,1JI) Gn TO 999^
    C0 Tr 0999
```



```
        ,1FTLT=, J
    CO TM O907
    9997 CONTTNUE
    URTTE(R,7QQ2)JFIT2.IPANFY.
```



```
Cも早种音
C STPIKE NEDF NUT HF OROFRTNF PINW TO YICHY NPFRATION
Cも舟事
            NORNIM(JFII,2)=1F.$9
    70 roNTTNIE
        #事戠
            FNN THTS SFT OF PHANCES
                    -118 FSTPD
                                    00006330
                                    00006340
                                    An^nE*-
FIGUR: ; FORTRAN CODING CHANGES IN NASTRAN SUBROUTINE TRAPAD FOR CTRAPAX ELEMENTS
```


ORIGIINAL PAGE IS
 OF POOR QUALITY

FIGURE 5 FORTRAN CODING CHANGES IN NASTRAN SUBROUTINE TRIAAD FOR CTRIAAX ELEMENTS

ORIGINAL PLGE IS OF POOR QUALITY

```
MREA = AREA17 - AREA23 + AREII?
CCNVY = PONM12 + CONM23 + CDNM13
IFPAREA.IT.0.0) CO TC 7171
C.C TH T172
7171 nkYNT 7173. ARFA.IFCPTC11
```



