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PREFACE

The primary objective of this study is to demonstrate that remotely
sensed marine surface wind and wave data can improve the cperational anal-
ysis and prediction of surface winds and waves in intense marine extra-
tropical cyclones. This objective was achieved through a case study of
the severe North Atlantic storm of September 9-11, 1978 which damaged
the ocean liner Queen Elizabeth 2 ({QE2), and in which remotely sensed ma-
rine surface wind data were obtained by Seasat-A.

Alternate representations of the surface wind field in the QE2 storm
were produced in order to compare the specifications possible from the
Seasat enhanced data base with wind fields derived from operational anal-
yses based upon conventional data. The operational analyses were found
to be very poor in the QE2 storm despite the fact that the storm formed
and moved through the active North Atlantic shipping lanes.

Detailed man-machine mix techniques were applied to provide the most
accurate surface wind fields possible from combined conventional and Seasat
data. The wind fields were used to drive a high resolution spectral ocean
surface wave prediction model. The model derived wave hindcasts provided
a basis for quantifying the errors in operationally produced wave analyses
and forecasts in the storm. It is demonstrated that sea-state analyses
would have been vastly improved during the period of storm formation and
explosive development had the remote sensing data been available in real
time. It is also shown in this study that a modest improvement in opera-
tional 12-24 hour wave forecasts would have followed automatically from the
improved initial state specification made possible by the remote sensing
data in both numerical and sea state prediction models, but that signifi-
cantly improved 24-48 hour wave forecasts will require in addition to
remote sensing data, refinement in the numerical and physical aspects of
weather prediction models.

This study also included an evaluation of the wave model used against
directional wave measurements made by an experimental airborne scanning |
radar altimeter in a separate intense North Atlantic cyclone. The model |

validation confirmed the high accuracy of wave height specifications shown

PRECEDING PAGE BLANK NOT FALMED



previously for the wave model but also revealed deficiencies in the treat-
ment of directional processes. The high resolution directional wave mea-
surements made by the scanning radar altimeter provide a basis for development
of improved empirically based treatments of directional wave processes and
should guide the development of improved theory. On an operational satellite
the system would provide data which could directly update the sea state
directional spectrum representation carried in operational wave prediction
models. Improvements in the initial state alone could lead to significant
increases in skill of 12-24 hour sea state forecasts, and probably to

improved prediction at longer forecast ranges in wave regimes dominated by

swell.
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1. Introduction

SEASAT-A was launched on 26 June 1978 and stopped transmitting after
acquiring global data frow each instrument over a 99 day period., After a
period of extensive evaluation of limited data setz and tuning of algo-
rithms which retrieve geophysical data from the sensor data, global data
sets for each instrument except the synthetic aperature radar (SAR) had
been pnoduced for the entire experimental period. The success of the
scatterometer (SASS) experiment in demonstrating the ability to remotely
sense surface marine winds has by now been well documented. In a recent
veview, Pierson (1983) cites r.m.s. differences between the SA%3 winds
and meteorological winds of 1.2 m/s in speed and 17° in direction with
negligable bias.

A number of planning studies conducted prior to the launch of SEASAT
showed that tremendous economic and human benefits would accrue to the
marine community from improved short (12-48 hours) and medium range (3-5
days) operational wind and sea state forecasts. It is widely believed
that the global availability of remotely sensed marine winds on future
operational satellites shall have great uffects on weather and sea state
forecasts but to date only very limited research based on actual SEASAT-A
data has been reported to support this view.

gimulation studies using numerical weather prediction models (Cane
et al., 1981) suggest that improvements in the initial state provided by
SASS type data improve analyses and forecasts of surface pressure and
low and midtropospheric wind fields over both land and sea. To date these
vesults have not been confirmed in experiments involving real SASS data
but such experimental programs are underway at a number of centers,
including the NASA Goddard Space Flight Center and NOAA's National

[y

Meteorological Center. :
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In this study, we attempt to document through a case study, the %
potential impact of remote sensing wind data on the specification and
forecasting of sea states in a particularly dangerous class of meteoro-
logical phenomenon; the explosively deepening marine extratropical cyclones
or more simply "bombs" (Sanders and Gyakum, 1980). Such storms have be- 2

come the focus of intense interest in recent years for several reasons.




First "bombs" are clearly a hazard to shipping and other offshore
interests and seem to be largely responsible for weather related loss of
life and shipping in the high seas, even in well travelled shipping lanes.
Two examples are the storm of August, 1979 in the eastern North Atlantic
which occurred during the Factnet yacht race, sinking 24 boats and killing
17 sailors, and the storm off the Crand Banks of Newfoundland of February,
1981, in which the drilling rig Ocean Ranger sank killing 84 crewmen. The
stopm used for this case study occurred in early September, 1978 in the
western N, Atlantic, and was responsible for the loss of a fishing trawler
with all hands off Georges Bank and extensive damage to the oceanliner
Queen Elizabeth II along with injury to 20 of its passengers. This QE2
storm has been studied extensively by Gyakum (1983) and Anthes et al, (1983).

Bombs are intereésting also because the physical mechanisms responsible
for their explosive development are not well understood. There is increas-
ing evidence that an.important source of energy is convective heating;
bombs therefore bear some similarity energetically to tropical cyclones.

Finally, as pointed out by Leapy (1971) and Sanders and Gyakum (1980),
operational numerical weather prediction models often fail to predict
explosive cyclogenesis over the oceans. Bombs therefore have not partic-
ipated in the very significant improvements in skill in numerical weather
forecasting exhibited over the past two decades., Also, since bombs usually
form as very small scale but intense circulations, detection is more diffi-
cult and storms may not be resolved in analyses produced objectively to
initialize numerical weather prediction models.

For this study, we have assembled a comprehensive data set for the QE2
storm consisting of conventional surface ship reports, recently reprocessed
8ASS data, and surface pressure and sea state analyses and forecasts pre-
pared in real time by the NOAA National Meteorological Center (NMC) and the
U.S. Navy Fleet Numerical Oceanography Center (FNOC).

