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A STUDY OF PHYSICAL PROCESSES FOR SPACE RADIATION PROTECTION
By
G.S. Khandelwall and Y.J. Xu?

The performance on the above project, during this period, can best be
described by the following three items (two research papers and one
dissertation), which are described in detail in the papers attached with
this report.

1. Intermediate Energy Proton Stopping Power for Hydrogen Molecules
and Monoatomic Helium Gas, Physics Lett. A (in press).

2. Low-energy proton stopping power of N,, 0,, and water vapor
(Revised for publication in the Physical Review.)

3. A theoretical model for calculating molecular stopping power,
Y.d. Xu's dissertation, to be submitted to the faculty in partial
fulfillment of the requirement of the Ph.D. degree in Applied
Physics.

TEminent Professor, Department of Physics, 01d Dominion University, Norfolk,
Virginia 23508.

2Graduate Research Assistant, Department of Physics, 01d Dominion
University, Norfolk, Virginia 23508.
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Intermediate Energy Proton Stoppina Power
for Hydrogen Molecules and Monoatomic Helium Gas

Y. Je Xu and G. S. Khandelwal

Department of Physics, 0ld Dominion University
Norfolk, Virginia 23508
U.S.A.
and
J. W. Wilson
NAS2 Langley Research Center
Hampton, Virginia 23665

U.SeA.

ABSTRACT

Stopping power in the intermediate energy region (100 keV to 1 MeV)
has been investigated, based on the work of Lindhard and Winther, and on
the local plasma model. The theory is applied to calculate stopping power
of hydrogen molecules and helium gas for protons of ejergy ranging from
100 keV to 2.5 MeV. Agreement with the experimental data is found to be

within 10 percent.
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Recent investigations suggest the usefulness of the local plasma
model of Lindhard and Scharff (1] in calculating the mean excitation
energies [2=-5] of various systems. As is known, such calculations of mean
excitation energy help in readily obtaining stopping power for high energy
incident particles. On the other hand, the so czalled intermediate energy
region (100 keVv to 1 MeV in the context of this paper) is of considerable
interest. Unfortunately, the theoretical calculations in this energy
region are hindered, primarily due to the complexity of the problem.
Bonderup's [6] thecretical calculations of stopping power for some
elements, however, seem to be in good agreement with experimental results

for incident proton energy above 500 keV.

, # =%

ER

In this letter, we present calculations of stopping power based on
the work of Lindhard and Winther (7], and on the 1ocalkplasma model of
Lindhard and Scharff. The theory is expected to cover the intermediate
energy region while retaining its applicability for the high energy~
case. The method should be easily applicable for calculating stopping
power of different materials composed of molecules such as H, and N,
gases, water vapor, and many other chemical systems of interest. The
method first establishes a stopping number function L, based on Lindhard
and Winther's formulas. Next, the Gordon=Kim model [8] for density
function of a H, molecule is used to calculate its stopping power in the
energy region from 100 keV to 2.5 MeV. Calculations are also performed

? for the monocatomic Helium gas.
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The celebrated stopping power formula for an energetic charged
particle of charge ze and velocity v, traversing matter of charge number 2

is given by:

dE  4mnzle"
- - *ﬁf@g— N2ZL (1)

where m is the mass of an electron, and N is the number of atoms per unit

volume of the medium.

The stopping number L of Eqg. (1) has been a topic of considerable

study. Most interest, however, has usually been centered on the high

2mv?

energy case for which L attains a simple formula, L = ln I In this

situation, only one parameter I, the mean excitation energy of the medium,
determines the stopping power. Lindhard and Winther have investigated the
function L for a free electron gas in the regions of low and high energy

incident charged particles. These authors (6, 7] give for the high energy

: 1
case¢, the expression for L to order 72 as:

L=1ny-3+2 (2)
2 2 " 2
where, Y = %ﬁl , the classical plasma frequency mp2= iﬁﬁ&_ + p the
p

electron density, and < T >, the average kinetic energy is given by
= (3= 2
<T> = (10) mv.<,

where vF is the Fermi velocity.

For the low energy case, they give:

2 3,4 3,2
n= 7 v e (3)
where, 1
1 1+ —x 1 - —x
c, (0 —————p— 109'-—*-:--*-—*
2(1-.3X)2 14—x
with
2
e
x2 = Thv
F
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The calculational procedure in this paper proceeds with the
exploitation of Egqs. (2) and (3) with the following modifications in
mind. First, as shown in a previous reference in context with the
calculations of mean excitation energy, due to the Pine correction, one

should replace mp by yub in the equations for L function where, v is given

by (2, 9]
- 382 3 g2
y=1+ 2 N (1 + 10 B<) (4)
Yg 5
where A = — is the average distance between electrons in units of Bohr
0
radius. The parameter § is determined by solving the following equation
0.076 B2 + —%L‘r{i;—% « 0.916 = 0
s

The equation (2) for the L function warrants some discussion. First,
one notes that the L function of Egs. (2) and (3) are derived by Lindhard
and Winther for a free electron system. Transition to an atomic systesit of
the first term of Eq. (2), as studied widely, iz accomplished under the so
called local plasma model in which density p (5) is evaluated by using
Quantum mechanical wave functions. Such aKQuantum mechanical analogue of
the second term of Eq. {1) would be of interest. 1In this context, a
result first derived by Brown [10] would prove to be useful. Brown
studied the K-shell asymptotic stopping power of an Hydrogenic system
(with 2 K=electrons) for a fast projectile, taking the maximum momentum
transfer to a free electron appropriately equal to 2mv. He obtained for

the second term in Eq. (2) for an Hydrogenic system, the quantity

% %_Z_l . Thug, in order to make a transition to an atomic system
2 mv?

consistant with the free electron model, we assume Brown's result and
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-4-
accordingly replace Eq. (2) by:
31‘5 1
L=1lnY - 76; Y (5)

At this stage, we combine the low and high eneérgy L functions (o
determine the appropriate dependence of stopping power on energy. To do
this, we used equations (3), (4) and (S5) for our desired results.
Bonderup, in his calculations, had combined Egs. {2) and (3) and assumed a
constant value of y equal to V2. Furthermore, we attempt to preserve

continuity between L (5, v) , the low energy stopping number function

1
given by Eq. (3) and L2 (5, v), the high energy function given by Eq.

(5), in the following way. Extensive numerical evaluations, using a

computer program, of the functions L1 and L2 for various values of the

variable Y, revealed that in most useful cases there were found two

roots Y1 and Yz of the equation L1= L2 where Y1 < Yz. Furthermore, the

slope M of the function L, for values of Y greater than Y_  was always

2 2

small. On the other hand, the slope of L2 for Y values less than Y1 was
very steep. These observations, including the behavior of these functions
(see the figure), led us to the following recipe to preserve the

continuity consistant with the physics of the situation:

L=1L when MY < L
2 2
(o)
L = Max [L1, L2] when MY > Lz
where, L and L, are given by Eq. (3) and (5) respectively. Eqg. (6) can

1 2

now be used to obtain stopping number values for a system, given the
velocity of the projectile and the density p (5). For a molecule, Gordon-
Kim give the density as:

p(5)=p1 (5)+p2 (r = R,,) (7)

+12
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where, Py (§) is given by the square of the ground state wave function of
the hydroyen atom. R12 is the distance between two hydrcgen atoms, which
is known to be 1.430. Knowing the density by Eq. (7), stopping

power was obtained by integrating Eq. (6) over L for protons of energy

between 100 keV and 2.5 MeV, for botli H, and monoatomic helium gasg. For

2
He atoms, Hartree=Fock wave Ffunctions (11] were employed. Table 1 lists
the results of this paper, together with Anderson-Ziegler curve fitted
results ’‘12], and three sets of experimental data [13, 14, 15]). éood
agreement, within 10 percent, is found with the experimental data.
Calculations of the equations established by Bonderup were alsc undertaken
by extending them to molecular systems. Table 1 lists these values for
the H2 molecule in the last column. These differ from our results in the

low energy region. Table 2 lists the same physical ¢:antities for helium

gas [(14-18]. The same trend is observed as in the case of the Hzmolecule.
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PIGURE CAPTIOW

The low and high energy stopping number functions as functions of the

variable Y. A typical value equal to 0.1 of the quantity x2 was chosen.
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Low-energy proton stopping power of N,, 0,, and water vapor,

and deviations from Bragg's rule

Y. J. Xu and G. S. Khandelwal
Department of Physics, 01d Dominion University, Norfolk, Virginia 23508
and
J. W. Wilson

NASA Langley Research Center, Hampton, Virginia 23665

ABSTRACT

A modified local plasma model, based on the works of Lindhard and
Winther; Bethe, Brown, and Walske, is established. The Gordon-Kim model for
molecular electron density is used to calculate stopping power of N, 02,
and vater vapor for protons of energy ranging from 40 keV to 2.5 MeV,
resulting in good agreement with experimental data. Deviations from Bragg's

rule are evaluated and are discussed under the present theoretical model.
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Recently, departures from Bragg's rule have heen noticed in the theo-
retical calculations of the mean excitation energies of various molecular
systems.l’2 Analysis of the experimental data on energy loss of low energy
a particles in gases also indicates deviations from Bragg's rule.3-5 In
this paper, the stopping power theory of Lindhard and Winther,® and the
local plasma theory of Linanard and Scharff,” are used to perform calcul a-
tions in the low energy region. Modifications are introduced through a
simplifying model which incorporates the effects of the shell correctio.s
and of the screening of the projectile. The model is justified on the basis
of fulfilling the more ambitious aim of obtaining the molecular stopping
power. The Gordon-Kim® electron density model of molecular wave functions
is utilized in the calculations. Such a model, as is known, allows a
successful method of calculating chemical bond effects. Calculations done
on Ny, O, and water vapor are found to be in fair agreement with experi-
ments. Furthermore, departures from the Bragg's rule are noticed for all
these systems.

The celebrated stopping power formula for an energetic charged particle
of charge ze and velocity v, traversing matter of charge number Z is given

by

-E£ .72 g, (1)

where m is the mass of an electron, and N is the nunber of atoms per
unit volume of the medium.
The stopping number L of Eq. (1) has been a topic of considerable

study. For instance, Lindhard and Winther have investigated the function L
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for a free electron gas in the regions of low and high energy incident

charged particlies. These authors give for the high energy case, the expres-

sion for L to order %2' as

<T 2>

L=1nY - 1 ,
'é- my (2)
) 2\ /2
where, Y = %gl , the classical plasma frequency ) = (31%—-> , p

P
the electron density, and < T >, the average kinetic energy is given by

<T>= (I%J mve?,
where Ve is the Fermi velocity.