```
    SII5,9X,'NIN VOU YUMAFR EPFMENT CCUNTFR CICOKWISE AS DFOUTRFD 3T'//
    #)
        ST0%
7172 COMTTNIE
C}0000384
    -qANSFIRM THF FLFMFNT STTFFNEm=
    - cystrm
                                    nOn0385%
        GTT DOTNT DEORFES M
```


FIGUR: 6 THE PRESSURE DISTRIBUTION AS A FUNCTIO: OF RADIUS ALONG THE INCIDENT FACE OF THE TAPERED FILTER PLATE

FIGURE 7 THE PPESSURE DISTRIBUTION AS A FUNCTION OF RADIUS ALONG THE TRANSMITTED FACE OF THE TAPERED FILTER PLATE

FIGURE R COLOR CONTOURS OF THE PRESSURE DISTRIBUTION THROUGHOUT THE TAPERED FILTER
PLATE MODEL.

.GURE 3 COLOR CONTOURS OF THE PHASE DISTRIBUTION THROHGHOUT THE TAPERED FILTIR PLATE MOPE 1

N84 15602

PROPAGATION OF FLEXURAL AND MEMBRANE WAVES

WITH FLUID LOADED NASTRAN PLATE AND SHELL ELEMENTS

A. J. Kalinowski and C. A. Wagner

NAVAL UNDERWATER SYSTEMS CENTER
NEW LONDON, CONNECTICUT 06320

Abstract

SUMMARY This paper is concerned with modeling flexural and membrane type waves existing in various submi.rged (or in vacuo) plate and/or shell finite element models that are excited with steady state type harmonic loadings proporiioned to $e^{i \omega t}$. Only thin walled plates and shells are treated wherein rotary inertia and shear correction factors are not included. More specifically, the issue of determining the shell or plate mesh size needed to represent the spatial distribution of the plate or shell response is of prime imporiance towards successfully representing the solution to the problem at hand. To this end, a procedure is presented for establishing guide lines for determining the mesh size based on a simple test model that can be used for a variety of plate and shell configurations such as, (1) cylindrical shells with water loading, (2) cylindrical shells in vacuo, (3) plates with water loading, and (4) plates in vacuo. The procedure for doing these four cases is given, with specific numerical examples present only for the cylindrical shell case.

INTRODUSTION

This paper addresses the topic of modeling flexural waves and membrane waves present in various types of shell and plate type structural configurations. The issue at hand is arriving at a simple procedure for determining a mesh size adequate to represent the details of the spatial response distributions necessary to achieve some desired level of accuracy. To be sure, it would be too large an undertaking to answer this question for all possible plate and shell configurations that may arise, however, the selected class of thin walled cylindrical shells and flat plates are often the major building blocks of a good deal of structures. Therefore, the paper will focus on these two configarations, with the major emphasis on the cylindrical sinell employing CCONEAX elements with axisymmetrical loading. Physical problems with finite length dimensions exhibit solution responses that often have the form of standing wave patterns as a result of reflections from the shell boundaries. Further, these solutions do not have a single clearly defined constant amplitude traveling wave comporienic as one would have, in say, an infinitely long
shell or plate. A constant amplitude traveling wave (propagating in the x direction at frequency ω) response, R, of the form $R=R_{0} e^{i(-\gamma x+\omega t)}$ is a desirable form to seek because the constant amplitude R_{0} and associated spatial wave length $\lambda_{\gamma}=2 \pi / \gamma$ can then be used as a measure for determining the ability of a particular element to represent the desired wave propagation phenomenon. Deviations of the finite element amplitude response from the exact response constant R_{0} and/or deviatons of the finite element response phase angle period from the exact spatial period can be used to judge the mesh refinement necessary to achieve a desired level of accuracy. The thrust of this paper is not to give a hard and fast rule for the number of elements per wavelength necessary to achieve some desired level of accuracy, but rather to provide a procedure for allowing one to establish his own level of accuracy. We take this approach because ruies of thumb are often dangerous, particularly in the area of wave propagation in plate and shell structures. There are cases, for example, in a plate or cylindrical shell where a cutoff point exists such that the particular problem parameters (geometry, frequency, and physical constants) result in a situation where there is no traveling wave. If the problem parameters happen to be such that the traveling wave root is close to the cut-off point, a finer mesh size might be needed to properly represent the propagating wave situation.

The symmetrically loaded (θ independent loading) infinitely long cylinder shell (with or without fluid external fluid present) is se?ected as the model for examining flexural and membrane traveling waves (see Figure 1). This same model can be used to treat all four plate and shell cases (with and without water) discussed above. The plate cases can be realized by letting a $\rightarrow \infty$ and the in vacuo cases achieved by setting the density of the fluid equal to zero.

SYMBOLS

$$
\begin{aligned}
\bar{a} & =\text { radius of cylindrical shell }(\mathrm{in}) \\
c & =\text { fluid sourd speed }(\mathrm{in} / \mathrm{sec}) \\
c_{s} & =\text { shear velocity }=\sqrt{\mathrm{G} / \rho_{\mathrm{s}}} \mathrm{psi} \\
c_{p} & =\text { in vacuo plate wave speed, } \sqrt{E /\left(\rho_{s}\left(1-v^{2}\right)\right)}(\mathrm{in} / \mathrm{sec}) \\
\mathrm{c}_{\mathrm{y}} & =\text { propagating wave phase velocity, } \omega / \gamma \\
c_{f p} & =\text { in vacuo plate wave speed, } 4 \sqrt[4]{\mathrm{h}_{\mathrm{s}} \omega^{2} / \mathrm{D}}(\mathrm{in} / \mathrm{sec}) \\
\mathrm{D} & =\text { plate modulus }=\mathrm{Eh} 3 /\left[12\left(1-v^{2}\right)\right] \text { of rigidity }(1 \mathrm{~b} / \mathrm{in}) \\
\mathrm{f} & =\text { harmonic frequency }(\mathrm{Hz}) \\
G & =\text { shear modulus of elasticity }(\mathrm{psi})
\end{aligned}
$$

$H_{0}^{(1)}() ; H_{1}^{(1)}()=$ Hankel Bessel functions of the first kind ord ≤ 0 and 1
$n=$ plate or shell thickness (in)
$\mathbf{i}=\sqrt{-1}$ complex number

FIGURE 1. FLEXURAL WAVE MODEL FOR SUBMERGED CYLINDRICȦL SHELL

ANALYTICAL WAVELENGTH FORMULATION FOR PLATES AND CYLINDRICAL SHELLS

The analytical formulation employed for determining the exact relationship for freely propagating waves in plate and cylindrical shell structures is important for its own sake, however, the formulation also directly leads to the procedure employed to set up the NASTRAN wavelength accuracy demonstration models. Consequently, some of the important details of the development for the freely propagating wave characteristics equation are given. The procedure given will closely follow the one given in ref. 2, except that freely propagating rathe: than standing wave configurations are considered by changing the axial yariation as a complex exponential variation in z rather than a cosine variation.

Of eventual interest is both the flexural wave and axial (membrane) wavelengths for plates (with and without water present) and for infinitely long cylindrical shells (with and without water present). This constitutes $2 \times 2 \times$ $2=8$ different situations. However, we can treat the eight cases at the same time by first treating the most complex case of the submerged infinitely cylindrical shell. By taking appropriate limits of this case (i.e., water density $\rightarrow 0$ or shell radius $\rightarrow \infty$) we can recover the other cases of interest without requiring any new analyses.

We start with the governing simplified thin wall shell field equations for the cylindrical shell (ref. l) and corresponding wave equation for the external fluid, namely

$$
\begin{align*}
& \frac{\partial^{2} u}{\partial z^{2}}+\frac{v}{a} \frac{\partial w}{\partial z}-\frac{\partial^{2} u}{\partial t^{2}} \cdot \frac{1}{c_{p}^{2}}=0 \tag{1}\\
& \frac{v}{a} \frac{\partial u}{\partial z}+\frac{w}{a^{2}}+\frac{h^{2}}{12} \frac{\partial^{4} w}{\partial z^{4}}+\frac{\partial^{2} w}{\partial t^{2}} \cdot \frac{1}{c_{p}^{2}}=-\left.p\right|_{r=a} \cdot\left(1-v^{2}\right) /(E h) \\
& \nabla^{2} p-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0 \tag{2}
\end{align*}
$$

subject to the usual boundary condition relation relating the pressure gradient normal to the shell and the shell acceleration,

$$
\begin{equation*}
\left.\frac{\partial p}{\partial r}\right|_{r=a}=-\rho \frac{\partial^{2} w}{\partial t^{z}} \tag{3}
\end{equation*}
$$

where u, w are the axial, and radial displacements of the shell (see Figure $2 a$ for positive sense); p is the pressure in the fluid; h the shell thickness; a the radius of the cylindrical shell; r, z are the radial axial cylindrical coordinates; E, v are Young's modulus and Poisson's ratio of the shell; c_{p} is the plate wave speed parameter $\left(\sqrt{E /\left(O_{s}\left(1-v^{2}\right)\right)}\right)$; and c is the acoustic wave
speed of the fluid. The shell equations (1) are for classical thin wall plate and shell theory and do not have rotary inertia and shear correction factors included. Consequently, the area of interest focused on herein will be in a frequency range of ω such that the above two methods correction factors are not necessary. This point will be expanded upon later in the paper.

The θ symmetrical shell motion representing propagating waves in the $+z$ direction are assumed to take the form

$$
\begin{align*}
& u=u_{0} e^{i \gamma z} e^{-i \omega t} \\
& v=0 \tag{4}\\
& w=w_{0} e^{i \gamma z} e^{-i \omega t}
\end{align*}
$$

where ψ_{0} and W_{0} are the yet to be determined wave amplitudes, and γ is tile propagating wave number. For outward going waves, the form of the pressure solution identically satisfying the wave equation (2) is given by ref. 2,

$$
\begin{equation*}
p(r, z)=P_{0} H_{0}^{(1)}\left(r \sqrt{k^{2}-\gamma^{2}}\right) e^{i \gamma z} e^{-i \omega t} \tag{5}
\end{equation*}
$$

which can be easily verified by direct substitution of equation (5) into equation (2), where P_{0} is the yet unknown pressure amplitude, and $H_{0}^{(0)}()$ is the Hankel, function of the first kind of order zero. A similar expression for p with $\mathrm{H}^{2} \mathrm{O}$ () (Hankel functions of the second kind) also satisfies the wave equation, but represents inward coming waves (when $\mathrm{k}^{2}>\gamma 2$) or resul:s in an ever increasing exponential increasing pressure field with increating r when $k^{2} \leqslant \gamma^{2}$ 。 Neither of these situations corresponds to the physical problem at hand, thus only the Hankel function of the first kind is retained.

The characteristic equation resulting in an interaction equation relati., the driving frequency ω and admissible propagating wave numbers, γ, is obtained by substituting equations (4) and (5) into equation (1), subject to the boundary condition (3): actually substituting equations (4) and (5) into condition (3) leads to the relation between the surface motion amplitude W_{0} and the pressure amplitude P_{0}, namely

$$
\begin{equation*}
P_{0}=\frac{-\rho W_{0} \omega^{2}}{\sqrt{k^{2}-\gamma^{2}} H_{1}^{(1)}\left(a \sqrt{k^{2}-\gamma^{2}}\right)} \tag{5a}
\end{equation*}
$$

Thus the resulting two linear equations in the W_{0}, U_{0} coefficients is given by

$$
\begin{align*}
& U_{0} i\left(\frac{\omega^{2}}{c_{p}^{2}}-\gamma^{2}\right)+W_{0}\left(-\frac{v \gamma}{a}\right)=0 \tag{6}\\
& U_{0} i\left(\frac{\nu \gamma}{a}\right)+W_{0}\left[\frac{1}{a^{2}}+\frac{h^{2}}{12} \gamma^{4}-\left(\omega / c_{p}\right)^{2}-\frac{\left(1-v^{2}\right) \rho \omega^{2} H_{0}^{(1)}\left(a \sqrt{k^{2}-\gamma^{2}}\right)}{E h \sqrt{k^{2}-\gamma^{2}} H_{1}^{(1)}\left(a \sqrt{k^{2}-\gamma^{2}}\right)}\right]=0
\end{align*}
$$

The nontrivial solution is obtained by setting the determinant of the amplitude coefficients equal to zero resulting in

$$
\begin{aligned}
& \left(\frac{\omega^{2}}{c_{p}^{2}}-\gamma^{2}\right)\left[\frac{1}{a^{2}}+\frac{h^{2}}{12} \gamma^{4}-\left(\omega / c_{p}\right)^{2}-\frac{\left(1-v^{2}\right) \rho \omega^{2} H_{0}^{(1)}\left(a \sqrt{k^{2}-\gamma^{2}}\right)}{E n \sqrt{k^{2}-\gamma^{2}} H_{1}^{(1)}\left(a \sqrt{k^{2}-\gamma^{2}}\right)}\right]+\left(\frac{\nu \gamma}{a}\right)^{2}=0 \\
& \gamma^{2}
\end{aligned}
$$

for

ORIGINAL PAGE IS OF POOR QUALITY

or in another equivalent form of

$$
\left(\frac{\omega^{2}}{c_{p}^{2}}-\gamma^{2}\right)\left[\frac{1}{a^{2}}+\frac{h^{2}}{12} \gamma^{4}-\left(\omega / c_{p}\right)^{2}-\frac{\left(1-v^{2}\right) \rho \omega^{2} k_{0}\left(a \sqrt{\gamma^{2}-k^{2}}\right)}{E h \sqrt{\gamma^{2}-k^{2}} k_{1}\left(a \sqrt{\gamma^{2}-k^{2}}\right)}\right]+\left(\frac{v y}{a}\right)^{2}=0
$$

for $\gamma^{2}>k^{2}$
where the $K_{0}()$ and K_{1} () are modified Bessel functions and are related to the Hankel functions by the identity

$$
\begin{equation*}
K_{n}(x)=\frac{\pi}{2} i^{n+1} H_{n}^{(i)}(i x) \tag{8}
\end{equation*}
$$

Noting that the in vacuo flexural wave number, $k_{f p}$, formula for a plate is given by

$$
\begin{equation*}
k_{f p}=\sqrt[4]{\frac{h \rho_{\mathrm{f}} \omega^{2}}{d}} \tag{9}
\end{equation*}
$$

and the in vacuo membrane compressional wave number, k_{p}, given by

$$
\begin{equation*}
k_{p}=\frac{\omega}{c_{p}}=\frac{\omega}{\sqrt{\frac{E}{\left(1-v^{2}\right) \rho_{s}}}} \tag{10}
\end{equation*}
$$

and finally the acoustic wave number by

$$
\begin{equation*}
k=\frac{\omega}{c} \tag{11}
\end{equation*}
$$

where c is the acoustic wave speed of the fluid medium; the characteristic equation for the traveling wave number, non-dimensionalized with respect to the acoustic wave number k, can algebraically be rewritten as

$$
\begin{gather*}
\left.\left(i k_{p} / k\right)^{2}-(\gamma / k)^{2}\right)\left[\frac{1}{(k a)^{2}}-\binom{k_{p}}{R^{2}}^{2} \left\lvert\, 1-\frac{(\gamma / k)^{4}}{\left(k_{f p} / k\right)^{4}}+\frac{\left(\frac{\rho a}{o s^{h}}\right) H_{o}^{(1)}\left(k a \sqrt{1-\left(\frac{\gamma}{k}\right)^{2}}\right)}{(k a) \sqrt{1-\left(\frac{\gamma}{k}\right)^{2}} H_{1}^{(1)}\left(k a \sqrt{1-\left(\frac{\gamma}{k}\right)^{2}}\right)}\right.\right] \\
+\frac{v^{2}(\gamma / k)^{2}}{(k a)^{2}}=0 \tag{12a}\\
\text { For }\left(\frac{\gamma}{k}\right)^{2}<1
\end{gather*}
$$

or

$$
\begin{gather*}
\left(\left(k_{p} / k\right)^{2}-(\gamma / k)^{2}\right)\left[\frac{1}{(k a)^{2}}-\left(\frac{k_{p}}{k}\right)^{2}\left\{1-\frac{(\gamma / k)^{4}}{\left(k_{f p} / k\right)^{4}}+\frac{\frac{\rho a}{\rho h} k_{0}\left(k a \sqrt{\left(\frac{\gamma}{k}\right)^{2}-1}\right)}{k a \sqrt{\left(\frac{Y}{k}\right)^{2}-1} k_{1}\left(k a \sqrt{\left(\frac{Y}{k}\right)^{2}-1}\right)}\right]\right] \\
+\frac{v^{2}(\gamma / k)^{2}}{(k a)^{2}}=0 \tag{12b}\\
\text { For }\left(\frac{Y}{k}\right)^{2}>1
\end{gather*}
$$

OFIGINAL FAGE IS
 OF POOR QUALITY

The original dimensional form of the characteristic equation (7) depended on the eight parameters $h, \omega, E, \nu, \rho, \rho_{s}, a, c$, for the resulting wave number $\gamma ;$ however, the above equation (12) form only depends on the reduced number of 5 non-dimensional parameters, namely $k_{p} / k, k a, \rho / \rho_{s}, a / h$, and v for the resulting non-dimensional wave numbers γ / k. The term ($k f p / k$) is not an independent parameter since it can be expressed in terms of the other ones through the relation

$$
\begin{equation*}
\frac{k_{f p}}{k}=(12)^{\frac{3}{a}} \sqrt{\left(k_{p} / k\right)\left(\frac{a}{h}\right) /(k a)^{\prime}} \tag{13}
\end{equation*}
$$

Roots of Characteristic Equation and Mode Shapes

The roots of the frequency equation (12) cover several special cases and require further elaboration. The roots of interest for freely propagating waves are those for which $\gamma=\gamma_{r}$ is a real quantity, wherein the shell response has arguments (see equation (4)) of the traveling wave form $i\left(\gamma_{r} z-\omega t\right.$) and corresponds to a wave propagating in the $+z$ direction and the corresponding wavelength is given by

$$
\begin{equation*}
\lambda=\frac{2 \pi}{\gamma_{r}} \tag{14}
\end{equation*}
$$

Possibly roots of the characteristic equation are complex (e.g., this could be the case when employing equation (12a) due to the complex form of the Hankel functions $H_{n}()=J_{n}()+i Y_{n}(1)$. In these situations, the complex root can be written in the form $\gamma=\gamma_{r}+i \gamma_{i}$ and substitution of this quantity into the s. 11 response equation (4), shows that the axial z response is proportional to $\mathrm{e}^{\mathrm{i}}\left(\gamma_{r}+i \gamma_{i}\right) z=e^{i \gamma r}$: $e^{-\gamma i z}$. 'Thus the solution amplitude would either reduce ($\gamma_{i}>0$) or grow indefinitely $\left(\gamma_{j}<0\right)$ with z according to the sign of γ_{i}. The wavelength of the reducing (or growing) fluxuations is still given by $\lambda_{r}=2 \pi / \gamma_{r}$ 。

The case of interest in the remainder of this paper is the one for which there are freely propagating waves of constant amplitude. This situation will result when $(y / k) 2>1$ wherein the modified Bessel functions K_{0} and K_{1} have real arguments and consequently equation (12b) usually results in reat roots for γ. The situation $(\gamma / k) 2>1$ implies the acoustic wavelength $\lambda_{a}=2 \pi / k$ is longer than the propagating wavelength, $\lambda_{r}=2, \gamma_{r}$.

For cylindrical shells, unlike the infinite plate, the axial membrane force N_{2}, will also result in a radial component of motion. Consequently, the axial and radial motions for the membrane propagation or the flexural wave propagation are coupled. In fact, the same characteristic equation (12b) can be used to determine both the membrane and flexural propagating wave numbers Yax, $\gamma f 1$. Whether a given root, γ, corresponds to the membrane or flexural wave can be established by examining the mode shape. More specifically, the ratio of U_{0} / W_{0} can be solved from either of the two homogenous equations (6); upon substituting the root, γ, into say the first of equations (6) yields

ORIGINAL PAGE IS OF POOR QUALITY

$$
\begin{equation*}
\frac{U_{0}}{W_{0}}=\frac{v \gamma / a}{i\left(\frac{\omega^{2}}{c_{p}^{2}}-\gamma^{2}\right)} \equiv \frac{v(\gamma / k) e^{i \pi / 2}}{\left(\left(\frac{\gamma}{k}\right)^{2}-\left(\frac{k_{p}}{k}\right)^{2}\right)(k a)} \tag{15}
\end{equation*}
$$

Upon subsituting the γ / k root in question into equation (15), the size of U_{0} relative to W_{0} can be established, wherein $\left|\psi_{0} / \psi_{0}\right| \gg 1.0$ implied a dominant axial motion hence signifying a membrane propagating wave and $\left|\psi_{0} / w_{0}\right| \ll 1.0$ implies a dominant radial motion hence signifying a flexural propagating wave.

Limiting Cases of General Characteristic Equation

Several limiting cases of the general characteristic equation (12b) not only provide useful information by their own merit (i.e., the traveling wave characteristic equation of a plate in fluid or air; or, the case of a cylinder in air) but at the same time provide insight with regard to where (i.e., the range of ($\gamma / k)$) to search for the root. It is instructive to start with the simplest case of an infinite flat plate in vacuo and build up to the more general case of a submerged infinite cylinder.

- infinite plate in vacuo

This situation is realized by taking the limit as the fluid to structure mass ratio goes to zero, $\rho / \rho_{s} \rightarrow 0$, and as the non-dimensional frequency paramϵ ters $\mathrm{ka} \rightarrow \infty$. It is noted that $\mathrm{ka} \rightarrow \infty$ can be realized by having the radius $a \rightarrow \infty$ at a finite frequency $\omega=k / c$. Trus equation (12b) reduces to

$$
\begin{equation*}
\left[k_{p}^{2}-\gamma^{2}\right]\left[1-\left(\frac{\gamma}{k_{f p}}\right)^{4}\right]=0 \tag{16}
\end{equation*}
$$

which by inspection has the roots

$$
\gamma=k_{p} \quad \text { and } \quad \gamma=k_{f p}
$$

Substituting $\gamma=k_{p}$ into equations (6) shows that

$$
\begin{align*}
& u_{0} i(0)+W_{0} \cdot\left(v k_{p} / \infty\right)=0 \\
& u_{0} i(0)+W_{0} \cdot\left[n^{2} \frac{\left.k_{p}^{4} / 12-\left(w / c_{p}\right) 2\right]}{\neq 0}=0\right. \tag{17}
\end{align*}
$$

thus, $W_{0}=0$ and U_{0} is any constant, and hence this mode corresponds to pure axial motion with no radial motion, thus indicating the $\gamma=k_{p}$ root is for the membrane traveling wave. Similarly, substituting $\gamma=k_{f_{p}}$ int f equations (6) yields

$$
\begin{align*}
& \overbrace{U_{0} i\left[\omega^{2} / c_{p}^{2}-k_{f p}^{2}\right]}^{\neq 0}+w_{0} \cdot(0)=0 \\
& U_{0} i[0]+w_{0} \cdot[0]=0 \tag{18}
\end{align*}
$$

thus $L_{0}=0$, and W_{0} is any constant and hence corresponds to pure flexural motion with no axial motion.

- infinite plate in fluid

This situation is similarly obtained by passing to the limit as a $\rightarrow \infty$ in equation (12b) and noting that $\left(K_{0}(x) / K_{1}(x)\right) \rightarrow 1$ as $x \rightarrow \infty$. Thus equation (12b) reduces to

$$
\begin{equation*}
\left[\left(\frac{k_{p}}{k}\right)^{2}-\left(\frac{\gamma}{k}\right)^{2}\right]_{1}\left[1-\frac{\left(\frac{\gamma}{k}\right)^{4}}{\left(\frac{k_{f \cdot p}}{k}\right)^{4}}+\frac{\left(\frac{p}{\rho_{s}}\right)}{k h \sqrt{\left(\frac{Y}{k}\right)^{2}-1}}\right]_{2}=0 \tag{19}
\end{equation*}
$$

where again separate membrane traveling waves and flexural traveling waves result by separately equating the [$]_{1}$ and [$]_{2}$ terms to zero in quation (19). Thus by inspection, as in the in vaciuo plate case,

$$
\frac{r}{k}=\frac{k_{p}}{k}
$$

is again a root for the membrane propagating wave and the root of

$$
\begin{equation*}
\left[1-\frac{\left(\frac{Y}{k}\right)^{4}}{\left(\frac{k_{f p}}{k}\right)^{4}}+\frac{\left(\rho / \rho_{s}\right)}{k h \sqrt{\left(\frac{Y}{k}\right)^{2}-1}}\right]_{2}=0 \tag{19a}
\end{equation*}
$$

provides the flexural wave root. It is noted that equation (19a) is algebraically equivalent to equation (7.10) of ref. 2. Upon inspecting equation (19a), it is seen that the effect of the water presence is to make the γ / k root a larger value (i.e., the flexural wavelength is smaller) than what would have been the case in the absence of external water. Thus the water has no effect on the membrane wave root, however the flexural wave root is effected and must be solved numericaliy with some sort of root searchiriy scheme.

- infinite in vacuo cylindrical shell

The characteristic equation is again obtained from the general (12b) case, by passing to the limit as $\left(\rho / \rho_{\mathrm{s}}\right) \rightarrow 0$, thus obtaining

$$
\begin{equation*}
\left(k_{p}^{2}-\gamma^{2} ; \frac{1}{a^{2}}-k_{p}^{2}\left\{1-\left(\frac{\gamma}{k_{f p}}\right)^{4}\right\}\right]+\frac{v^{2} \gamma^{2}}{a^{2}}=0 \tag{20}
\end{equation*}
$$

which corresponds to a cubic equation in the desired γ^{2} root and consequently can be solved for exactly without resorting to a numerical root finder. Due to the presence of the last term in equation (20), $\gamma=k_{p}$ is no longer the exact root for the membrane traveling wave, however, the (vy/a) ${ }^{2}$ does not usually shift the membrane wave number root very far from the plate solution, $\gamma=k_{p}$ as can be seen after solving for the exact roots of equation (20). Only positive values for γ^{2} obtained from the cubic solution will correspond to freely propagating waves. Although the exact membrane and flexural roots are coupled through the last term in equation (20), an approximation of the root, say for roughing out the mesh size needed, can be obtained from the approximations
obtained after dropping the normally small $(\nu \gamma / a)^{2}$ term, hence

$$
r \approx k_{p}
$$

for membrane waves, and

$$
\gamma \approx k_{f p} \sqrt[4]{1-\frac{1}{\left(k_{p} a\right)^{2}}}
$$

for flexural waves.

MODELING FLEXURAL AND MEMBRANE WAYES WITH NASTRAN
A simplified model is needed for the determination of the necessary number of elements per wavelength required to accurately model the membrane and/or flexural freely propagating waves in NASTRAN type elements. The procedure used here is to cut a segment (say at least one wavelength long) out of the infinitely long model. At one cut of the model (call it the starting end "A"), moments and forces existing in the freely propagating wave are applied explicitly; at the other end (call it the termination end "B"), an appropriate absorbing boundary conditions is applied (dampers that relate shell edge velocities to edge moments and forces). The boundary absorbers implicitly apply the appropriate amount of moment or force that would have been present internaliy at that section of the shell. In theory, it would be possible to apply explicit appropriately phased mements and forces at the termination end as well, however, this is not done for two reasons. First, there is a certain amount of phase angle drift (an amount beyond the expected termination phase of $\gamma \mathrm{L}$) that exists as the wave propagates along the axis of the shell (or plate) and it is not known a priori what the phase drift is so that the termination moments and forces can't be appropriately adjusted; the application of boundary absorbers, however, does not require any phase drift adjustment. Secondly, the implementation of the absorbers gives future insight on how to truncate finite element iells or plates in such a manner that large problems requiring premature model termination can be made.

In Vacuo Cylindrical Shell

- determination of edge loading moments and forces

The appropriate moments and forces at the starting end A can be litermined from the gelationsnips relating the shell motion u, w to the shell edge loads $N A, Q A, M_{Z}^{A}$ and $a^{*} e$ given by the shell theory relations (ref. 1)

$$
\begin{equation*}
M_{Z}^{A}=D \frac{\partial^{2} w}{\partial z^{2}} \quad Q^{A}=D \frac{\partial^{3} w}{\partial z^{3}} \quad N_{Z}^{A}=\frac{E h}{\left(1-v^{2}\right)}\left(\frac{\partial u}{\partial z}+v \frac{w}{a}\right) \tag{21}
\end{equation*}
$$

where the equation (21) moments and forces are line loads (1.e., loads per unit circumferential arc length) obeying the shell sign convention of Figure $2 a$. Upon substituting equations (4) into equations (21), it follows that

ORIGINAL PAGE IS OF POOR QUALITY

$$
\begin{align*}
& M_{Z}^{A}=-\gamma^{2} D W_{0} e^{i(\gamma z-\omega t)} \quad Q^{A}=-i \gamma^{3} D W_{0} e^{i(\gamma z-\omega t)} \tag{22}\\
& N_{Z}^{A}=\frac{E h}{\left(I-\nu^{2} T\right.}\left[i \gamma U_{0} e^{i(\gamma z-\omega t)}+\frac{v}{a} W_{0} e^{i(\gamma z-\omega t)}\right]
\end{align*}
$$

where the relation between U_{0} and W_{0} is governed by equation (15) for cylindrical shells. For plates $(a \rightarrow \infty), \psi_{0}$ and W_{0} are independent, where for membrane waves U_{0} denotes the wave amplitude with $W_{0}=0$ and for flexural waves W_{0} is the wave amplitude with $\mathrm{J}_{0}=0$.

Equations (22) are not in a form ready to use in NASTRAN CCONEAX elements for three reasons: first, NASTRAN input is not in the usual line load form as is the case with shell theory, but rather are total values wherein the lies loads must be multiplied by 2 ma; second, the finite element type sign convention (like quantities at both ends of the member are positive in the same sense) is different from the shell theory convention (e.g., compare Figures 2a and 2b) and; third, NASTRAN has an $\mathrm{e}^{+1 \omega t}$ hardwired intc the code, consequently an adjustment in the analytical solution is necessary to compensate for this point. Specifically, a wave traveling in the $+z$ direction also can be represented with an $\mathfrak{i}(-\gamma z+\omega t)$ type argument, thus by replacing γ with $-\gamma$ and ω with $-\omega$ in the analytical solutions will accomplish the corresponding correction. Thus accounting for all three compensations and also incorporating equation (15), the NASTRAN loading for the cylindrical shell at the starting cut A, evaluated at $z=0$, is given by:

$$
\begin{align*}
& \tilde{M}_{Z}^{A}=2 \pi a \gamma^{2} D W_{0} e^{+i \omega t} \\
& \tilde{Q}^{A}=2 \pi a \gamma^{3} D W_{0} e^{+900^{\circ}} e^{+i \omega t} \tag{23}\\
& \tilde{N}_{Z}^{A}=\frac{2 \pi a \rho \rho \omega^{2} \nu}{(a / h)}\left(\frac{W_{0}}{r^{2}-k_{p}^{2}}\right) e^{+i \omega t}
\end{align*}
$$

$$
\begin{aligned}
& \text { NASTRAN } \\
& \text { cut-A } \\
& \text { loading } \\
& \text { foi }
\end{aligned}
$$

cyl inder
where W_{0} is any suitable displacement ampiitude factor that is selected by the user, and γ is the root directly from the appropriate frequency equation (sign changes in γ and ω have already been compensated for in setting up equation (23)). The $e^{+i} \mathrm{t}$ factors are of course omitted when entered data into NASTRAN since this factor is automatically accounted for internal to the program.

- determination of shell edge termination absorbers

The membrane or flexural wave incident upon the shell termination will reflect from the end unless the appropriate boundary condition is inserted to simulate the effect of having an infinitely long shell. Here the appropriate boundary absorber is developed for each of the three shell edge loads. Following the same procedure used to setup equations (23), the internai moments and forces at the termination end are given by

$$
\begin{array}{ll}
\tilde{M}_{Z}^{B}=-2 \pi a \gamma^{2} D W_{0} e^{+i \omega t} e^{-\gamma L} & \text { ORIGINAL PAGE is } \\
\tilde{Q}^{B}=-2 \pi a \gamma^{3} D e^{+i 90^{\circ}} W_{0} e^{+i \omega t} e^{-i \gamma L} & \text { OF POOR QUALIMY } \\
\tilde{N}^{B}=\frac{-2 \pi a h \rho_{S} \omega^{2} e^{+i 90^{\circ}}}{\gamma} U_{0} e^{+i \omega t} e^{-i \gamma L} &
\end{array}
$$

The equations (24) can be written in terms of velocity, by noting $\dot{u}=+i w u$ $\dot{w}=i \omega w, d w / d x=\dot{\theta}=(-i \gamma)(i \omega w)$ thus equations (24) become

$$
\begin{equation*}
\tilde{M}_{Z}^{B}=\frac{-2 \pi a \gamma D}{\omega}(\dot{\theta}) \quad \tilde{Q}^{B}=\frac{-2 \pi a \gamma^{3} \Gamma}{\omega}(\dot{w}) \quad \tilde{N}^{B}=\frac{-2 \pi a h f_{s} \omega}{\gamma}(\dot{u}) \tag{25}
\end{equation*}
$$

where the above forces are the forces on the shell edge B. Dampers attached to the end of the shell would have an internal force or moment equal and opposite to the value at the shell edge, thus the forces and moments internal to the damper are given by

$$
\begin{equation*}
M_{d}^{B}=C_{\theta} \cdot(\dot{\theta}) \quad Q=C_{Q} \cdot(\dot{w}) \quad W=C_{N} \cdot(i) \tag{26}
\end{equation*}
$$

where the damper values are given by

$$
\left.C_{\theta}=\frac{2 \pi a D}{c_{\gamma}} \quad C_{Q}=\frac{2 \pi a D \gamma^{2}}{c_{\gamma}} \quad C_{N}=2 \pi a h \rho_{S} c_{\gamma}\right\} \begin{align*}
& \text { NASTRAN } \\
& \text { CCONEAX } \\
& \text { DAMPERS }
\end{align*}
$$

where the propagation phase velocity, c_{Y}, is defined by

$$
\begin{equation*}
c_{\gamma}=\frac{\omega}{\gamma} \tag{28}
\end{equation*}
$$

where γ is the root of the characteristic equation. In the case of a plate, the same dampers can be used, exr apt the 2π a would be replaced by the width of the plate (perpendicular to the direction of propagation) and appropriately subdivided between the element termination nodes (two termination nodes for actual plate elements and one ternination node for beam elements with a plane strain correction on the Young's modulus).

Submerged Cylindrical Shell

- determination of edge loading moments and forces

The appropriaie moments and forces employed to drive the shell edge empioy the same equation (23) formulas, except that the propagating wave number root, γ must be determined from equations (12b)in this case.

- determination of shell edge termination dampers

Again equations (27) can be used, except that y is determined from equations (27) is employed.

- determination of fluid loading on face $z=0$

The appropriate fluid loading can be obtained by substituting equation (5a) into (5) (and converting into the -i $\gamma z+\omega t$ form by letting $\gamma=-\gamma$ and $\omega=-\omega$) to obtain

$$
\begin{equation*}
p(r, z)=\frac{\left.-\rho w_{0} \omega^{2} H_{0}^{(}\right)\left(r \sqrt{k^{2}-\gamma^{2}}\right)}{\sqrt{k^{2}-\gamma^{2}} H_{1}^{(1)}\left(a \sqrt{k^{2}-\gamma^{2}}\right)} e^{-i \gamma z+i \omega t} \tag{29}
\end{equation*}
$$

Employing the large argument Bessel function approximations (ref. 5) of

$$
\begin{equation*}
H_{0}^{(1)}(x) \approx \sqrt{(2 /(\pi X)} e^{i(X-\pi / 4)} \quad H_{1}^{(1)}(X) \approx H_{0}(X) e^{-\pi / 2} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
p(r, z)=\frac{-w_{0} \rho \omega^{2} e^{-(r / a-1)\left(a \sqrt{\gamma^{2}-k^{2}}\right.}}{\sqrt{\gamma^{2}-k^{2}} \sqrt{r / a}} e^{-i \gamma z} e^{+i \omega t} \tag{31}
\end{equation*}
$$

where equation (31) can be used as the enforced pressure at the face $z=0$.
Equation (31) can also be used to drive plate models by first making a change in variable $r=x+a$ (where x is the outward distance measured from the middle surface of the shell) and then appropriately passing to the limit as a ${ }^{\infty}$ to obtain

$$
\begin{equation*}
p(x, z)=\frac{-W_{0} \rho \omega^{2} e^{-x \sqrt{\gamma^{2}-k^{2}}}}{\sqrt{\gamma^{2}-k^{2}}} e^{-i \gamma z} e^{+i \omega t} \tag{32}
\end{equation*}
$$

- decermination of fluid loading on face $z=L$

On this face we choose to atsorb the incident pressure wave with an absorber type boundary conaition rather than load it explicitly with equation (29) evaluated at $z=L$. This approach is consistent with the manner in which the shell was terminated. The relationship between pressure and applied forces in a finite element formulation is that the normal gradient of the pressure is proportional to the finite element model force. Therefore, the gradient of pressure normal to the cut, $z=L$ is needed and given by (with equation (5) $i(+\gamma z-\omega t$) arguments)

$$
\begin{equation*}
\frac{\partial p}{\partial z}=i \gamma p(r, z) \tag{34}
\end{equation*}
$$

and since for steady state problems,

$$
\frac{\partial p}{\partial t}=-i \omega \operatorname{cop}
$$

it follows

$$
\begin{equation*}
\frac{\partial p}{\partial z}=\frac{-\gamma}{\omega} \frac{\partial p}{\partial t} \equiv \frac{-\gamma}{\omega} \dot{p} \tag{35}
\end{equation*}
$$

is the boundary condition to employ along the vertical fluid cut $z=$ L. For direct acoustic fluid elements (ref. 6), the finite element nodal force is related to the normal gradient by the relation

$$
\begin{equation*}
F_{n}=\int_{S}[N]^{T} \frac{\partial p}{\partial: i} \cdot d S \tag{36}
\end{equation*}
$$

where [N] is the e? ement shape function. For lumped force applications, equation (36) is represented as, (where n^{\prime} is the unit normal to the fluid and $\triangle A$ is an appropriate amount of area surrounding the node at the point of the F_{n} applicationi

$$
\begin{equation*}
F_{n}=\Delta A \frac{\partial p}{\partial n} \tag{37}
\end{equation*}
$$

and upon substituting equation (35) intc (37) one obtains

$$
\begin{equation*}
F_{n}=-\Delta A \frac{Y}{\omega} \dot{p} \tag{38}
\end{equation*}
$$

and represents the nodal force on the fluid as being proportional to the pressure time rate of change. Thus the internal force in a damper attached to the node would be equal and opposite in value and given by

$$
F_{n}^{\text {damp }}= \pm \Delta A \frac{Y}{\omega} \dot{p}
$$

where the demper value would be

$$
C_{d}^{p}=\frac{\Delta A_{y}}{\omega} \quad \begin{align*}
& \text { direct pressure method damper } \tag{39}\\
& \text { (no analogy) for } z=L \text { face }
\end{align*}
$$

In the case of NASTRAN, the acoustic fluid is modeled by way of an analogy which reduces the elasticity equations to the Helmholtz equation by way of introducing dummy constants into the material matrix and allowing the displacement variable, u_{z}, occupy the pressure variable (see ref. 3 for details). The analogy has been adcpted herein, consequently, an additional factor of ρc^{2} appears in equation (37), and consequently the frequency dependent NASTRAN axial damper needs to be modified by this same factor and thusly equation (39) is replaced by (replacing $\omega \rightarrow-\omega_{2}, \gamma \rightarrow-\gamma$ converts to NASTRAN convention; this results in the same damper since signs cancel)

$$
\tilde{C}_{\mathrm{d}}^{p}=\frac{\Delta \bar{A} v}{\omega} \rho c^{2} \quad \begin{align*}
& \text { NASTRAN (ref. 3) analogy damper } \tag{40}\\
& \text { for } z=L \text { face with } y \text { directly from } \\
& \text { appropriatecharacteristic equation }
\end{align*}
$$

It is.noted, that so long as γ is a real quantity (e.g., characteristic root equation for γ is obtained from equation (12b)), the termination condition in the z direction is a pure damper. However, where γ is complex (e.g., root from equation (12a)) substitution of γ into the equation (40) damper will result in a complex damper. The real part can be treatod as above, but the complex part will end up looking like a resistance (spring) when combined with the $+\mathfrak{i} \omega$ appearing as a multiplier in the assembled damping matrix in NASTRAN. Thus, the imaginar: part of the damper (if it is present) can be appiled as a nodal spring whose spring constant is

$$
\left(\frac{i \Delta A\left(-\gamma^{i}\right)}{(-\omega)} \rho c^{2}\right)(+i \omega)=-\Delta A \rho c^{2} \gamma^{i}
$$

NASTRAN analogy spring (with γ^{i} directly from appropriate characteristic $2^{\text {equation) }}$
wherein for decaying waves, γ^{i} will be a positive number making ine spring constant positive.

Equation (40) can equally be applied to plate mode? problems, upon properly interpreting $\triangle A$.

- determination of fluid loading on outer face $r=r_{0}$

Here on the outer radial fluid face, the boundary condition is developed just as in the previous case, except that now the gradient has to be taken in the direction of the outward normal ($n^{\prime}=r$). Thus operating on equation (29) with $\alpha / / / r$ and then employing the equation (30) large argument relations, the following result is obtained

$$
\begin{equation*}
\frac{\partial p}{\partial r} \approx-\sqrt{\gamma^{2}}-k^{2} p(r, z) \tag{41}
\end{equation*}
$$

Unlike equation (34), this result does not have a factor i relating the gradient of p and p itself, consequently, upon substition of equazion (41) into equation (37), one obtains

$$
\begin{equation*}
F_{n}=-\Delta A \sqrt{\gamma^{2}-k^{2}} p \tag{42}
\end{equation*}
$$

and represents the nodal force on the fluid as being proportional to the pressure. Thus the internal force in a spring attached to the node would be equal and opposite in value and is given by

$$
F_{n}^{S p g}=+\Delta A \sqrt{r^{2}-k^{2}} p
$$

where the spring constant value would be

$$
K^{P}=\Delta A \sqrt{\gamma^{2}-k^{2}} \quad \begin{align*}
& \text { direct pressure method spring } \tag{43}\\
& \text { (no analogy) for } r=r_{0} \text { face }
\end{align*}
$$

and in the case of employing the ref. 3 pressure analogy, the counterpart of equation (43) is

$$
\tilde{k}^{p}=\Delta A \rho c^{2} \sqrt{\gamma^{2}-k^{2}} \quad \begin{align*}
& \text { NASTRAN (ref. 3) analogy } \tag{44}\\
& \text { spring for } r=r_{0} \text { face }
\end{align*}
$$

When γ is a root of equation (12b) $\left(\gamma^{2}>k^{2}\right)$, equation (44) implies a real spring is all that is needed. However, when $v^{2}<k^{2}$, and equation (12a) is employed, the roots, γ, are, in general, complex which implies that equation (44) will have a real and imaginary part. The real part of \dddot{K}^{p} is still a spring, however the imaginary portion can be converted into a damper by dividing the imaginary part coefficient (not including i) of equation (44) by w (to compensate for the ω multiplied in by the complex stiffness formation).

Equation (44) can equally be applied to plate model problems, upon appropriately interpreting $\triangle A$.

