Myles M. Hurwitz

Lavid W. Raylor Naval Silip R\&D Center Bethesdr, Mar jland 20084

SUMMAKY

The NASTRAN TKAPRG and TKAPAX finite elements are very restrictive as to shape and grid point nambering. The elements must be trapezoidal with two sides parallel to the radial axis. In addition, the ordering of the grid points on the eleaent connection card must follow strict rules. The paper describes the generalization of these eleaents so that these restrictions no longer apply.

InThUDUCTIUN

Since NASTRAN's inception in the early 1970's, the axisymetric trapezoidal ring element TKAPRG has been an accurate, efficient element used in solid a.:isymetric problens. More recently, the TRAPAX elenent was introduced to handle nonaxisymmetric loading for slich structures. While these two elements usually perforin very well, the restrictions imposed upon the user in the specification of che elements can be considered, at best, difficult, at worst, unreasonable, in light of today's autonatic data generators. The restrictions require that the elenents be trapezoidal, rather then seners 1 ly quadrilateral, with the top and botion edges parallel to the radial axis. Also, the specification of the grid points on the connection card 1 st be fiven countercloakwse starting with the grid point with snaller radial coordinate of the two grid points with the smaller axial coordinate. This paper presents the reasons for these restrictions, how the restrictions have been renoved, the imposition of a new, uut less stringent restriction, and an exanple problein.

THEOKY

The stiffness matrix for a finite elenent is usually represented as

$$
\begin{equation*}
[K]=\int_{v}[B]^{T}[D][B] d v \tag{1}
\end{equation*}
$$

where [B] is the matrix of strain-displacenent relations and [D] is the materials natrix describing the constitutive relations. The NASTRAN Theoretical lanual (ref. 1) defines [B] for TKAPRG and IRAPF.X elenents. The manual shows that, in order to eval.uate the integral of Equation (1), the integrals

$$
\begin{equation*}
\int_{\mathrm{A}} \mathrm{r}_{z} \mathrm{q}_{\mathrm{drdz}}, \mathrm{p}=-1,0,1,2,3 \text { and } \varphi=0,1,2 \tag{2}
\end{equation*}
$$

ORIGINAL PAGE IG

 OF POOR QUALITYmust be evaluated over the cross-sectional area of the eleuent. The NASTRAN Programaer's Manual (ref. 2) describes how the integrals (2) are conputed analytically. It is because of the nature of the expressions involved in the exact representation of these integrals that the orisinal restrictions on the elenents were inposed. The restrictions have been renoved by replacing the exact integration with Gauss quadrature, as follows.

The three-point quadrature is given as
where

$$
\begin{aligned}
& r=\sum_{i=1}^{4} N_{i} r_{i} \\
& z=\sum_{i=1}^{4} N_{i} z_{i} \\
& N_{i}=1 / 4\left(1+\xi \xi_{i}\right)\left(1+\eta \eta_{i}\right) \text {, the linear isopardmetric shape function } \\
& \text { over the square } \xi=-1 \text { to }+1 \text { and } n=-1 \text { to }+1 \\
& r_{i}, z_{i}=r, z \text { coordinates of the grid points at the four corners of } \\
& \text { the eleaent } \\
& \xi_{1}, \eta_{\mathrm{m}}=\text { isoparametric coordinates at wnich } r^{p} z^{Y} \text { is evaluated in } \\
& \text { a three-point Gauss quadrature } \\
& H_{1}, H_{t h}=\text { quadrature weights corresponding to } \xi_{1}, \eta_{m} \\
& \left|J\left(\xi_{1}, \eta_{m}\right)\right|=\begin{array}{l}
\text { detisnninant of the Jasobian, } \\
\text { at }\left(\xi_{i}, \eta_{m}\right)
\end{array}\left|\begin{array}{ll}
\frac{\partial r}{\partial \xi} & \frac{\partial z}{\partial \xi} \\
\frac{\partial r}{\partial \eta} & \frac{\partial z}{\partial \eta}
\end{array}\right| \\
& \text { - evaluated }
\end{aligned}
$$

With this formulation, the restrictions on the trapezoidal shape and grid point nunbering can be reanoved.