For the low energy case, they give

2 3/4 3/2
L= YT ), )
where
1 1+ 1-3¢
Ci(x) = - loge - >
2 (1 -X%? x? 1+3x2
with
2
2= & |, A= h
ﬂth 2m
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Equation (2) for the L function warrants some discussion. First, one
notes that the L function of Egs. (2) and (3) are derived by Lindhard and
Winther for free electron system. Transition tu an atcmic system of the
first term of Eq. (2), as studied widely, is accomplished under the so-
called local plasma model in which density p (*) is evaluated by using
quantun mechanical wave functions. The local plasma model is equivalent to
replacing the molecular dipole oscillator strengths by the corresponding
classical plasma absorption spectrun. The adequacy of such a replacement
was recently shown by Johnson and Inokuti? to be most accurate for evaluat-
ing atomic quantities associated with stopping power inspite of differences
between the plasma spectrum and the actual oscillator strength distribution.
A quantun mechanical analogue of the second term of Eq. (2) would be of
interest. In this context, a result first derived by Brown would prove to
be useful. Brown!0 studied the K-shell asymptotic stopping power of an
hydrogenic system (with 2 K-electrons) for a fast projectile, taking the
maximum momentun transfer equal to 2mv- as if the electron was free. The
asymptotic stopping power equation obtained by Brown can be expressed in a
form similar to the Eq. (2). The first terms of both of these equations,
since they involve the mean excitation energy, can be assumed essentially
equivalent within the local plasma approximation. He obtained for the
second term in Eq. (2) for an hydrogenic system, the quantity l/nS where,

n_ = l.m v2/Z§R where Zs is the effective nuclear charge for s-shell

s

2
(s=K,L,...) and R s the Rydberg Constant. Walske,!! on the other hand,
took the upper 1imit for momentum transfer to be infinity, thus overestimat-

ing the nuclear momentun recoiling and obtained instead 2/ns. In reality,
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however, due to the recoiling of the nucleus. the result should be expected

to fall somewhere between l/ns and 2/“5‘ This fact will be incorporated

later (see Eq. (6)) as a parameter which we later estimate. At the
present, however, for the sake of simplicity, combining Brown's result for

the K-shell with Walske's result for the L-shell,!2 but retaining the

consistency with the free election model, we wite the analogous second term

(known as shell correction) for an hydrogenic system with Z electrons as

i Sl 1 222
C =0 pota) ¥ CL T ng ¥ n. ( 8 ) (4)
which can be rewitten for a real atom as
1 <T>
C= 5 +——=- ¢ (2), (5)
2 L
where ¢ (Z) = Z f(Z)g (6)
and <T> = + [Z2R + (Z-2) i Z2R] (7)
7 L°K 4 L7

In the above, a coefficient f(Z) has been introduced to distinguish a

real atom from an hydrogenic one. The coefficient f(Z) 1is known to be

less than unity for L-shells for low atomic number targets. The coefficient

g 1is introduced to incorporate the effect due to the recoiling of the

nucleus.
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At this stage, it is appropriate to discuss various features associated
with the low energy projectiles and the low atomic number targets. First,
in the low energy region, the projectile's full charge 2z will not be oper-
ational in the stopping process due to electron capture that is influenced
mainly by the outer shell electrons of the mediun. Second, Walske has
pointed out that the coefficients f(Z) are unreliable for the low atomic
nunbers Z < 30 due to use of the hydrogenic wave functions.

It is, evident from the above observations that some sort of crude
estimate of the quantity C is in order. This is justified since the usual
incorporation of these effects involves the fitting with the experimental
data. The inclusion of the effect of projectile's effective charge should
decrease the stopping number for all the elements; for Li the most and for

Ne the least. In order to incorporate this effect and the other problem
of the need for an accurate value of the coefficient f(Z) as stated above,
it is reasonable as a first approximation to assume a semiempirical constant
value of the quantity ¢ (Z) equal to half the total number of electrons in
noble gas atoms. Such a division should over-estimate shell corrections for
l1ithiun and beryllium in decreasing fashion and under-estimate that for
heliun, neon, carbon, nitrogen, oxygen and fluorine also in a decreasing
manner. Such a change in shell corrections is indeed what is needed as
almost entirely compensating the effect of the effective charge of the
projectile on the stopping power. Since, in this paper we are interested

in the atoms with atomic number below 10 this assumption implies that

1]
—

for Z < 2, (8)
for 3¢ Z < 10.

¢ (2)
¢ (2)

]
(34)
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Impiicit in the above partition of ¢ is the fact that the quantity C no
longer represents the so-called shell corrections only, but presumably also
some other effects including that due to the projectile's effective charge
as well as due to the neglect of the higher order terms in Eq. (2). One can

now write Eq. (5) as:

¢ .l 1
(9)
and %=%—ﬂl—>2% for 3 < Z < 10,
5V

‘where <T> by virial theorem is just the average kinetic energy of the

electron and should be averaged over all the Z electrons in the atom.
In order tc make a transition to an atomic system, we assume the above

results and accordingly replace Eq. (2) with

L=2any- 17 %- for Z < 2,
- 1
L-knY--éx—z-‘v for 3 < Z < 10,

The low and high energy L functions should now be combined to deter-

mine the appropriate dependence of the stopping power on energy. To do

this, we used Eqs. (3) and (10) for our desired results after replacing o
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by Ymp in them, where nonconstant values of ¢ were obtained from
reference 2. Bonderup,!® had cqmbined Eqs. (2) and (3) and assuned a con-
stant value of Y equal to \[E-. Unlike Bonderup, we tried to preserve the
continuity between the low energy stopping number function given by Eq. (3)
and the high energy function given by Eq. (10). In this way, stopping
nunber values for a system can be obtained given the velocity of the pro-
jectile and the density o (F).

For a diatomic molecule, the Gordon-Kim model gives the density as:

p molecule =p_ () + Py (r - ﬁab)’ (11)
where Py (?) is the atomic groundstate density. Rab is the distance
between the two atoms, which is known to be 1.094A for N, and 1.207%
for the 0, molecule. Equation (11) was generalized for water vapor
including its partial ionic bond nature and neglecting the overlap between
the two H-atoms. The distance between the 0 and H nuclei was taken
equal to 0.958A. T

The molecular stopping power for protons was obtained by averaging the
stopping number over ; for N,, O, and water vapor molecules. Hartree-
Fock wave functions were employed in these calculations.

Table I lists the results of this paper, together with Andersen-Ziegler
curve fitted results,!* and two sets of experimental data for the 0,
molecules. Table II 1lists these values for the N» molecule. In table

I1I, the results of this paper for water vapor are compared with the

available experimental data for energy ranging from 40 keV to 500 keV. Good
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agreement, within 10 percent, is found with the experimental data.

In order to discuss the departures from Bragg's rule, it would be
relevant to cite a systematic study carried out in a series of experiments
at Baylor University.3-°> The study revealed that for low energy projectiles
there may exist a deviation from Bragg's rule depending on the physical
state, but most importantly, on the chemical structure of the compounds.

The confusing status of the dependence on the chemical structure can best be
described by citing these studies in chronological order. First in 1971,
the Baylor group? summarized that the compounds with single bond and double
bonds should obey Bragg's rule. The compounds containing triple-bond struc-
ture were found to deviate from Bragg's rule by as much as 12.8% (a purt-
cles of energy between 0.3 and 2.0 MeV often were the projectiles). In
particular, these authars indicated that the molecular hydrogen (single
bonded molecule) should obey Bragg's rule. Later in 1972, the Baylor group
critically looked again on their previous conclusions. They indicated that
perhaps the hydrogen atomic stopping cross section may be considerably dif-
ferent than one-half of the molecular stopping cross segtion and thus should
cause considerable deyiations. However, the Baylor group in 1974,5 recog-
nizing the difficulty of obtaining atomic cross sections experimentally,
| based their analysis on the existence of some modified, but unique atomic
stopping cross sections.

It is therefore imperative that in order to discuss the deviations from

the Bragg's rule, one must have access to the atomic and molecular stopping

cross sections. We calculated both the atomic and the molecular stopping
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are exhibited in tables IV, V, and VI. One sees that the deviations from
Bragg's rule become small as incident energy increases -- in agreement with
observations made by many workers iricluding those at Baylor University. It
is to be noted that N, 1is a triple-bonded, 02 a double-bonded (from the
bond energy point of view) and H, 1is a single-bonded molecule. The
maximun deviations from Bragg's rule for energy 100 keV and above are 6.1%,
2.6%, and 10%, respectively, for these molecules. Thus, the deviation
depends on the chemical structure. When the Gordon-Kim model is used, the
overlap of electron density determines the deviation or molecular binding
effects. For instance, for the hydrogen molecule, the distance between

nucleons is very small, equal to 0.74A, [t is expected that the overlap of

t;:;,‘& b e e -

elec¢tron density is large, thus’explaining the considerable deviation from

the Bragg's rule. The stronger the bond energy, the shorter the distance

ﬂ.,)“x,

P R
Y

will be. It is interesting to note that single-bonded, doule-bonded and
triple-bonded carbon molecules have internuclear distances equal to 2.94,
2.52 and 2.24 in Bohr units, respectively. We may thus expect that the

triple-bonded carbon will have more deviation from Bragg's rule than the

single-bonded carbon.
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TABLE I. Proton stopping cross section values (in units of 10-15eV cm2)
per atom. These were obtained by dividing by two, the stopping
cross section per molecule of the oxygen molecule.

Curve
Fitted EXPERIMENTAL RESULTS
Theoretical Values
Values of Andersen
the Present and Reynolds
E(keV) Paper Zieglerlt et al.l5 Langleyl®
40 15.89 14.6 15.2 2.6 -
80 17.48 17.0 17.25¢2.6 -
100 17.43 17.0 17,17£2.6 -
300 11.84 11.9 11.99£1.7 -
500 8.92 8.8 8.84+1.7 -
1037 5.64 - ; 5.25
2591 2.97 - - 2.85
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TABLE II. Proton stopping cross section values (in units of 10-15ey cm?) f
per atom. These were obtained by dividing by two, the stopping é
cross section per molecule of the nitrogen molecule. :
Curve E
Fitted EXPERIMENTAL RESULTS :
Theoretijcal Values i
Values of Andersen
the Present and Reynolds .
E(keV) Paper Zieglerlh et al.ls Langleyl® 1
40 17.20 16 17.1 +2.6
80 18.41 17.9 18.5 %2.6
100 17.79 17.7 17.9 2.6 j
300 10.85 11.2 11.2 £1.7 4
500 8.10 8.1 8.08¢1.7 L
1037 5,20 4.78 §
2591 2.71 2.56 v
Ve
s
X
i
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TABLE III. Proton stopping cross section values (in units of 10-15eV ¢m2)
per molecule for water vapor.

E(keV) 40 80 100 300 500

Theoretical P
Values of i
the Present 28.81 27 .8 26.8 17.1 12.6 !
Paper

Reynolds et al.l“| 25.0¢2.6 | 27.6%2.6 | 27.3%2.6 | 17.9%+1.7 | 13.0%1.7
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TABLE IV. Deviations from Bragg's rule in the case of oxygen molecule.
e(atomicz the atomic stopping cross section (in units of
eV x 10-15 cm2/atom) was obtf1ned from Eqs. (3) and (10).
e (molecule) is in units of & eV x 10~!5 cm2/molecule.

E(kéV) 40 100 200 300 500 1037 | 100000
e(atomic) 17.44 | 17.48° | 14.65 | 12.15 9.1 5.72 | 0.1492
e(molecule) 15.89 | 17.43 | 14.36 | 11.84 8.92 | 5.64 | 0.1476
percentage 8.9 0.3 | 2 2.6 2 1.4 1.1
deviation

TABLE V. Deviations from Bragg's rule in the case of nitrogen molecule.
e(atomic), the atomic stopping cross section (in units of
eV x 10-15 cm2/atom) was obti1ned from Eqs (3) and (10).

TR E TR T

v e (molecule) is in un1ts of = eV x 10~15 cm2/molecule.
% E(keV) 40 100 200 300 500 1037 | 100000
L e(atomic) 19.33 18.57 14.32 11.56 8.53 | 5.30 | 0.1340
| )
‘ e(molecule) 17.20 17.79 | 13.75 10.85 8.10 | 5.20 | 0.1319
: percentage 11 4.2 4.00 6.1 5.0 | 1.9 | 1.3
deviation
"
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TABLE VI. Deviations from Bragg's rule in the case of hydrogen molecule
e(2xatomic), the atomic stopping cross section (in units of
eV x 10-15 cm2/atom) was obtained from Eqs. (3) and (10).
¢ (molecule) is in units of eV x 10-15 cm2/molecule.

E(keV) 100 200 300 500 800 1037 2591

e(2 x atomic)| 12.7 8.13 6.1 4,17 2.89 | 2.36 | 1.11

e(molecule) 11.43 7.53 5.71 3.93 2.75 | 2.24 | 1.07

percentage 10 7.4 6.4 5.8 4.8 5.1 3.6
deviation
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ABSTRACT

A modified local plasma model based on Linhard-Winther, Bethe, Brown,
and Walske is established. The Gordon-Kim's molecular charged density model
is employed to obtain a formula to evaluate the stopping power of many
useful molecular systems. The stopping power of H, and He gas was
calculated for incident proton energy ranging from 100 keV to 2.5 MeV. The
stopping power of 0,, N, and water vapor was also calculated for incident
proton energy ranging from 40 keV to 2.5 MeV. Good agreement with experi-
mental data was obtained.

A discussion of molecular effects leading to departure from Bragg's
rule are presénted in this thesis. The equipartition rule and the effect of
nuclear momentun recoiling in stopping power are also discussed in the
appendix. The calculational procedure presented in this thesis hopefully
can easily be extended to include the most useful organic systems such as
the molecules compound of carbon, nitrogen, hydrogen and oxygen which are

useful in radiation protection field.