```
OR:=N, %4GE is
OF pCOR qLALITY
```


Limitations of Membrane and Flexural Wave Modeling

The scope of this study is limited to a driving frequency region where the influence of plate rotary inertia and shear deformation on the flexural motions are not important. In fact, this is the limitation of the propagating wavelength formulas given earlier. The ability of NASTRAN to account for these higher order effects is a topic all in itself and will not be addressed in this paper wherein stiffness and mass formulations along the lines given in ref. 7 must be considered.

Although we are interes+ed in both plate and shell propagating waves, the classical plate theory (CPT) can provide insight with regard to the point at which theabove mentioned correction factors are needed. The CPT is defined here as the special case of equation (1) with $a \rightarrow \infty$. Midlin's classical paper (ref. 4) provides a guideline for when the characteristic wave equations presented herein no longer predicts the proper waves number roots, γ. As pointed out in ref. 4, the exact elasticity solution to the same problem shows that CPT can predict the correct flexural wave numbers when the corresponding $2 \pi / \gamma$ wavelengths are long in comparison with the thickness of the plate. As the wavelength gets smaller, the exact elasticity solution traveling wave phase velocity (ω / γ), has as its upper limit, the velocity of the Rayleigh surface wave. Hence the CPT cannot be expected to give good results for the wave numbers, γ, as the driving frequencies get increasingly large. Reference 4 provides a plot of propagating phase velocity $c_{c}=\omega / \gamma$ (non-dimensionalized with respect to the shear wave velocity $\left.c_{s}=\sqrt{G} W_{s}\right)$ versus the plate thickness (non-dimensionalized with respect to the flexural wavci.ength, $2 \pi / \gamma$ for a fixed Poisson's ratio ($\nu=0.5$) and is reproduced here as Figure 3. The CPT - .raight line plot, curve II, is nothing more than equation (9) rewritten in the form

$$
\begin{equation*}
\frac{c_{\gamma}}{c_{s}}=\frac{h}{\lambda_{\gamma}} \cdot \frac{2 \pi}{\sqrt{6(1-v)}} \tag{44a}
\end{equation*}
$$

and is compared against curve I, the exact elasticity solution. Curves III, IV, and V are different combinations of adding rotary interior and shear correction factors. Figure 3 suggests that the shear correction acdition has the biggest impact on correcting the CPT case. The shear thickness parameter T 2 , in the NASTRAN CCONEAX elements appears to attempt to account for shear effects, however, this point has not been pursued with regard to attempting to make NASTRAN propagate flexural waves for $h / \lambda_{\gamma}>0.15$

The results in Figure 3 suggest that a h / λ_{y} (p) ate thickness-to-flexural wavelength ratic) of limit of 0.15 be maintained, i.e.,

$$
\begin{equation*}
\frac{h}{\lambda_{\gamma}} \leq 0.15 \tag{45}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\frac{\gamma h}{2 \pi} \leq 0.15 \tag{45a}
\end{equation*}
$$

where γ is the flexural wave number root of the problem at hand. The limit given by equation (45a) en!ployed Figure 3 which is a plot based on a fixed Poisson's ratio (i.e., $v=0.5$). The guideline formula can still be used for other values of Poisson's ratio due to the weak dependence of the plots on v. In fact, for the common case of $\nu=0.3$, a value of $h / \lambda_{y}=0.15$ implies a c_{Y} / c_{s} ordinate of 0.4598 for the CPT case and a value of 0.4032 in the exact

figure 4. finite element mesh (20-ELEMENT SHELL)
theory case. However, for $v=0.5$, a $h / \lambda_{\gamma}=0.15$ implies a c_{γ} / c_{s} ordinate of 0.5441 in the CPT case and a value of 0.4629 in the exact theory case (computed from equation (40) of ref. 4). Thus, illustrating the Figure $3 v=0.5$ case is an extreme case (e.g., 17.5% deviaton for $v=0.5$ compared to 14.0% for $v=$ 0.3) with regard to the point at which CPT deviates from the exact theory.

Thus, to test inequality (45a), one simply employs the appropriate characteristic equation developed (e.g., equation (12b)) and after obtaining the flexural wave root γ, verify whether in equation (45a) is satisfied.

Comments on Mass Matrix

The issue of an appropriate mass matrix for dynamics problems has long been a topic of discussion in the literature on finite elements. Here we take the simpliest approach, namely that of a diagonal lumped mass matrix for the shell. Upon employing the lumped approach, for say CCONAX elements, NASTRAN generates zero valued rotary inertia mass matrix contributions. To fill this void, the work by ref. 8 was employed wherein the suggested diagonal rotary inertia terms at a node would be given by

$$
\begin{equation*}
I_{r}=\frac{m^{e} \ell^{2}}{24}\left[\frac{1}{10}+\left(\frac{h}{\ell}\right)^{2}\right] \tag{46}
\end{equation*}
$$

for the single element contribution at a rotation degree-of-freedom node where me is the total mass of the element, ℓ is the element length, h the element thickness. Thus end point nodes with one element framing into the node employs equation (46) once and internal nodes with two elements framing into the same node applys equation (46) twice.

DEMONSTRATION PROBLEMS

A series of limited, yet fully representative, demonstration problems are presented here to illustrate the use of the procedures aiscussed in the theoretical section. First an in vacuo cylindrical shell is treated employing three different mesh distributions. Secondly, the same shell (employing the finer mesh distribution) is solved with external water present. All solutions are obtained with COSMIC SOL-8 employing the VAX computer version of NASTRAN.

In Vacuo Cylinder Example

An infinite cylindrical shell is excited and is propagating a constant amplitude harmonic wave in the plus z direction. The shell (shown in Figure 1) is cut at points A and B and is modeled as a 3.2 inch long, 20 element CCONEAX finite element model shown in Figure 4 (in the in vacuo case considered here, the fluid is omitted in the model). The point A (incident side of the shell) is driven with equations (23) and is terminated with three boundary dampers sized according to equations (27). The problem parameters correspond to the following data

$$
\begin{array}{lll}
a=40.0^{\prime \prime} & , \quad h=0.20^{\prime \prime}, & E=154,149.39 \mathrm{psi} \tag{47}\\
v=0.3 & , \quad p_{S}=0.000048, & \omega=9749.99 \mathrm{rad} / \mathrm{sec}
\end{array}
$$

wherein the corresponding wave number roots to the characteristic equation (20) are given by

$$
y=0.163949685 \quad \text { for the membrane root }
$$

and

$$
\begin{equation*}
\gamma=1.67707302 \text { for the flexural wave root } \tag{48}
\end{equation*}
$$

hence the membrane wavelength is 12.566 inches and the flexural wavelength is 3.7465 inches.

- flexural wave example

The shell termination dampers at cut B are computed upon substitution of the equation (48) flexural wave root into equations (27) to obtain

$$
\begin{equation*}
C_{\theta}=4.8819909 \quad C_{Q}=13.7309605 \quad C_{N}=14.0269417 \tag{49}
\end{equation*}
$$

and the shell edge forces, for an arbitrarily selected driven amplitude of $W_{0}=1.0 \times 10^{-6}$, at the driver cut end A are obtained by substituting the flexural wave root into equations (23) to obtain (supressing the exponential time factorwhere dampers are installed with DMIG cards):

$$
\begin{array}{ll}
\tilde{M}_{Z}^{A}=7.9827681 \times 10^{-2} & \tilde{Q} A=0.1338768 e^{i \pi / 2} \\
\tilde{N}_{Z}^{A}=6.175285 \times 10^{-4} \tag{50}
\end{array}
$$

The rotary inertia mass entries are computed with equation (46). The corresponding NASTRAN input is given in Figure 5 for reference purposes. The exact solution is a constant amplitude displacement wave varying as

$$
w=w_{0} e^{i(-\gamma z+\omega t)}
$$

Consequently, the exact solution is easy to plot and is simply a constant magnitude radial displacement of magnitude $W_{0}=1 \times 10-6$ and whose phase angle rolls off linearly with z and reploting with spatial period $2 \pi / \gamma$. The exact solution versus the NASTRAN solution is given in Figure 6 and shows good agreement betweer, the exact solution and the corresponding NASTRAN solution. Since the model element spacing is 0.16 inches, the solution model is a $23 \frac{k_{2}}{2}$ element per wavelength case. In order to investigate the influence of mesh size on solution accuracy, the same 3.2 inch model was run for two coarser meshes; one having 5 elements and the other having only 3 elements. The same dampers and edge loads are reapplied to the coarser models. The resulting solutions are shown in Figure 7 and as can be seen, the quality of the solution (i.e., the ability of the cylindrical shell to propagate flexural waves) has degraded over the finer mesh example, particularly for the three element shell.

DMIG
DMJG
DMIG
DMIG
OMIG
DMIG
DHIG
RIMGAX
RIWGAX
RIMGAX
PINGAX
pimgax
RIMgAX
PIMGAX
Pingax
PINGAX
RINGAX
RINGAX
pingax
mingax
mingax
gingax
pingax
RINGAX
Ringax
PIngax
PINGAX
PINGAX
CCDNEAX
CCnntax
CCONFAX
CCONEAX
CCONEAX
CCONEAX
CCONEAX
CCTnFAX
CCONEAX
CCONEAX
CCDNEAX
CCONFAX
CCONFAX
CCONEAX
CCONFAX
CCONEAX
DDat

MASS	1000014
MASS	1000015
WASS	1000016
MASS	1000017
MASS	1000018
MASS	1000019
MASS	1000020
MASS	1000021
1	
2	
3	
4	
5	
6	
7	
6	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
70	
71	
1	160
2	160
3	160
1	160
5	140
6	160
7	160
8	160
9	160
10	160
11	160
12	160
13	160
14	160
15	160
16	160
17	160
18	160
19	160
70	160

FIGURE 5. TWENTY ELEMENT CYLINDRICAL SHELL EXAMPLE DATA FOR FLEXURAL WAVE RUN

$\left(z / \lambda_{\gamma}\right)$; AXIAL COORDINATE NON-DIMENSIONALIZE BY FLEXURAL WAVE LENGTH
FIGURE 6. RADIAL SHELL DISPLACEMENT VS. AXIAL COORDINATE (FINE MESH)

$\left(z / \lambda_{\gamma}\right)$; AXIAL COORDINATE NON-DIMENSIONALIZED BY FLEXURAL WAVE LENGTH
FIGURE 7. RADIAL SHELL DISPLACEMENT VS. AXIAL COORDINATE (COARSE MESH) FOR 6 AND FOR 3는 FLEXURAL WAVE LENGTHS PER ELEMENT

Abstract

ORIGINAL PAGE IS OF POOR QUALITY

- membrane wave example

Again, the 20 element model is considered, except in this case, we propagate a membrane wave along the $+z$ direction of the same cylindrical shell considered for the flexural wave example. The procedureis exactly the same here, except that the membrane root (first of equations (48)) is employed to compute the shell termination dampers and driving moments and forces. Thus, substituting the membrane root into equations (27) and (23), the model dampers and edge loads are in this case:

$$
C_{\theta}=0.4772607 \quad C_{Q}=0.012828529 \quad C_{N}=143.484479
$$

and

$$
\begin{aligned}
& \tilde{M}_{Z}^{A}=7.6290549 \times 10-4 \quad \tilde{Q} A=1.2507811 \times 10^{-4} \mathrm{e} \mathrm{e} \pi / 2 \\
& \tilde{N}_{Z}^{A}=-29.909871
\end{aligned}
$$

The solution response for the dominant axial motion is plotted in Figure 8 and is non-dimensionalized with respect to the, U_{0}, axial wave amplitude magnitude (by equation (15), $\left|U_{0}\right|=21.37985 \times 10^{-6}$ when $W_{0}=1.0 \times 10^{-6}$). The radial deflection, non-dimensionalized with respect to W_{0}, is given in Figure 9. The quality of the solution is seen to be very accurate, as would be expected since the wavelength is substantially longer than the flexural wave example (e.g., $(2 \pi / .0163949) / 0.16=239 \frac{1}{2}$ elements per wavelength.

Submerged Cylinder Example (Flexural Wave)
Again, the same 20 element cylindrical shell is considered, except here, the shell is submerged in water (external water only where $c=60,000$. in/sec and $\rho=0.000096$). Substituting the equation (47) parameters into equation (7b), and solving for the wave number roots, it is found that

$$
\gamma=0.164124528 \quad \text { for the membrane root }
$$

and

$$
\begin{equation*}
\gamma=2.51631787 \quad \text { for the flexural root. } \tag{51}
\end{equation*}
$$

Comparing the second of equations (51) to the in vacuo wave number, it is noted that the presence of the fluid shortened the wavelength by a factor of $\approx 2 / 3$. Substituting the flexural root into equations (27) and (23), the model dampers and edge loads (for a $W_{0}=1 \times 10^{-6}$ shell amplitude) are given by

$$
C_{\theta}=7.32505101 \quad, \quad C_{Q}=46.3811654 \quad, \quad C_{N}=9.34867391
$$

and

$$
\begin{aligned}
& \tilde{M}_{Z}^{A}=0.179713448, \quad \tilde{Q}_{A}=0.452216160 \mathrm{ei} \mathrm{\pi} / 2 \\
& \tilde{N}_{Z}^{A}=2.7283602 \times 10-4
\end{aligned}
$$

In addition, the $z=L$ boundary cut damper is given through equation (40), the $r=r_{0}=43.2$ inch fluid boundary spring by equation (44) and the $z=0$ pressure loading by equation (31). The pressure values are enforced by applying the stiff spring approach, where the stiff spring constant is sized to be 1000

(z / λ_{γ}), AXIAL COORDINATE NON-DIMENSIONALIZED BY MEMBRANE WAVE LENGTH FIGURE 8. AXIAL SHELL DISPLACEMENT VS. AXIAL COORDINATE (FINE MESH)

times the regular pressure element stiffnesses and the applied force is the pressure times the stiff spring. The actual data input is shown in Figure 10 , where the obvious repetitive pattern to the numbering system of Figure 4 , permits us to leave out most of the grid coordinate cards, element cards, and fluid-to-structure DMIG connection cards while leaving behind representative examples of each kind. The resulting response for the radial deflection is plotted in figure 11 and the corresponding pressure in the fluid (at the surface of the structure) is plotted in Figure 12. Both the deformation and pressure are seen to track the exact solution closely. A graphical representation of the entire pressure field amplitude is shown in Figure 13 through employing the PATRAN fringe color plotting feature. Plotting data in this fashion shows bands of data having the same magnitude spread, as a single color. Narrow bands at the surface spreading outward radially to increasingly wider bands show the exponential type decay in the pressure field.

CONCLUDING REMARKS

The results in this paper demonstrate a procedure by which the NASTRAN computer program can be employed to check the ability of the NASTRAN program to model membrane and flexural waves existing in both in vacuo and submerged cylindrical shells and flat plates. The study is limited to a range of frequencies where rotary inertia and shear correction factors are not necessary to model the corresponding wave propagation. For the demonstration problems considered, the wave propagation ability of the elements considered appears to fall off rapidly, once lessthan 6 elements per wavelength are considered. For example, in the 6 element per flexural wavelength problem, the worse nodal point magnitude was in error by 12% for the radial deflection, whereas the error was 36.7% for the $3 \frac{1}{2}$ e? ement per wavelength example. It is recommended that the user make his own test with regard to mesh fineness necessary to achieve a particular level of accuracy. For example, when the propagating wave root is in the neighborhood of a cutoff frequency (i.e., a condition where no propagating wave exists), finer meshes than experineced in the demonstration considered in this paper may be needed. For most cases experienced by the authors, however, 10 elements per wavelength appears to provide good results for properly modeling the wave propagation for flexure and membrane waves in the kinds of elements considered herein.

FIGURE 10. TWENTY ELEMENT SLBMERGED SHELL EXAMPLE DATA FOR FLEXURAL WAVE RUN

FIGURE 12. SURFACE PRESSURE VS. AXIAL COORDINATE FOR $15 \frac{1}{2}$ FLEXURAL WAVE LENGTHS PER ELEMENT (SUBMERGED SHELL)

REFERENCES

1. Flugge, W., Stresses in Shells, Springer-Verlag, 1962.
2. Junger, M. C., and Feit, D., Sound, Structures, and Their Interaction, MIT Press, Cambridge, 1972.
3. Kalincwski, A. J., and Nebelung, C. W., "Solution of Axisymmetric Fluid Structure Interaction Problems", Tenth NASTRAN User's Colioquium, NASA Conference Publication 2249, May 1982.
4. Midlin, R. D., "Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates", Journal of Applied Mechanics, March 1951.
5. Abramowitz, M., and Stegun, I. A., Handbook of Mathematical Functions, National Bureau of Standards, June 1964.
6. Zienkiewicz, 0. C., The Finite Element Method. (3rd Edition), McGraw-Hill Book Company, 1977.
7. Pica, A., and Hinton, E., "Transient and Pseudo-Transient Analysis of Mindlin Plates", International Journal for Numerical Methods in Engineering, Yol. 15, 1980.
8. Cook, R. D., "Remarks About Diagonal Mass Matrices", International Journal for Numerical Methods in Engineering, Vol. 17, 1981.

N84'15603

dynamic certification of a thrust -measuring
SYSTEM FOR LARGE SOLID ROCKET MOTORS*
R. A. LeMaster and R. B. Runyon Sverdrup Technology, Inc./AEDC Group

INTRODUCTION

The J-4 Rocket Test Cell and its Thrust Measuring System (TMS) at Arnold Enginearing Development Center (AEDC) were modified to provide multicomponent force measurement of large solid rocket motors having nozzle gimbaling capability. To verify the structural integrity of a combined TMS and motor system, a large finite element model of the TMS and motor was developed using the MSC/NASTRAN computer program. Due to the importance of obtaining accurate estimates for the dynamic force levels, it was necessary to certify that the model adequately simulated the physical system. This was accomplished by performing a modal analysis test on the TMS and motor combination. The objectives of this paper are: (1) to discuss the physical characteristics of the TMS and motor that influence the MSC/NASTRAN model; (2) to compare the frequency response characteristics computed using the MSC/NASTRAN model to those obtained from the modal analysis test; (3) to discuss the experiences gained in modal analysis testing; and (4) to demonstrate how state-of-the-art expermental and analytical methods are used in the design of ground test facilities.

Due to economic and/or time constraints associated with performing experimental investigations on large, complex structures, the structural analyst raiely has the opportunity to determine how well his finite element representation simulates the characteristics of the actual structure. Finite element calculations have been shown to agree vary well with experimental data for simple components. However, little data is available concerning how well they agree for complex structures comprised of many components. Since the TMS and motor combination are comprised of structural components from aerospace, mechanical, and civil engineering disciplines, the methods, results, comparisons, and conclusions drawn from this activity will be of interest to the dynamics and structures community in general.

In the following sections, descriptions of the TMS, finite element model, and modeling assumptions will be given in conjunction with the analysis methods. Subsequant sections will discuss the experimental effort and compare the experimental data to the computed results.
*
The work reported herein was performed by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC). Work and analysis for this research were done by personnel of Sverdrup Technology, Inc., operating contractor of the AEDC Engine Test Facility. Further reproduction is authorized to satisfy the needs of the U. S. Government.

During simulated altitude testing, the motor is restrained by a large fixture which is referred to as the Thrust-Measuring System. The TMS is designed to react and measure the six components of thrust developed by the motor, and is rited at $2.2 \mathrm{MN}(500,000 \mathrm{lb})$ axial force and $222.2 \mathrm{kN}(50,000 \mathrm{lb})$ side force. The 7 li is very massive, using eight $W 36 \times 400$ beams to react the primary forces. The location of the TMS within the J-4 Rocket Test Cell is shown in figure 1. Figure 2 shows the main thrust stand structure prior to installation in the test cell.

During testing, the TMS is required to withstand large dynamic forces created by ignition and gimbaling transients. The magnitude of the dynamic forces may be several times the static values and is a function of the motor dynamics and its interaction witt the TMS.

The IMS contains a large number of structural connections, many of which contain secondary members which intersect with primary memhors at odd angles. In f.eneral, the depth of the secondary members is significantly less than that of the prinary member, and the secondary members are welded only to the flange or web of the frame member. Consequently, the mechanical behavior of the sonnections is quite complex. Three typical connections are shown in figures 3 a , b , and c .

Figure 3a shows one of eight connections where the main thrust-measuring system structure connects to a $3.048-\mathrm{m}$ (10 ft) support column. The support column is made from $0.91-\mathrm{m}$ (36 in.)-diameter thick-walled pipe and has longitudinal stiffeners located every 36 deg arcund its circumference. As seen in figure 3a, several secondary support and bracing members attach to the main girder and intersect it at cdd angles at various locations (i.c., flange or web). Since the secondary member intersecting the main girder web is much smaller than the max.l girder, the plate behavior of the main girder web will influence the stiffness of the connection.

Figure 3 b shows another connection used several times in the TMS. Again, note the relative size of the main girder and secondary member; the plate behavior of the web will influence the connection stiffness characteristics. Also shown in figure 3b is a typical triaxial strain gage accelerometer and mounting block installation. The orientation and positioning of the accelerometers and mounting blocks are discussed in a subsequent section.

Figure 3c shows anoth 冫r typical connection in which the secondary members intersect the main girder at odd angles, and are much smaller than the main girder. Clearly, the load-deflection behavior of these connections will be quite complex.

FINITE ELEMENT ANALYSIS

Experience has shown that significant dynamic interactions may develcp during ignition and gimbaling transients. The magnitudes of the dynamic interactions are influenced by coupling between the vertical and lateral motion of the TMS as it responds to the load transients. Therefore, it is necessary that the complicated modes of vibration characterizing the TMS be adequately defined.

A large finite element model of the TMS and motor combination was developed using the MSC/NASTRAN computer program. The finite element model of the TMS (shown
graphically in figure 4) is comprised primarily of beam elements. Truss elements were used to represent the load-measuring column behavior; the flexures were treated as pinned connections. Experimentally obtained axial stiffness coefficients for the load-measuring columns were used to establish the equivalent properties of the truss elements.

The magnitude of the effort required to model the connestions using threedimensional continuum or plate elements dictated that assumptions be made regarding the kinematic behavior of the connections. It was often necessary to idealize a connection as being either fixed or pinned; in some cases linear constraint equations were written to describe the kinematic behavior of the connections. This type of connection idealization is universally used in the day-to-day application of finite element programs to the analysis of frame structures; it is also one of the more significant approximations. In later sections, the impact of the connection modeling assumptions will be discussed in light of the accuracy of the computed modes.

Mass and stiffness matrices of the solid rocket motor were obtained from the motor manufacturer and added to the structural model of the TMS. The case of the motor was represented using shell elements, and the propellant was represented by three-dimensional, continuum-type elements. A simplified material representation of the propellant was used which represented its anticipated frequency response characteristics. However, the viscous character of the propellant was not considered.

The motor and TMS models were combined using standard substructuring methods (references 1 and 2). Since the two models were developed by two different companies, it was not possible to use the automated substructuring teckniques available in the MSC/NASTRAN computer program. Therefore, the partitioning and merging matrix operations necessary to combine the two models were implemented through direct matrix abstraction program (DMAP) modifications to the appropriate rigid format solution modules. The partitioning vectors for both the motor and TMS matrices were supplied as input in the bulk data decks. The mass and stiffness matrices representing the motor were transmitted to and from permanent disc storage using the INPUT4 and OUTPUT4 IO modules.

The combined TMS and motor model was used to compute the first thirtv natural frequencies and mode shapes of the system. The system response to various excitation sources was obtained through superposition of the modal responses. To make the analysis more manageable, the integration of the uncoupled equations and the subsequent summation of the modal responses were performed outside of NASTRAN, using in-house software as illustrated in figure 5. Using this technique, stresses were obtained in an interactive manner on an element-by-element basis. When it was determined that the stress history in a particular element was required, the stress-displacement matrix for that element was created using the geometric and material data from the NASTRAN bulk data deck. The appropriate modal displacements were subsequently determined using the eigenvalues and time histories of the generalized coordinates; the appropriate stresses were then computed. This technique proved to be very efficient and significantly decreased the amount of peripheral storage required to retain the dynamic stress and displacement histories. The only quantities saved were the time histories of the generalized coordinates and the mode shapes, or eigenvectors. It was also very convenient since the analyst did not have to specify which displacements and stresses he wished to have printed out or retained prior to executing the actual analysis (as required by many finite
element programs). This method also significantly reduced royalty costs associated with using MSC/NASTRAN, since NASTRAN was used only to assemble the component matrices and compute the natural frequencies and mode shapes; all remaining computations were performed outside of NASTRAN.

EXPERIMENTAL MODAL SURJEY

In recent years an impact testing technique commonly referred to as "modal analysis testing" has been developed which enables the natural frequencies and modal properties of a system to be determined experimentally. In addition, the mode shapes may be displayed in animated motion on a graphics computer terminal. The modal analysis methods enable the structural analyst to study a particular node of the structure and to compare the frequency and mode shape to those obtained from a finite element analysis. In addition, the damping associated with a particular mode can be obtained and used as input to the finite element model. One benefit of the modal analysis method is that it provides experimental data in a form directly compatible with the results of a finite element analysis. The analyst may then evaluate which modes are accurately represented, and may gain insight as to how the finite element model may be improved.

Modal testing requires both the excitation and the response of the structure to be recorded. The excitation and response time histories are transformed to the frequency domain, and the frequency response function relating the response to the excitation is obtained. The selective acquisition of a family of frequency response functions having a common excitation point enables the modal parameters of the structure to be obtained. For detailed treatments on modal analysis methods, the interested reader is referred to references 2 through 10 .

To adequately define the complicated mode shapes of the TMS and the motor combination, three-dimensiunal accelerometer readings were required at 54 different locations on the structure. This resulted in having accelerometer response data at almost every major connection on the structure (figure 6). An actual motor having an inert propellant was used to insure that the dyn.mic characteristics of the motor were properly represented.

The quality of the modal analysis results is directly proportional to the quality of the excitation and respense time history data. A major problem at the onset of the modal analysis effort was to determine how to excite the structure to such an extent that the low-frequency response ($1-30 \mathrm{~Hz}$) of the structure could be measured. It is a relatively easy matter to excite the high-frequency modes of a structure, but to adequately excite the low-frequency modes of massive structures is not as simple. In addition, a time constraint required that the modal testing be completed within a short time, including instrumentation and hardware setup.

$$
\text { Impact Method No. } 1
$$

Two different instrumentation and impact device configurations were tried. The basic idea behind the first setup was to obtain accelerometer response data at as many locations as possible for each impact. The advantage of this approach is that it enabled the experimental data to be obtained quickly. A major disadvantage is that every channel of the data cannot easily be visually inspected on an oscilloscope as the data are being recorded. Therefore, it is not known until the data
are being reduced whether all ciannels contain good data.
Accelerometers available for this test were in the 5 - and $10-6$ range and were of the strain gage type. Computations performed using the finite element representation of the structure indicated that a $400-\mathrm{kN}(90,000 \mathrm{lb}$) impact force would be required to excite the low-frequency modes sufficiently to obtain a good signal. A device designed to deliver the impact force, shown in figure 7, conststed of a pendulum having a swing radius of $3.048 \mathrm{~m}(10 \mathrm{ft})$. The pendulum bob [a $10.16-\mathrm{cm}$ (4 in.)-diam by $60.96-\mathrm{cm}$ (24 in.)-long steel cylinder] was allowed to swing free and impact on the anvil containing a quartz force ring; it was manually caught on rebound to prevent multiple impacts. The pendulum impact device was designed to excite modes having a significant participation in the lateral direction.

Several problems were encountered which limited the usefulness of the pendulum impact device and associated instrumentation. These are listed below:

1. The impact device did not yiell clean impulse time domain profiles and corresponding frequency spectra. Discontinuities in the impact anvil and force ring assembly resulted in partial reflection of the impact force, and the "hammer" chattered with the anvil surface during contact. Details of the anvil assembly are shown in figure 8.
2. Instrumentation problems prevented obtaining good data on all recorder channels for a given impact.
3. The accelerometers we'e not sensitive enough to obtain good signal-tonoise ratio signals.

Imnact Method No. 2
To overcome the problems encountered with the high energy impact setup, a commercially available instrumented sledge hammer and a high sensitivity seismic accelerometer, shown in figure 9, were used. The sledge hammer is capable of developing up to a $22-\mathrm{kN}(5,000 \mathrm{lb}$) impact load, and provided a flat impulse spectrum over the frequency range of interest. The seismic accelerometer has a rated sensitivity down to $10^{-6} \mathrm{G}$, and weighs approximately one-half kilogram (one pound). Response data obtained using this hardware were on the order of $10^{-3} \mathrm{G}$. Compared to the first impact device, the instrumented sledge hammer provided a relatively low level energy input into the system.

The data were obtained using a roving accelerometer procedure in which a single accelerometer was moved to the various response locations; the impact location was considered the reference point throughout the modal analysis. To obtain accelerometer response data in three orthogonal directions of each data location on the structure, it was necessary to install mounting blocks at each location. The mourting blocks were fabricated to provide a flat surface perpendicular to each of the three measurement directions. A typical mounting block is shown in figure 3b, with a triaxial accelerometer mounted on its top face.

Since only one single-axis high sensitivity accelerometer was available, it was necessary to relocate the accelerometer in each of the three measurement directions at each measurement location. This was the most time-consuming operation of the entire job. Tc ensure that all modes of the structure had been excited,
three different impact points having different impact directions were utilized. All three impact points were located on the aft firing ring of the motor.

This method requires considerably more time than the previous method. However, since only one pair of response and impact time signals was being recorded simultaneously, it was possible to view both the input and response signals on an oscilloscope as they were being recorded. This made it possible to ensure that good data were obtained at each response location. This proved to be a very important feature.

COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS

A comparison of the computed and experimentally determined frequencies and mode shapes is shown in Table I. As seen in Table I, the frequencies and general shape of the modes agreed very well for most of the modes. An evaluation of the results of this comparison shows that the finite element model was capable of computing those modes which were associated with the load-measuring columns and motor combination. In addition, the shell-type modes of the motor were represented well. However, modes controlled by the accumulated flexibility of the large structural beam connections (4, 5, and 8 of Table I) were not in good agreement.