The data sets were used to develop alternate representations of the
surface wind over the western North Atlantic Ocean for the period of the
formation and intensification of the QE2 storm. As expected,‘the wind
fields developed from conventional data available in real time weve found

to be quite deficient despite the fact that the storm formed and moved
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through a major shipping lane. On the other hand, the surface wind fields
developed from a combination of convrutional ship reports and SASS wind
data documented the rapid formation of gale force winds about the incipient
storm and the evolution of the g2:ale and intensity of the surface wind
field over the u48-~hour period between the formation of the gtorm and the
development of peak sea states in the storm at about the time of the
encounter of the QE2 with the storm.

Since remote wave measurements were not made in the QE2 storm, a hind-
cast was made using a calibrated spectral w~ave model and the SASS based
surface wind fields. This hindcast provided a base case wave specifica-
tion against which operationally produced wave analyses and forecasts in
this storm could be evaluated., Eprors in conventional analyses and fore-
casts were extremely large, with peak sea states underestimated by as much
as a factor of four. Hindecasts made with the calibrated wave model but
driven by wind fields derived from conventional real time data showed
little improvement over NMC or FNOC analyses, supporting the view that
grrors in operational wave analyses and forecasts are mainly caused by wind
errors rather than wave model errors.

A series of three experiments were performed with the wave model to
assess the impact of the SASS data on sea state forecasts. In one experi-
ment, we yaricrmed a simulated 2u-hour wave forecast for the period of
explosive development,for which forecast wind fields were derived from a
numerical weather prediction for the QE2 storm reported by Anthes et al
(1983). Their forecast was based upon an improved initial state specifi-
cation derived from SASS data and a high resolution numerical weather pre-
diction model. The numerical weather prediction captured only about 50%
of the explosive deepening, in terms of minimum surface pressure, and
contained errors in the shape of the pressure field and in the location of
the strongest winds. Those errors translated into significant wave height
errors relative to the base case, though wave forecasts were much improved
overall.

The second and third forecast experiments covered the 24-hour period
prior to the QE2 encounter with the storm, a period in which the storm had
stopped deepening explosively but during which peak sea state growth

continued. Forecast wind fields for both experiments were derived from
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operational NMC surface pressure forecasts. The experiments differed in
the initial state specification. In one experiment, initial sea states
were specified from the base case hindcast; in the other, initial sea
states were derived from hindcasts made from conventional wind data alone.

These experiments showed that the improved initial state specifica-
tions resulted in improved forecasts at 12 hours, but that by 24 hours,
errors in forecast winds had largely eliminated the differences between
the two forecast runs. The tentative implication is that significant
improvements in sea state forecasts beyond 24 hours will follow principally
Srom increases in skill in numerical weather prediction with the exception
of forecasts of swell which would benefit from improved remote wind and
wave sensing systems even with numerical weather forecasts with current
levels of skill.

A new remote sensing instrument, the real-aperature scanning beam
Radar Ocean Wave Spectrometer (ROWS)( Jackson et al. 1983) has been
shown vocently to be capable of obtaining global satellite measurements of
ocean wave directional spectra. Such data could be used in the specifi-
cation of the initial state for wave forecasting systems, much like the
way atmospheric observations are used to initialize numerical weather pre-
diction models, The forecast experiments -just summarized above estimate
the impact on forecasts of such improved initial states for one storm type,

Wave prediction models are not perfect, and ROWS type data may also
provide the wave data necessary to validate and further refine such models.
In this study, the wave model used for the QE2 storm hindcasts, and an
alternate model, were used to hindcast & separate intense N. Atlantic storm
in which an airboriic ROWS obtained divectional wave spectra. The compar-
ison of hindcast and measured wave heights and directional spectra beneath
the flight path confirmed the skill on wave height specifications shown
for the adopted wave model in prior studies but revealed certain deficien-

cies in the treatment of directional processes in the model theory.




2., Contemporary Wave Forecast Systems
In recent years there has been a shift at many forecast centers

(e.g. those of the U.X., Japan, Norway, France) to the use of numerical
spectral wave specification models to make operational wave height analyses
and forecasts. The models are run in hindcast/forecast cycle, usually
twice daily, from 0000 GMT and 1200 GMT initial states. The models are
driven exclusively by input wind fields; in wave forecasting, unlike nu-
meriecal weather prediction, the initial wave conditions for a forecast
are not specified from wave measurements but are calculated by the wave
model run in a hindecast mode using wind fields derived from measurements.
The accuracy of wave forecasts therefore may e limited by errors in the
initial state due to poor marine wind analysis, errors in forecast wind
fields derived from numerical weather forecast models, and possibly er-
rors in the wave models themselves, though the latter effect may be
minimized through careful model development and calibration.

Contemporary wave prediction models were reviewed by Cardone and
Ross (1979). The models are based upon the spectral energy balance equa-
tion, usually applied in its simplest form, that is, to surface gravity
waves assumad to propagate through water of infinite depth that is other-
wise at rest. In this form, the equation is written

3.

\ ->
¥ B(£,3,%,t) + ca(£,9) - YE(£,9,%,t) = S(£,0,%,t) 2.1

where E is the energy density of the wave field described as a function
> : “
of frequency, F, direction of propagation 0, position ¥, and time t; ‘

C? iz the ideep water group velocity vector,and 8, the source function

-
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represents all physical processes that transfer energy to or from the
spectrum. Discrete type wave models represent the spectrum E in terms
of a number of spectral components (bands) of finite width, and succes-
sively simulate wave propagation (the homogeneous part of 2.1) and local
energy transfers (the r.h.s. of 2.1) in a series of discrete time steps on
a grid representing the ocean basin of interest.

In this country, the only operational spectral wave forecast model
is the SOWM model of the U.S. Navy FNOC. The SOWM resolves the wave

spectrum into 180 spectral components representing 15 frequency and 12



direction bands. The SOWM is run operationally twice daily on a grid
which represents all major northern hemisphere basins. The SOWM
forecasts extend to 72 hours. Initial conditions, E(f,ﬁ,?,to)

are taken from a continuous hindcast history made with the same wave model
driven by 6-hourly wind fields produced at FNOC routinely by objective
analyses of ship reports of wind and sea-level pressure. In this report
we will refer to numerical surface pressure field forecasts and SOWM wave
analyses and forecasts for the North Atlantic Ocean in the QE2 storm.