AR IO

e T

PO e R A1

k]

B T A RN
s T

s

NG 2 E e &

e Snerar AP

"~

r

R TR S LB R ST T
5w enw
- .

s s erssban et

LAY

RN
o

i
N

3

L4



i
|
TABLE OF CONTENTS !
INTRODmTION ..................... e 0 0000t s e P OOSIEBSIOETNTDS ® 0 08000 00 000 1 .;g
Historical Review........ cetticernaanes 3
STOPPING NUMBER FUNCTION......... e et 9 |
Local Plasma Model for High Projectiles' ‘
Energy CasesS...eeeeenes ceeeeanes ceveseesruonsesssinnrnes ‘e 10
Low Energy Stopping Number Function.......... Cecresens ceee 16 *
CALCULATION OF MOLECULAR STOPPING POWER........ ceveseetserrinas 34
MOLECULAR EFFECT OF STOPPING POWER. et vverseevvronenorancnnnnne 44 i
. it :
i REFERENCES ........ 09 060 000 % 0 00 0° 800 000N Ve 8 8 000 09 000 000 0 0 52 ‘%
~ APPENDIX The Equipartition Rule and Nuclear Momentum
T ReCOoiTing.ceereeoneennee Cecresescsannas cereserans 55 i
.
B
:
! ,::”*
o
ii 3
|




p

INTRODUCTION

The subject of energy loss of heavy ions such as protons, or a« par-
ticles passing through matter, has been studied for more than sixty years.
Research in this area began with the study of a mechanism under which
charged particles lose their energy mainly to the atomic electrons. These
studies have contributed to the basic understanding of the interaction of
charged particles with matter-atoms-molecules and, more recently, to materi-
als. The energy loss parameters have found their use in various applica-
tions. The list includes: radiation dose effects on solid state devices;
shielding problem; space radiation research; design and calibration of
spectrometers and dosimeters; proton doses in manned or unmanned space
flights; energy transfer to ljving cells, and radiation effects in materi-
als, etc. b

The Bethe [1] theory of energy loss of fast charged particles rests on
the knowledge of the so-called mean excitation energy .of the medium. Once
this parameter is known, the high energy stopping power of an atom can
readily be calculated. The determination of this parameter, however, is
very laborious, as is seen in the works of Dehmer, Inokuti, Saxon, and Baer
[2], [3], [4], who calculated the mean excitation energy parameter for atoms
of atomic number ranging from Z =1 to Z = 38. The numerical evaluations
involving the Hartree-Slater wave functions in these calculations are so in-
volved that the estimating of the errors is difficult to ascertain.

The Bethe theory, although developed for the atoms, has also been

., extended to obtain the stopping power of molecules under the Bragg's rule

[5]. One essentially ignores the chemical binding of molecules under this

rule. Recently, however, several experiments [6], [7], [8], have revealed

S5 A T e T T
SRR 5

*
SO
L

A
e o ¥

R TR




dmir zem: A K

e oram s ai

i IS e e . . 2
L i R T el TR T S S e, 8

g

that for low energy regions there may exist deviations from the Bragg's

rule. Furthermore, there are some indications (see, for instance, a series
of papers by Wilson and his co-workers) that the Bragg's rule may not be
obeyed in the determination of the mean excitati. . <nergy parameter for
molecules, although this departure does not have much effect on stopping
power because of the dominance of the velacity of the projectile on the
stopping power.

It is evident from the above discussion that the traditional approach
of obtaining the molecular stopping power from the atomic stopping power via
the Bragg's rule should be abandoned, at least for the low energy projec-
tile. The local plasma model which has been successful in predicting the
mean excitation energy could serve as the appropriite candidate for an
alternative approach.

This report discusses the establishment of a modified local plasma
model by employing the Gordon-Kim molecular [9] density model, which
provides a method of calculating molecular stopping power even at quite Tow
proton energies. In spite of the fact that it is a somewhat average model,
calculation is relatively simple, and the calculation of stopping powers of

H,, He, 0, N and water vapor are in fair agreement with experimental

data. Modifications to the local plasma model are mainly due to the com-
plexity of real atomic and molecular situations. Besides the effects of
shell corrections, and the screening of projectiles, other effects such as
nuclear recoiling are also involved. Interesting discussions on deviation
from the Bragg's rule and on the modified local plasma model and the conclu-
sions deduced from experimental data are presented in the last section of
this report, "Molecular Effect of Stopping Power."

From the theoretical model established in this report, the departure of

stopping power from Bragg's rule only occurs for low velocity projectile
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cases. Deviation from the Bragg's rule also is found to depend on the
chemical structure of molecules. More overlap of electron clouds is found
to cause more deviation from the Bragg's rule when the Gordon-Kim model is
employed. The geometric structure gives the most important information on
molecular effects.

The basic stopping power theories assune the interaction between the
projectile and the atomic electron, which is assumed initially to be at
rest. While it is true that the overall energy loss must, indeed, take
place in this manner, in some collisions the recoiling of the nucleus cannot
be neglected. This is especially true for relatively Tow incident energies
of the heavy ion. Although the recoil energy may be small due to the heavy
mass of the target nucleus, the recoiling momentun may be very large. Thus,
the conservation of momentum will lead to a different value of the moment um
of electrons than has previously been assuned in these theories.

This observation lends itself to solving a three body problem. Thus,
in this report, a semi-classical three body model is established to calcu-
late relevant quantities. Specifica]]y% exact semi-classical three body
calculations are made for a proton incident on a hydrogen atom with the
electron in its first Bohr orbit. The model and the resulting conclusions
especially in regards to the equipartition theorem for shell corrections are

presented in the appendix.

Historical Review

The three prominent theories of penetration of charged particles in

matter are: Bohr's semi-classical theory, Bethe's quantum theory, and
Lindhard's local plasma theory based on the treatment of free electron gas.
Since this paper touches upon all three theories, it is helpful to outline

their main features and assunptions of interest. When appropriate, the
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detailed structure of these theories will also be given, in later sections.

Semi-Classical Theory

Bohr's semi-classical treatment of the slowing down charged particles,
done as early as 1913 [10], [11], was the first to give the overall
characteristic structure and the features of the penetration theory. The
classical parameters appearing in this theory, surprisingly, could Jater be
calculated or related to the quantum treatment. The main underlying
assunptions and the characteristics of the theory are:

1. The coulomb interaction between the incident-charged particle of

velocity v and the atomic electrons is assuned to be responsible
for energy loss.

2. The momentum transfer is sufficiently small so that the projec-
tile's path is a straight line.

3. The atomic electron is assumed to be at rest.

4, The minimun impact parameter is detenn.ned from the knowledge of
the maximum momentum transfer of the projectile to a free electron.
The maximum impact parameter is determined under the assumption

that the interaction time must be larger than the orbital period of
the atomic electron.

Based on the above assumptions, Bohr obtained the stopping power formu-

la as:

4 3
D E L o BE g, ™ (1)
dx mv2 e2w

where, ze 1is the charge of the projectile and N is the number of atoms
per unit volume, with Z electrons per atom, and w 1is the characteristic
atomic frequency.

Equation (1), even though the derivation was based on classical consid-
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erations, embodies the main features of the quantun mechanical description
given in the later section. As is known, in both thaories, the properties
of the incident ion such as its charga ze, and its velocity v occur in
this equation, m being the mass of the electron. The properties of the

mediun are contained in the quantities N, Z, and w.

Quantal Theory

Bethe's non-relativistic calculation of stopping power was performed in

1933 in the first Born approximation [1] and rests mainly on the following

assumptions.

1. The interaction responsible for energy loss is the coulomb inter-
action between the incident ion and the atomic electron.

2. The speed of the ion is much greater than that of the atomic elec-
trons.

3. The calculation of the maximum momentum transfer entails the colli-
sion with the electron initially at rest.

4. Within the plane wave Born approximation, the assumption that the

electronic positions are correlated only over relatively small
distances implies the use of the dipole oscillator strengths.

Based on the above assumptions, B:the arrived at the following energy-

loss formula:

_dE | anNzet o 2myv
dx mv2 I

(2)

where I, the mean excitation energy of the medium, is defined through the

electric dipole strength fn by:
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with En being the ‘genenergy of the electron.

Notice the similarity between equations (1) and (2) obtained under
classical and quantal considerations, respectively. Notice also the occur-
ance of the factor 2mv2 (which represents the maximum energy transfer of

the assumption (3)) in the argument of log in equation (2).

Theories Based on the Thomas-Fermi Model

Bloch [13], in 1933, calculated the stopping power by using the Thomas-
Fermi model for the many electrons of the atoms of the mediun. Useful
results were later obtained by Lindhard [14], [15], [16], and his co-
workers. Lindhard showed that for a swift heavy particle of low charge the

stopping power of a free electron gas is given by

24 2
_dE _ 4rnzce o 1n (va ) (3)

d 2 h
X mv . Yhey

where, p 1is the electron density, and wp is the classical plasma
4me2

frequency given by m% = p, and Y 1is a parameter calculated by
m

Lindhard to be equal to \/2. Lindhard made the bold assumption that the

theory can be extended to the atoms if one wites the above equation as:

dE _ 4mz2e“N [ 1n 2my?

- o(F) ddr (3a)
dx mv thp(;)
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where, now p(F) is to be evaluated by employing the quantal wave functions
of the electrons. This model is often called a local plasma model, in

literature,

Further Discussion of the Bethe and Lindhard Theories.

The simplicity in Bethe's theory results from several factors. The first
factor allows all the atomic electrons to participate in the stopping pro-
cess. Indeed, this is not valid for the inner shell electrons which are
tightly bound and may not always participate in the stopping process. The
second factor is the inclusion only of the dipole transitions in the theory,
although other transitions (though less probable) may possibly take place.
This, as indicated earlier, is tantamount to assuming that the electronic
positions are correlated only over relatively small distances. These
corrections to the Bethe theory have been extensively investigated.
Lindhard's local plasma theory, as mentioned earlier, makes the bold
assumption through equation (3) for its application to atomic systems. This
approach, surprisingly, works well for atoms as is shown recently in the
evaluation of the mean excitation energy parameter [17]. The approach rests

with the comparison of equation (3) of Lindhard with the Bethe formula

equation (2):

Zinl=/p(F) In (Yhmp) « d3r (4)

The local plasma model is also relatively easy to extend to molecules for
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fonic bonded gases, covalent bond gases and metals. Such progress has re-
cently been made by various authors. (See, for instance, a series of papers

by Wilson and his co-workers).
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STOPPING NUMBER FUNCTION
The energy loss of fast charged particles caused by their inelastic
collision with atoms, is given with good approximation by Bethe's formula,
which is based on the quantum perturbation theory. However, the mean
excitation energy in his fermula is too complicated to evaluate theoretic-
ally for many practical problems especially for molecules. It appears the

local plasma model affords a simple method to calculate the mean excitation

energy of elements as well as compounds. There still remain three problems:

1) people have more interest in stopping power than in mean excitation
energy; 2) how to extend this method to evaluate molecular stopping power;
3) how to extend this method to slow charged particle cases as well as to
fast charged particles cases. Now let us recall the basic formula of local

plasna model for fast charged particles.

n22alt 2 -
-9 o iz : Nornf 2 \o() e (5)
o mv Yho (F)

2 .. _ d4re?p(r)
where mp(r) = —

formula that once the parameter Yy and the electron density p(F) are

is the plasma frequency. We can see in the above

known, the stopping power can be determined immediately. We will discuss
the problem of parameter Y in the section "Local Plasma Model for High
Projectile's Energy Cases."