CONCLUSIONS

This investigation concludes that state-of-the-art structural analysis computer programs such as NASTRAN can be used to successfully represent the dynamic characteristics of large thrust-measuring systems. The finite element model must include accurate representations of all major componente comprising the system (i.e., thrust butt, load-measuring columns, motor, and propellant). However, it was also observed that the finite element models of frame structures which utilize kinematic constraints to represent complex connections may not represent all modes of the structure accurately. Fortunately, for the situation under consideration, the inacrurately represented modes did not contribute significantly to the response of the critical members.

The dynamic certification effort was considered successful since the experimental data indicated that the dominant modes expected to respond to the ignition and gimbaling transients were adequately represented by the combined finite element model of the motor and TMS.

The modal analysjs results identified areas in the TMS which were "dynamically sensitive," and a cart ul review of the animated mode shapes suggested design changes which would improve the dynamic characteristics of the TMS.

The commercially available instrumented sledge hammer and seismic accelerometer combination provided the highest quality data, and enabled the data to be reviewed as it was being taken. The ability to inspect the data in the field proved to be very desirable when this type of experiment is performed. It was concluded that relatively low input force levels can be used to excite the lowfrequency modes of massive structures by tuning the impact spectrum of the hammer.

The quality of the animated mode shape displays was adequate to determine the basic motion of the structure. However, in most cases one or more of the
points in the animated display of the structure were in obvious error. In addition, it was difficult to discern exactly how the structure was deforming during some of the higher frequency modes.

Modal testing is a valuable tool for discerning the adequacy of a finite element representation, and can be successfully applied to very large structures used in ground test facilities.

REFERENCES

1. Przenieniecki, J. S.: Theory of Matrix Structural Analysis. McGraw-Hill, 1968.
2. Bathe, K. J. and Wilson, E. L.: Numerical Methods in Finite Element Analysis. Prentice-Hall, 1976.
3. Kennedy, C. C., and Pancu, C. D. P.: "Use oi Vectors in Vibration Measurement and Analysis." Journal of the Aeronautical Sciences, Vol. 14, No. 11, November 1947, pp. 603-625.
4. Pendred, J. W. and Bishop, R. E. D.: "A Critical Introduction to Some Industrial Resonance Testing Techniques." Journal of Mechanical Engineering Science," Vol. 5, No. 4, 1963, pp. 345-36́7.
5. Klosterman, A. L.: "Determining Dynamic Information by Use of Vector Components of Vibration." M.S. Thesis in Mechanical Engineering, University of Cincinnati, 1958.
6. Klosterman, A. L.: "On the Experimental Determination and Use of Modal Representations of Dynamic Characteristics." Ph.D. Dissertation, University of Cincinnati, 1971.
7. Brown, D. L.: "Grinding Dynamics." Ph.D. Dissertation, University of Cincinnati, 1976.
8. Halversen, W. G. and Brown, D. L.: "Impulse Technique for Structural Frequeiries Response Testing." Sound and Vibration, November 1977, pp. 8-21.
9. Tomlinson, G. R. and Hibbert, J. H.: "Identification of the Dynamic Characteristics of a Structure with Coulomb Friction." Journal of Sound and Vibration, Vol. 64, No. 2, 1979, pp. 233-242.
10. Goyder, H. G. D.: "Methods and Application of Structural Modeling from Measured Structura? Frequency Response Data." Journal of Sound and Vibration, Vol. 68, No. 2, 1980, pp. 209-. 230.

Figure 1. Thrust-Measuring System Installation

Sulivno yood to
SI 3Ovd 7vNimigo

Figure 2. Thrust-Measuring System, Main Structure Pre-Installation

a. Lower frame connection

Figure 3. Details of Major Structural Connections

b. Mia frame 90-dieg corinection

Figure 3. Continued

c. Mid frame double connection

Figure 3. Concluded

Figure 4. NASTRAN Finite Element Geometry Plot

Figure 5. Flow of Information During Computational Study

ORIGINAL PAGE IG
OF POOR QUALITY

Figure 6. Accelerometer Locations, Elevation View, Pitch Plane

Figure 7. High Energy Impact Device Installation

Figure 8. Impact Anvil Details

Figure 9. Impact and Measurement Devices

Table I. - Experimental and Computed Natural Frequencies

MODE NUMBER	$\begin{gathered} \text { EXPERIMENT } \\ (\mathrm{Hz}) \end{gathered}$	$\begin{aligned} & \text { COMPUTED } \\ & (\mathrm{Hz}) \end{aligned}$	DESCRIPTION OF MODE SHAPE
1	5.2	5.2	First lateral mode of motor in yaw direction.
2	5.6	5.6	First lateral mode of motor in pitch direction.
3	6.5	6.9	First rotational mode of inotor.
4	7.5	*	Out-of-phase bending of inner thrust butt girders.
5	8.8	16.4	Breathing motion of thrust butt girders.
6	10.8	11.9	Vertical motion of motor on axial load column.
7	12. 2	12.7	Second lateral mode of motor in yaw direction.
8	13.4	18. 1	Out-of-phase bending of thrust butt main girders.
9	14.0	14.7	Second lateral mode of motor in pitch direction.
10	18.2	18.2	Lateral bending of X bracing and first bending mode of motor.

[^3]
$D_{14} \quad$ N84 15604

DETERMINATION OF ELEVATOR AND RUDDER HINGE FORCES
ON THE LEARJET MODEL 55 AIRCRAFT
Robert R. Boroughs and Viswa Padmanabhan Gates Learjet Corporation

SUMMARY

The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was usod to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effect.s of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis have been described in the following paragraphs.

INTRODUCTION

Features in the 55 empennage cection that were identical to previous Learjet models included the horizontal taii, elevators, and the upper portion of the vertical fin and rudder (see figure 1). The most significant change in the empennage occurred in the lower portion of the vertical fin and rudder which were expanded using the same taper ratio and airfoil contour as the upper portion so that the total height of the vertical fin and rudder was increased by approximately 15 inches. Since the vertical tail increased in size and the vertical fin spar depths and spacings changed at the intersection with the tailcone, an entirely new tailcone section was designed to support the empennage section. Control systems for the elevators and rudder were nearly the same as the previous controls in this area with the exception of the 15 inch height increase in the vertical tail and the geometry changes in the tailcone.

Construction in the vertical tail consisted of five spars and eight ribs made of bent up aluminum sheet metal covered with an aluminum skin. The rudder was assembled with one spar, eleven ribs, and a thin skin cover, all of which were aluminum sheet metal fabrication. Support for the rudder was accomplished through three hinge points. Two of these hinges, the top and center attachments, connected the rudder leading edge to the rear spar of the vertical stabilizer while the third hinge point, or bottom support, was attached to the aft side of frame 48 through a torque tube and bracket support assembly (see figure 2). Near the lower end of this torque tube was mounted a bellcrank assembly which provided the means for actuating and controlling the rudder surface.

Structural arrangement of the horizontal tail included a forward and rear spar with three intermediate stringers on both the upper and lower surfaces, seven ribs per side, and upper and lower skin panels. The elevators were one spar airfoil sections with nine ribs per side which were covered with an aluminum skin. Each elevator was attached to the horizontal stabilizer by three hinge points along the elevator leading edje. The itp and center span iinges both connected directly to the rear spar of the horizontal stabilizer, but the inboard hinge attachment was very similar to the lower hinge on the rudder. The elevator inboard hinge consisted of a torque tube assembly which was supported at the horizontal stabilizer rear spar and aircraft center line by a bracket assembly. This bracket installation served as a support for both the right hand and left hand elevators at the inboard end (see figure 3). Actuation and control of the elevators v:as achieved through individual belicranks on the inboard end of each torque tube. These bellcrank assemblies were then connected by a push rod linkage system which extended through the vertical stabilizer to a control system sector in the fuselage tailcone.

SYMBOLS
$B_{i} \quad X, Y$, and Z components of a point on the Z axis for a CORD2R card e rotation about the Y axis for element internal forces
$C_{i} \quad X, Y$, and Z components of a point in the $X-Z$ plane for a CORD2R card
$F_{\text {iE }} \quad$ internal force component
$H_{G} \quad$ coordinate values of a deflected control surface transformed to the basic system
H. coordinate values of a deflected control surface in a local system
$H_{\lambda} \quad$ coordinate values corrected for hinge line sweep
$H_{\theta} \quad$ coordinate values corrected for control surface rotation
$\lambda \quad$ hinge line sweep
T入 transformation matrix for hinge line sweep
To transformation matrix for control surface rotation
y second coordinate of a point in a local rectangular system
third coordinate of a point in a local rectangular system
x first coordinate of a point in the basic rectangular system
y second coordinate of a point in the basic rectangular system
$Z \quad$ third coordinate of a point in the basic rectangular system

BACKGROUND

Since the Model 55 empennage structure was very similar to the Model 35/36 empennage structure and other earlier empennage structures, Learjet was faced with the situation on the 50 series development program of determining which structural items were qualified by previous certification tests and which structural items needed to be requalified. ihe vertical tail and tailcone support structure was obviously one area which had to be qualified by structural test, since the height of this component had been increased on the 50 series aircraft. A portion of the NASTRAN analysis on that structure has been detailed in NASA CP-2151 (see ref. 1) and consequently has not been addressed in this cext. However, a description of the NASTRAN analysis performed on the rudder and rudder hinges was not covered in that document and has been incorporated in the body of this paper.

A review of the loads for the 50 series aircraft helped to further clarify some of these questions, but for some structural components the answer was not obvious and more study was necessary. One area where this was particularly true was the horizontal tail installation. This situation was mainly due to a revised loads definition for the horizontal tail where the combination of new loads was not directly comparable to the older load conditions. Also, a faster method was needed for calculating elevator hinge forces for the various load conditions and deflected elevator configurations. Previously, hinge forces had been calculated using methods which were very tedious, time consuming, and not very adaptable to changes in elevator position.

To help clarify these questions a NASTRAN analysis was performed on the empennage structure for the various load conditions and control surface positions so that a comparison could be made between the deflections, stresses, and internal loads on the 55 empennage with the $35 / 36$ empennage. Previous structural tests had demonstrated that the horizontal stabilizer and elevators on the $35 / 36$ aircraft had the capability to sustain 150% of ultimate load (not limit load) for two of the more critical conditions on that airplane. The 150% of ultimate load tests were performed to more accurately define the strength of the horizontal stabilizer and elevators as well as establish the groveth capability of this structure. Consequently, a portion of the NASTRAN aneiysis was spent simulating the $35 / 36$ load conditions in order to establish a baseline for the 50 series analysis. Then the 50 series loads were applied to the NASTRAN model and a comparison was made between these data and the $35 / 36$ data. Using this approach learjet was able to more clearly define which elements were qualified by previous certification tests and which members, if any, need to be qualified in the 50 series substantiation program. This data base would also help to establish what componerits needed to be quaified in future growth versions and/or modifications to the existing configuration.

The NASTRAN mudel used to represent the empennage section included the vertical stabilizer, rudder, horigontal stabilizer, elevators, and tailcone section (see figure 1). The tailcone was utilized in the model to more accurately describe the flexibility and stiffness of the vertical tail, since the spars from the vertical tail extended into and were attached to the tailcone. A significant portion of the control system connecting the rudder and elevators was also modeled to more accurately define the effect of control system flexibility on the deflection of the control surfaces and hinge forces.

Since this structure was geometrically quite complex, multiple local coordinate systems were used to simplify the modeling and to make the analysis easier to perform for the different control system deflected configurations. Each frame in the tailcone section was modeled in a local cylindrical coordinate system while the vertical fin and horizontal stabilizer were modeled in a local rectanguldr coordinate system. The rudder and elevators were all modeled in local rectangular systems with the Y axis of each coordinate system defined along ti.e hinge line. This type of coordinate system definition permitted the rotation of each control surface about the hinge line by simply transforming the CORD2R card (see ref. 2) rather than changing all of the grid point coordinates in the control surface to reflect the deflected position. Rotation of the control surface about the hinge line thus permitted the calculation of hinge forces for various control surface movements. This technique also facilitated a study of vertical fin and horizontal stabilizer internai forces and stresses for various control surface positions.

The model for this structure was approximately 5700 degrees of freedom in size with 950 nodes and 2800 elements. Local coordinate systems totaled seventeen which consisted of both rectangular arid cylindrical reference systems. Since the results of previous static tests had indicated that skin panel buckling was present, a buckling analysis was implemented to identify buckled skin panels and to simulate this non-l inear phenome. on in the NASTRAN analysis (see ref. 3). This buckling simulation was achieved by replacing the original skin thickness of the buckled panel with an effective skin thickness which represented the stiffness of the buckled configuration. The buckling analysis and effective skin thickness calculation were performed by a computer program which was set up to run as a post processor to the NASTRAN program. This process generally had to be repeated several times in order to obtain a convergent solution. A more detailed description of the theory behind this analysis has been presented in NASA TMX 3428 and further discussion will not be covered in this text.

TAILCONE

Incorporation of the tailcone section with the empennage model was done to more accurately define the stiffness relationship betwean these two components. Representation of the tailcone section included the structure from frame 39 to frame 48 (see figure 1). The modeling of this structure was accomplished by defining the grid points at each frame and stringer intersection in a lucal cylindrical coordinate system in the plane of the frame using CORD2C cards (see ref. 2). NASTRAN members used to model this structure were BAR elements for the frames,

COR：ROn pleme．．：f．
doublers．A baggage uuv wi ぃぃ ルぃ miu siue ut the tallcone did nüt have sig－ nificant structural carry through capability and was omitted to conserve degrees of freedom．The kecl beam structure that extended from frame 39 to 41 in this section was modeled using CONROD elements for the caps，SHEAR elrments for the side webs，and QDMEM2 elements for the horizontal webs．

VERTIChL TAIL

Two separate local rectangular cocrdi，iate systems were used to facilitate the definition of grid point locations in the vertical fin and rudder（see figure 2）． The local rectangular coordinate system for the vertical fin was defined using a CORD2R card with the origin located on the center line of the airplane at the inter－ section of the vertical tail leading edge and the tailcone upper surface．The x axis was defined as positive aft，the Y axis was defined as positive up，and the Z axis was defined as positive left hand outboard．The local rectargular coordinate system for the rudder was defined using a CORD2R cara with the origin on the rudder hinge line at the lower end of the rudder torque tube．Urientation of the v axis was positive aft and slightly down（for zero degree rucider deflection），the Y axis was positive up along the rudder hinge line，and the Z axis was positive left hand outboard．

Grid points were located at the intersection of the spar caps and rib caps on both the right hand and lef＋hand outer contours of the vertical tail．The spar caps in the region of the fuselage frames were modtind using BAR elements while the remainder of the spar caps and rib caps were simulated by CONROD elements． Skin panels were represented by QDMEM2 members，although there were some triangu－ lar，TRMEM，membrane elements used to describe intricate corners．SHEAR elements were used to represent ihe spar and rib webs．

Attachment of the rudder to the vertical fin was accomplished through two hinges from the aft spar of the verticai fin to the leading edge of the rudder． The hinge model consisted of a framework of eight CONRODs that connected the hinge point to a rudder rib on the aft side and to a vertical fin rib on the forward side．The first group of four CONRODs，or the aft hinge，connected the hinge point to four points on the adjacent rudder rib，while the second group of four ：ONRODS， or the forward hinge，connected the hinge point to four grid fcints on the adjacent vertical fin rib（see figure 2）．This method of modeling facilitated an easier computation of hinge luads through a resolution of forces in the CONRODs into forces in a predefined coordinate system by using a series of transformation equa－ tions．The torque load in the rudder was restrained by a bellcrank mounted on a torque tube whose axis coincided with the hinge line of the rudder．This torque tube was attached to the bottom of the rudder on one end and to a bracket support on the aft side of frame 48 on the other end．BAR elements were used to model the torque tubes and the bellcrank assembly which actuated and controlled the rudder rotation at the bottom of the torque tube．Modeling of the bracket support on frame 48 was accomplished using CONRODs for the stiffeners and QOMEM2 membranes for the webs．

The horizontal tail consisted of the horizontal stabilizer and right hand and left hand elevators. Attachment of the horizontal stabilizer to the vertical fin was accomplished through a hinge point on the top of the vertical fin between spars three and four and a screwjack attached to the horizontal stabilizer apex and spar two of the vertical fin. Rotation of the horizontal tail could then be achieved through actuation of this screwjack. The elevators were attached to the rear spar of the horizontal stabilizer through three hinges on each side.

Three separate local rectangular coordinate systems were created using the CORD2R facility in NASTRAN to model the horizontal tail structure. These local coordinate systems were used to describe the horizontal stabilizer, right hand elevator, and left hand elevator. Layout of the horizontal stabilizer local rectanguiar coordinate systems was established with the origin located at the hnrizontal stabilizer apex with the X axis positive aft, the Y axis positive left hard outboard, and the Z axis positive down. Orientation of the left hand elevato local rectangular coordinate system was defined with the origin at the intersection of the hinge line and aircraft c:ater plane with the X axis perpendicular to the hinge line and positive $a^{f} t$, the Y axis coincident with the hinge line and positive left hand outboard, and the Z axis perpendicular to the $X-Y$ plane and positive down. The right hand elevator local rectangular coordinate system was similar to the left hand elevator with some differences in positive axes directions. The origin for the right hand elevator cuordinate system was the same as the left hand elevator; however, the X axis was perpendicular to the right hand hinge line and positive forward, the Y axis coincided with the right hand hinge line and was positive right hand outboard, and the Z axis was perpendicular to the $X-Y$ plane and was positive up. One important advantage of the separate coordinate systems for the elevators was the ease and improved flexibility of analyzing the elevators and horizontal stabilizer with the elevators in various deflected positions.

Grid points in the horizontal tāil were specified in relation to the appropriate coordinate system depending on whether the point his in the horizontal stabilizer, right hand elevator, or left hand elevator. : ocation of the grid points was defined by the intersection of the spars and stringers with the ribs and hy the exterior contour. As in the vertical fin, the spar caps, stringers and rib caps were represented by CONRODs, the spar and rid webs were SHEAR elemeits and the skin panels were modeled using QDMEM2 and TRMEM members in the horizontal stabilicer wrile QUAD2 and TRIA2 elements were used in the elevators. BAR elements were used to simulate the elevator trailing edges.

Attachment of the elevators to the horizontal stabil= ar rear spar was accomplished by three hinges on each elevator. These hinges were designated by the spanwise location and were referred to as the inboard hinge, center hinge, and tip hinge (see figure 3). The center and tip hinges were modeled as a framerork of eignt CONRODs that connectec the hinge point to an elevator rib and a horizontal stabilizer rib. The first group of four CONRODs, or aft hinge, connected the hinge point to four grid points on an elevator rib, while the second group of four CONRODs, or forward hinge; connected the hinge point to foui gitu jüinis un a horizontal stabilizer rib (see figure 3). The torque load on the elevator was reacted by a belicrank mounted on a torque tube whose axis coincided with the elevator hinge line. There were two of these bellcrink/torque tube assemblies, one for each side. The torque tube attached to the elevator on the tube's outboard
end and to a bracket support mounted on the horizontal stabilizer's rear spar on the airplane center line on the tube's inboard end. Both torque tubes and bellcranks were modeled using BAR elements, while the center line bracket support assembly was modeled using CONRODs.

CONTROL SYSTEM

A portion of the control system connecting the rudder and elevator has also been included in the modeling of the empennage section to more accurately define the effect of control system stiffness on the deflection of these control surfaces and in particular the associated hinge forces. Rudder motion on the Learjet M55 aircraft was accomplished by rudder pedal movement which was transferred by a closed loop cable assembly which drove a bellcrank mounted on the rudder torque tube (see figure 4). The aft portion of this cable system was included in the finite element moael and was represented by CONROD elements with the side of the closed loop cable system that was not in tension removed. The CONROD elements representing the cables were extended into the tailcone section where the forward end of this member was attached to a pulley which was restrained against rntation.

Elevator deflection on this aircraft was achieved by control column movement which was transferred through a closed loop cable assembly and a push-pull rod linkage system. The upper portion of the push rod system consisted of two round tubes which were attached to the bellcranks on the left and right elevators respectively. The other end of these two push roas were joined to a down spring linkage mounted on the aft side of spar three in the vertical fin. A single round tube was used in the lower portion of the push rod system. This shaft was connected to the down spring linkage on the top end and to a sector on the bottom end (see figure 5). The portion of the elevator control system that was included in the empennage model consisted of the elevator bellcranks, upper push rods, down spring linkage, and lower push rod which was constrained at the lower end for the NASTRAN analysis. The grid points that defined the top and bottom points of the lower push rod were defined in separate local cylindrical coordinate systems. This was done so that these grid points could be moved with the elevator motion by using a simple set of transformation equations. The push-pull rods were modeled with CONRODs, whereas the bellcranks and down spring linkage were represented by an assemblage of BAR elements.

The horizontal stabilizer rotation about the hinge point between spar three and four on top of the vertical fin was achieved by a screwja:k actuator attached to the horicontal stabilizer apex. A BAR element was used to represent the screwjack. One end of this BAR element was attached to a fitting on the forward side of spar two in the vertical fin, and the other end was connected to a fitting mounted on the horizontal stabilizer center line. The fittings that attached the screwjack actuator at both ends were also modeled using BAR elements.

Many different load conditions were analyzed using the NASTRAN empennage model. A correlation analysis was performed on the horizontal tail using a positive gust with top roll moment load condition from the $35 / 36$ fatigue test spectrum. This load case was selected basically because earlier tests did not have sufficient instrumentation to perform a correlation analysis, and this particular case was one of the higher load conditions in the $35 / 36$ fatigue test spectrum. Since the correlation analysis for the vertical tail was described in a previous NASA paper (See ref. 1), the results of that work were not presented here. The analysis of the Learjet 55 vertical tail described in this paper was directed mainly at rudder hinge force calculations. The load case applied to the vertical tail for these rudder hinge force calculations was a maximum side bending with rudder kick load condition.

NASTRAN runs were made for all of the $35 / 36$ horizontal tail static test loads. These conditions were run in order to establish a baseline for the Model 55 analysis so that a letermination could be made as to whether any of the 55 horizontal tail internal loads and stresses exceeded those on the $35 / 36$ horizontal tail. Since some of the $35 / 36$ load casts were tested to 150% ultimate load, there was good reason to believe that the 55 horizontal tail load conditions were covered by the previous $35 / 36$ static tests. The $35 / 36$ loads were applied to the horizontal stabilizer and elevators with the elevators in the neutral, or undeflected position, the 15° up position and the 15° down position. The loads definition for the Model 55 horizontal tail was somewhat different from the $35 / 36$ horizontal tail. There were many inore load cases for the Model 55 airplane than for the $35 / 36$ airplane, and a direct comparison was not easily achievable for many of these conditions. Consequently, internal loads and stresses were cietermined for the 55 horizontal tail load conditions with the elevators in the undeflected and deflected positions using NASTRAN analysis in order to establish a common basis for comparison with the $35 / 36$ intermal loads and stresses.
L.oads were applied to the vertical fin, rudder, horizontal stabilizer and elevators using FORCE card images (See ref. 2). These forces were applied at the grid points to simulate the shear, bending and torque envelopes for these airfoil surfaces. A computer program was written which accepted coricentrated forces from the test loads data as input and redistributed these forces proportionately to the four nearest grid points according to the distance from those nodes and generated FORCE card images as output.

Constriints for the empennage model were applied at several locations. The majority of constraints were applied along the perimeter of frame 39 (See figure 2) in all three translational degrees of freedom at the frame and stringer intersections. Other constraints were applied to the rudder control system and elevator rantrol system. The rudder control system was constrained by attaching the forward end of the tailcone rudder cable to a frame in the tailcone section. The eievator control system was restrained by using SPC, single point constraints, (See ref. 2) on the three translational degrees of freedom at the bottom end of the lower push rod (See figure 2).

ORIGINAL FAGE IS OF POOR QUALITY

Grid coordinates on the control surfaces were specified with respect to the appropriate rudder or elevator local rectangular coordinate system. These local coordinate systems were initially defined for the control surface in the undeflected position. However, the control surface couid be deflected or rotated without changing the grid point coordinates merely by rotating the local coordinate system. This was accomplished by modifying the CORD2R card image in the bulk data deck by transforming the original axes reference to a new axes reference.

The CORD2R card image in the bulk data deck for each control surface defined a rectangular coordinate system by reference to three points. The first point "A" (A1, A2, A3) defined the origin of the local coordinate system (See figure 6). The second point "B" (B1, B2, B3) defined the direction of the "Z" axis, and the third point "C" (Cl, C2, C3) defined a point in the $X-Z$ plane. The basic coordinate system was used as the reference system for these points (See ref. 2). The origin for the basic system was defined at fuselage station (F.S.) 0.00 , butt line (B.L.) 0.00 , and waterline (W.L.) 0.00 with the "X" axis positive aft, "Y" axis positive left hand outboard, and the " Z " axis positive down. Components of A, B, and C were defined on the CORD2R card image by means of a simple series of transformations described by the following matrix equations.

$$
\begin{equation*}
\left[H_{\theta}\right]=\left[T_{\theta}\right] \times\left[H_{L}\right] \tag{1}
\end{equation*}
$$

The equation shown above converts coordinates in a swept deflected control surface to coordinates in a swept undeflected control surface. Equation (2) shown below transformed the coordinates in equation (1) to coordinates parallel to a fuselage reference system corrected for the hinge line sweep angle λ.

$$
\begin{equation*}
\left[{ }^{H}{ }_{\lambda}\right]=\left[T_{\lambda}\right] \times\left[H_{\theta}\right] \tag{2}
\end{equation*}
$$

Substituting equation (1) into equation (2) and then referencing these values to the basic system with an $H_{G O}$ matrix resulted in equation (3).

$$
\begin{equation*}
\left[H_{G}\right]=\left[T_{\lambda}\right] \times\left[T_{\theta}\right] \times\left[\mathrm{H}_{L}\right]+\left[\mathrm{H}_{\mathrm{GO}}\right] \tag{3}
\end{equation*}
$$

Equation (3) was used to calculate the components of points "B" and "C" on the CORD2R card which defined the rotated control surface.

HINGE LOAD CALCULATION

As indicated previously, the hinges were modeled using CONRODS and/or Bar elements. Since the hinge point had to be in equilibrium under the action of the internal element forces, the resultant of the forces from the elements on the aft side of the hinge line
must be equal and opposite to the resultant from the elements on the forward side of the hinge line. This force on the forward hinge member was defined as the hinge force for each of the control surface support points.

Internal forces in the CONRCDs and BARs were extracted from the NASTRAN output for a given load case. The forces in the hinge elements were then rotated into a common coordinate system through a series of transformations (See figure 7). The three force components in the element coordinate system were then defined as F_{XE}, F_{yE}, and $F_{Z E}$. Orientation of the element coordinate system was defined by the two end points of the member and a $\vec{\forall}$ vector, if the element was a BAR (See ref. 2). Element grid point components x_{A}, y_{A}, z_{A} and x_{B}, y_{B}, z_{B} (See figure 7) established the basis for transforming the element forces to a common coordinate system. This was accomplished by rotating, or transforming, these forces through three angles α, β, and γ. Upon calculation of these three rotations, the transformation matrices were formed as shown in figure 7. The element forces $F_{X E}, F_{Y E}$, and $F_{Z E}$ were then resolved in the cummon X, Y, Z directions, and then the hinge force components were determined hy seaning the resolved individual element forces.