In this study we have basically simulated the operational wave fore-
cast system nsed at FNOC, in order to assess the potential impact of
remote sensing data For a case of explosive cyclogenesis. However, our
system differs from the FNOC system, in that: (1) analysis winds were pro-
duced in a "man-machine" mix procedure rather than through strictly com-
puter~-based analyses; (2) the wave model used here for the QE2 storm hind-
casts is a newer version of the SOWM with improved calibration and higher

spectral and spatial resolution.
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3. Validation of ODGP/SAIL Models against ROWS Data

3.1 Introduction

In this section we present an evaluation of the wave model (ODGF)
used for the QE2 storm case study, in storm conditions against directional
wave measurements made by an aircraft mounted radar. The measurements
were obtained with the Goddard ROWS in the Norwegian Sea in a severe storm
which fermed in late Oetober, 1978. Conventional wave measurements were
also made in the same storm from a waverider buoy, deployed in the area
of the experiment. There were a total of 5 flights over a 7 day period
during the experiment. The hindcast covered a 12 day period to encompass
all periods of data collection. The radar data have been thoroughly
analyzed however only for one of the flights, which sampled the most se-
vere sea states in the experiment. Since the high resolution directional
wave measurements of the RCWS provide a rare opportunity to evaluate the
directional aspects of spectral wave model predictions, a model with an

alternate source term treatment (SAIL) was also used and evaluated.

3.2 ODGP and SAIL Model Attributes
The ODBP (Ocean Data Gathering Program) model, developed by Cardone,
Pierson and Ward (1976) is a part of the family of PTB discrete type

spectral models described by Pierson, Tick and Baer, (1966). Current
versions of the ODGP model use the propagation scheme proposed by Green-

wood and Cardone (1977). Their scheme uses downstream interpolation to
propagate waves along great circle paths in an energy conserving manner,
The scheme is basically first order and therefore dispersive, a trait
intended to simulate the natural lateral and longitudinal spreading of .
finite bandwidth spectral components. The properties of the scheme are
described in more detail in the report of the wave model intercomparison
panel to the IUCRM Symposium on Wave Dynamics and Radio Probing of the
Sea Surface, Miami, Florida, May 1981 (SWAMP, 1983).

While the ODGP spectral growth/dissipation algorithm is of the PTB
type, significant differences between it and the U.S. Navy SOWM model
(also a PTB type) evolved in the application and verification of the ODGP
model against measured wave spectra in hurricanes. An important difference
is in the calculation of the wave growth as a function of the angle be-

tween the wave direction and wind direction. In the SOWM, the energy in

AR SR © 57w T



a given frequency component summed within #90° of the local wind is the
quantity subjected to growth. The incremental growth is then spread out
over the same components. In the ODGP model each downwind spectral com-
ponent is grown separately and after computation of growth for all com-
ponents within *90° of the local wind divection, energy is redistributed
over angles. This algorithm leads to slower growth of wave height with
time in-a turning wind than in a wind of constant divection.

Recently, workers have attempted to investigate the response of the
wave spectrum to a turning wind from pitch/roll buoy data by studying
the response of the mean wave direction in individual frequency bands.
Clearly, not enough detail is present in such data to observe the direc-
tional response in complicated wind fields, and considering the scant
field evidence, it Is not surprising that the SWAMP group found large
differences in the directional relaxation rates between the ten spectral
wave hindcast models compared.

The modelling of directional processes in the ODGP model is appar-
ently sufficient to provide reasonably skilled simulation of the inte-
zrated properties of the directional spectrum of peak sea states in
storms characterized by utationary or moving circular wind fields. In
over 60 individual comparisons in 19 different storms, Reece and Cardone
(1982) found that the model exhibited negligible bias and rms errors of
less than 1m in,significant wave heignt and 1 second in peak spectral
period. Compariscns of hindecast @nd measured directional wave properties
are more limited. Forristall et al. (1978, 1980) shows comparisons in
two Gulf of Mexico tropical cyclones. The directional spectrum was esti-
mated from surface elevation and orbital velocity measurements. Directional
properties were expressed in terms of the mean direction and spread as
a function of frequency. Good agreement was found in both storms.

The directional wave measurements obtained in this study provide the
first opportunity to check in great detail the predictions of the direc-
tional spectral shape., To accomplish this, the ODGP model was adapted
on a high resolution grid of 100 km spacing covering the eastern two-thirds
of the North Atlantic Ocean. The 100 km spacing dictates a time step of

3 hours for the spectral range modelled. For this hindcast, the frequency
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baﬁding of the 15 bands of the SOWM was adopted. However, a 15° directional
banding, rather than the SOWM's 30° banding was used.

The SAIL model is based upon a completely different spectral growth
algorithm from the ODGP model, but uses the same spectral resolu*ion
propagation scheme and grid system. The basic formulation of the SAIL
model is described by Greenwood et al. (1983); its participation in the
wave model intercomparison program is described in the SWAMP (1983) report.

The SAIL model has undergone much more limited validation than the
ODGP. The model is tuned basically through the adopted implied fetch-
wise energy growth law. For one particular tuning (SAIL II) the model
was found to nearly match the skill of the ODGP model in specification
of peak sea states in several hurricanes (Oceanweather, 1983).

A hindcast with the SAIL model is included here basically to check
whether the rather different treatment of directional processes ffom
that of the ODGP model leads to any discernible difference in the

specification of the full 2-d spectrum.
3.3 Wind Field Preparation

Cardone et al. (1980) describe and compare alternate marine wind
field analysis methods with particular emphasis on the impact of wind
field errors on wave specification. For typical mid and high latitude
storm scenarios, specification of surface winds from conventional surface i
pressure analyses produced in real time at operational forecast centers
generally was found to lead to wave hindcasts (with the ODGP model) con-
taining both large rms errors and systematic underestimation of peak sea
states, compared to errors (e.g. Reece and Cardone, 1982) found in hind- :
casts when wind fields were specified through reanlaysis of surface pressure g
and wind fields using enhanced ship report data files, and kinematic
analysis techniques. , :

For this study, surface wind fields were specified at 6-hourly in-
tervals over the period 0000 GMT 10/25/78-1800 GMT 11/07/78, over the
domain 40°N-80°N, 50°W-30°E. For model spinup and periods in-between
flights, winds were derived from the pressure analyses shown on the