The atomic electron density is just the square of the wave function of
the ground state of the atom. It is not easy to find the molecular wave

function. Fortunately, we have a very simple molecular electron density

model, namely the Gordon-Kim model {9]. It is a rough model, but as a first
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order approximation this model gives the main featurei of molecular effects.
Detailed discussion will be presented in the next chapter. To extend this
model to low energy regions is of considerabie interest from both a practi-
cal and theoretical point of view. Unfortunately, many effects arise at low
energies including projectile charge screening, nuclear momentumn recoiling,
forbidden transition, etc. On one hand we have to consider the above
compliexity in realistic atomic and molecular world. On the other hand we
still need to keep the simplicity of the local plasma model, otherwise no
results can be obtained in practice. This section is devoted to establish a
modified local plasma model. We will concentrate on finding a stopping
number function L. It should be valid for low energy as well as high energy
cases, and should still retain the simplicity of the local plasma model. It
will also approach the realistic cases as closely as possible. However, it

is only an average model and some estimating is involved,

Local Plasma Model for High Projectiles Energy Case
When the projectiles move rather fast the stopping power can be deter-

mined by Bethe's formula with good accuracy,

2.4 2
dx mv2 V]

5
\

where [, the mean excitation energy has been of considerable study. This
is because once the parameter is known, the energy loss can be obtained
immediately. However, the evaluation of this parameter is considerably

1aborious. In principle, the parameter can be calculated exactly only for
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the H-atom for which accurate wave functions are known. More recently,
Dehmer, Inokuti and Saxon [2] used the tabulation of Hartree-Slater poter-
tial given by Herman and Skillman. They solved the Schroedinger equation to
obtain the radial matrix element R (nl, n'1') where (n, 1), (n*, 1') are
initial and final states of atom. Knowing these values they calculated the
mean excitation energy parameter I for atoms ranging from Z=1 to Z=38.
However, there are difficulties with the above approach. In practice, the
extreme complexity of numerical calculations renders it impossible to extend
the approach to evaluate the mean excitation energy of molecules.

An alternative approach is the possibility of using the local plasma
model, formula (5). There are, however, two central quantities which
should be known. These are function y and p(r). The evaluation of o(r)
rests on the determination of the wave functions of electron only in ground
states, such Hartree wave function for various atoms have recently been
available in the work of Clementi and Roetti. The problem is then the

determination of parameter vy.

Calculation of Parameter ¥y

In his original theory of stopping power of electron gas Lindhard gave
a quantitative discussion for the values of parameter y. The first term in
high energy expansion of stopping nunber L is given by 1In (égéi-c(x))
where C(x) = é.. Linhard discussed the function C(x) as a fuhction of
electron density. He surmised that the function C(x) depends on the den-
sity slightly only. It should be a little bit less than one for moderate

density and should approach unity for both extrauely low and extremely high
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densities. Furthermore, Lindhard suggested that the values of ¥ can be
taken to be unity for 1light atoms without large error. Later, Lindhard and
Scharff [14] suggested on the basis of a simple model that v =\fz_ can be
chosen for heavier elements.

Chu and Power using constant value of ¥ =\f§— obtained the parameter
I for various atoms. [17] Their calculated values however were found to o
exceed the values calculated by Delmer et al. (based on oscillator strength
method) by 20% to 30%. The most satisfying thing, however, was the similar ;
trend in the variation of I values in both cases as a function of atomic ;
nunbers. This points towards a greater confidence in the local plasma
theory. Some authors encouraged by this, and also not satisfied with Chu
and Power's results treated the parameter vy as an empirical parameter to
fit the data. Unsatisfied with this type of empirical treatmenc, we adopt
the following approach. Bohm and Pine [18], [19] have treated the problem

of collective long range interaction in a quantun electron gas. They

i n %
A
"

PR}

A A — T T
Toaw s
s *
5
¥

introduced normal coordinates of collective motion of electron beyond same

screening radius r. and the individual particle motion was considered to

"

be more important for radius smaller than r
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Bom and Pine showed that the average'p1asna frequency <w> (which is

L

the average over the frequency of the collective oscillations, say w) is a

P
-
H

linear function of the classical plasma frequency w_ and is given by
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where As = rS/ao is a dimensionless parameter and is the average distance %f
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between electrons, and where a, 1is the Bohr radius.

The parameter B can be determined by minimizing the electron long

range correlation energy (the long range part of correlation energy is

obtained by subtracting short range exchange energy from the cohesive

energy)

3 2 4
Ec;:r . 0.866 8% 0.458 82 _ 0.019 8 (8)
J\2/2 A A

The minimi zation of the above equation leads to the following equation for B8

2,598 8
Va

S

0.076 82 + - 0.916 = 0 (9)

At this stage let us recall that Bohr's semi-classical theory and Bethe's

quantun theory have the similar first term in the high velocity expansion
of '

One must note that E 1is some average energy which in the case of the Bethe
theory is the mean excitation energy I. Thus, some sort of average quantity
must occur in the argument of log term, therefore, recalling equation (4)

of Lindhard's theory
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P
It was showm by Bohm and Pines that Yﬂmp may be replaced by f <w> where

2
w> is given by equation (7). Thus vy =1+ 3/2 g_.(l + 3/10 82), Once we
s

know A then B8 can be determined by equation (9), hence y can be
determined by equation (7). Now let us use this average model to evaluate
y as function of Z for various atoms. We took average distance between
electrons in an atom as ri = g-n r:/Z where rg s atom's radius. Then
A = rc/a; where a; is Bohr radius. Table 1 shows r., g, Ag as
functions of Z for some selected values of Z ranging from 22 to

7=54.
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Table 1. re» B8 as functions of Z
Z rs A B
2 1 2.42 0.54
3 1.55 3.27 0.62
4 1.12 2.15 0.51
5 0.98 1.75 0.46
6 0.91 1.53 0.43
7 0.9 1.43 0.42
5 |10 1.17 1.65 0.45
11 1.9 2.60 0.55
| 12 1.6 2.13 0.50
13 1.43 1.85 0.47
14 1.32 1.67 0.45
15 1.28 1.58 0.44
16 1.27 1.54 0.43
18 1.43 1.66 0.45
I 1.59 1.47 0.42
~ | 54 1.75 1.41 0.41
é Table 2 shows y as a function of Z. From table 2 we can see y 1is nearly

i
i

i a constant equal to 1.19. This is reasonable, since other workers have

|
-
¥
{

i chosen values of y ranging fromy = 1.1 to vy = 1.5. Actually in

i

{
k1
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Lindhard's description of y it is a function that slightly depends on
density or As, and is not a constant. We obtained y = 1.19 partly
because we took an average model., Table 3 lists y as a function of Ags

(ranging from 10-!8 to 107). Since o(r) = from the table we can see

A3 '
that v 1is very slightly dependent on density; a 1ittle bit greater than
one for moderate density and approaches unity for both extreme cases - very
Tow and very high density. Compared with Lindhard's qualitative description
of C(X) = ;. in his theory, as mentioned earlier in this section, we

reach agreement with Lindhard for these two different cases. In the exact
calculations of mean excitation energy using local plasma model, we took
as funoiion of distance r (distance from electron to nuclei), instead of a
constant,

Recent development confirmed the concept o% vy obtained here in
improving the work of Chu and Powers. Furthemmore, the above consideration

will be used in the following section for low energy stopping power.

Low Energy Stopping Number Function
Lindhard-Winther expanded the stopping number function of free electron

gas in high energy case and in low energy case as follows:

L2=1n(

2
2mv ) -<1>/ Z_ (high energy case) (10)

hmp 2
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3 3
2 2
L, = (_)5_)‘2[ C, (X) (2"“' ) Z (1ow energy case) (11)
3 hw
P
2 ’ X2
where C, (X) = ——-1——2—- [n ( -1-:151-) - -1-'-3—: ] (12)
2(1- X2 X 1+ X
3 3
X2 = e2 w2 = 4npe? is the plasma frequenc is the electron
;WVF ’ P m P q Yy, P ~

density VF is the Fermi vels.ity.

Bonderup [20] directly combined low energy L function L, and high
energy L function L, and used \fg- instead C(X)} 1in the first term in
Ly . (In [15] Lindhard and Winther assumed C(X) = 1 see last few lines of
page 10). He then performed calculations for the stopping power of some
elements using the above L function and local plasma model. Good agree-
ment was found with‘experimental data fgr proten energy over 500 kev. Un-
fortunately, for low energy regions, his simple approach is not valid.

We establish our modified L function based on the following
principles:

1. smoothly join Linhard-Winther's high energy L function L, and
Tow energy function L;;

2. 1involve Pine correction using thp instead of hwp in all the
terms in L function;
3. apply correction on the second term of L,.
18
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The correction on the second term warrants some discussion.

Many complicated physical effects are involved in the low energy region
We will discuss them in detail to approach the realistic atomic and molecu-
lar world. Bethe, Walske, and Brown [21], [22], [23], developed quantum
mechanical theory of stopping power of innevshells of atoms. Calculations
are done under plane wave Born approximation using hydrogenic wave func-
tions. Brewn [21] and Walske [22] had calculated the stopping power of K
shell electran. Walske [23] also calculated the stopping power of L shell
electrons. Khandelwal and Merzbacher [24] calculated the stopping power of
M-shell electrons. Khandelwal more recently evaluated K and L shell]
corrections [25].

They defined a stopping nunmber function B as follows.

4,2
S et B (13)
dx mv2 =K, L, M

¥na Ima 24d
where By = [ " wdw [T |Rw (g 2 (14)

Wmin %nin -9
where |Fwi(q)|2 is the form factor, q 1is the change in incident parti-

1

cles momentun divided by (2m Z%eff Ry)2: For high energy projectiles,
they also give an asymptotic stopping number formula of the form

Bs (es, ns) = Ss(es) In ng +Ts(es) - CS (95, ns) where s = K,L,M and
where Cs are the so called shell correction terms. Equation (13) can also

be written in terms of

2
B=Z1n (ET_"_) -1 Cg (Bg, ng) (13a)
S
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where [ 1is the mean excitation energy, es is dimensionless screening
parameter denoting the observed ionization potential in units of ideal
ionization potential Z2sRy/s?. n, s also a dimensionless quantity and is

given by ;_mvz divided by Zyce2 Ry.

The calculations of the sheil corrections are extremely complex.

Bethe, Brown, and Walske expanded them in power series of %—. The first
s

term of shell correction given by Brown [21] is Ck total ~ %_, for K shell
k

electron meanwhile Walske's [23] results are Ck total ~ é_“ The difference
L

between Brown and Walske is mainly due to the fact that they took different
upper limits to sstimate maximum momentun and energy transfer. As is well
known when a heavy particle collides with a free electron, the maximum
momentun transferred to the electron is 2mv and maximum energy transfer is
2mv these values are the ones taken in by Brown in doing his calculations.
But if one considers the nuclear recoiling and the binding effects, then the
upper limit of momentum transfer is no [onger 2mv. Walske took the upper
1imit of both momentun transfer and energy transfer as infinity. Indeed,

both Brown and Walske simplified the problem in this manner. Later, we'll

use an exact three body semi-classical model to estimate the upper limit of
momentumn transfer. Right now, at this stage, we'll use Brown's assumption

for consistency with the free electron gas of plasma model, but keep in mind

~ that there are some errors due to Brown's assumption. The accurate result

should be expected to be between Brown's and Waiske's results. Now we try

to establish some relationship between plasma model and quantum mechanical
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calculation based on Bethe, Brown, and Walske's theory. Following Brown

4

C ~ihoe 1S
k total n > "

where we define <> =% mv2 /<T>, <T> 1is the average kinetic energy of

electron of atoms then

by virial theorem <T>

For Z =1 we get

hence, we have

1 2
> . 2™ Liepr RY
LN < 1 mv?
2

= |<E>| we have

2
> kers RY
_n 5T

_ 1.
ck|z=1 - E Ck total

{Linhard-Winther's second term of L, function)

N =

Celz= = Ck total
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so that OF POOR QUALITY
;%lﬁ:g -1 1.1 (Linhard - Winther's second term of L, function)
2=2 2 &> 2 |

Now, let us consider atoms which contain L shell electrons.
Walske also showed that the total shell correction of L electron

CL total ™ gz., which is still due to the value infinity for the upper limit

of momentun transfer and energy transfer. If we keep Brown's model, i.e,

assume that the incident particle collides with free electron, we have

e

w . s

o T

ey

1 7 m2 .
CL tota] ~ ﬁI- where U > P . Now consider L
- Leff ™Y
The total K and L shell corrections is
c +C = 1 » L1 [1+n_K]
K total L total Nk " Nk "L
Z
=__[1+__L_eﬁ2] = 1 [1+ Leffz] <n>
g Zkaff2 <n> Keff2 Mg
1
e Loqyy lerr ] _2 mKD>

<n> Zerrz L o2 [Ty ots2

VA 2 Z Ry

<n> [<E>|

Lkett2

shell closed.
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for hydrogenic atom OF POOR QUALITY
] A 2 Ry « 8
Z Lrefr 1 :;
cK total + CL total 1 1 ;
hence, s —
Z 2 <n>
Now consider L shell open: . “
.1 1 (z-2) _1 (z-2) "k
Ck totar * G = -+ 22 =2 [1+12°2) K |
Nk n 8 Nk 8 n :
< Ly e(22) lerry Lker®
_ | b
<> 8 Lt 10 7,
I
Zyars2RY o
where, “_Keff2Y <> }
I<E> l nk L
Now [<E>| = ; [2 Zygps2Ry t o UerreRy (2°2)]
2 (z-2) ‘Leff
2 Deerrefy [1+ N
z 8 Lyt Y
hence, i
Lt
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Z 2 7
C pota) * CL = o (1 + 1220 _Leffy 2, (2:2) “leff?)
c C
or _K__t_L. = -1- ._1__
z 2 <m

In both cases either closed shell or open shell we obtained the same results

= %'?%3 = %— 1<T> = 2 . %- (Lindhard-Winther's second term (15)

T2 M of L, function)

N O

It appears that from quantum perturbation theory we obtained the
similar result as of plasma theory except a factor of %-. Actually if we
use Walske's result exactly the same results are obtained from both quite
different approaches. What is implied in this surprising similarity? We
believe this similarity is the real background of local plasma model. In
plasma model average kinetic energy <T> 1is related to the plasma density.
On another side in Bethe-Brown-Walske's theory as we have shown the average

kinetic energy <T> 1is related to atomic wave function by using virial

theorem or averge kinetic energy is related to atomic electron density.