A small comp.ter: program was written to perform the transformation from the element coordinate system to the common reference coordinate system. This program also accounted for the effect of control surface rotation. Hinge loads were computed on both sides of the hinge line as a check on the transformation calculations. The hinge loads at all the hinge points plus the loads at the intersection of the torque tubes and bellcranks were also summed to check the equilibrium of these hinge loads with the control surface applied loads.

BUCKLING ANALYSIS

A comparison of skin cover compressive stresses with the corresponding panel buckling allowables indicated the presence of skin panei buckling for several load cases. Consequently, an automated buckling analysis was implemented to identify buckled skin panels and to simulate this non-linear phenomenon in the NASTRAN analysis. The buckling simulation was achieved by replacing the original skin thickness of the buckled panel with an effective skin thickness which represented the stiffness of the buckled configuration. A detail description of the theory for this analysis has been described in reference 3. The buckling analysis and effective skin thickness calculation were coded into a computer program which was set up to run as a post processor to the NASTRAN program. This NASTRAN analysis with the buckled effective skin thickness generally had to be repeated several times in order to obtain a convergent solution. Since some of the loading cases on the horizontal tail were combined conditions, the buckling analysis was performed on both the upper and lower surfaces simultaneously.

ANALYTICAL RESULTS

After extensive analysis and study, the applied loads on the Model 55 horizontal tail were determined to be less than the maximum tested loads on the $35 / 36$ horizontal tail which was identical to the 55 in structural detail. Consequently, no static test was performed on this structure during the 55 testing program.

However, in order to establish a correlation between the horizontal tail portion of the NASTRAN empennage model and the structural test data, a positive gust condition with top roll moment load case was used from the Model $35 / 36$ fatigue test program as was mentioned previously. The results of this test along with the NASTRAN data have been exhibited in figures 8 through 11. Figures 8 and 9 show the correlation on the horizontal stabilizer forward spar upper cap and lower cap respectively while figures 10 and 11 show the correlation on the rear spar upper cap and lower cap respectively. Most of the experimental points agree with the NASTRAN data very closely with the exception of the most inboard point on the rear spar lower cap. This gage was very near an access door in the skin panel and appeared to be affected by the stress gradient due to this cutout. As mentioned earlier, no correlation was presented on the vertical tail, since this was performed in an earlier paper (See ref. 1).

CONCLUDING REMARKS

A method has been demonstrated for calculating control surface hinge forces using a Learjet Model 55 empennase NASTRAN analysis. Hinge element internal forces were extracted from the NASTRAN analysis and converted to a common ccordinate system using a set of transformation equations to define the individual hinge forces. Since each control surface was defined in a local rectangular coordinace system, rotation of the control surface could be easily accomplished by transforming the components on the CORD2R card. This control surface rotation capability permitted Learjet to investigate the impact of control surface movement on the hinge attachments in more detail than was previously possible. A buckling analysis was also performed to determine the non-linear effect of skin panel buckling on stringer and spar cap stresses. These techriques proved to be a valuable asset to Learjet in studying the structural operating characteristics of the Model 55 empennage structure and associated control surfaces and for substantiating the horizontal tail structure by comparison with previous tests.

REFERENCES

1. Boroughs, Robert R.; Paramasivam, Sivam; and Werner, Joanna K: Development and Analysis of the Learjet 54/55 Fuselage NASTRAN Model Using Substructure Techniques, Ninth NASTRAN user's Colloquium, NASA CP 2151, October 1980, pp. 201-223.
2. The NASTRAN User's Manual (Level 17.5), NASA SP-222 (05), Washington, D.C., December 1978.
3. Abla, Mike H.; Boroughs, Robert R.; and Cook, Everett L.: Analysis of The Learjet 35/36 Wing and Correlation With Experimental Results, NASTRAN User's Experiences, NASA TMX-3428, Otober 1976, pp. 331-352.

ORIGINAL PAGE IA
 OF POOR QUALITY

FIGURE 1 - NASTRAN 55 EMPENNAGE MODEL

ORIGIINAL PAGE R OF POOR QUALITY

FIGURE 2 - VERTICAL TAIL STRUCTURE

FIGURE 3 - hORIZONTAL TAIL STRUCTURE

FIGURE 4 - RUDDER CONTROL SYSTEM

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 5 - ELEVATOR CONTROL SYSTEM

Description: Defines a rectangular coordinate system by reference to the coordinates of three points. The first point defines the origin. The second point defines the direction of the z-axis. The third point defines a vector which, with the 2 -axis, defines the $x-2$ plane. The reference coordinate must be independently defined.

Format and Example:

1	2	3	4	5	6	7	8	10	
CORD2R	CID	RID	$A 1$	$A 2$	$A 3$	$B 1$	$B 2$	$B 3$	$A B C$
CDRD2R	3	17	-2.9	1.0	0.0	3.6	0.0	1.0	123

$+B C$	$C 1$	$C 2$	$C 3$						
+23	5.2	1.0	-2.9						

Field
Contents
CID Coordinate system ifentification number (Integer >0)
RID Reference to a coordinate system which is defined independently of new coordinate system (Integer ≥ 0 or blank)
A1, A2, A3
B1, B2, B3
C1,C2,C3
Coordinates of three points in coordinate system defined in field 3 (Real)

Remarks: 1. Continuation card must be present.
2. The three points $(A 1, A 2, A 3),(B), B 2, B 3),(C), C 2, C 3)$ must be unique and noncollinear. Noncollinearity is checked by the geometry processor.
3. Coordinate system identification numbers on all CDRDIR, CDRDIC, CORDIS, CPRO2R, COKD2C, and CORD2S cards must all be unique.
4. An RID of zero references the basic coordinate systen.
5. The location of a grid point (P in the sketrh) in this coordinate syste- $1:$ erurn : (X, Y, Z).
6. The displacement coordinate directions at P are shown by $\left(u_{,}, u_{y}, w_{i}\right)$.

ORIGINAL PAGE OF POOR QUALITT.

$\left[\begin{array}{c}F_{X E} \\ F_{Y E} \\ F_{Z E}\end{array}\right]=\left[\begin{array}{ccc}\cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta\end{array}\right]\left[\begin{array}{ccc}\cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{c}F_{X E} \\ F_{y E} \\ F Z E\end{array}\right]$
figure 7 - hinge force transformation

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 9-HORIZONTAL STABILIZER FORWARD SPAR LOWER CAP STRESSES

HORIZONTAL STABILIZER POSITIVE GUST WITH TOP ROLL MOMENT LOAD

Horizontal Stabilizer Fatigue Test Stress Values. Horizontal Stabilizer NASTRAN Stress Values.

fIGURE 10-HORIZONTAL STABILIZER REAR SPAR UPPER CAP STRESSES

FIGURE 11 - HORIZONTAL STABILIZER REAR SPAR LOWER CAP STRESSES

N84 $15605 D_{15}$

A NEW METHOD FOR GENERATING
AND MAINTAINING RIGID FORMATS IN NASTRAN

By
P. R. Pamidi and W. Keith Brown RPK CORPORATION

ORIGINAL PAGE is OF POOR QUALITY

SUMMARY

Since all NASTRAN users are most likely to use some of the Rigid Formats it is important that a convenient means of updating these Rigid Formats be available. This benefits both the NASTRAN maintenance contractor and the NASTRAN user community. With this in view, RPK Corporation is currently developing a new method for generating and updating Rigid Formats in NASTRAN. The heart of this method is a Rigid Format data base that is in card-image format and that can therefore be easily maintained by the use of standard text editors. Each Rigid Format entry in this data base will contain the Direct Matrix Abstraction Program (DMAP) for that Rigid Format along with the related restart, subset and substructure control tables. NASTRAN will read this data base directly in every NASTRAN run and perform the necessary transformations to allow the DMAP to be processed and compiled by the NASTRAN executive. This approach will permit Rigid Formats to be changed without unnecessary compilations and relinking of NASTRAN. Furthermore, this approach will also make it very easy for users to make permanent changes to existing Rigid Formats as well as to generate their own Rigid Formats. This new method will be incorporated in a future release of the public version of NASTRAN.

INTRODUCTION

The popularity and longevity of NASTRAN are due to the many types of analyses that it supports and the generality and flexibility that it offers to the user to perform these analyses. The analyses are implemented in NASTRAN by the use of many functional modules each of which can be considered as an independent program. These functional modules interface with one another through executive parameter flags and a local data base called the File Allocation Table (FIAT). The FIAT and the flags are maintained by the NASTRAN executive. The order in which the functional modules are executed and the definition of the files and flags to be read or written by these functional modules are specified by means of a higher level language called the Direct Matrix Abstraction Program (DMAP). The DMAP is compiled and processed by the NASTRAN executive.

The most general way of using NASTRAN is with a user written DMAP program. However, in order to relieve the user of the burden of writing DMAP sequences for the most commonly used analyses (e.g., static analysis, normal mode analysis, etc.), a number of standard DMAP sequences (with sophisticated restart capabilities and subset features) have been developed and included in NASTRAN. These standard DMAP sequences are collectively called the NASTRAN Rigid Formats. There are currently twenty (20) Rigid Formats in NASTRAN. They are very valuable to the user as they are in a readily available and useable form and offer the user the flexibility for performing a variety of analyses. Modifications to the Rigid Formats can be easily made by the user by means of the ALTER feature described in Section 2.2 of the NASTRAN User's Manual (Reference 1).

PRESENT METHOD FOR GENERATING AND MAINTAINING RIGID FORMATS

At present, the Rigid Formats exist in NASTRAN in the form of subroutines. These subroutines are called the LDxx (LDO1, LD02, etc.) subroutines and are described in Section 6.6 of the NASTRAN Programmer's Manual (Reference 2). There is one LDxx subroutine for each Rigid Format in NASTRAN. The bulk of the code in these subroutines is in the form of Fortran DATA statements consisting mainly of Hollerith values of the type 4Hxxxx. This format is very awkward. Consequently, making updates to these subroutines is an extremely tedious, time-consuming and error-prone procedure. In order to overcome this serious problem, a utility program called the Rigid Format Generation (RFGEN) program was developed for use by the maintenance contractor to automatically generate the LDxx subroutines. The RFGEN program requires the maintenance of a separate data base of Rigid Formats and their associated restart tables. This data base is read by the RFGEN utility to generate the desired LDxx subroutines.

The current practice of generating and maintaining Rigid Formats has many serious drawbacks. These are discussed in detail below.

1. Because of the nature of the LDxx subroutines, the use of the RFGEN utility is absolutely essential when major changes (e.g., extensive changes to the DMAP) nfed to be made to any Rigid Format. Howover, the RFGEN utility is currently operational only on the CDC machine. Hence, the maintenance contractor cannot generate the LDxx subroutines directly on another machine which he may be using as the primary machine for NASTRAN maintenance.
2. The Rigid Format information is currently contained both in the external data base used by the RFGEN utility as well as in the LDxx subroutines of NASTRAN. This is not only wasteful and cumbersome, but has also caused serious problems. Occasionally, updates were
made directly to an LDxx subroutine (for example, correction of a restart table) but never incorporated into the RFGEN data base. Consequently, these updates were lost when the RFGEN utility was used at a later date to generate replacement LDxx subroutines.
3. Permanent changes to a Rigid Format require the updating and recompiling of the appropriate LDxx subroutine as well as the relinking (or rebuilding) of Link 1. This is very inconvenient and annoying both to the maintenance contractor and users.
4. Users do not have access to the RFGEN utility which is available only to the maintenance contractor. They, therefore, cannot make major permanent changes to Rigid Fcrmats at their local sites and are thus forced to use the ALTER capability in order to incorporate the desired changes. However, this has the disadvantage that the ALTER packet has to be included in every run in which the user needs the changes. This can be particularly inconvenient when the ALTERs are extensive.

An extension of the above problem is that sophisticated users cannot generate new Rigid Formats of their own except by means of inserting the DMAP on a temporary basis through the NASTRAN DMAP approach. However, this has the same limitation that the ALTER cards have in that the DMAP has to be included in every run in which the user needs it. This can be particularly cumbersome when the DMAP contains many statements.
5. The substructuring capability of NASTRAN causes the automatic generation of DMAP ALTERS in those Rigid Formats that support this capability. Currently, Rigid Formats 1, 2, 3, 8 and 9 support this feature. These automatic ALTERs are currently specified in the Fortran subroutines ASCMO1, ASCM05, ASCM07 and ASCM08. These ASCMxx subroutines must, therefore, be appropriately updated whenever changes to Rigid Formats 1, 2, 3, 8 and 9 affect their DMAP statement numbers and hence the DMAP ALTERs specified in these ASCMxx subroutines.
6. The data base currently used by the RFGEN utility is not in a very convenient format. Making changes to this data base is therefore not very easy, particularly when changes need to be made to the restart tables.

NEW METHOD FOR GENERATING AND MAINTAINING RIGID FORMATS
All of the above problems can be eliminated by having a Rigid Format data base that is read by NASTRAN directly and that can be maintained easily by means of standard text editors already available on the host computers. The important and
distinct advantages to be derived from this approach are discussed below.

1. The need for the RFGEN utility and its associated data base will be eliminated and updating of Rigid Formats will become equally easy on all machines.
2. The LDxx subroutines in their current form will be eliminated from NASTRAN and the entire information about Rigid Formats will be contained in the new Rigid Format data base. This will greatly facilitate the maintenance effort.
3. Permanent changes to a Rigid Format cal be incorporated simply by suitably updating the new data base by means of a text editor. The need for compilations and the relinking of Link 1 will thus be eliminated, thereby greatly aiding both users and the maintenance contractor.
4. It will become very easy for users to test and incorporate major changes to existing Rigid Formats at their local sites without having to use the ALTER feature in every run. Similarly, sophisticated users will be able to generate new Rigid Formats (complete with the associated restart tables) with relative ease.
5. By incorporating controls for substructure DMAP ALTERs in the new data base, the need for the possible updating of the ASCMxx subroutines every time the associated Rigid Formats are changed will be eliminated. This will greatly reduce chances for error since all information about the substructure DMAP ALTERs will be contained in the new data base instead of being spread over several ASCMxx subroutines.
6. The format of the new data base will be designed to be user-friendly and to be easily amendable.

IMPLEMENTATION OF THE NEW METHOD

The Rigid Format data base will be in a card-image format and will contain entries for all 20 Rigid Formats in NASTRAN. Each Rigid Format entry will contain the following items of information:

1. DMAP statements
2. Card Name Restart Table
3. File Name Restart Table
4. Rigid Format Change Restart Table
5. Subset flags
6. Controls for substructure DMAP ALTERs

The format of the data base will be designed to be user-friendly and to be easily amendable. All DMAP statements will be in a format similar to the format in which NASTRAN prints the DMAP. All restart tables, subset flags and substructure controls will be def: ned so as to permit easy editing.

The Rigid Format entries will be implemented as follows on the four computer systems on which NASTRAN is currently supported:

1. IBM - Each entry will be a member of a partitioned dataset
2. UNIVAC - Each entry will be an element of a file
3. CDC - Each entry will be a separate file
4. DEC VAX - Each entry will be a separate file

An I / O interface will be designed on all of the four computer systems to read the Rigid Format entries. This interface will be written in machine-dependent code. Additional subroutines in machine-independent code will be designed to perform the necessary transformations to allow for the processing and compilation of the DMAP by the NASTRAN executive. The current LDxx subroutines will thus no longer be used and will therefore be deleted from the code.

In addition, documentation updates will be provided for the NASTRAN User's Manual and the NASTRAN Programmer's Manual. The User's Manual updates will contain a definition of the format of the new Rigid Format data base and also a description of how to maintain and update the data base. The Programmer's Manual updates will include a description of all subroutines and COMMONs that are added to NASTRAN as part of this new capability.

CONCLUDING REMARKS

The new method of generating and maintaining Rigid Formats described in this paper should be welcomed by both the NASTRAN maintenance contractor and the NASTRAN user community. It will, for the first time, make it possible for the maintenance contractor to update and modify existing Rigid Fo.inats without the use of a utility program and without unnecessary compilations and relinking of NASTRAN. It will also, for the first time, make it possible and practicable for users not only tc make permanent changes to existing Rigid Formats, but also to create new Rigid Fcrmats of their own. This will greatly enhance the flexibility and attractiveness of NASTRAN.

REFERENCES

1. The NASTRAN User's Manual, NASA SP-222(05). December 1978.
2. The NASTRAN Programmer's Manual, NASA SP-223(05), December 1978.

N84 15606 D/6

IMPLEMENTATION OF
ELASTIC-PLASTIC STRUCTURAL ANALYSIS
INTO NASTRAi \dagger

Alvin Levy, A. B. Pifko and P. L. Ogilvie
Grumman Aerospace Corporation, Bethpage N.Y

SUMMARY
[lastic-plastic analytic capaiolities have been incorporated into the NASTRAN program. The present implementation includes a general rigid format and additional bulk data cards as well as two new modules. The modules are specialized to include only perfect plasticity of the CTRMEM and CROD elements but can easily be expanded to include other plasticity theories and elements. The practical problem of an elastic-plastic analysis of a ship's bracket connection is demonstrated and compared to an equivalent analysis using Grumman's PLANS program. The present work demonstrates the feasibility of incorporating general elastic-plastic capabilities into NASTRAN.

INTRODUCTION

A feasibility study on incorporating state-of-the-art nonlinear capabilities into NASTRAN has been conducted and reported on in ref. 1. It was pointed out that each class of nonlinear behavior has a "best" solution strateqy. For an elastic-plastic analysis, the "initial-strdin" approach is the most efficient finite element analytic method. In this approach, an incremental pseudo-load vector is formulated assuming an initial strain equal to the sum of the estimated plastic strain for the current increment and an equilibrium correction term which corrects for the difference between the resulting plastic strain and assumed plastic strain of the previous incremental step. This method, characterized by the plastic behavior being incorporated into an incremental pseudo-load vector, leaves the stiffness matrix unaltered from step to step. Thus, the stiffness matrix nead only be decomposed once. Consistent with the initial-strain approach, ref. 2 provides the pseudo-load vector formulation due to plastic behavior for a number of elements in the NASTRAN library. The general approach is to transfer the integral form of the pseudo load vector into a numerical representation by utilizing various integration schemes. For many of the finite elements the choice of the number and type of integration points is left to the user. The choice of integration points for the integration of the pseudo-load vector determines the allowable variation of the plastic strain within each element. This allowable variation can be changed by choosing a different set of integration points. This may eliminate the costly process of changing the

[^4]finite element idealization if the plastic strain variation was more complex than originally modeled for. One may only have to change the choice of integration points. A more complete discussion of these mechods is given in ref. 3.

The initial-strair approach, as outlined above, has been incorporated into the NASTRAN program. This has been done by writing a new rigid format along with two new niedules. Also included are three new bulk data cards. Although the metheis are general, only perfectly-plastic behavior of a membrane and a rod element have been initially considered. This first. step is sufficient to examine the feasibility and efficiency of the implementea techniques within the NASTRAN framework.

The ractical problem of an elastic-plastic structural analysis of a ship's bracket connection has been carried out using the implemerited NASTRAN program and the results have been compared to those or ${ }^{*}$. ined from the PLANS finite element computer program (ref. 4). The results are in exact agreement and the cpu time and associated costs are approxinately the same.

ELASTIC-PLASTIC FORMULATION

The initial-strain method is chosen to solve small disnlacement plasticity problems. The governing equation, d. ived from energy principles, is written in incremental form as follows:

$$
\begin{equation*}
[K]\{\Delta U\}_{i}=\{\Delta P\}_{i}+\{\Delta C\}_{i}+\{R\}_{i} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \{K] \equiv \text { elastic ffness matrix } \\
& \{\Delta U\}_{i} \equiv \text { incremental displacement of } i^{\text {th }} \text { step } \\
& \{\Delta P\}_{i} \equiv \text { incremental external load of } i^{\text {th }} \text { step } \\
& \{\Delta O\}_{i} \equiv \begin{array}{l}
\text { incrementel pseudo load based on } \\
\text { predicted inelastic stiain of } i^{\text {th }} \text { step }
\end{array} \\
& \{R\}_{i}=\begin{array}{l}
\text { equilibrium correction ism representing any balancing } \\
\quad \begin{array}{l}
\text { force due to drift from equilibrium during the increnental }
\end{array} \\
\quad \text { application of the load }
\end{array}
\end{aligned}
$$

The elastic stiffness matrix is found to be

$$
\begin{equation*}
[K]=f[B]^{\top}[E][B] d V \tag{2}
\end{equation*}
$$

where [B] is obtained from the strain-displacenent relationt

$$
\begin{equation*}
\{\Delta e\}_{i}=[B]\{\Delta u\}_{i} \tag{3}
\end{equation*}
$$

and [E] is obtained from the stress-strain relation
ORIGINAL PAGE IS
OF POOR QUALITY

$$
\begin{equation*}
\{\Delta \sigma\}_{i}=[E]\left(\{\Delta \mathrm{e}\}_{i}\left\{\Delta \epsilon^{P}\right\}_{i}\right) \tag{4}
\end{equation*}
$$

with

$$
\begin{aligned}
& \{\Delta \sigma\}_{i} \equiv \text { incremental stress } \\
& \{\Delta e\}_{i} \equiv \text { incremental total strain } \\
& \{\Delta \varepsilon\}_{i}^{P} \equiv \text { incremental plastic strain }
\end{aligned}
$$

Plasticity entors the analysis through the increment in plastic strain, $\Delta_{e}{ }^{P}$. These as well as other path dependent quantities depend on the implemented plasticity theory.

The nredicted oseudo-load vector for the $(i+1)$ st step is found to be

$$
\begin{equation*}
\left\{\Delta Q_{l i+1}-\frac{\delta_{i+1}}{\delta_{i}} \int[B]^{\top}[E]\left\{\Delta \epsilon^{P}\right\}_{i} d V\right. \tag{5}
\end{equation*}
$$

where δ_{i+1} and δ_{i} correspond to the $(i+1)^{\text {st }}$ and $i^{\text {th }}$ step sizes respectively. We can expect the successive linearization procedure to drift from a true equilibrium position for the ronlinear response. This drifting is a combined result of truncation, the successive linearization procedure and the fact that information not yet availab'e is reawired for a true sc ution (in Eq '5) the predicted pseudo-load vector is based on the incremental plastic strdins of the preceding step rather than on the current step). The simplest corrective procedure involves the introduction of an equilibrium correction term that may be added as a load vector i_{i} the incremental procedure. The equilibiium correstion term is defined as

$$
\begin{equation*}
\{R\}_{i+1}=\int[B]^{T}[E]\left(\left\{\Delta \epsilon^{p}\right\}_{i}-\left\{\Delta \epsilon^{p}\right\}_{i-1}\right) d V \tag{6}
\end{equation*}
$$

This is a simpler method than a complete iterative scheme and in effect the ec̣uilierium correction term represents a one step iteration.

The pseudo-load vector is computed by various integration schemes (e.g., trapezoicial and Gaussian) in which Eqs (5) and (6) are combined and aritten as

$$
\begin{equation*}
\left\{\Delta C_{\left.\right|_{i+1} ^{\prime}}^{\prime}+\{R\}_{i+1}=\sum_{j=1}^{n} A_{j}\left[B\left(\tau_{j}\right)\right]^{T}\left[E\left(\tau_{i}\right)\right]\left(\left(i+\frac{\delta_{i+1}}{\delta_{i}}\right)\left\{\Delta e^{P}\right\}_{i}-\left\{\Delta e^{P}\right\}_{i-1}\right)\right. \tag{7}
\end{equation*}
$$

where n represents the ni:miner of integration points, \boldsymbol{r}_{j} represents the spatial loration of tife, th integration point and $\mathbf{A}_{\mathbf{j}}$ corresponds to an
integration weight factor for the jth integration point. The derivation of the pseudo-load vector for many of the NASTRAN elements is presented in ref. 2. The present study utilizes only the triangular membrane element (CTRMEM) and the extensional rod element (CRCD).

IMPLEMENTATION OF ELASTIC-PLASTIC ANALYSIS INTO NASTRAN

Elastic-plastic capabilities have been incorporated into the NASTRF:N program. A flow diagram, representing the intital-strain method, is shown in Appendix A. The function of each step in the flow diagram is explained. A corresponding rigid format was written as a modification to rigid format 1 (Level 17.0). The AI.TER package and resulting new rigid format are shown in Appendices $B 1$ and $B 2$, respectively.

Some of the important features of the new rigid format will be mentioned. firstly, two new modules have been written, PLANS1 and PLANS2. PLANSI determines the critical load, i.e., the lowest lead amplitude for which at least one element stress point has become plastic. In addition a new table, PLI, is initialized. This table contains the last known field quantities sach as stress, strain and plastic strain. PLANS2 implements the elastic-plastic constitutive equations for incremental stress, strain and plastic strain. Initially only perfect plastic behavior of the CTRMEM and CROD elements have been included. In addition PLANS2 updates the PLI table and forms the psoudo-load vector the the next plastic increment. The calculations needed to perform an elastic-plastic analysis are divided into thuse that are performed one time and those that are performed in each incremental step. Among those that are performed once are all the usual functions necessary in an elastic finite element analysis, i.e., reading input, all global functions such as setting up data tables, and solving for the elastic displacement field. These functions are performed by the operational sequence currently in rigid format 1 and are represented by the first block of the flow diagram. In addition, the critical load calculation and some preliminary plastic analysis definitions are carried cut as shown in the flow diagram above LOOPA, which is the start of the plasticity loop. The calculations performed during each incremental step are contained in the plasticity loop as shown in the flow diagram. During each pass through the plisticity loop the SSG3 module solves for the incremental displacements due to the plastic pseudo-load only. The incremental displacement due to the external load or prescribed displacements are known and are added to the incremental displacements due to the pseudo-load vector. The plasticity constitutive equations are implemented and the new pseudo-load vector, to be used ' the next incremental step, is formed (PLANS2). The plasticity loop is repeated for each incremental step.

Three new bulk data cards have been added for later use in a general elastic-plastic analytic capability program. These are described in Appendix C. The MATS2 bulk data card defines the plastic material properties; the PLFAC2 bulk data card defines the load history and step size information; and the TABLEY1 bulk data card defines the yield stress as a function of accumulated plastic strain.

In order to validate the implemented NASTRAN capability an elasticplastic analysis of a typical structural detail of a ship, namely a bracket connection, was performed using NASTRAN and the Grumman PLANS program. Figure 1 shows the intersection of a horizontal girder with a transverse bulkhead. The shaded area represents the structural component that was analyzed. Loads and boundary displacements on this section were provided from a finite element model of the entire structure. The finite element model consisted of 657 membrane triangles for the webs, 103 rod elements for the flanges (shown as dotted lines in Fig. 3) resulting in 704 degrees of freedom with a semi-band width of 40. Figures 2 and 3 show the details of the finite element model. Figure 4 shows the resultinn yrowth of the plastic region of the highest stressed section.

The NASTRAN analysis was performed on a CDC cyber 172 computer and required 20 cpu seconds for each incremental step. The PLANS program,run on an IBM 370/3033 computer, used 5 cpu seconds for each incremental step. The results from each program were identical. Taking into account the difference between computational speed of each computer (about 5:1), the running time for the NASTRAN program is competitive with the PLANS proc 'am.

CONCLUSIONS
The present work demonstrates the feasibility of incorporating elasticplastic capabilities into NASTRAN. The present imolementation included a general new rigid furmat and bulk data cards as well as two new modules. The modules are specialized to include only perfect plasticity of the CTRMEM and CROD elements.

An extension of these capabilities to include general plastic behavior of the complete NASTRAN element library should present no new pitfalls and will be briefly outlined. Firstly, an extension to the flow chart and ALTER package would include one new module, PLA5, used to accumulate the total displacements (Table UGVPAC) as well as stress, strain and plastic strain (Table PLIAC) at the end of each increment. It would apear as

PLA5 UGVP, PLI/UGVPAC,PLIAC/V,N,PLACOUNT/V,N,P
In addition, new tables would ba set up in PLANS1 and would contain element integration point information. To form these tables, use, specified information wouid be supplied on bulk data cards through riew element property cards.

Module PLANS2 must be generaiized to build a pseudo-? oad vector, Eq (7), from the new tables set up in PLANS1. In addition, the plasticity theory contained in PLANS? should be expanded to include, in addition to perfect plasticity, linear strain-hardening, nonlinear strain-hardening using either a Ramberg-Osgood function or a stress-strain table, or any other theory consistant with the initial strain approach that the developer wants to incorporate.

REFERENCES

1. Levy, A., and Pifko, A.B., "Feasibility Study for the Incorporation of Nonlinear Capability into NASTRAN," Grumman Research Department Report, RE-593, Grumman Aerospace Corporation, January 1980.
2. Crouzet-Pascal, J., and Levy, A., "Pseudo-Load Formulation for NASTRAN material Nonlinear Analysis using Initial-Strain Method," Grumman Research Department Report, RE-594, Grumman Aerospace Corporation, March 1980.
3. Levy, A., and Pifko, A.B., "On Computational Strategies for Problems involving flasticity and Creep," International Journal for Numerical Methoas in Engineering, Vol. 17, pp. 747-771 (1981).
4. Pifko, A.B., Levine, H.S., Armen, Jr., H., and Levy, A., "PLANS - A finite element program for nonlinear analysis of structures," ASME Preprint 74-WA/PVP-6(1974).

Fig. 1 Str-دctural Detail of Bracket Connection

Fig. 2 Finite Eloment Model of Bracket Detail

Fig. 3 Finite Element Mndel of Bracket Detail

- CROD Element for Flanges

$P=.3155$
INITIAL YIELD

$P=.3375$

$P=.3786$

$P=.4417$
INITIAL PLASTICITY IN FLANGE

Fig. 4 Growth of the Elastic-Plastic Boundary in Region of Largest Stress

APPENDIX A

FLOW DIAGRAM OF MAIN FEATURES OF ELASTO-PLASTIC ANALYSIS

$$
\begin{aligned}
& \left\{\Delta U_{1}\right\}=\left[K_{11}\right]^{-1}\left\{\Delta P_{y}\right\} \\
& \left\{\Delta U_{0}^{0}\right\}=\left[K_{00}\right]^{-1}\left\{\Delta P_{0}\right\}
\end{aligned}
$$

$$
\left\{\delta \Delta P_{1}\right\}=\left\{\Delta P_{1}\right\}-\left\{K_{11}\right\}\left\{\Delta U_{1}\right\}
$$

$$
\epsilon_{1}=\frac{\left\{\Delta U_{1}\right\}^{T}\left\{\delta \Delta P_{1}\right\}}{\left\{\Delta U_{1}\right\}^{\top}\left\{\Delta P_{1}\right\}}
$$

APPENDIX B1

＂ALTERS＂TO RIGID FORMAT 1 FOR ELASTO－PLASTIC ANALYSIS