6-hourly Northern Hemisphere Surface Analyses produced in real-time at
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the NOAA National Meteorological Center. The procedure was to grid the
sea level pressures manually on a 2.5° latitude-longitude grid and then
objectively derive 19,5 meter level winds using the marine planetary bound-
ary layer model of Cardone (1969). In that procedure, pressure gradients
are derived by centered differencing, resulting in a highly smoothed wind
field. For the critical periods, a complete reanalysis of the surface
pressure and wind field was performed. First, ship reports not avail-
able in real time were added from a file of punched ship log veports pro-
duced at the NOAA National Climatic Center and replotted by machine. An
example of replotted charts with reanalyzed isobaric and frontal analy-
ses is shown in Figure 3.,1. The number of ship reports shown overall in
the maps exceeds by at least a factor of 2, the number available in real
time., The number of reports from transient merchant ships decrease sharp-
1y north of ahout B0°N. The reanalysed pressure fields and the kinematic
analyses were digitized at a 2.5° spacing since the data density hardly
justified a finer spacing.

The map shovm, depicts the synoptic situation leading up to the
flight of interest on November 3. At 1800 GMT, November 2, a deep (958 mb)
eyclone center is just north of the North Cape of Norway. That storm formed.
near 40°N, 50°W on 30 October and moved eastward at first. On 1 November,
the storm turned northeastward, accelerated to a forward speed of 50 knots
and deepened rapidly, the center passing just east of Iceland between
1200 and 1800 GMT 1 November. The center turned eastward and slowed to
about 25 knots before passing north of the nerth coast of Norway early
on 3 November. Maximum surface winds of §0-55 knots were measured by
several ships in the right semi-circle of the storm of November 2nd and
3rd.

3.4 ROWS Data

Flight 9, the flight of interest, was conducted between 0800 GMT and
1000 GMT on 3 November, generally in the area between the storm just
described, and a weaker frontal wave approaching from the west. A weak
ridge of high pressure separated the two systems. The measured flight
level winds along the flight line showed a complicated fine structure in

the wind field near the ridge line. It is important to note that the
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6-hourly 2.5° synoptic secale winds will not in general resolve such fine
structure, and that therefore even a "perfect" wave model will be upable
to resolve the details of the wave patterns along parts of the flight line.

Figure 3.2 shows 700 km by 150 km box pattern flown by the NASA
CU990 in the area between the two extratropical cyclones. The figure
also shows the wave model grid point locations in the vieinity of the
box, the ROWS data files denoted by letters, and the location of the weathepr
ship station Tromsoflakket near file A. The weather ship made 3-hourly
surface wind measurements,and 3-~hourly frequency spectra were estimated
from measurements made by a wave rider buoy moored near the ship, The
ROWS used was the NASA Goddard airborne 13.9 Ghz pulse-compression
radar. The vadar was equipped with a 6 rpm rotary antenna boresighted
to 16° incidence providing a conical scanning bean of about .5 km lateral
gxtent. A stable estimate of the directiopal spectrum is built up from
data acquired over about 10 successive antenna rotations.

A full theoretical treatment of the principle of ROWS is given by
Jackson (1281). The directional selectivity results basically from the
radar ogean wave phase front matching across the lateral extent of the
beam spot. The reflectivity mechanism is basically geometrical for the
near vertical specular scatter regimes in which ROWS operates.

The details of the data reduction for the fall 1978 mission are given
by Jackson et al. (1982). That mission included not only the Norwegian
Sea flights, but flights over several North Pacific storms. During
the mission, ten spectrometer files were coincident with surface wave mea-
surements from buoys, including one comparison against a directional
spectrum estimated from a NOAA pitch/roll buoy. The agreement in the
frequency spectrum was found to be excellent, and overall significant wave
height estimates derived from the volume under the 2-d spectrum were found
to be unbiased with an rms error of 0.16m. For the directional comparison,
the mean wave direction and spread as a function of frequency agreed to

within a few degrees.
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November 3, 1978, showing flight legs corresponding
to ROWS data files A through C, and locations of wave
hindcast model grid points near the flight path.
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3.5 Hindecast Validation Against In-Situ Tromsoflakket Data

Figure 3.3 compares the specified surface winds at grid points near
Tromsoflakket position and the measured winds. The periods for which kine-
matic analyses were produced are indicated. Measured winds are not avail-
able before October 30 because the station was not manned., The sequence
of measured winds shows the papid wind shifts and wind speed changes
accompanying the several lows and frontal troughs which passed the station
in the period modelled. The storm of 1-3 November was clearly the stron=-
gest system in the period studied, and flight 9 is sampling the trailing
part of the storm which is shown in the measured time history as a rapidly
decaying and shifting wind pattern.

The measupred and hindcast significant wave height time histories are
compared in Figure 3.4 In this and following figures, the ODGP model
hindecast is referred to as hindcast I, and the SAIL model hindcast as hind-
cast II. The decaying sea states between 29 October and 1 November
generally are well simulated by both models. Both hindcasts lead the
buildup of seas at the onset of the major storm on 1 November but this
may be velated to the positive 5-7 knot bias in the analyzed wind speeds
seen in the Tromsoflakket wind comparisons during the same period. The
significant wave height at the model grid point nearest Tromsoflakket
peaks at 2100 GMT 3 November at 10m In the ODGP model and 8m in the
SAIL model hindcasts. The wave heights estimated from the buoy data
fluctuate vapidly near the storm peak between 8.5 and 11.5 meters. This
could be attributable to sampling variability, which for *he 17 min 4 sec
sampling period introduces an uncertainty in significant wave height of

about 10-15%, at the 90% confidence level. The rest of the time series
is generally well simulated by both models except for the period between

0000-1200 GMT on 6 November, when the ODGP model responds to the strong
southeast winds which were measured early on the 6th, but which apparently
did not lead to wave growth at the buoy locgtlon. The SAIL model produces
a better match here but the comparison is made difficult by the poor res-
olution,even on the model grid spacing of 100 km, of the fetch at tﬁe

buoy location and the complicated shoreline geometry upwind for this

particular wind direction (about 1ﬂ0°). In summary, both model hindcasts,
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as validated &t Tromsoflakket, display about the same level of skill in
hindcasting the significant wave height as shown in previous studies,
except that the SAIL model is lower than the ODGP model by about 20% in
specification of the peak significant wave height on 3 November.