Since these two approaches ‘give the same stopping power expressions, we may

- say that plasma model can be localized by the equivalence of these two

Ed

approaches. But for low energy projectile, especially for light elements
which contain L shell electrons, this formula is too simple to describe

the stopping power due to various physical effects. First, one should take
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into account the transitions that are forbidden by Pauli's principle (for
the importance of this in the case of asymptotic stopping numbers see
Khandelwal [26]). There is a modificatijon factor on %E- or %I~or %E
which depends on Z and also depends on the shell. The following tables 4

and 5 list the coefficients of L for different eL (where 6, is the

L
energy difference between ground state and lowest occupied state in units of

ZLefszy/n2 for L shell n =2) according to Walske for 8 =1 the

coefficient of nL'1 is 2.

Table 4. Coefficent of “L-l

GL 0.35 0.45 0.55 0.65 1 :
Coefficients égg

of n ! 1.5032 1.0756 1.9890 2.0000 | 2

E

$

Table 5. Coefficent of nK'1 i
. ; e
- BL 0.7 0.75 0.8 0.85 0.9 ;f!
ﬁa
Coefficients &
of nK'l 2.0662 2.0999 2.1196 2.1290 2.1309 %E’
B

?%

i %

. 25
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Second, at Tow energy we also need to consider high order expansion
terms which are not completely known. Walske's expansion for the L shell
for the n -3, n =% forms involves fitting.

Third, Brown and Walske's calculations are based on hydrogenic wave
functions, as Walske has pointed out, for Z<30 the results are not
accurate,

Fourth, as mentioned, Brown's model of upper 1imit of momentum transfer
was used and this involves an uncertain factor between 1 and 2. This is
because due to the nuclear recoiling, the real value should be between that
of Brown and Walske, and should depend on projectiles eneragy.

Furthermore, there exists a screening effect on low energy projectiles
charge. It is easy for the element 1ike Li to loose its valence electron, o
when positive heavy ion projectile moves rather slow. There is some chance
that the projectile can capture the eletron. This will cause screening

effect on projectile which in turn will decrease the stopping power. Al] e

Y

these complicated effects should be taken into account.

=

In formula (15)
CK +C

L _1 {__}___ Z} i
: Z Z &y 2 E
= %— {%- Linhard-Winther's Second term of L, function times Z} ﬁf;;

~ the factor %— is due to the definition of %- as another Z in the

~ bracket is mainly due to each electron's contribution to total shell N

- correction, %— or =— s full shell's shell correction, it looks like RN

1
n o

2 ®
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these two Z factor cancel each other but taking into account all the above
effects the situation is not so simple.

As we know the quantity Z in the bracket of formula (15) is mainly
due to each electrons contribution to total shell correction but at least
the screening effect has a negative influence. As is well known, Li's
first ionization potent.ial is about 5 ev. It means only 5 ev additional
energy can cause Li to loose its valence electron. Meanwhile, neon's first
ionization potential is about 20 ev. The ionization potential rises linear-
ly in Z between Tithiun and neon. It appears for Li screening effect
is much more important than for Neon. At least for 2 < Z < 10 elements of
small Z have more influence on reducing the stopping power through screen-
ing than large Z.

Formally, we absorb this effect into the bracket. Now, in the bracket

we have two contradictory effects. The shell correction proportional to Z,

- the screening effect is in the inverse direction. In addition, there are

~ many other unclear effects which we have mentioned above. Roughly now, we

have the following assumption, suppose these two contradictory effects

r roughly cancel each other also with other effects. We may use a half full

shell nunber as an average instead of Z in the bracket.

Thus,we obtain the expression for Lz:

2my? 1 <O

Ly =In (—/——) ==~ — for Z2< 2
2 (hw ) Z mv?
P
(16)
2
L=t (2™ .5 2 for2<¢z<10
huw Z mv?
p
27




where §13.=.l (Lindhard-Winther's second term in L, function)

mv 2

As mentioned earlier the equivalance of the shell correction term from
Lindhard-Winther's theory and Bethe-Walske's theory actually gives somewhat
the explanation of the local plasma model. Furthermore, for real atoms we
also give the correction on Lindhard's theory. Also we can tell how far the
local plasma model can be applied to real situations. Lindhard and Winther
also used a parameter y in both the first term and terms of L, to
simplify the calculations we will show in the note at the end of this sec~
tion in detail.

Now (16) becomes

1.5
Lo =InY - 13 1 for Z <2
Z 10X Y
1.5
L=tny-23 1 ¢r2czc10
Z 10X Y
e? . : . 2mv2
where ¥ = Z_ VF is the Fermi velocity and Y =
mhV hw
F p
Now we apply the Pine correction on L, i.e. use thp instead of hnp
. . . _2mv? _2mv?
in L, as well as in L; or using Y = —— instead of Y = in L
Yhmp hwp

function.
\

Finally, we smoothly join L, and L, thus obtaining L function by

the following manner. Extensive numerical evaluations using a computer
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program of the function L, and L, for various values of the variable Y
revealed that in most useful cases there were found two roots Y, and Y2
of the equation L, =L, where Y, < Y,. Furthermore, the slope M of
the function Lz for values of Y greater than Y2 was aiways small. On
the other hand, the slope of L, for Y values less than Y; was very
steep. These observations, including the behavior of these functions (see

figure 1), led us to the following recipe to preserve the continuity consis-

tent with the physics of the situation

L =L when MY < L2
L, =Max [L,, L,] when MY > L,

actually we have

L YXY,
L2 Y>VY

which was found to be convenient for'the computer progr anming.

The functions L, and L, are defined as follows

, > 3
24 2
L= (=) Y C(X)
3
g 2 1
: 1+ x2 1 -2x2
| where ¢ (x) =t >— (1n 32 ) - )
2(1- X2 X 1+2
3 3
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1.5
L= Iny-N3" 1
Z 10X X

where N is the half full shell nunber

1 for Z < 2
5 for 2< 2 <10

NOTE: Lindliard and Winther used a parameter Y 1in both first and second

terms of the Ly function, i.e.

S | > M

1.5

L2 =InyY - .3_._. .]L
\ 5x Y
* instead of
2
hmp -1-mv2
2
where y = 2MV° and X2 = ©
hw ThV
P F
1
” where VF is the Fermi velocity VF s h (31r2n)3 and w 2 = 4re“n
. . -

’? n is the density of plasma.

&
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1.5
S22 - is equal to 3_.._ l
= mv2 5x Y
the following formulae are used
. X2 = & definition of X
o ﬂth
“ w? = 4meZn
P m
) 2
& = 1 m VF2 - (31120)?
2 2m
<T> = 3my2
| 10
- From (17.3) we have ‘/n =M ‘,l Ve '\’VF
' th 3h
; 2
. from (17.2) we have mg = 413_ e n

Applying this formula in the atomic or molecular scale, i.e. in the

local plasma model n 1is the electronic wave function square of ground

state. Thus Y and X are the function of density since we know the wave

function, L, can be easily obtained.

term of L,

Now we will show that the second

(17.1)

(17.2)

(17.3)

(17.4)
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thus

hw=—eh__ VJ_ =AY
pv ‘Vsh F FJ

1
3rnh

where A =2 me

y = 20V 2my2 \I_F_ sz— (_)2

2

from (17.1) we have J
h

thus

v =V3 ARy

X VF

3

since from (17.4) we know <T> = o m v% » finally we have
1.5
L,=in v-3" 1
5x Y
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CALCULATION OF MOLECULAR STOPPING POWER

In this section, we perform calculations on the molecular stopping

power of H,, He, N», 02 and water vapor for wide proton projectile energy

regions {for H,, He, 100 Kev - 2.5 Mev, 40 Kev -~ 2.5 Mev else). Comparisons

of the experimental data are indicated in tables 6 to 11, (see reference |
[27] and [28]).

The basic formula for the stopping power of local plasma is as follows:

" 2 4 2myv 2
dt . &2%'N 1 o) 1 (—P) &
dx mvp2 thp(r)

To extend the formula to low energy regions, it is only necessary to replace

2my_2 .
In (-E__%_SJ by L function, which we have established in the section en-
Yhw (r
p

P I T A

titled "Stopping Mumber Function."
Now we are interested in molecular stopping power. The charge density %
‘ in the integral should be the electron density of molecules. As we mention-
~ed in the section titied "Stopping Numbér Function," the Gordon-Kim model
* is a rough model of molecular electron density. They assumed that no

arrangement or distortion of the separate atomic density takes place when
-~ i the atoms are brought together. The total electron density of two
! interacting atoms is, therefore, taken simply as the sum of the two atomic

4 ey . A
. densities. iua

p (r) =OI£F) + fg (r 'ﬁlz) (18) “'
molecule =

where R,, 1is the internuclear distance.

|
®
|
|
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Let us use H2 as an example to explain how to apply formula (18).

The ground state wave function of the hydrogen atom is L e”". The elec-
w
tron density of hydrogen atom is E- e-Zr. According to (18)
w
r 2
o = 1_9-2r+ 1 e-(2 )2 =2rRy2 cosf)
Ha " m

For other atoms the atomic wave functions are obtained by Clementi, Roetti
[29] (published in atomic data and nuclear data). They used Roothan-
Hartree-Fock method to calculate basic function and their coefficients for
ground and certain excited states of neutral and ionic atoms for 2Z<54. For
molecules which contain more than two atoms the model can be extended as

follows

P molecule = pA(r) + pB (r = RBA) + pc(r - RAC) ‘ (19)

; Here we present the calculation of water vapor which contains three atoms.

35

o B

BRIl ~ Aol S R

et

N
wnt

e
Peila

L

.._.v.,v
®




The angle between two OH bounds is about 105°. It should be calculated by
formula (19), but for simplicity in this section we neglected the H-H over-
lap simply as follows

(r - OH)

= r) +
p p(r) +2p

H20 H

Also we need to consider partial jonic bond effect. Many compounds exhibit
partial ionic bond rather than pure covalent bond. Pauling defined partial
ionic fraction [30] as the measured dipole moment divided by ideal dipole
moment. Consider, for example, the compound, HC1. The distance between two
nuclei is 1.275A°%, the partial ionic fraction is p = %ux 100%, u® = e x Ro

= 4.80 x 1.275 = 6.12 D, but the actual measured dipole moment u° = 1.03 D.
1.03

”‘i Hence, p = 12 X 100% = 17%. H,0 is also partial ionic bonded compound. %
The actual measured dipoment is u = 1.,94D the ideal dipoment u° = e Ry = ;

| 4.8x0.958 D= 4.5980 the partial ionic fraction p =’ =0.42. The ' b

u i'g-aq,r

mole-cule's electron density of partial ionic bonded compounds can be ;}

expressed as follows : W'
- + - - - -
Pmolecule = PA(r) + og (r - Ryp)
~ . + - t -
with p = (1-p) o(r} +po (r)
-
The case p =1 (pure ionic bond) physically corresponds to moving one s
electron from one atom to another atom. Now for one atom we use wave - §H
;z
i
A 36




- function of positive ion, for another atom we use wave function of negative

; ion. For the case p=0, that is the pure covalent bond, we still use the

- neutral atom's wave function. H,, 0,, N,, are all pure covalent bond

- molecules.

nuclei are listed in table 6.