```
HLTER 1,:
EEGIN I
FLTER 3S,95
ALTER 37, S8
FLTEF: 41.41
HLTER ESOEG
HLIEF 1ES,1OS
FLTEF 1ST:140
FHFHM GEON,FILIV,H,FLACDUNT/C,N:1/C,N,O S
FLFIt:1 EST:MFT,IIT:LIGV,FLI,V,Y:FFCTM,N,N,PCRIT $
GAツE FFCT,FCRIT S
IHEFHT FLI I
MATFFT UNQ/% a
FHFHMFF SOH,MFY,Y,N:IELF,N,Y,FPCT,Y,N,PCRIT S
FHFAMF CO,N,FIIMY,N:FIL,Y,N:FCRIT/V,N:DELF $
```



```
HIII IIGV,ODELTAUGF
HLII LGV, UGVF/V,N:F1IC: S
IHFFHT TELTRUGF,LIGYF S
```


EOUIV FLI,FLII,NEVEF S
FLFHEE FLI,MFT,EST, IELTAUGF,DIT/FLII, DELTAP/V,N,PLACDUNT/V,N,PLAST,
U,N:FFINTINE,Y,N:F,N,N,IIELF/V,Y,PMAX S
ZAVE FLLHST,FRINTINC,F I
EOUI% FLI1,FLI/ALWAYSS
EHIFNT FLI,IIFLTAF g:
EHIN HE゙ć,FFIMTINC: I
FFTFARM OC,N,OCC,N:F \$
METFFT UGVF% 者
LbEEL NEE= क
HNIM YS, IELTFYS/C,N,(0.0,0.0) \$
IHH.FHT LELTAYS E