Figures 3,5 through 3.9 show a number of comparisons of estimated
and hindecast frequency spectra at Tromsoflakket. Comparisons ave shown
for a time near each flight during the experimental period and near the
storm peak on 3 November. The spectral comparisons are in a sense se-
lected to produce favorable matches in significant wave height; that is,
for a given compar'son, the grid point and time step adjacent to the mea-
sured location and time respectively, giving the best agreement in “1/3’
was selected. The matches therefore are intended mainly to reveal eprrors
in spectral shape. The approximate 90% confidence limits on the estimated
spectra ape 0.6 and 1.9 times the estimated value. The errors in hind-
cast spectral shape are evidently small, The spectral comparisons show
1180 that the differences between the models at the storm peak (figure
3.9) is in the forward (low-frequency) face of the spectrum, with the ODSP
apparently more correctly specifying the spectral peak frequency. It
should be noted however, that the SAIL model growth law could be adjusted
to produce better agreement though no specific tuning for this storm was
performed.
3.6 Comparison of Hindcast and ROWS Wave Data

Jackson et al. (1982) have reduced the radar data collected in Flight 9
in a number of formats. One format,prepared specifically for comparison
of the ROWS data with the hindcasts, involved the partitioning of estimated
spectral variance over the same frequency and directional bands used in
the hindcast model. The 2-d variance spectrum so produced may then be
summed over frequency to compare the distribution of total energy over
diprection, or summed over direction to compare frequency spectra.

The estimated and hindcast frequency spectra for the ten processed
ROWS files are compared in Figures 3.10 through 3.19. There is cvidently
a deficiency of low-frequency energy in the hindcast spectra at all sites,
with the SAIL hindcasts more deficient in this regard than the ODGP hind-
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casts. This type of difference was evident also in the wave rider com-
parison near the storm peak as well (Figure 3.2). Since the ROWS file

A frequency spectrum is in very close agreement with the corresponding
measured wave rider spectrum (Figure 3.20, Jackson, 1983) the deficiency
of low frequency energy in the flight 3 box at the time of the flight

is most likely an error in the hindcasts. iz hindcast error could have
been caused by errors in the wind fields near the storm center earlier
in its history or possibly by deficiencies in the formulation or tuning
of the spectral growth algorithm.

The directional wave spectra provided by the ten ROWS files have
been displayed as contour plots laid out on a map of the Norwegian Sea
by Jackson (1983), as shown in Figure 3.21. The contour levels of each
plot represent energy levels relative to the peak values, with the esti-
mated zero moment significant wave height values given numerically
(meters) beside each plot. This figure provides an unprecedented view of
the spatial distribution of the directional wave properties in the rear
quadrant of a fast-moving extratropical cyclone. Basically only two
nearly orthogonal wave trains are detected. Ii: the northeastern corner
of the box, the ROWS file A sampled the 9.5m sea states southwest of
the area of peak storm generated seas in the right rear quadrant of the
storm. That is tne area in which the highest sea states should be ex-
pected for a fast moving circular wind field. It is interesting that
at A, the surface wind had shifted from southwest® to northwesterly
about 12 hours earlier but very little energy has been excited in the new
wind direction. ROWS files I and J also show only the northeasterly
directed wave energy generated in the long fetch of southwesterly winds
on the right side, relative to the track, of the cyclone.

e wm e e e w = e e ot e e wm e mm mm em e em e e am  em e am mm e e e we ae e

wind directions are referred to as "from which", wave directions are
referred to as "to which".
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as estimated by ROWS in files A through J in Flight 9, with the sig-

nificant wave height (m) also indicated for each measurement.
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The northeasterly wave energy is evident also at all other ROWS files
in the flight box, where it is best described as "swell” or '"dead sea"
left behind by the fast moving wind field. It should be recalled that
the translation velocity of the wind field varied between 50 and 25 knots
between 1-3 November, while the group velocity of spectral components at
the spectral peak (~ .068 hz) is only 22 knots.

The southeasterly directed wave energy seen at files B, C, D, F, G,
H apparently is a transient pulse of swell propagated into the box from
a generating area in the left rear quadrant of the storm as suggested in
the isobaric pattern of Figure 3.1. The most striking feature of Fig-
ure 3,21 is the absence of wave energy in the directions of the strong-
to-gale-force west northwesterly winds which were blowing at the time of
the flight in the northeastern half of the box,

To compare the hindcasts and ROWS directional wave spectra we have
juxtaposed contoured variance arrays presented in the FNOC/SOWM/ODGF
frequency-direction format. The comparisons for files A, B and C, shown
in Figures 3.22, 3.23 and 3.24 respectively, represent the kinds of
difference observed.

At file A, the ODGP model hindcast shows a relative maximum at a

frequency of .0806 and direction of 60°, in good agreement with the ROWS,

P PR oS ATELT

but the hindcast also produced a second maximum at the same frequency but

N X

travelling downwind 105°-120°, where the ROWS shows little energy. How-
ever for frequencies higher than about .10hz, the hindcast and the ROWS

he

show maximum energy travelling downwind.
At file B, the ROWS spectrum is distinctly bimodel in direction with

one relative maximum in variance at a frequency of .0917 and direction

PP I VT R

of 135°, and the other at a frequency of .0806 and direction of 45°-60°.
The corresponding ODGP spectrum shows both wave trains. Indeed, the two
spectra are in good agre¢nwnt except again for more downwind energy in
the hindcast than in the ROWS. Again the SAIL model spectrum is unimodal
about the local wind direction. The comparisons at file C are very much
like those of file B.