Water vapor is a partial ionic bonded compound. The distances between

Table 6.

H-H H-0 N-N 0-0

R(A) 0.74 | 0.958 | 1.094 | 1.207 ;

TR

kY
.

¥ia

Table 7 lists the results of this paper together with Andersen and Ziegler

P

TR T S YR AR WS T T

e

[31], curve fitted results and three sets of experimental data for Hy
molecules. Good agreement within 20 percent is found with experimental data
from proton energy 100 Kev. - 2.5 Mev. Calculations from the equations P

established by Bonderup [20] were alsoc undertaken by extending them to

s g L

po]ecu]ar system. Table 7 lists these values for H, molecules in the last :
?olunn. These differ from our results in the low energy regions. Table 8 {‘
iists the same physical quantities for helium gas. The same trend is %ﬁt
bbserved as in the case of the H, molecule. %ﬁ
Table 9 1ists the results of this model together with Andersen-Zeigler ;if

aind three sets of experimental data from proton energy 40 Kev - 2.5 Mev ftor

37
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N, molecule. Table 10 1ists the same physical quantities for 0,. Taple 11
lists the results of this model together with Reynolds et al. experimental
data for water vapor all these tables show theoretical results of this

model are in good agreement with experimental data.
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Table 9. Proton stopping gross section values (in units of 10-15ev cm2)
or more exactly = stopping cross section per molecule
(10-15ev-cm?) of N, gas
Curve Best Available
Fitted EXPER IMENTAL RESULTS
Theoretical § Values
Value of Andersen Reynolds
the Present | and et al, Philips Langley
E(keV) | Paper Ziegler[3l] [32] [36] [33]
40 17.20 16 17.1 £2.6 14.1
50 17.81 16.9 17.8 £2.6 14.8
: 60 18.24 17.3 18.2 £2.6 | 15
3 70 18.48 17.8 18,5 #2.6 14.9
g 80 18.41 17.9 18.5 2.6
* 90 18.25¢2.6
100 17.79 17.7 17.9 £2.6
200 13.26 14.1 14.7 *2.6
300 10.85 11.2 11,2 1.7
400 9.24 9.3 9.34+1.7
500 8.10 8.1 8.08t1.7
) 600 7.25 7.2 7.21¢1.7
700 6.7
800 6.0
5 900 5.65
- 4
g 1037 5.20 4.78
il
k 2074
. 2591 2.71 2.72
f <— - o
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}
Table 10. Proton stopping ¢ross section per atom (in units of 10-15ev cm?2)
or more exactly = stopping cross section per molecule
(1015 ev-cm?) of 0, gas
Curve Best Available
Fitted EXPERIMENTAL RESULTS
Theoretical |} Values , .
Value of | Andersen Reynolds
the Present | and et al Philips | Langley
E(kev)| Paper Ziegler [31]] [32] [36] [33]

40 15.89 14.6 15.2 £2.6 12.5

50 16.52 15.5 16.4 £2.6
b 60 16.99 16.2 16.9 £2.6 14.2
70 17.29 16.7 17.15¢2.6 13.8
80 17.48 17 17.25%2.6 13.8

90 17.1 17.25¢2.6

100 17.43 17.0 17.17+2.6

200 14.36 14.6 14.7 +2.6

300 11.84 11.9 11.99£1.7

400 10.14 10 9.761.7

500 8.92 8.8 8.84+1,7
| 600 7.99 7.9 7.91x1.7
” 700 7.0
\ 800 6.5
g 900 6
4
ﬁ 1037 5.64 5.25
{ 2074
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Table. 11. Proton stopping cross section per molecule (10-13 eV-cm2)
of H,C vapor
Theoretical
Values of Reynolds
E (keV) Present Report et al. [32]
40 28.81 25.0 * 2.6
50 28.81 26.1 * 2.6
60 28.59 26.9 + 2.6
70 28.22 27.5 * 2.6
80 27.77 27.6 * 2.6 :
90 28.28 27.5 * 2.6 '
100 26.77 27.3 £ 2.6
: 200 21.04 22.0 1.7
: 300 17.06 17.9 £ 1.7
400 14.43 15.0 + 1.7 i
500 12.59 13.0 ¢ 1.7 b 5
600 11.20
700 10.13
800 9.28 i
900 8.56 £
g 1000 7.97 R
e
i,
7 Pf:{;”
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- co-workers [39], [40], [41], [42] systematically studied the molecular

b
i
¢
{
{

H
B
i
¢
1

MOLECULAR EFFECT OF STOPPING POWER
Deviations from Bragg's rule due to chemical structure have been

recently systematically studied by several experimenters. Somz interesting
conclusions were summarized from these experiments. Now, we have already
obtained stopping cross section of molecules by using method established in
the sections titled "Stopping Number Function" and "Calculation of Molecular
Stopping Power." We can also easily obtain the atomic stopping cross sec-
tion by calculating the difference of these two quantities. In this way we
can obtain the deviation from Bragg's rule theoretically. A discussion,

based on this evaluation and on conclusion from the experimental side, will

PERNE 2 e
.

be presented in this section.

Discussion on deviation from Bragg's rule due to chemical structure
of stopping power of molecules is of great interest. In 1905, Bragg and
Kleemman first proposed the Bragg's rule [5]. It states that the stopping
power (or stopping cross section) of a molecular substance is the additive
sun of the atomic stopping powers multiplied by the number of times each
atom occurs in the molecule. Bragg's rule has been shown by Thompson [38], ;

for very high velocity proton to be valid within about 1%. Wilson and his

effect on mean excitation energy. Considerable deviations from Bragg's rule
3

on mean excitation energy were found. This is not contradictory to Thompson § .
P

because due to Bethe's formula e

dE _ 4neZ 2mv2 3

- —_ F e N In ———

dx  mv2 I 3

et R
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even though there may be considerable difference in mean excitation energy

I, for very high velocity case the percentage deviation on stopping power

can still be very small.

For low energy projectile the situation is more complex. Many authors

found no molecul ar effect on stopping power. Reynolds et al. [32], and

Park and Zimmerman [35], found there existed deviation from Bragg's rule.

Since 1971, Baylor group did several experiments and thus systematically

studied deviation from Bragg's rule due to chemical structure, [6], [7], and

[8]. They used a particle as the projectile from 300 keV to 2 MeV and

many gaseous compounds as targets in their experiments. The following

conclusion have been given:

1.

Physical effects appear to have caused deviatijon from Bragg's rule.
The stopping power of H,0 vapor obtained by Reynolds, et al. [32],
was found to be an average 11% higher than that of D20 ice
obtained by Wenzel and Waling for proton of 30-600 keV [43].

Chemical binding effects are more likely to cause departure from
Bragg's rule for low velocity projectile.

Bourland and Power [7] said Bragg's rule applies to the gaseous
compounds which contain single ‘and double bonded molecuies. Bragg
rule does not anply to compounds containing triple bonds. For «
particles of energy 0.3 - 2 Mev, the deviation of Bragg's rule are
found as much as 12.8%. Especially they indicated that molecular
hydrogen obeys Bragg's rule. One year later, Power et al. [6]
wondered about their previous conclusion. They said "this
observation greatly weakens the assumption that a physical state

effect is possibly the cause of deviation from Bragg's rule and may

even imply that the problem is not due to a difference in ¢(C)
(stopping cross section) under certain circumstances but rather
than the atomic stopping cross section e(H) may be considerably
different than one-half the molecular stopping cross section = (Ha )
as_has usually been assumed in the past. 1In 1974 Lodhi and Power
[8] gave a more careful conclusion. They said that single bonded
compounds involving C, H, F and Br have been shown to have molecu-
lar stopping cross sections that are predictable with errors of a
very few percent by using vapor deposited solid carbon €(C) along
with an €(H) that is common to eleven compounds. It appears that
there exists no unique atomic stopping power for carbon and hydro-
gen which satisfies Bragg's rule for double bond compounds and that
due consideration must be given to molecular structure when pre-
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dicting molecular stopping power from atomic stopping power for
those compounds.

It appears they corrected their;previous conclusion that the double
bonded compounds have no deviation from Bragg's rule. However, their main
difficulties lie in the fact that it is very hard to determine the atomic
stopping power from experimental data.

Discussion on Deviation from Bragg's Rule, Due to
Chemical Structure from Theoretical Model.

In the above section, we found the Baylor group met difficulties with
determining the atomic stopping cross section from experiments. Actually,
it is very hard to obtain atomic state hydrogen. However, from the local

plasma model it is quite easy to caiculate the atomic cross section, since

~» atomic electron ground wave functions are employed in obtaining the density

PO

'

in local plasma model.
Table 11, 12, 13 show the calculated atomic and molecular stopping

cross section of 0,, Ny, Hy, respectively. The percentage deviation from

Bragg's rule are also listed.
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Table 11. Atomic and molecular stopping cross sectior and deviation from
Bragg's rule of 0,

40

E(keV) 100 200 300 | 500 |1037 100000

k(atomicl

eV + 15-15 cm 17.44 | 17.48 | 14.65 | 12.15] 9.1 5.72 0.1429
atom ;

i(mo]ecu1arg

= eV x 10-15 cm2f 15.89 | 17.43 | 14.36 | 11.84] 8.92 | 5.64 | 0.1476
molecule -

deviation -1 8.9% |0.3% | 2% 2.64 | 2% [2.4% | 1.1%

Table 12. Atomic and molecule stopping cross section and deviation from
Bragg's rule of N, ‘

500

100000

E(keV) 40 100 200 300 1037

S(atomicz

eV x 10-15 cm? 19.33 | 18.57 | 14.52 | 11.56 | 8.53 | 5.30 0.1340
atom

S(molecular)

l-eV x_10-15 cm2{ 17.70 | 17.79 | 13.26 | 10.55 | 8.10 | 5.20 0.13519

molecule o
deviation 4% 4.24 | 7.4% | 6.1% |[5% 1.9% 1.3%
47
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Table 13. Atomic and molecular stopping cross section and deviation from

Bragg's rule of H,

E(keV) 100 200 300 500 800 1037 2591
S(2xatomic)
2xeVx10-15 cm? 12.7 8.13 6.1 4,17 | 2.89 | 2.36 1.11
atom
S(molecule)
eVx10-15cm? 11.43 | 7.53 5.71 3.93 | 2.75 | 2.24 1.%
molecule
deviation 10% 7.4% 6.4% 5.8 | 4.8% | 5.1% 3.6%

From Table 11, 12, 13 the following facts are found:

1. When the projectile's velocity becomes extremely large, the devia-
tion from Bragg's rule almost vanishes for N,, 0, gases. When the
protons energy increased to 100 Mev, the deviation from Bragg's
rule decreased to almost 1%. This result agrees with Thomson's
predictions.

2. MWhen the protons velocity becomes comparable to the atomic electron

velocity (corresponding to proton energy 40-100 keV) there may
exist considerable deviations from Bragg's rule.
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3. Deviations from Bragg's rule are also found to depend on chemical

structure of molecule. As is well _known in chemistry_oi's .
structure is a little bit fuzzy. From bond energy point of view,

02 is sti]l a double bonded molecule. Meanwhile N2 is 100% triple
bonded molecule, H, is a single bonded molecule. It is also

noticed that the maximum deviation for O, M2 and H, above 100 Kev
proton energy are about 2,6%, 7.4% and 10%, respectively. Mean-

while the internuclear distance for 0z, M2, and Hz are 1.20A°,
1.094A° and 0.74A", respectively.

