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ELASTIC~PLASTIC ANALYSIS OF ANNULAR PLATE PROBLEMS USING NASTRAN
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The plate elements of the NASTRAN code are used to analyze two annular plate
problems loaded beyond the elastic limit. The first problem is an elastic-plastic
annular plate loaded externally by two concentrated forces. The secoud problem is
stresged radlally by uniform internal pressure for which an exact analytical solution
i8 available. A comparison of the two approaches together with an assessment of the
NASTRAN code is given.

INTRODUCTION

The plecewise iinear analysis option of the NASTRAN code can be used tc analyze
quite complicated elastic-plastic plane~stress problems (refs. 1 and 2). The
reliability of this code has been well demonstrated in the linear range but not so in
the nonlinear range of loadings. One major reason is because exact analytical
solutions for elastic-plastic problems are usually not available for comparison with
approximate NASTRAN solutiouns.

In this paper, the plate elements of the NASTRAN code are 8sed to solve two
annular plate problems loaded beyond the elastic limit. The fi st problem considered
is an elastic~plastic annular plate loaded externally by two concentrated forces.
There is no analytical solution for this two-dimensional plane-gtress problem and the
NASTRAN code 1s used to obtain numerical results. The second problem considered 1s
an elastic-plastic annular plate radially stressed by uniform internal pressure.

This problem is chosen because an exact analytical solution is available for
comparison. For ideally plastic r.terials, the stress solution for this statically
determinate problem was first obtained by Mises (ref. 3) and the corresponding two
strain solutions were obtained by the present author on the basis of both Jp
deformation and flow theories (ref. 4). For elastic-plastic strain-hardening
materials, an exact complete solution was recently reported in reference 5.
Analytical expressions were derived on the basis of J; deformation theory, the Hill's
yield criterion, and a modified Ramberg—-Osgood law. The validity of the above
solution has been established by satisfying the Budiansky's criterion.

In the following, the theory of elastic-plastic plate elements as used in
NASTRAN is briefly reviewed. In its present form, NASTRAN cannot be used for
problems involving ideally plastic materials., It is shown that this limitation can
be easily removed by making minor changes. For an elastic-plastic strain-hardening
material, the NASTRAN solution is reported here and compared with the exact solution.
The results are presented graphically and an assessment of the NASTRAN code 1is made.
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The theoretical basis of two-dimensional plastic deformation as used in NASTRAN
is that developed by Swedlow (ref. 6). In the development, a unique relationship
between the octahedral stress, T,, and the plastic octahedral strain, e,P, is assumed
to exist and the use of ideally plastic materials 15 excluded. The total strain
components (&4, €y, €z, and ny) are compoaed of the elastic, recoverable
deformations and the plastic portions (exP, Cyp. ezP, and Yxy P). The rates of
plaastic flow, (ex » etc.), are independent of a time scale ani are simply used for
convenience instead of incremental values. The definitions of the octahedral stress
and the octahedral plastic strain rate for isotropic naterials are:

1o = /(811° + 28]2° + 822° * 833°)/3 (1
EoP = TCEIPIZ + E12P)2 + (Eg2PV % + (E33P)2173 (2)
where
811 ~ g (20x-0y) , €11P = &P
1
s22 = 3 (20y-0x) , €22P = €yP

1
833 - -~ '3' (Ox“"oy) » €33P = P

812 = Txy €12P = - nyp (3)

The 814y 18 called the deviator of the stress tensor; ox, Oy, and Txy are the
carteslian stresses. The isotropic material iz assumed to obey the niaes yleld

criterion and the Prandtl Reuss flow rule. The matrix relationship for the plastic
flow is:

exP [(e11 511822 2811812 | | Ox
L] ‘ L]
EgP | = mmmzmmamem s11822 8227 2822012 (| @ (4)
.Y 6Tp2 ‘IT( o) 'y .
Ya? 2811822 2811812 4s1? || Txy *
where
Mp(1) = To/€P (s)

The plastic modulus, Mr(t,), can be related to tiz Rlope Er, of the effective stress-
strain curve by:

1 1 1

el (6)

Mr(1g) Er E

The total strain increments, obtained by idding the plastic and linear elastic
parts, are:

{ae} = ([DP] + [G]=!){Ac} = [GgI~1{Ac} 7
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vhere [G] is the normal elastic material matrix and [Gp] is the equivalent plastic
material matrix. The matrices [DP] and [G ]=! exist for finite values of Mr or (ET)
and [G,] can be obtained numerically. Because this procedure 1is chosen in developing
NAST program, only strain hardening materials can be considered for applications.
However, it should be noted that even the matrix [6p]~! does not exist when My or Er
is equal to zero, the matrix [G ] may still exist. 1In fact, the closed form of [Gp]
has been given in reference 7. Ue can express this as:

\
( 8222+2A SYM,
g | - 811 s22+2va , 8112424
[Gpl = = (8)
Q 811+v822 827+vs]] B (1-vET
= m=e——e=— g - m—————e— 8 + T
1+v 12 1+v 12 » 2(1+v) E-Er ° J
where
Ep 8122
A= To2 + === , B =812 + 2vey) 822 + 8222 , Q= 2(1-v®)A + B, (9)
E-ET 1+v