We conclude tentatively, that the directional characteristics of
the ODGP model hindcast are remarkably good considering that model develop-

ment and tuning was based exclusively on nondirectional wave data. There
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is evidence, however that in nature, the growth of downwind wave energy
is suppressed relative to the growth rate modelled in the presence of a
significant background sea travelling off the local wind direction. There
is also a suggestion that the directional relaxation rate of wave energy
in a turning wind in the rear face of the spectrum is too fast in the
model. These deficiencies of the ODGP algorithm appear to be exagger-
ated in the SAIL model. That is, the adjustment of the spectrum on both
the forward and rear face to the local wind direction is so fast in the
SAIL model that the spectrum was almost always specified to have a uni-
model directional distribution in the flight box. However, in the SAIL
model, the treatment of growth on the forward face and the directional
relaxation rate on the rear are readily tunable. ROWS type data provide

a hitherto unavailable and powerful basis for such model refinement.
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4, QE2 Storm Study of Impact of SASS Winds on Sea State Specification
4,1 Storm Description

“he storm which battered the QE2 in September, 1978 has been the
subject of several intensive investigations., Gyakum (1980) first col-
lected ship logs and satellite images that allowed a far better definition
of the evolution of the storm from conventional data than was possible in
real time. In that study, he also began to investigate the physical mech-
anisms responsible for the development of the storm. Gyakum (1983 a, b)
has recently completed a more comprehensive study of the dynamic and
thermodynamic structure of the storm.

Cane and Caruone (1981) used the QE2 storm as the basis of a Aiscus-
sion of the potential value of SASS data in improving the detection and
forecasting of severe extratropical storms. As part of the evaluation
of SASS wind retrieval algorithms, Cardone provided an analysis of sun-
face winds from conventional data alone in two orbit segments over the
QE2 storm (see Jones et al., 1982). The storm also was used in the
evaluation of SEASAT SMMR wind estimates (Cardone et al., 1983), Finally,
the storm scenario has besn used to test various numerical weather fore-
casting models. An extensive series of numerical experiments on the
QE2 storm was reported by Anthes et al. (1983).

A general picture of the evolution of the QE2 storm is depicted in
Figures 4.1 a-l, which are sections of the 6-hourly Northern Hemisphere
Surface Analyses prepared in real time at the NOAA National Meteorological
Center (NMC). The storm formed on a stationary front which extended from
the Great Lakes into the Atlantic near Delaware at O0000GMT 9/9/78. A
small low on the New Jersey coast is shown on the front at 0600 GMT 9/9/78
as the first sign of development. By 1200 GMT the center had moved east-
ward between twp NOAA data buoys 44003 and 44004. At that time, buoy
L4004 measured surface winds (at 5m) of 32 knots from the northwest, in-
dicating that surface winds had already reached gale force. Winds also
reached gale force on Georges Bank during the afternoon, where the fishing
dragger Captain Cosmo was lost.

The storm moved eastward at first early on the 10th then northeast-

ward very rapidly, crossing the N. Atlantic shipping lanes on the 10th

B i <



i,

Figure

»’If\ \ >l'r~ N

GMT 09 September 1978

o
o
(e}
o

Figure 4.1

NMC final analysis surface weather maps at 6-hourly intervals.
0000 GMT 9 September 1978 - 1800 GMT 11 September 1978,
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and 11th before slowing and turning north late on the 11th, at which time
the size of the storm had grown to immense proportions, with its cyclonic
circulation covering almost all of the N. Atlantic Ocean north of 45°N.

The NMC charts do not correctly depict the track and rate of intensi-
fication of the storm. Conventional data not available to the analyst in
real time however provide a reasonable estimate of the position and rate
of intensification as described by Gyakum (1980). Particularly useful
were DMSP satellite imagery and the synoptic reports and barograph re-
ceived from the ship Euroliner., At 1200 GMT September 10, the Euroliner
observed a central pressure of 960.3 mb, winds of 58 knots and average
seas of 9 meters. The ship was located near 43°N,50°W (see 4.1g), prob-
ably within 60 miles of the storm center,which was estimated to have a
central pressure of about 950 mb from an analysis of the barograph trace.
The corresponding NMC analyses shows a 980 mb low centered about 120 n.mi.
north of the ship.

Figure 4.2 shows the distribution of ship reports in the western
N. Atlantic available for 1200 GMT September 10 in the data base assembled
for this study. There are about a factor of two more reports in this
data base than available in real time. Figure 4.3 is an isobaric analy-

sis constructed manually from the ship data. Such analyses constructed

BOAI P L cphe

at 6-hourly intervals through the storm evolution provided an excellent
initial estimate of storm wind field structure within which to incorporate
the SASS data. Figure 4.4 compares our final estimate of the time history
of central pressure and maximum surface wind in the QE2 storm with those
extracted from the NMC analyses. The maximum surface winds are derived
mainly from SASS data taken in orbits 1066, 1074, 1080, 1088, 1093/1094,
During the period of explosive development between 1200 GMT September 9

5
.

L
:
g
ie

and 1200 GMT September 10, central pressure fell about 55 mb making the
QE2 storm a "superbomb". Only modest deepening of the vortex was indi-
cated on the NMC charts. It is this period of explosive development that
was investigated intensively by Gyakum (1983) and Anthes et al, (1983).

On September 11, the day the QE2 actually encountered the storm, the cen-
tral pressure and maximum winds in the storm had stabilized at near 976 mb

and 26 m/sec respectively. For the evaluation of the SASS wind retrieval
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algorithm, Cardone composited all ship data within 12 hours of 1200 GMT
September 11 with respect to the moving center and performed a detailed
kinematic analysis of the surface wind field for comparison with the SASS
data obtained in revs 1093 and 1094, Figure 4.5 shows a simplified stream-
line/isotach pattern, the location of the ship, the storm center and
the boundaries of the SASS data. The QE2,travelling west-southwestward,
is shown entering the area of strongest winds, southeast of the storm
center. James (1979) has described the encounter of the vessel with the
storm. Figure 4,6, from James, gives a subjective analysis of the wave
height field in the storm and the tracks of the storm and the ship. The
avoidance maneuver taken by the Captain of the QE2 probably averted a
much greater threat to the ship.