It appears, the smaller the internuclear distance the more the devia-
tion will be. When Gordon-Kim model is employed, the smaller the internu-
clear distance always means that there is more overlap of electron clouds.
Thus mora overlap causes more deviation from Bragg's rule. In this model,
the molecular binding effects are also determined hy these overlap of
electron clouds. However, Gordon-Kim model is a very simple model for
diatomic molecules. The internuclear distance is the only relevant
parameter but the most important information about the molecular effect is
contained in this parameter. There is a very strong relationship between
the bond energy and the distance between the nuclei. The stronger the bond
energy, the shorter the distance will be. It is interesting to note that
the single bonded, double bonded and trfp]e bonded carbon molecules have
inter-nuclear distances equal to 2.94, 2.52, and 2.24 in Bohr units
respectively. It means that the triple bonded cart:on has more overlap than
the single bonded carbon. We may thus expect that the triple bond carbon
will have more deviation from Bragg's rule than the single bonded carbon.
It is expected from the above statement that for the same compounds the

triple bonded molecules most likely have more deviation from Bragg's rule

; than single bonded molecules but it does not mean that we agree with the

statement that the single bonded molecules have no deviation from Bragg's
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rule,

Actually from our calculation, it was found that H, had considerable
deviation from Bragg's rule at low projectiles energy. (10% for 100 Kev pro-
ton energy) due to its small internuclear distance 1.074A° and relatively
large overlap of electron cloud. It was also noticed that all these devia-
tions due to molecular effect always decreased the stopping power.

One of the reasons to understand the above fact is that the binding
effects always weaken momentum transfer and cause the upper limit of
momentum transfer to be less than 2mv and thus reduce the stopping power.
Another reason is due to the shell correction term. As we know the first
shell correction term is proportion to <T>/mv® for bond states <T> ~
|[<E>|. Thus, more binding effect increased the kinetic energies thus de-

creasing of stopping power,
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CONCLUS ION

We have established a modified local plasma model which in conjunction
with the Gordon-Kim model affords a method to calculate molecular stopping
power even at Tow projectile energy. By using this model the main conclu-
sion on deviation from Bragg's rule, summarized by Baylor group's experi-
ments, can be understood. Some ambiguity on deviation from Bragg's rule of
H, is now understood under the present model. The assumption that e(H) =
%— e(Hy), 1is not correct from overlap point of view (where ¢ is the
stopping cross section). The anly conclusion by using simple Gordon-Kim
model is that the more percentage overlap caused more deviations. In other
words, the stronger the binding effect the more deviation from the Bragg's
rule will be. It appears that for the same compounds, triple bonded
molecuies most 1ikely caused more deviation than the single bonded mole-

cules.
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APPENDIX
THE EQUIPARTITION RULE AND NUCLEAR MCMENTUM RECOILING
A semi-classical three body collision model has been established to
est imate the upper 1imit of total momentum transfer of proton incident on
hydrogen atoms. MNumerical results revealed that the equipartition rule in
shell correction deserves more careful study.
We have mentioned in the section titled "Stopping Number Function" that
to apply a correction on the first term of shell correction we used Brown's
results. Specifically the term <T>/mv?® was used instead of the term
<T>/%-mv2 of plasma model.
i In their paper "Stopping Power of Electron Gas and Equipartition Rule"
Lindhard and Winther [15] mentioned that their result of first term of shell
correction was in agreement with Walske's result [22]. As is known,
Walske's shell correction term is just twice that of Brown [21]. This
result lTeads one to believe the existence of an equipartition rule in case
of shell corrections. Lindhard and Winther noticed this, and surmised that
there was a correspond-ing equipartition rule in the plasma model. This
implies that the plasma resonance excitation and the close collision each

~ had equal contribution to stopping power. It appears that plasma model

gives exactly the same results as quantum perturbation theory. Lindhard and

—~  Winther emphasized this fact as a success of local plasma model. Fano also

" mentioned this fact in his paper "Penetration of Proton o Particles and
Mesons" [44]. He used the results of plasma model to support the existence
of the equipartition rule in shell corrections.

The so called equipartition rule has its origin in Bethe's stopping
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power formalism, Bethe divided the st;pping power of fast charged particles
into two parts, that due to the distant collision and the close collision.
There was also found to have considerable contribution to stopping power for
those particles which move not so fast. Thus besides the logarithm term,
the so called shell correction terms should also be included in calculating
the contributions to stopping power.

Brown had calcul ated the stopping number function and shell correction
of K shell electron by using the hydrogenic wave functions. The expres-

sion for stopping number is as follows

B, = | Emaxc,p i Qmax dQ an(Q)lz
Emin Qmin

%'; where Q = (P -P')2/2m P and P' being the momenta of incident particle

" before and after collision |Fn(Q)|2 is the form factor. Brown took the

~ simple two body collision model, namely particles colliding with a free

electron to estimate the upper limit of momentum and energy transfer. Thus

" he obtained the maximum momentum transfer Apma = 2mvy, Brown obtained an

X

asynptotic expression for stopping power of K electron as BK=2 In g +

2 v
- 2.57861 - -1- where ng = l.mv2 in units of Zger Ry is the first term of
2 K

n
K
shell correction. Meanwhile Walske, took both the upper limit of momentum

"~ transfer and energy transfer as infinity and obtained the stopping number

functions

B, (8, ng) = [ ee ° 0 DR, @p

1 - 2 .
W= 0./, wW/an, @ T

56

o

.y

T R R PR A R L -
. q € DA

iyes
A c
e 2

'''''

PR 4272, S gt e et
- £ :
*

A
Ta e

SOATTIT




S

where i =K, L, M denotes the different shell, n; = mv2/2 in units of

2
aff RY 0y

"ideal ionization potential."

is the observed ionization potential of ith shell divided by

Walske also defined the shell correction term Ci(ei’ ”i) as follows
Bi (ei, "i) = Si (ei) In n; + Ti (ei) - Ci(ei’ “i) and he thus obtained
asymptotic formula BK and BL both for K and L shell. The correct

coef'ficient of 1/nK2 is taken from Khandelwal's paper [25].

=2 Tnn, + 257861 - 2ngt - (22) 0, 2
3

o0
fl

L =8 1nn + 255766 - Zn[1 (to order ncl)

" Notice that the first shell correction terms are 2n=' or 2n-=l. The K-

T shell term 2 nk

K L
! thus is twice that of Brown's term nkl.
In other words, shell correction can also be divided into two high and
Tow momentun transfer parts. Such parts each contributes equally to

stopping power. Indeed, Walske explicitly divided shell correction into two

parts.

C (9, n) = () (9, n) + Cz(es n)

~where C; and C2 are Tow and high momentum transfar parts respectively.
- Furthermore, he also showed that C; and C; are equal to the order of nit

! both for K and L shells and to order 1/nK2 for K-shell. Walske's
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results are only limited to K and L shell electrons of hydrogenic atoms.
But Fano made an assumption that the conclusion C; = C; can be generalized
to any shell of any atom. This i5 so called the equipartition rule of shell
correction. All these conclusions are based on Walske's assumption that the
upper 1imits of the momentun transfer and the energy transfer are infinity.
The question is whether the assumption is true or not.

Brown took the upper limit of momentum transfer as 2mv and this is
based on the assumption that the electron initially is free. Two factors
are neglected in this assunption. First Brown neglected the binding effaect
of the electron. Second, he also neglected the nuclear momentum recoiling.
It is obvious that if the nuclear motion is involved then due to its huge
mass, the total momentum transfer may be greatly increased. But by how
much? Is taking infinity a good approximation for the upper 1imit of mo-
mentum transfer? It appears the answer should be dependent on the velocity

of prcjectile. For instance, if the projectile moves extremely slow then

- the nucleus may obtain sufficiently large momentum transfer. Otherwise due

. to the short interaction time, nuclear momentum could be small and the upper

emrtae -

limit of total momentum transfer will not differ too much from 2mv.

In this appendix, we estimate the upper 1imit of momentum transfer by

the projectile to a hydrogen atom by establishing a semi-classical three
body collision musdel. For protons energy over 50 Kev a fitting formula from

nunerical results was obtained: (See for the general results later in this

| appendix)

AP =2mVE
max ep
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where £ = 3 (1 + 8.9 (Y9)5) (1 +4f 1- (12)2)
4 v v
P p

where vp is the velocity of proton and vo is the Behr velocity. Numeri-

cal results of & of various proton energies are listed in table 14.

Table 14,

. E(keV) 50 75 100 200 400 1600
£ 2,20 | 1.43 | 1.19 1.01 0.991 0.996

From the above formula and the table we see that for high energy pro-

. » Jectiles Brown's assumption is correct. The values of & slightly less

" than unity is due to binding effect but for Tow energy proton the factor of

i
i

~ nuclear momentum play a more important rule. There is a considerable

correction to Brown's results. But even at 50 Kev protons energy the
numerical result of & 1is only 2.2, still quite different from Walske's
assunption of infinity. It is true that when protons energy becomes
smaller, then the correction factor £ 1is expected to increase rapidly, but
then the expansion of stopping number function Bi should involve more
terms than just the term ni'l. However Fano's assumption that C, = C, or
equipartition rule of shell correction, deserves a careful study.

Nuclear Momentum Recoiling

In this section first we shall review the conservation laws and the

resulting physical quantities when the collision is assumed to be taking
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place between two bodies only. Later, three body collision problens are
handled numerically in a semi-classical manner. Nuclear momentum recoiling

effect is estimated in the relatively low energy region of Bethe stopping

power,

Semi-Classical Formulation of Three Body Problan for Relatively
Low Energy Stopping Power

Estimating of the Quantities Q(min) and Q(max) Two Body Collision.

Let us first consider the energy regions such that we can always ne-

glect the nuclear recoiling energy, i.e. we can express energy conservation

law as
= h2 (K2 -k121 /%)
(En - Eo) = h¢ (K==K' )/2Mp

where En and Eo are the eigen energy values of final state of electron
and initial state of electron, hK and hK' are the initial and final momen-
tun of projectile.

We know that in lab. coordinates the momentun changes of projectile are
much smaller than the momentum of projectile itself, i.e. AK<<K or 8<<1 so,

- = h2(K2-k2 = he -K = '
we have (En Eo) h2(K2-K )/2Mp = hZK(KK"')/Mp th(K1< )

since 9 is small

@ =K2*K'2 -2KK' cos(®)=(K-K')2*+(K,)?

8

g |

Q = (€, E /MY, )24 (Ky )2
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This Q(min) estimation is justified unless one deals with the extremely low
energy case for hydrogen atom targets when proton's energy is lower than 10
kev (Andersen and Ziegler) for which we need to consider nuclear recoiling
energy term. Now let us estimate Q(max) term very carefully. This upper
1imit estimation will involve a correction to Bethe’s theory.

We use Landau's treatment of Bethe's theory for estimating the upper
1imit of momentum transfer. Essentially it neglects the nuclear recoiling
displacement and momentun. Hence it becomes simply a two body collision.

In this model, the projectile collides with a free electron.