There is, however, one situation which can cause nunerical problems. Note that, in integrals (2), if $p=-1$ and $r \rightarrow 0$, then the integral $\rightarrow \infty$. Two cases can be examined. Tre first is the core element, a TRAPRG elenent with exactly two grid points with zero radius. (NASTRAi does not allow the TRAPAX elenent to be a core element since it does not allow a RINGAX ring to have a zero radius.) At these two points, the radial displacenent must be zero. This condition can be assured as

ORIGINAL PAGE IS
 OF POOR QUALITY

follows. If u and w are the radial and axial displacenents, respectively, at some point within an elenent, then the assuned displaceaent functions are (ref. 1)

$$
\begin{align*}
& u=B_{1}+B_{2} r+B_{3} z+B_{4} r z \tag{4}\\
& w=B_{5}+B_{6} r+B_{7} z+B_{8} r z \tag{5}
\end{align*}
$$

where the b_{i} are unknown coefficients. Then,

$$
\left\{\begin{array}{c}
u_{1} \\
w_{1} \\
\vdots \\
u_{4} \\
w_{4}
\end{array}\right\}=\left[{ }^{H_{B u}}\right]^{-1}\left\{\begin{array}{l}
B_{1} \\
\vdots \\
\mathrm{~B}_{8}
\end{array}\right\}
$$

where u_{i}, H_{i} are the displacenents of the ith grid point. If $r_{i}=0$, then u_{i} aust be 0 , which seans that the $(2,-1)$ th coluon of $H_{B H}$ can be zeroed. In addition, from Equation (4), $0=u=B_{1}+B_{3} \frac{1}{2}$ for all z. Therefore, $0=B_{1}=B_{3}$, whi ch can be assured by zeroing the first and third colunns of H^{\prime}. However, Sthe only terns of $H_{B y}$ which contain a form of (2) whth $p=-1$ are in the first and third colunns. Therefore, for a TRAPRG core eleaent with $r_{i}=0$, no nunerical problems exist.

Now consider a second case - one where some r_{i} is small conpared with some otiner r_{j} in the eleaent. Couparisons between the analytical integration and the Gauss quadrature show that if

$$
\begin{equation*}
\frac{r_{\text {meX }}}{r_{\text {min }}}>10 \tag{7}
\end{equation*}
$$

then the Gauss quadrature results begin to significantly degrade ($r_{\text {max }}=$ max r_{i}, $1=1, \ldots, 4$). Therefore, inequality (7) is not allowed. This restriction should impose a hardship tainly when a TRAPAX core element is desired. This hardship however should require only an extra element or two to transition to larger radii.

SAMPLE PROBLEA
The sample problen for this work was a normal modes analysis of a thick-walled cylinder of inner radius 5.0 inches, outer radius 6.25 inches, and lengtn 3.5 inches. The finite eleaent model for the unnodified version of NASTRAN is shown in Figure la and, for the version which renoves the restriction, in Figure 1 b . Both nodels used the TRAPAX elenent. The results are shown in Table 1. The canparison of the resusts shows a degradation at the highest mode conputed. However, this can be expected because of the severity of the non-uniform aesh.

REFERENCES

1. The NASTRAN Theoretical Manual (Level 17.5), NASA SP-221 (05), Dec. 1978.
2. The NASTRAN Programer's Manual (Level 17.5), NASA SP-223 (05), Dec. 1978.
table 1. comparative results

MODE	NATURAL FREQUENC IES (CPS)	
	RESTRICTI VE ELEMENTS	GENERAL ELEMENTS
	1090.003	1090.000
2	1600.250	1660.864
3	1760.034	1760.101
5	1988.622	1989.121
6	2071.862	2071.920

Figure la
Figure lb

Figure 1. Finite Element Models