4,2 SASS Data
Table 4,1 lists the revs used in this study. Coincidentally, each
revy segment occurred within 3 hours of the 0000 GMT and 1200 GMT standard
weather  observation times. Only off-nadir SASS data were considered.
Schroeder et al. (1982) trace the development of various models
that relate surface winds from measurements of ocean normalized radar
cross section (NRCS),measurements from initial versions based upon air-
craft data through to thé final form used for the processing of the
entire SASS data set. That model was integrated into the SASS-1 algorithm,
SASS-1 provides estimates of the neutral stability wind vector at
the 19.5 m reference height. The concept of the neutral wind was introduced :
by Cardone (1969); it is the wind speed that would result from a given wind :
stress in a neutrally stratified atmosphere. The algorithm provided A
estimates from so called cell pairs, each formed from a matching of mea- %
surements of NRCS from the forward and aft SASS antennas. i
Each S8ASS footprint represents an area 70 km by 17 km. The centers v
of matched cells could be up to 35km away. The NRCS pairs therefore may
represent approximately a 50 km circle, if the pairs are indeed colocated,
or about 70 km, if they are separated by the maximum allowable distance.
For each cell pairing, the algorithm provides estimates of the true wind
sampled and up to three additional "aliases'". Selection of the "true"

wind estimate therefore requires an initial estimate of the wind direction,

WI i
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Figure 4.5 Kinematic analysis of surface wind field in QE2 storm
from conventional data alone for 1200 GMT September 11,
1978. Position of QE2 and limits of SASS data in revs
1093/1094 also shown.
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Track of the severe September storm in relation to the QUEEN ELIZABETH II. Note the diversion
to the south that avoided the extreme waves.
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Figure 4.6 Relative tracks of QE2 storm center and QE2 (above)
and subjective analyses of significant wave height at
0600 GMT September 11, 1978 (below) (from James, 1979).
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REV #

1066
1074
1080
1088
1093
1094

TABLE 4.1
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SEASAT Orbits in QE2 Storm

MODE DATE TIME (GMT)
Ascending September 09 1252-1257
Descending September 10 0245-0250
Ascending September 10 1223-1228
Descending September 11 0209-0219
Ascending September 11 1013-10238
Ascending September 11 1154-1202
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though Wurtele et al. (1982) describe procedures based upon pattern
recognition, for the selection of the true solution even in the absence
of in-situ data.

Figure 4.7 is an example of de-aliased SASS winds for rev 1093,
which viewed the eastern part of the QE2 storm. Figures 4.8 and 4.9
compare the wind speeds and direction from SASS for the selected solu-
tion and the winds provided by the kinematic analyses (Figure 4.5).

The data agree to within #2m/sec in wind speed and 16° in wind direction.
Figure 4.10 compares the SASS wind speeds and winds observed by ships
within the area viewed by revs 1093/1094. Agreement is as good as could
be expected considering the errors at ships' wind observations.,

The SASS data used in this study were provided by the Atmospheric
Environment Service, Canada. The data differ from the initial production
processing of Seasat version data only in the use of cell grouping instead
of cell pairing. That is, the NRCS data are converted to winds after all
individual cells are binned over 100 km boxes. The binned data are be~
lieved to provide somewhat more accurate winds, and to be more repre-
sentative of the synoptic scale than winds derived from cell pairs,

though no evaluations of the reprocessed data have been reported to date.

4.3 Wave Hindcast Experiments ‘

Two numerical wave hindcasts of the QE2 storm were made. The first,
or base case hindcast was intended to provide the most accurate specifi-
cation of sea states possible. That hindcast used wind fields derived from
a combination of conventional and SASS wind data using the most accurate
wind field analysis techniques available. The second hindcast used wind
fields derived from the NMC surface analyses. This hindcast was intended
to represent the best sea state specifications which could reasonably be
derived from operational data available in real time,

All QE2 hindcasts were made using ths ODGP hindcast model adapted on
the two dimensional grid shown in Figure 4.11. The grid spacing is 1.25°
in latitude and 2.5° in longitude, and extends basically from 20°W to 80°W
and 25°N to 67.5°N. The hindcasts simulated the 72 hour period beginning
at 0000 GMT September 9, which is 12 hours before the storm developed a

closed circulation south of Georges Bank.
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4,3.1 Operational Wind fields

Wind fields for the simulated operational sea state specification were
derived exclusively from the sea level pressure analyses shown on the 6-
hourly NMC Final Analyses Series (Figure 4.1)., The procedure is objective
and is based upon the use of a model of the wind profile in the planetary
boundary layer (PBL) that relates the surface marine wind velocity to the
local pressure gradient, the air-sea temperature differen::. 'nd the
atmosphere thermal advection.

The PBL model of Cardone (1969) was used. That model has been tested
in a number of studies, as reviewed by Cardone et al. (1980). The model
appears to be capable of providing unbiased estimates of the wind fields
from accurate pressure fields, to within #2 m/sec and 20° (rms) in speed
and direction, respectively. In practice however, errors in the pressure
fields cause significantly larger wind field errors. For example, Overland
and Gemmill (1977) found the model to provide the most accurate wind fields
in the New York Bight of four methods tested. The specified winds were
compared with winds measured at a NOAA data buoy over a period of five
months: for measured winds in excess of 12,5 m/s the PBL model winds had
rms errors of 2.9 m/s and negligible bias. Cardone et al. (1976b) used the
model to specify winds from N. Atlantic pressure analyses produced at FNOC
and found wind errors of 4.5 m/s. The increase in the errors from the New
York Bight and the open N. Atlantic reflects the greater errors in the
pressure fields for the open ocean area.

To provide pressure gradients for the PBL model for the QE2 storm, the
NMC isobaric analysis were digitized using a curve following digitizer.
Pressures were interpolated to each wave model grid point from the digitized
pressures by fitting a polynomial surface locally at each point to the
nearest 8 points. Meridional and zonal pressure gradient components
were computed by centered differencing. The air-sea temperature difference
was specified at each point as a function of the local geostrophic wind
direction; the function provided maximum unstable stratification (Taipr-sea =
-8°C) for northerly winds and neutral stratification for southerly winds.
The thermal advection parameter was specified by assuming a mean air-

temperature gradient.
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4,3.2 Base Case Wind fields

The assimilation of SASS wind data in computer-based objective analysis
schemes remains a difficult problem because of the existence of multiple
wind solutions for each radar measurement. However, SASS data may be
readily assimilated using subjective kinematic analyses techniques pro-
vided there is sufficient conventional data to define a reasonably accurate
initial guess of the wind direction. The data base assembled from both
real time and non real time ship reports, as shown in Figure 4.2, provides
an excellent initial estimate of the streamline pattern about the QE2 storm.
The assimilation of SASS wind data was therefore straightforward. First,
maps such as Figure 4,2 were prepared at 12-hourly intervals, at the
standard Greenwich observing times nearest the time of the Seasat revs
(Table 4.2). Then the SASS multiple wind solutions were plotted at the
centers of the 100 km bins used for the cell grouping. The SASS wind
solution whose direction most nearly matched the direction of the initial
guess wind field was taken to be the "true" wind. Finally, a detailed
kinematic analysis was performed to the five maps containing the SASS winds.
The analyses procedure considered the slight time shift between the :
SASS winds and ship data. The streamline/isotach analyses effectively |
translated the SASS data into data void parts of the analyses by imposing
space/time continuity principles (see Cardone et al., 1980 for a more
complete discussion of kinematic analyses of surface marine wind fields).