The projectile's initial momentum is hK

and the final momentun is hK'. Al1 the

3 B ' . momentum changes of projectile are

transferred to the electron which is free in its initial state hendés we

~ write down the momentum and energy conservation laws as,

K'2 = K2+AK2 -2KAKcosé
= Kz-K ‘2 = (F

woacjie

M 24
b %

AK = Q

AE

5 where Q is the momentum of electron (in our case projectile momentum loss

; is entirely transferred to the electron) m 1is the mass of electron. From

' above conservation laws, we have

&
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2KaKcoss -AKE | QF

2Mp 2m
Keeosp _ (1,1, @@
Mp m Mp m

or Nfmax) = 2 mVp

It is a very simple model, but it works at high energy. The main physical
reason is that the projectile moves too fast to cause any significant

displ acement of the nucleus. At relatively low energy due to ‘long
interaction time, we need consider the nuclear recoiling momentum to correct

the upper limit i.e. Q(max)

Sami-Classical Three Body Formulation
A model essentially based on classical three body problem was estab-
lished. Consider a proton which collides with a hydrogen atom. The
electron of the atom was initially assumed to be in its ground state. Some-
what semi-quantun conditions are involved in our model, besides usual
classical columb interaction. Now let us see how the nuclear recoiling

momentun influences the upper 1imit.

where Aﬁe and Aﬁn are the difference of the electron momentun and the

nuclear momentun before and after collision. Now the projectiles momentum
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not only can be transferred to the electron but alsc can be transferred to :
the nucleus. Furthermore as stated before we assume that the electron is in
the ground state initially. Now let us set the initial momentun of nucleus
to be zero i.e., AP =p . Thus we have AK=A§e+5n
(aP_ )2 + 28P <P + (P )2
AK = |P_| b e n M =P |t +n)
e Pz e
e
(AP_)2 + 2aP <P+ (P )2
where 1 +n = ¢ en n (20)
p2
e H
We again write down the conservation laws; ,
[ K'2 = K2 + 8K2 - 2KeK cos (21a) =
2 2 2 ';‘::;‘}‘
J LS £y = K2 , P&, Pn2 A (21b) o
ZMP 2Mp 2m M, ' .
8K = [Py| (1 +n) | (21c)
\ e ,AL'V .
b
" For maximum momentun transfer cos(¢) = 1, as before. From (21a) we have _..'*,}:
. K&-K2 '/2Mp=(2KAK-AK2)/2Mp L
~ from (21a), (21b), (21c) S
o oy
.:g VB ha\le l""f,‘?:iz:";:f
é ;'::‘;
T
p 2 p2 p 2 S
; VoIPl (L #n) = 2 (140 =2+ 1 - (g - V)
; P M 2m M
; P n
3
o €3 | (s
(3 (e
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2 2
hence, V [Po| (1 +n) + (Eg - V) =1 @ {.(1_"“L+1_+i_.9_"_}

e
2 Mp m h Pg
)
’;Pea
p2
where a = ll:ﬂzi_. 1 .1 :
Mp m Mn Pe
2V P (l+n) 2(V £ )
2 n-o _
or Pe - 5 =0
o v (l*n) (V_-E )a
——-[1 +/1- L (22)
e : L3
V_(14n)2 (V € )a
#8Knax = Pgllen) = B (1+f1-, 1 90 (23)

= V2 2’
o\ +n)
For high energy case Vp>>v0 and thus there is no nuclear recoiling

1
al/m, n»0 (Vn-Eo)a/EVp(IM)Z-»O

hence AK 2V m
max p

Therefore, for relatively low energy casa, we have two corrections; one is

o
CREEEI.C GURR . 2 B

from nuclear recoiling momentun, and another correction is from the initial

energy of electron. For most cases the first correction is more important.
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From the formula for AKmax’ we can see AKmax depends on 14+ or depends
on nuclear recoiling momentum Pn which extends the upper limit and will

cause an additional stopping power.

P2 + 24P, P |
In formula 1+ n = : nt " (24) f
Pe :
!
A1l these 4P, ﬁn' and ﬁe are numerical results of three body problen. §
Now Tet us establish fundamental equations. %
« l C'ﬁ.\.\e ) 5 T
: gros®
23 e
we denote projectile by 1, electron by S%g%
Dy L
2, and nucleus by 3. L
For simplifying the calculations we established a two dimension model. L
;; . It is not a bad appruach because we are interested in nuclear recoiling "
d effects in which the main contribution is due to the colunb interactions -
between projectile and nucleus. This is partly due to the symmetry and ?Q
~ 1 partly due to our interest in obtaining average values. :
",: Equations of motion for projectiles are as follows: ‘ﬁv
I A
i S
v 2 ) 2 %)
] M Yl = 3 + 3 f*.";
i r r v
¥ 12 13 4*”';!;'
0, 82 Q(L'XL) e (X3 =X, ) x
12 13
S 65




Where M is the mass of projectile which in our case is a proton.

the integration time as projectile moved from

gas state given the average distances between molecules are about the order

of 10A and

Y1

X}

t=to

t=to

4ay

X1

ORIGINAL PAGE I§
OF POOR QUALITY

=0

t=to

=Vp
t=to

b is the impact parameter.

For tiie electron we have the following equations:

mYy =

e2 (Y -¥2) e (Y2-Y3)

rd
12

r3
23

" _e2(X3-X2) e2 (¥2 -X1)

mX

r3
23

r3
12

= sing Y=
t=to

Y2

Xa = -COS$ le=
t=to =

where ¢ is the initial phase of electron orbit

. Equations of motion of nucleus are:

. e2(Ya-¥3) & (Y1-Y3)

M.Ys =

MnX3 =
i
!
.
S
'.§1
» L

r3
23

€2 (X3 -Xz) €% (X3 -X1)

r3
13

p3
23

r3
13

"
o
w
n

Y3 _
|t=to t=to

n
o
>

w

]

X
3lt=to 1+(0

t=to

t=to

We took

-439 to 43y for the standard

Vo sin¢

Vo cosy
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As is well known numerically high order differential equations can be reduc-

ed to a first order equation such as:
Y(m)=f(x,Y,Y',y‘,....y(m'l))

Let Yty Y'ory, vuavg, ... ¥ ™oy then this will reduce to

(Y, '=y,
 Y2'=y3

.

LY =YL YY)

So our six second order differential equations are‘reduced to twelve
first order equations. The electron is assuned initially to be in the first
Bohr orbit. Since we took laboratory coordinates the nucleus is initially
at rest in the position of origin. We emphasize here, the difference from

the usual treatment. Here we took the impact parameter b as the vertical

. distance from the projectile to the nuc]ei's initial position and not the

vertical distance from the projectile to the electrons initial position, as

1is usually done. To apply classical mechanics to the microscale system, the

most serijous difficulty is that the electron can eventually drop into
positive ions colunb potential well. It also caused numerical difficulties
in practice because we need infinitesimal steps to keep acceptable
accuracy.

To prevent this difficulty it looks as though we need to introduce

somewhat semi-quantun condition. In 1951 David Bohm suggested an interrup-
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tion of quantun theory in terms of "hidden variables." [45] Bohm proved
that quantum mechanics can be explained as some modification tu classical
mechanics. Schordinger's equation can be expressed as:
n e v () - PR
dt2 2m R
Where R is the real part of wave function or RZ = |y(r)|?

So the equation of motion for quantum mechanics can be expressed as us-
ing classical potential plus a quantum mechanical potential which is correc-
tion to classical theory.

Following Bohm we got some hint that this semi-quantun mechanics treat-
ment prevents the electron from dropping into the nucleus. If given an
additional semi-quantun potential then we will have an additional force to
balance the usual columb force.

For r<<a, this force will be greater than columb force. It will pre-
vent electron dropping into the nucleus. For wr»ag, this force will
vanish. In some sense this additional potential gives explanation of first
Bohr orbit. The above discussion is for the bound state. For the

scattering state the electron can approach the nucleus. Thus, we will

~ establish a potential somewhat Tike Fermi distribution which depends on the

- energy of the electron

2 10
v = N y (e=27+1) (25)
ed 2mR (EIOE+1) .

Figure 2 gives the graphics of this potential for E>1 Ved~0, and for E<-1
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2
e~ _E__. or we may say for scattering state our model is a classical
ed ZHIRZ
model but for bound itate we have an additional term somewhat semi-quantum

tem.

We use the expression (25) rather than a potential 1ike

h2 E<0
ved *

2mR2
Ved = 0 E>0

merely due to the reason that we need a continuous potential to obey the
conservation law accurately. We have some freedom to choose e-l0 or e-'2
or e in the terms of Ved' The bigger the number we choose in
exponential terms the sharper the curve obtained. But as mentioned too
sharp a value will cause energy or momentumn conservation problems.

We calculated these recoiling momenta and averaged them over phase of

. the electron orbit and then took the average over impact parameter b. Here

as we mentioned earlier, b 1is the vertical distance from projectile to the

initial position of the nucleus. From (23) we have the maximum momentum

transfer

vV -£
aK =y (1+n)2 (1+/}1- (ﬂ 0)(x

p )= g2mV
max - a 1y 2 (14 )2
2 P

p

. In the stopping number formula instead of 2m VP we have 2m VPE hence we

 finally obtained the new stopping runber formula

2m V 2t
L=1n (—P)
I
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In this two dimension model, there are two parameters, impact parameter b

and initial phase. Numerically we calculated Ppr Pos P (1+n), and

p’
finally took the average over ¢ and b, Table 15 shows some examples of
n

the average of ¢ as a function of impact of parameter b. The correction

P, Pe‘ Pp as functions of initial phase. Table 16 shows some examples of

coefficient of the stopping number involves twi factors. One is an addi-
tional contribution due to nuclear momentun recoiling. As b is very small
this factor is very important, as b becomes larger this effect vanishes.
Another factor is mainly due to the velocity of the electron in the jinitial

state. This factor makes negative contribution on correction (make it less

- than unity) as VP increases this factor becomes negligible. After an

i ERAL. .l

s mmrt

average over ¢ and an average over b, we obtained table 17 as a function

of the projectiles energy.
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Table 15. Momentums after collision as a function of the initial phase.

Initial Phase | Momentums after collision
¢ Pp(me-Bohr/sec) Pe(me-Bohrlﬁec) P (mg-Bohr/sec)
0 3672 1.39 9,28
1.10 3672 1.36 11.47
2.04 3672 1.30 11,27
2.98 3667 2.80 2.86
4,08 3671 1.83 12.31
5.03 3667 4,31 7.65
5.97 3672 2.35 2.67
(a) b=.1 (az) E = 100 kev
Initial Phase | Momentums after collision
? ¢ Pp(me-Bohr/sec) Pe (mg-Bohr/sec)| Pp(mg-Bohr/sec)
. 0 3672 1.47 1.99
' 1.10 3672 1.37 3.63
2.04 3672 1.21 3.50
2.98 3671 1.73 2.88
4,08 3671 2.15 0.84
4.87 3668 4.72 0.95
5.97 3672 1.25 1.09
(b) b =.5 (a,) E=100 kev
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Table 16.

b(ay)

g

0.1

OO0
WOV W

80
8.84
2.94
1.41
0.852

(a) (E=50 keV)

b(a,)

0.1

(o> N oo N o]
oW

(c)

Table 17.

(E

£ as a function of impact parameters

b(ag)

0.1

.

COoOOOo
ONOVW

(b)

OO~

W w o
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(d)

(E=400 keV)

50

75

100

200

400

1600

2.20

1.43

1.19

1.01

0.991

0.996
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As we expected when projectiles eneruy is smail that is when the pro-
Jectile moves slow, it causes significant nuclear momentum recoiling effect.
Meanwhile the initial velocity effect is covered by nuclear recoiling
effect. As projectile moves fast it can not cause significant nuclear re-
coiling momentun, We can see that the initial velocity effect however is
less important when the projectile moves very fast both effects vanish and
there is no correction and we obtain the Bethe's formula.

An approximate useful formula obtained by fitting the values as energy

greater than 50 kev, is:

v V.
gL (1+8.9(9% (1 W’l - (92)
2 Vp Vp

Where Yy is the Bohr velocity and Vp is the velocity of projectile.
Numerical resul¥s of relative correction of stopping number are also calcu-

ed.

L/L0 as a function of projectiles. energy are listed below

E(keV) 50 75 100 200 400 1600

L/L, 1.398 1.15 | 1.065 1.0035 0.998 0.9993

From the table we can see that for the hydrogen atom target and for the

proton as a projectile of 50 keV nuclear recoiling momentun caused a consid-
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erable correction (40%) on stopping power for 100 kev about 6-7% correction

on stopping above 200 kev the correction of stopping power can be

negligible,

Argument of Extending to General Material.

Up tc now we have calculated the recoiling momentum of hyderogen atom
target. Now we will give an argument that this result can be roughly
extended to a general case of any other atoms. Let us consider proton
projectile passing through material composed of atoms of charge Ze. Then
due to the columb interaction between proton and nucleus the momentum trans-

fer is:

aP = f_:fy(t) dt
where fy(t) is prroportional to Zt and is independent of the nuclear
mass. Now only for estimating we suppose that all the momentun obtained by
nuclei is transferred to the electrons. Thus Z electrons share their
additional momentun. tence on the average each electron obtained momentun
independent of Zt and nuclear mass.

Then the additional stopping power is proportional to Zt but the
stopping number is independent of Zt and nuclear mass. We can roughly say
that the ratio of "additional stopping number" to stopping number of any

atom are the same as for the h ydrogen atom,

75
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