If we want to remove the limitation that the use of ideally plastic materials 1is
excluded, we have to make minor changes in subroutines PSTRM and PKTRM of the NASTRAN

program.
TWO-DIMENSIONAL PROGRAM

Consider a two—dimensional annular plate loaded externally by two concentrated
forces., Figure 1 shows a finite element representation for one quarter of the
annular plate, The other part is not needed because of symmetry. There are 198
grids and 170 quadrilateral elements in this model. The grids (1 through 11) along
the x-axis are constrained in y-direction while those grids (188 through 198) along
the y-axis are constrained in the x-direction. The concentrated force F is applied
at the top of the y-axis (grid 198). The thickness of the plate is 0.1 inch. All
membrane elements are stress dependent materials. The effective stress-strain curve
is defined by:

o = Ee for o < g,

(10)
(0/ag)™ = (E/gg)e for o > o,
where
o= (3VD1, , e=a/E+ /2 €p (11)

n 1is the strain hardening parameter and the initial yield surface is defined by the
ellipse 0 = g,. The input parameters for the problem are:

E = 10.5 x 105 pst , v = 0.3 (Poisson's ratio) , 0o ® 5.5 x 10* psi , n =9,

There 18 no analytical solution for the two-dimensional plane-stress problem and the
NASTRAN code is used to obtain numerical results. First the stress solution in the
elastic loading range {s obtained and the elastic limit is determined. The corre-
sponding F* at initial yielding is 753.34 pounds. Then the solution beyond the elas-
tic limit is obtained in 13 steps with the applied force given by Fy . 753,36 (0,95 +
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0.05n) pounds for n = 1,2,...13. The vertical displacement at the point of applica-
tion (Vp) and the horizontal displacement (Up) at point B (grid 11) are shown in fig-
ure 2 as functions of the applied force F., The major principal stresses in elements
near the x and y-axes are shown in figure 3 for F = 600 and 1205.38 pounds, respec-
tively. The results indicate that the maximum tensile stress occurs at point C.

ONE-DIMENSIONAL PROBLEM

Consider a one-dimeunsional annular plate stressed radially by uniform internal
pressure. The plate geometry and material properties are the same as the two-
dimensional one. Utilizing the condition of axial symmetrv, we need only a sector of
the annular plate for the finite element model. There are only 10 elements with 22
grids. All grid points are constrained in the tangential direction. The applied
load 1s the internal pressure p. If p = 1000 psi, the equivalent nodal force at each
of the two interior grids is Q = 4.62329 pounds in the radial direction. The true
pressure corresponding to initial yielding for this problem is p, = 23,571 psi. The
NAST AN results will depend on the users' choice of element sizes and load increments.
In the elastic range, the NASTRAN results based on two finite-element models were
compared with the exact solution. For a ten—element model, the maximum error 1is 0.36
percent in displacements and 0.95 percent in stresses. For a twenty-element model,
the maximum errors are reduced to 0.09 percent and 0.24 perceat, respectively. Since
we are satisfied with one percent error, the ten—element model is chosen for
incremental analysis beyond the elastic lirit,

In the plastic range, the user has to choose the load increments properly in
order to obtain good results at reasonable cost. The values of the load factors can
be normalized so its unit value corresponds to the limit of elaetic solution, 1i.e.,
Po = 23,571 psi. The load increments can be uniform or nonuniform. It seems that
the size of load increments depends on the material properties and sizes of elements.
In order to determine the influence of load factors on the displacements and stresses
in the plastic range, four sets of load factors are chosen. The load increments for
three of them are uniform with Ap/p, = 0.20, 0.10, and 0.05, respectively. The
iufluence of load factor, p/py, on the inside radial displacement, u], is shown in
figure 4. The effect of load factors on the major principal stresses in elements is
shown in figure 5. We also show in these two figures the corresponding analytical
results. On the basis of these comparisons, we can make the following conclusions.
In the earlier stages of plastic deformation, larger load increments can be used to
give very good results. As plastic deformation becomes bigger, smaller load
increments should be vsad in order to get a reasonably good answer. However, for
very large plastic deformation, it seems that we cannot improve the NASTRAN results
much better by choosing even smaller increments. This is because there are other
built-in errors in the NASTRAN program, e.g., the linear displacement function is
assumed.

If uniform load increments are used, a direct comparison of the analytical and
NASTRAN results is not available. The solid curves shown in figures 4 and 5 were
obtained indirectly since the analytical results of the displacements, stresses, and
pressure were represented as functions of elastic-plastic boundary (ref. 5). We have
obtained the analytical results when the elastic-plastic boundary 1is located at a
radial distance of 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, and 0.95
inch from the inside surface. The corresponding values of the pressure factor (p/py)
are 1,095, 1.266, 1.414, 1.540, 1.646, 1,734, 1,805, 1.860, 1.901, and 1.929,
respectively. This set of values 1s used as load factors in the input deck of the
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NASTRAN program. Some of the NASTRAN results together with the corresponding
analytical results are shown in figures 6 and 7. A direct comparison of the two
approaches in the plastic range can be seen. The effect of load factors on the
distribution of radial displacements is shown in figure 6. The distributions of
major principal stresses for three load factors are shown in figure 7. As can be
seen in figures 6 and 7, a direct comparison of two approaches will support the
following coaclusion. Even if the results in the elastic rauge are in excellent
agreement, the differences in the plastic range can be quite big for large values of

load factors. This suggests more research efforts should be given to large plastic
deformation,

CONCLUSIONS ORIGINAL FPAGE 12
OF POOR QUAL!

Two elastic~plastic annular plate problems have been analyzed by using NASTRAN
plate elements. One problem is loaded externally by two concentrated forces and the
other by uniform internal pressure. The NASTRAN results for the second problem have
been compared with an exact analytical solution. It seems that the NASTRAN code in
its present form is still a valuable tool because it can be used tc solve quite
complicated plane stress prcblems provided the plastic deformation involved is not
too large. The limitation that the use of ideally plastic materials is excluded can
be easily removed by mauking minor changes.
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Figure 1. Finite Element Model of an Annular Plate.
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Figure 3. Distribution of Major Piincipal Stresses -
Problem 1.
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Figure 6. Distribution of Radial Displacements - Problem 2.
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