```

\section*{ORIGINAL PAGE IS}

OF POOR QUALITY


\section*{APPENDIX B2}
"ALTERED" RIGID FORMAT FOR ELASTO-PLASTIC ANALYSIS

LFVEL 2.U NASTHA' DAAP CIMPYLFW SOURGF I ISTINT


\section*{ORIGINA: FAEE TS} OF POOR QUALITY

GFVFL 2.0 NASTRAN OMAP PLMPTLFK STURCF LISTINE


\(Z^{2}\) SAVF NUSIMP, NIGFNL,TENET \(\$\)

Sn CTIND EKPLRU,NIELME *
31
Dilkfot K

36 PaQSM //C, Mi,NPY/J, Mi,CADONU/C,N,U/CON:O
\(3^{\circ}\) CTNN LBILIUTASTHD




43 SAVE NuKGFX.MINTOE
46 CMKPNT KELM,KNICT,MELM,MDICF:
45 CONA JMPKRG, NDKGGX s
4h EMA F,OFCT,KDICT,KELM/KGGX,GPST \&
47 CWADNT NGCX,GOST *
4\% LABEL JMDKTG \(\$\)
49 ENN JMPMFG, MIMARG

51 CMADNT MGr.
52 LAEF JMPMBG
53 EOND LBLI.TQUPNT

\section*{ORIGINAL PAGE IS OF POOR QUALITY}

LFVEL 2.U NASTHAN UMAP ROMPILEN O SUUCF LISTING
```

54 CONN ENRORZ,NUMGG i
55 GPwG RGDUY,TSTM,EGEXIN,MGG/IGPWG/V,Y,GNDPNT/G,YOMTMASS S
56 OFP OGPNGO.,.,//*
5% bAEFL LELIS
SA EQuYV KGGX,KGG/AOGFNL S
50 CHKPNT KGl, .
on CONN LBILIA.VNJGENI %
6t SMAS GEIOKGCA/RGG/VONOLIISET/VONONINGENL/V,N,NUSIMP \&
O2 CHKPNT KGG \&
63 LARFL LGII1A :
6U PARAM //T,N,MPY/V,N,NISKIP/C,N,O/C,N,C S
67 6PA CASECC,GFUMA,ENEXIN,GPNTGRGPNT,CSTM/RGYYS,USETGASET/V,NGLUSET/'
GA SAVF mPCFI,MPCFZ,SINGLE,UMIT,REACT,NSKIP,REPEAT,NOISFT,NOL,NOA S

```

```

7n Pafam //C,N,AWN/V,N,NOSR/V,N,SINGLF/V,N,REACT S
71 PUFRE KRR,KLQ,OR,UM/QEACP/GM/MPCFI/GI,KUO,LUN,PU,UNLV,RUUV/UMIT/PPS,
KFS,KSS/PINGLE/QG/NUSRS
12 CWKPNT KRR,KLR,TH,UM,Gm,GO,KUN,LUU,DU,UOUV,RUNV,PS,KFS,KSS,QG,USET,RGO
73 GINN LBLG.GENEL J
70 GOGP GPL,GPQT,USET,SIL/NGPST/V,N,NLGPST \$
75 SAVF NUGPST :
76 conn LGL4.Nハipigl s
77 OFP JGPSP...E//|
7月 LABFL L8I.4%

```

\section*{ORIGINAL PAGE IS} OF POOR QUALITY

```

79 EQUIV KGG,KNS/MPCFI \$
On CHKPNT KNN\
81 CONN LBIZ.toLF2 F
g2 MCET USET,FG/GM \$
OT CHKPNT GM S
84 MCES USFT.GN.KGGO.,NKN+,..**
85 CHKPNT KNN:
86 LABFL LBL2 5
87 ERUTV KIJN,KFE/SINGLE\$
OR CHKPNT KFF \&
ag cram lalb.stvgle %
QO SCE! USFT,K\V.../KFF,KFS,KSS,:D |
91 CHKONT KFG,KSS,KFF\$
92 LAAEL LB!3.
03 EDuTV KFF,KAA/fIMT| \&
OU CHKPNT KAA,
95 cmnN Lal5,(1+ITs
96 SMP1 USFT,KEF.,./GII,KAA,KNII.LOGO..... \&
97 CHKPNT GU,KAA.K(GHILIUU,
9A LABFL LBLS \$
99 EQUTV KAA,KLL/REACT:
ION CHKDNT KLL:
l01 CTNN LEIDORFACT B
102 KRMG1 ISFT,KAM./KLL,KLR,KKRO.. \$
103 CHKPNT KGL,KLR,KRH S

```

\section*{ORIGINAL PAGE IS OF POOR QUALITY}

LEVFL 2:D WASTAA' U'AP CUMPTLER - SNUECE LISTINF
\begin{tabular}{|c|c|c|}
\hline 104 & CABEL & LbLos \\
\hline 105 & qumpr 2 & *LL/Lls \\
\hline 106 & CWKONT & LbLs \\
\hline 107 & crinn & LELT.RFACT * \\
\hline 108 & Ramg 3 & LLL,KLO,KRE/DM \\
\hline 100 & CMKPN. \({ }^{\text {c }}\) & rime \\
\hline 110 & LADFL & LHT 7 * \\
\hline 111 & SsGI & \[
\begin{aligned}
& \text { SLT,AGPUT, CSTM } S T L, E S T, M P T, G P T T, E D T, M G G, C A S E C C, U I T / P G / V, N, ~ \\
& \text { LUSET/V,N:NSKIG }
\end{aligned}
\] \\
\hline 112 & CHKPNT & Pg 5 \\
\hline 113 & EPuTV & PG, Fl./ALSET* \\
\hline 110 & CHKPint & PL b \\
\hline 115 & crine & LHLIOPMSE \({ }^{\text {P }}\) \\
\hline 186 & SSG? &  \\
\hline 117 & CHKPVT &  \\
\hline 11 A & LAHEL & Lblir \\
\hline 119 & SSG3 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 120 & SAVF & FPEI \({ }^{\text {d }}\) \\
\hline 121 & LHKPNT & ULVPlirivaklluv, Huñ s \\
\hline 122 & COND & 15L9,10ES \({ }^{\text {S }}\) \\
\hline 123 & MATCPR & GPL,ISFI,SIL.HIILV//C,*/L \\
\hline 124 & MATPPR & CPL, HSFT,SILAWlUV//C.A日L \\
\hline 125 & LABEL & LBL 4 3 \\
\hline 126 & SARI & USFT, PR, IILV,HOTIV, YA,GU,GM,PS,KES,KSS, WR/UGV,PGG, QG/V,N,NEKIP/ C, N,STATTCS \\
\hline 127 & CHRDNT & HGV, PGT, itg b \\
\hline
\end{tabular}

LPVEL 2.O NASYKAN OMAP COMPPLPR - GOUMEE LISTING
13a CWKPNT CSTM
135 GPFAR PASECCOUGYKELM,KDYCT,FCT,EGEXIN,GPECT,PGG,QR/ONRGYI,UEPFQI/
    CASECCOUGVGELM
ri, STATTES
136 UFP [iNRGYiaufipFolcec//s
140 PARAM //C,N,ADN/V,N,PLACTUNT/C,N,I/C,N,O
140 PLANSI EST,MPT,OIT,UGV/PLT/V,V,PPCT/V,N\&PCRIT 3
140 SAVE PP:T.PCRIT \$
140 CWKPNT PLI
140 matPrt UGVI/ \(\$\)
140 PARAMR //C, N,MPY/V,N,DELP/VOY,PPCT/V,N,PCRIT S
140 PARAMR //E, V,ADN/V,N,PII/V,N,PCRIT/V,N,NELP \(\$\)
140. PANAME //CIN,PUMPIEX//V,N,PII//V,N,PIIC S
140 PARAMR //C,N,CUMPLEX//V,N,PCRTT//V,N,PCRITC S
140 PARAMR //C,N,CUMPLEX//V,NIDELD//VINOUELPC S
140 PAKAMR //P,N, A!OI/V,'S,P/V,N,PCQIT/// S
140 ADD JGV,NUFLTAUGP/V,N,DELPE
140 ADD UGV,/UPVP/V,N,PIIC
140 GHRPNT DELTAURPOUGVP 3
140 PARAM //E,A1,AOU/V,N,PLAGOUNT/V,SN,PLACUUNT/C,N,I \$
140 EOUIV PLIPPLICNEVER
140 PLANSZ PLIMPPYESTGELTAUGP, ITT/PLII, DELPAP/V,N,PLACUUNT/V, N, PGABTI
140 SAVE PLAST,PRIVTINC,P \$
140 ENUIV PLIL:PLJ/AL*AYS S
140 CHKONP PLIDNELTAP S
I4O COND NZ2,PRPNYINC S

\section*{ORIGINAL PAGE IS OF POOR QUALITY}

LEVEL 2.O NASTKAN DMAP CUMPILER - SOHRCE LISTING


\section*{ORIGINAL PAGE : OF POOR QUALITY}

LEVEL 2.O NASTRAN OMA COMPYLFR - SOURCF LISTING

NEW BULK DATA CARDS
\[
\begin{aligned}
\text { MATS 2: } & \text { Material Properties - defines stress-strain function } \\
& \text { for either Ramberg-Osgood representation, linear } \\
& \text { strain hardenin; or perfect plasticity. }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline & & & TABLEY1 & TABLES 1 & n & \({ }^{0} 0.7\) & \(\alpha\) & \\
\hline Ramberg-Osgood & MATS 2 & 17 & & & 12 & \(0.6+5\) & & \\
\hline Linear Hardening & MATS 2 & 17 & & & & & 0.25 & \\
\hline Perfect Plasticity & MATS 2 & 17 & & & & & 0.0 & \\
\hline Tabular & MATS2 & 17 & & 100 & & & & \\
\hline
\end{tabular}

\section*{Field Contents}

MID - Material identification number which matches the identification number on some basic MAT1 card (Integer > 0)
n - shape parameter used in Ramberg-Osgood stress-strain function (Integer)
a - \(E_{T} / E\) for linear strain hardening (Real)
\(\sigma_{0.7^{-}}\)Ramberg-Osgood parameter (Real)
TABLESI- Table number for Stress-strain function - TABLESI Table (Integer)
TABLEY1- Table number for yield stress vs. accumulated plastic strain, for near linear strain hardening (Integer)

Remarks: 1. Ramberg-0sgood representation: \(\varepsilon=\frac{\sigma}{E}+\frac{3 \sigma}{7 E}\left(-\frac{\sigma}{\sigma_{0.7}}\right)^{n}\)
2. TABLEY1 may be used with any of the options listed.


\section*{Field Contents}

SID - Set identification number (Integer >0)
Pi - Load magnitude (Real)
Ni - Number of increments for current load (Integer \(\geq 0\) )
NLDI - Load set reference (Integer)

Remarks: 1. Load history is contained with PLFAC2. Each Pi corresponds to total ioad for that set (NLDi).
2. One or Two sets of data may be included on each card.

Fields 3, 4, and 5 must be used on each card, but fields 6, 7, and 8 may be omitted from any card even though continuation cards follow.
3. If \(\mathrm{Ni}=0\), incrementation steps will be chosen automatically.

\section*{original page is \\ OF POOR QUALITY}

TABLEY1: Yield stress vs. accumulated plastic strain
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline TABLEY1 & SID & \(\sigma_{y t}\) & \(\sigma_{y s}\) & \(\Sigma \varepsilon^{p}\) & \(\sigma_{y t}\) & \(\sigma_{y s}\) & \(\Sigma \varepsilon^{p}\) & & +abc \\
\hline TABLEY1 & 10 & & & & & & & & ABC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline +abc & \({ }^{\text {yt }}\) & \({ }^{0}{ }^{\text {y }}\) & \(\Sigma \varepsilon^{p}\) & -etc \(\dagger\) & & & \(\triangle\) & & \\
\hline - -BC & & & & & & & & & \\
\hline
\end{tabular}

\section*{Field Contents}


Remarks: 1. If accumulated plastic strain is less than first value in table then first values of \(\sigma_{y t}\) and \(\sigma_{y s}\) are chosen, if accumulated plastic strain ift greatel \({ }^{\frac{3}{s}}\) than last value in table than last values of \(\sigma^{\text {y }}\) and \(\sigma_{y s}\) are chosen, otherwise
a linear interpolation is used.
2. One or two sets of data may be included on each card. Fields 3, 4, and 5 must be used on each card, but fields 6,7 , and 8 may be omitted from any card even though continuation cards follow.

\title{
「N84 15607
}

ELASTIC-PLASTIC ANALYSIS OF ANNULAR PLATE PROBLEMS USING NASTRAN

\author{
P. C. T. Chen \\ U.S. Army Armament Research and Development Command Large Caliber Weapon Systems Laboratory \\ Benet Weapons Laboratory \\ Watervliet, NY 12189
}

SUMMARY

\begin{abstract}
The plate elements of the NASTRAN code are used to analyze two annular plate problems loaded beyond the elastic limit. The first problem is an elastic-plastic annular plate loaded externally by two concentrated forces. The second problem is stressed radially by uniform internal pressure for which an exact analytical solution is available. A comparison of the two approaches together with an assessment of the NASTRAN code is given.
\end{abstract}

\section*{INTRODUCTION}

The piecewise inear analysis option of the NASTRAN code can be used to analyze quite complicated elastic-plastic plane-stress problems (refs. 1 and 2). The reliability of this code has been well demonstrated in the linear range but not so in the nonlinear range of loadings. One major reason is because exact analytical solutions for elastic-plastic problems are usually not available for comparison with approximate NASTRAN solutions.

In this paper, the plate elements of the NASTRAN code are sed to solve two annular plate problems loaded beyond the elastic limit. The fist problem considered is an elastic-plastic annular plate loaded externally by two concentrated forces. There is no analytical solution for this two-dimensional plane-stress problem and the NASTRAN code is used to obtain numerical results. The second problem considered is an elastic-plastic annular plate radially stressed by uniform internal pressure. This problem is chosen because an exact analytical solution is avallable for comparison. For ideally plastic raterials, the stress solution for this statically determinate problem was first obtained by Mises (ref. 3) and the corresponding two strain solutions were obtained by the present author on the basis of both \(\mathrm{J}_{2}\) deformation and flow theories (ref. 4). For elastic-plastic strain-hardening materials, an exact complete solution was recently reported in reference 5. Analytical expressions were derived on the basis of \(J_{2}\) deformation theory, the Hill's yield criterion, and a modified Ramberg-Osgond law. The validity of the above solution has been established by satisfying the Budiansky's criterion.

In the following, the theory of elastic-plastic plate elements as used in NASTRAN is briefly reviewed. In its present form, NASTRAN cannot be used for problems involving ideally plastic materials. It is shown that this limitation can be easily removed by making minor changes. For an elastic-plastic strain-hardening material, the NASTRAN solution is reported here and compared with the exact solution. The results are presented graphically and an assessment of the NASTRAN code is made.

PLASTIC PLATE ELEMENTS

The theoretical basis of two-dimensional plastic deformation as used in NASTRAN is that developed by Swedlow (ref. 6). In the development, a unique relationship between the octahedral stress, \(\tau_{0}\), and the plastic octahedral strain, \(\varepsilon_{0} p\), is assumed to exist and the use of ideally plastic materials is excluded. The total strain components ( \(\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}\), and \(Y_{x y}\) ) are composed of the elastic, recoverable deformations and the plastic portions ( \(\varepsilon_{x} P, \varepsilon_{y} P, \varepsilon_{z} P\), and \(\gamma_{x y} P\) ). The rates of plastic flow, ( \(\varepsilon_{x} p\), etc.), are independent of a time scale ans are simply uged for convenience instead of incremental values. The definitions of the octahedral stress and the octahedral plastic strain rate for isotropic naterials are:
\[
\begin{gather*}
\tau_{0}=\sqrt{\left(s_{11^{2}}+2 \varepsilon_{12^{2}}+8_{22^{2}}-\sqrt{\left.83^{2}\right) / 3}\right.}  \tag{1}\\
\dot{\varepsilon}_{0} p=\sqrt{\left[\left(\varepsilon_{11} p\right)^{2}+2\left(\varepsilon_{12} p\right)^{2}+\left(\varepsilon_{22^{p}}\right)^{2}+\left(\varepsilon_{33} p\right)^{2}\right] / 3} \tag{2}
\end{gather*}
\]
where
\[
\begin{align*}
& 8_{11}=\frac{1}{3}\left(2 \sigma_{x}-\sigma_{y}\right), \varepsilon_{11} p=\varepsilon_{x} p \\
& s_{22}=\frac{1}{3}\left(2 \sigma_{y}-\sigma_{x}\right), \varepsilon_{22} p=\varepsilon_{y} p \\
& 833=-\frac{1}{3}\left(\sigma_{x}+\sigma_{y}\right), \varepsilon_{3} p=\varepsilon_{z} p \\
& 8_{12}=T_{x y}, \varepsilon_{12} p=-\gamma_{x y} p \tag{3}
\end{align*}
\]

The \(s_{1 f}\) is called the deviator of the stress tensor; \(\sigma_{x}, \sigma_{y}\), and \(T_{x y}\) are the cartesian stresses. The isotropic material in assumed to obey the Mises yield criterion and the Prandtl Reuss flow rule. The matrix relationship for the plastic flow 1s:
where
\[
\begin{equation*}
2 M_{T}\left(\tau_{0}\right)=\dot{\tau}_{0} / \dot{\varepsilon}_{0} p \tag{5}
\end{equation*}
\]

The plastic modulus, \(M_{T}\left(\tau_{0}\right)\), can be related to the slope \(\mathrm{E}_{\mathrm{T}}\), of the effective stressstrain curve by:
\[
\begin{equation*}
\frac{1}{3 M_{T}\left(\tau_{0}\right)}=\frac{1}{E_{T}}-\frac{1}{E} \tag{6}
\end{equation*}
\]

The total strain increments, obtained by idding the plastic and ilnear elastic parts, are:
\[
\begin{equation*}
\{\Delta \varepsilon\}=\left(\left[D^{P}\right]+[G]^{-1}\right)\{\Delta \sigma\}=\left\{G_{F}\right]^{-1}\{\Delta \sigma\} \tag{7}
\end{equation*}
\]
where [G] is the normal elastic material matrix and [ \(G_{p}\) ] is the equivalent plastic material matrix. The matrices \(\left[D^{P}\right]\) and \(\left[G_{p}\right]^{-1}\) exist for finite values of \(M_{T}\) or ( \(E_{T}\) ) and \(\left[G_{p}\right.\) ] can be obtained numerically. Because this procedure is chosen in developing NASTRAN program, only strain hardening materials can be considered for applications. However, it should be noted that even the matrix \([G p]^{-1}\) does not exist when \(M_{T}\) or \(E_{T}\) is equal to zero, the matrix \(\left[G_{p}\right]\) may still exist. In fact, the closed form of [ \(G_{p}\) ] has been given in reference 7. We can express this as:
\[
\left[G_{p}\right]=\frac{E}{Q}\left(\begin{array}{ll}
s_{22^{2}+2 A} &  \tag{8}\\
-s_{11} s_{22}+2 v A, & s_{11^{2}+2 A} \\
-\frac{s_{11}+v s_{22}}{l+v} s_{12}, & -\frac{s_{22}+v s_{11}}{1+v} s_{12}, \\
2(1+v) & \\
\frac{B}{E-E_{T}} \tau_{0}{ }^{2}
\end{array}\right)
\]
where
\[
\begin{equation*}
A=\frac{E_{T}}{E-E_{T}} \tau_{0}^{2}+\frac{s_{12} 2^{2}}{1+\nu}, B=s_{11^{2}}+2 \nu s_{11} s_{22}+s_{22^{2}}, Q=2\left(1-\nu^{2}\right) A+B . \tag{9}
\end{equation*}
\]

If we want to remove the limitation that the use of ideally plastic materials is excluded, we have to make minor changes in subroutines PSTRM and PKTRM of the NASTRAN program.

\section*{TWO-DIMENSIONAL PROGRAM}

Consider a two-dimensional annular plate loaded externally by two concentrated forces. Figure 1 shows a finite element representation for one quarter of the annular plate. The other part is not needed because of symmetry. There are 198 grids and 170 quadrilateral elements in this model. The grids ( 1 through 11) along the \(x\)-axis are constrained in \(y\)-direction while those grids ( 188 through 198) along the \(y\)-axis are constrained in the \(x\)-direction. The concentrated force \(F\) is applied at the top of the y-axis (grid 198). The thickness of the plate is 0.1 inch. All membrane elements are stress dependent materials. The effective stress-strain curve is defined by:
\[
\begin{align*}
\sigma & =\mathrm{E} \varepsilon \text { for } \sigma \leqslant \sigma_{0}  \tag{10}\\
\left(\sigma / \sigma_{0}\right)^{n} & =\left(E / \sigma_{0}\right) \varepsilon \text { for } \sigma \geqslant \sigma_{0}
\end{align*}
\]
where
\[
\begin{equation*}
\sigma=(3 / \sqrt{2}) \tau_{0}, \quad \varepsilon=\sigma / E+\sqrt{2} \varepsilon_{p} \tag{11}
\end{equation*}
\]
n is the otrain hardening parameter and the initial yield surface is defined by the ellipse \(\sigma=\sigma_{0}\). The input parameters for the problem are:
\[
E=10.5 \times 10^{6} \mathrm{psi}, v=0.3 \text { (Poisson's ratio) }, \sigma_{0}=5.5 \times 10^{4} \mathrm{psi}, n=9 .
\]

There is no analytical solution for the two-dimensional plane-stress problem and the NASTRAN code is used to obtain numerical results. First the stress solution in the elastic loading range is obtained and the elastic limit is determined. The corresponding \(F^{*}\) at initial yielding is 753.34 pounds. Then the solution beyond the elastic limit is obtained in 13 steps with the applied force given by \(\mathrm{F}_{\mathrm{n}}=753.36\) ( \(0.95+\)
\(0.05 n\) ) pounds for \(n=1,2, \ldots 13\). The vertical displacement at the point of application ( \(V_{D}\) ) and the horizontal displacement ( \(U_{B}\) ) at point B (grid 1l) are shown in figure 2 as functions of the applied force \(F\). The major principal stresses in elements near the \(x\) and \(y\)-axes are shown in figure 3 for \(F=600\) and 1205.38 pounds, respectively. The results indicate that the maximum tensile stress occurs at point \(C\).

\section*{ONE-DIMENSIONAL PROBLEM}

Consider a one-dimensional annular plate stressed radially by uniform internal pressure. The plate geometry and material properties are the same as the twodimensional one. Utilizing the condition of axial symmetry, we need only a sector of the annular plate for the finite element model. There are only 10 elements with 22 grids. All grid points are constrained in the tangential direction. The applied load is the internal pressure \(p\). If \(p=1000 \mathrm{psi}\), the equivalent nodal force at each of the two interior grids is \(Q=4.62329\) pounds in the radial direction. The true pressure corresponding to initial yielding for this problem is \(p_{0}=23,571 \mathrm{psi}\). The NAST AN results will depend on the users' choice of element sizes and load increments. In the elastic range, the NASTRAN results based on two finite-element models were compared with the exact solution. For a ten-element model, the maximum error is 0.36 percent in displacements and 0.95 percent in stresses. For a twenty-element model, the maximum errors are reduced to 0.09 percent and 0.24 percent, respectively. Since we are satisfied with one percent error, the ten-element model is chosen for incremental analysis beyond the elastic limit.

In the plastic range, the user has to choose the load increments properly in order to obtain good results at reasonable cost. The values of the load factors can be normalized so its unit value corresponds to the limit of elactic solution, i.e., \(p_{0}=23,571\) psi. The load increments can be uniform or nonuniform. It seems that the size of load increments depends on the material properties and sizes of elements. In order to determine the influence of load factors on the displacements and stresses in the plastic range, four sets of load factors are chosen. The load increments for three of them are uniform with \(\Delta p / p_{0}=0.20,0.10\), and 0.05 , respectively. The influence of load factor, \(p / p_{0}\), on the inside radial displacement, \(u_{1}\), is shown in figure 4. The effect of load factors on the major principal stresses in elements is shown in figure 5. he also show in these two figures the corresponding analytical results. On the basis of these comparisons, we can make the following conclusions. In the earlier stages of plastic deformation, larger load increments can be used to give very good results. As plastic deformation becomes bigger, smaller load increments should be used in order to get a reasonably good answer. However, for very large plastic deformation, it seens that we cannot improve the NASTRAN results much better by choosing even saller increments. This is because there are other built-in errors in the NASTRAN program, e.g., the linear displacement function is assumed.

If uniform load increments are used, a direct comparison of the analytical and NASTRAN results is not available. The solid curves shown in figures 4 and 5 were obtained indirectly since the analytical results of the displacements, stresses, and pressure were represented as functions of elastic-plastic boundary (ref. 5). We have obtained the analytical results when the elastic-plastic boundary is located at a radial distance of \(0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85\), and 0.95 inch from the inside surface. The corresponding values of the pressure factor ( \(p / p_{0}\) ) are \(1.095,1.266,1.414,1.540,1.646,1.734,1.805,1.860,1.901\), and 1.929 , respectively. This set of values is used as load factors in the input deck of the

NASTRAN progran. Some of the MASTRAN results together with the corresponding analytical results are shown in figures 6 and 7. A direct comparison of the two approaches in the plastic range can be seen. The effect of load factors on the distribution of radial displacenents is shown in figure 6. The distributions of major principal atresses for three load factors are shown in figure 7. As can be seen in figures 6 and 7, a direct comparison of two approaches will support the following conclusion. Bven if the results in the elastic range are in excellent agrement, the differences in the plastic range can be quite big for large values of load factors. This suggests more research efforts should be given to large plastic deformation.

CONCLUSLONS

ORIGINAL FAGE :?
OF POOR QUALITY

Two elastic-plastic annular plate problems have been analyred by using NASTRAN plate elements. One problen is loaded externally by two concentrated forces and the other by uniform internal pressure. The NASTRAN results for the second problen have been compared with an exact analytical solution. It seems that the NASTRAN code in its present form is still a valuable tool because it can be used tc solve quite complicated plane stress problems provided the plastic deformation involved is not too large. The limitation that the use of ideally plastic materials is excluded can be easily removed by making minor changes.

\section*{REFERENCES}
1. NASTRAN Demonstration Problem Manual, NASA SP-224 (01), 1972.
2. Chen, P. C. T: On Elastic-Plastic Analysis of an Overloaded Breech Ring Using NASTRAN, Proceedings of the Tenth NASTRAN Users' Colloquium, May 1982, pp. 100-109.
3. Mises, R. V.: Three Remarks on the Theory of Ideal Plastic Body, Reissner Anniversary Volume, 1949, pp. 415-429.
4. Chen, P. C. T.: A Comparison of Flow and Deformation Theories in a Radially Stressed Annular Plate, Journal of Applied Nechanics, vol. 40, no. 1, Trans. ASME, vol. 95, 1973, pp. 283-287.
5. Chen, P. C. T.: Elastic-Plastic Analysis of a Radially Stressed Annular Plate, Journal of Applied Mechanics, vol. 44, 1977, pp. 167-169.
6. Swedlow, J. J.: The Thickness Effect and Plastic Flow in Gracked Plates, ARL 65-216, Aerospace Research Laboratcries, Office of Aerospace Research, October 1965.
7. Yamada, Y.; Yoshimura, N.; and Sakuri, T.: Plastic Stress-Strain Matrix and Its Application for the Solution of Elastic-Plastic Problems by the Finite Element Method, Int. J. Mech. Sci., vol. 10, 1968, pp. 345-354.


Figure 1. Finite Element Model of an Annular Plate.


Figure 2. Vertical and Horizontal Displacements ( \(\mathrm{V}_{\mathrm{D}}, \mathrm{U}_{\mathrm{B}}\) ) as Functions of the Applied Force (F) - Problem 1.


Figure 3. Distribution of Major Piincifal Stresses Problem 1.


Figure 4. Influence of Load Factor on the Inside Displacements - Problem 2.


Figure 5. Influence of Load Factor on the Major Principal Stresses in Fiement 1 - Problein 2.


Figure 6. Distribution of Radial Displacements - Problem 2.

ORIGINAL PAGE IS OF POOR QUALITY


Figure 7. Distribution of Major Principal Stresses - Problem 2.

BOLT IN BORE BOUNDARIES
by

\author{
BUTtER ANALYSES
}

\section*{INTRODUCTION}

This paper discusses the factors that must be taken into consideration when applying NASTRAN's linear analysis to structures whose principle boundaries are formed by bolting, and for which localized stress peaking is important. The determination of what portion of the bolt boundary is active for a given loading is a nonlinear problem. Once the active boundaries are established for a given load, the determination of the resulting stresses is a linear problem. Does this mean that every analysis whose principle boundaries are formed by bolting are wrong if they are not treated in a nonlinear fashion? Not at all! The importance of this nonlinear condition rears its head only when the finite element mesh is so fine that the bore is no longer represented as a point. Then the particulars of the macro behavior of the bolt in the bore become important. There are two approaches to this problem: Either the employment of a set of nonlinear scalar springs at the boundaries to determine the active region for a given loading followed by a detailed linear analysis under the active bounding locales; or the pursuit of a series of boundary approximations using linear analysis, only, until admissible conditions are found. This paper deals with the second approach. An illustration of these methods is given in an application to a mounting bracket.

\section*{OPERATION}

Loads applied simultaneously in 3 coordinate directions involve 3 kinds of boundaries and cause variations depending on the magnitudes of the load components. Unfortunately, it is not possible to apply a set of individual nominal loads then scale them and combine them to get a final result, because linear superposition does not w erk at all in this highly nonlinear problem, Changing loads causes the hold down bolts to bear on the bore surface in different
locations; they cause either the bolt head or nit to make contact in different locations; they cause different edges of the bolted foot to bear on the mounting surface. In the application under consideration, there are two bolts through a single rectangular foot.


ORIGINAL PAGE IS OF POOR QUALITY
```

In the actual case there is a multi-fold infinity of
possible bounding contacts. In the finite elemerit case of a fine meshed model there is a high finite number of possible bounding combinations. To reduce the problem of finding admissibie combinations to a manageable set, at was decided to limit the trial locations to the following:

```

TYPE OF BOUNDARY
Bolt Shank Against Bore Surface

\section*{DETAILS OF REPRESENTATION}

Three Pairs of Points At Each Cardinal Location For Each Of Two Bores

Bolt Head Against Upper Surface Annulus

Bolt Nut Against Lower Sarface Annulus

Foot Side Edge Against Mount Surface

Foot End Edge Against Mount Surface

Circle of Points About Each Of Two Bores

Circle Of Points About Each Of Two Bores

Set of Three Points At Each Of Two Sides Of Each Of Two Points

Set Of Points Along Entire Edge Of End Nearest Load

Sketches of these boudaries as they might behave under load are shown here.


CONTACT ARC

\title{
ORIGINAL PAGE is \\ OF POOR QUALITY
}

Fools rush in where angles fear to tread. Based on the logic of rigid body actions it appeared quite reasonable to expect that one could make initial predictions that could be modified slightly, after initial reactions were reviewed, to a set that would be admissible. Notice that mealy-mouthed laingage is already being used: reasonable -- admissible; not correct or precise. If the load were afplied in the \(+X,+Y,+Z\) directions, one would expect the foot to move uver to contact the bolts on the \(-X\) sides of the bores, the -Y sides of the bores, and to engage the bolt head rather than the bolt nut for both boits. It was these rigid bod! notions that were dashed by the elastic reality of thr case. Actions at one bore were different than actions at the other. Loads were offset from the foot and the loading surface was canted to the plane of the foot. These produced moments that were reacted at the bolts. Rigid body calculations were made for each load to help decide on the initial boundary assignments in the first trial of each run. This approach has logical appeal, but it often was considerably off the mark.

In order to improve the first trial, a small pilot model with a coarse mesh was assembled from plate elements and had each bore represented by a point. Readings from the bore poinis and boundary edge points helped to improve the initial SPC assignments in the solid model.

This analysis used solid elements entirely for the whole mindel which contributed to a complication in satisfying moments. Pairs of points are needed to create couples when using solid elements, while if plate bending elements were used instead, any bending requirements could be met at a single point rather than over a pair of points. The tendencies of pairs of points to form couples proved troublesome at boundaries. To explein tnis it will be helpful to redefine some terms.

First of all "boundary" is defined to be that set of points wherein a subset of whose components are constrained to zero displacement. This is a particalarly severe condition in view of the inevitible redundancy of constraints. An admissible boundary is one that pushes only and does not pull on the mating boundary strucuture. This restriction makes an ideal argument for using unidirectional nonlinear boundary springs. The nonlinear supports will allow nonzero displacements and still produce a push force. Exploring such a case would be an attractive tenture, but this paper concentrates only on the linear trial method. The measure used to discriminate for admissibility of boundary candidates was the sign of the SPCForces at the boundaries. If any boundary components were found
to pull, it necessitated redefining the houndary constraints to avoid this pulling condition. Quite often it was not enougn to just eliminate the offending component, because the pulling behavior often moved to the neighboring retained point. Another suprise occurred at the bolt heads. It seemed represeritative for bolt head constraints to be modeled as an annulus of a double circle of points. As it turned out, pairs of inner and outer radial points acted as couples with opposite signs which is inadmissible, because opposite signs means one is pulling while the other is pushing. Consequently, bolt head and bolt nut reactions were modeled as a single circle of points. Even restricting bolt constraints to single circles was most often not sufficiently curtailed to eliminate all pulling. Trial with only arcs of a circle in various positions and different spans were made before sometimes, an admissible nead or nut representation was found.

At time ; during this analysis, I wanted to say, "What does \(t\) matter if there is some pulling?" Severe high stresses occurred in regions where high constraint forces of opposite signs were present. Good answer.

The canted, offset position of the loading produced a tendency for the foot to tilt with respect to the mounting surface in every loading case. A triplet of points on an edge transuersely opposite a bore in one directicn constituted the candidate boundary set at each of 4 locations. As trials were made it was found that sometimes the triplet had to be reduced to a pair or a single point before it became admissible. In the case of fore and aft edges, it was found that someti.es contact was made at the enge neanest the load but tilting towards the far end was taken up elastically before reaching the far end so that the far edge never became a boundary constraint. The distribution of constraints on the near edge was found to vary from the entire edge to a biased partial set.

Hbsence of pulling is not the only criterion for admissibility. Over-constraining must be guarded against when trying to trace critical stresses. It is possib!e to have excessive constraints even though they are all pushing. The requirement used for an admiss:ble quantity of constraints is that the opposing equilibrating elastic constraints be of the same order of magnitude as the opposing forces for rigid body equilibrium. An average of six trial runs per load case were needed to find an admissible set of constraints. Resu!ts were considered to be on the
conseruative side, because the contact area broadens as defurmation takes place in the actual case. Broadening of the contact area was not taken into account in this analysis. As a result this analysis should show stresses slightly higher than actual.

The advantage for an analysis, such as this, is that : gives much more information than an experimental set-up using strain gages. because the finite element mesh has a smaller gage length and has several oraers of magnitude more measurements. The load path becomes well traced and the peaking and releasing of stresses which leads to cracks and fatigue 1s well defined.

APPLICATION

To ll lustrate how this method worked in practice, this paper will trace the steps taken in homing in on an admissible set of constraints for a single loading condition.

SUBCASE 3412; XYZ loads at the cradle are -283/-559ノ-422

It might be easier to describe the evolution of reactions if positions are oriented with respect to the bracket parts. For instance, the piace where loads go in 15 the cradie and trie triangular shaped lagament connecting the cradle to the oase is the brace. opposite the brace the side 15 named "open". positions in the other direction are distinguished by the terms "distant" from the loaded cradle and "near" the load. The bores are not of equal size. The bore nearest the cracle is the larger so the terms large bore (LB) and small bore (SB) help to keep the reaction straight. Finally, the vertical direction can be designatea by the bolt head side on top and the bolt nut side on the bottom. See the sketch with latuels per this scheme.


The initial SPC set was assigned in an attempt to balance the loads with pushing forces only. To oppose the \(-x\) load, a set of SPC's was put in place at the LB(large bore) on the carainal point towards the open side. The couple created by the \(x\) load and the \(L B X\) reaction can be balanced by putting a constraint on the cardinal point at the SB(small bore) towards the brace side.

To oppose the -Y load an SPC set was put on the nut side of LB causing a moment which coulo be opposed by an SPC on the head sade of SB.

To oppose the \(-Z\) load the cardinal points towara the near side of both bores. constraints were put on the near side of both LB and SB. To oppose the moment in \(Z\) forces about the \(x\)-axis, a constraint was applied at the dastant edge.

In particular, the initial combination of SPC sets consisted of:
(a) a full array of 3 pairs of points (nut surface, mear surface, and head surface) on the \(5 B\) orace location for X reaction.
(b) a full column of 3 points (nut, mean, and head) on the LB open location for \(x\) reaction.
(C) a 278 degree arc of points from "near" arcund "brace" to "distant" on the head surface around SB for Y reaction.
(d) a 270 degree arc of points from "near" around "open" side to "distant" on the nut surface around LB for \(Y\) reaction.
(e) a line of points on the "distant" edge beyond SB for Mx reaction.
(f) a full array of 3 pairs of points on the 5 neam side for \(Z\) reaction.
(g) a full column of 3 points on the LB near side for Z reaction.

The results showed a number of places that were pulling, but the one giving the greatest offense was the line of points on the distant edge.

The first modification tried to temper the effect of the distant eage by introducing an additional constrajnt on the brace egde opposite SB, unile keeping all else unchanged. The results showed no relief in the pulling of the distant edge and only slight correction around the bores.

The second modification abandoned the distant edge line. The arc on the nut surface of LB was shifted frofr 2?0 degrees on the open side to 180 degrees on the brace side.

The arc on the head surface of \(S B\) was reduced to 180 degrees on the brace side.
The triplet of points on the brace edge of SB was reduced to a pair.
The result; were considerably improved, but some pulling in \(z\) persisted.

The third modification reduced 3 pairs in the \(5 B\) near side to the upper 2 pairs.
The column of constraints in LB near side were removed. The triplet on the open side of LB was reduced to the upper pair.
The results showed there was still pulling in \(Y\), and the \(Z\) pushing magnitudes on 5B were high.

The fourth modification reduced the 180 degree arc on the nut surface of LB to a 45 degree arc on the brace side. The triplet on the near side of LB was resoted to moderate those in SB.
The results were close but there was some pulling on the brace side of \(S B\) and on the near side of LB.
```

The fifth modificat:on reduced the 3 pairs to the
lower }\mathcal{E}\mathrm{ pairs on the brace side of SB.
The triplet on the near side of LB was reduced to the
lower pair.
The results were admissible:
In summary, the net overall change entailed:
reducing a full 3 pairs of SB brace side to the lower 2
pairs:
reducing a ful! triplet of LB open side to the upper
paır;
eliminating the distant edge line and enabling a pair
of points on the orace edge of SB;
moving the LB 270 degree arc on the open side of the nut
surface to a }45\mathrm{ degree arc on the brace side
of the nut surface;
reducing a full 3 pairs of SB near side to the upper
2 pairs;
reducing a full iriplet of LB near side to the lower
paır.
This cut and iry method was applied to every soading
case in order to achieve admissibility. What kept one
going was the optimistic certainty that just one more
try would bring the constraints into line. And just like
Charile Brown's kaseiall team something unexpected turnec
up each time to frustrate the success of the next try.
The next three illustrations show the surfaces only of
the solid element modelling used for the bracket as
uiewed from 3 different positions.

```


ORIGNAL PAAE :3
OF POOR QUGL: Y



The followang allustration shows color contours of stresses from a single loading cise.


In conclusion it \(a s\) fadr to say that the metnod works and sives reliable results slightly on the conservative side. It still leaves an element of uncertainty as to whether the honed set of constraints is unique, since a reduced set of working locations was used. Some shifting say to intercardinal points might cause some change in the stresses. In spite of this nagging doubt, it claims to be a reasonably good method. It can be tested further by running a set of unidirectional nonlinear springs to obtain a measure of its approximations.

Some comment might be made as to the efficiency of the computing techniques. e.g. Brute Force as was done here which desoted a complete run for every trial. 2. Condensation of all points except boundary candidates with restart of oniy the modified A-set. 3. Substructuring with a unit substructure assigned to eacn cluster of boundary points and the bulk to trie parent structure. 4. A true nonlinear inuestigation to recover the magnitudes of the boundary forces for each load case with a companion run of the linear case which would then apply these boundary forces for a lengthy stress recovery phase.

The reason that the Brute Force method was used is that the storage required to implement the other routes taxed the limited resources of the UAX.

The maxim that fits this story is: that whenever the mesh of a model is so fine that a bore can't be represented as a point, one must be prepared for a considerable amount of extra care if the stresses in tine region of the boundary are important. In the words of the Great CPU:

HE WHO MESHES FINE,

FINDS A MESH.```


[^0]:    *Rescarch sponsored by the Office of Fusion Energy, U.S. Department of Energy, under contract $W$ - 7405 -eng- 26 with the Union Carbide Corporation.

[^1]:    * Hole Element Results
    ** Reference 2

[^2]:    *Bold face letters will be used to designate matrices, including row and column vectors.

[^3]:    *Was not computed.

[^4]:    t Partially funded by David W. Taylor Navai Ship Research and Cevelopment Center, Bethesda, Maryland.