Figures 4.12 and 4.13 are examples of the final kinematic analyses.
Figure 4.12 provides a view of the wind field about the QE2 storm at the w{
beginning of the 24 hour period of explosive deepening. SASS data from
both left and right side antennas were available. The data show the wind
field to be very asymmetric with respect to the center, with winds of
30-35 knots covering a large area west and south of the center. The center
of the storm is defined well by conventional ship and buoy data. The area
of very light winds extending northeastward from the center is confirmed
by both SASS and conventional data.

The kinematic analysis shown in Figure 4.13, defines the surface wind
field at the end of the period of explosive development. Only the left
side SASS scan was available for this rev but the wind field east of the

center was viewed about 12 hours earlier and later in revs 1074 and 1088
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Hour
GMT

0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000

TABLE 4.2

Date

Sept
Sept
Sept
Sept
Sept
Sept
Sept
Sept
Sept
Sept
Sept
Sept
Sept

09
09
09
09
10
10
10
10
11
11
11
11
12
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QE2 Storm Hindcast Wind Fields
BASE CASE OPERATIONAL
PBL NMC PBL/NMC Analyses
Interpolated PBL/NMC Analyses
Kinematic-rev 1066 PBL/NMC Analyses
Interpolated "PBL/NMC Analyses
Kinematic-rev 1074 PBL/NMC Analyses
Interpolated PBL/NMC Analyses
Kinematic-rev 1080 PBL/NMC Analyses
Interpolated PBL/NMC Analyses
Kinematic-rev 1088 PBL/NMC Arnalyses
Interpolated PBL/NMC Analyses
Kinematic-rev 1093/9%4 PBL/NMC Analyses
Interpolated "PBL/NMC Analyses
PBL/NMC PBL/NMC Analyses
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respectively. The streamline/isotach pattern shown in Figure 4.13 defines
the wind pattern after the storm has attained its minimum central pressure.
The asymmetric velocity pattern is basically maintained but maximum supr-
face winds are about 58 knots west and south of the center. At this time,
however, winds of 50 knots or more also have extended into the NW quadrant
of the circulation.

In the following 24 hours, the kinematic analyses showed the storm
circulation expanding, with maximum winds slightly lower. At 1200 GMT
September 11, the SASS data from revs 1093/1094 allowed a further improve-
ment of the fairly accurate initial guess wind field derived from post-
analyses of conventional ship data (figure 4.5). Maximum surface winds
of 50-55 knots were observed by SASS mainly in the southern quadrant of
the storm, as depicted in the initial guess field, with the maximum wind
specified to be 54 knots.

The wave hindcast model is driven by 6-hourly wind fields. To pro-
vide winds at the intermediate 6-hourly times (0600, 1800 GMT) from the
base case kinematic winds, a simple interpolation was performed which
averages grid point values of meridional and zonal wind components outside
the sphere of influence of the storm (defined by an effective radius of
the circulation specified externally); for grid poinfs which lay inside
the radius of the circulation on the intermediate maps time, the winds :
were averaged with respect to the storm center. This interpolation pro- ‘
cedure effectively propagates the SASS data, available basically at 12-hour

intervals, to 6-hourly intervals as well.

4,3.3 Comparison of Base Case and Operational Hindcasts “
The base case wind fields show that the surface wind field intensified
without much change in shape, as the strongest winds were located consis-
tently to the south of the center. Figure 4.4 compares the time history of
the maximum surface wind in the south quadrant of the circulation in the
alternate wind fields. The operational wind speeds are much lower south
of the center than the base case wind speeds until late in the history of
the storm on September 11 when the storm intensity is reasonably well
specified by conventional data.

Figure 4.14 compares the alternate surface wind fields in the storm
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region at the time of maximum storm intensity (in terms of central pressure).
The conventional wind field has the storm center misplaced about 120 n.mi.
north of the true position, and the strongest winds northwest of the

center, while the SASS winds place the strongest winds south of the center.
The differences between the two wind fields are large and spatially coher-
ent and therefore can be expected to induce larger differences in the
alternate wave hindcasts made from the two wind field series.,

Such differences were indeed found. Table 4.3 gives mean and rms
differences in wind speed, wind direction and significant wave height
between the operational and base case hindcasts. The statistics were
completed only from data at grid points within the storm domain. The
domain specified expanded from approximately a 10° latitude by 15°
longitude box centered on the storm early in the hindcast to a 20° latitude
by 30° longitude box at the end of the hindcast.

The wind speeds specified from conventional data were generally
negatively biased with respect to the base case wind fields derived from
SASS data, with the largest errors found during the period of most rapid
development. Mean differences in wind direction were small and rms dif-
ferences were acceptably low, the latter a reflection of the ability to
specify the simple streamline pattern about a large cyclone from even
sparse c¢onventional ship reports.

The errors in significant wave height given in Table 4.3 do not at
first glance appear excessive with mean errors generally under 1m. Of
more operational significance however are differences between the hind-
casts in the specification of the location and severity of the maximum
storm generated sea states. Figure 4.15 compares the alternate signifi-
cant wave height fields at 1200 GMT September 10. The wave height dif-
ferences are very large south of the center in the area of highest sea
states, where the operational hindcast is more than a factor of 2ylow.
Twenty-four hours later (Figure 4.16) the wave height pattern in the con-
ventional hindcast is in better agreement with the base case hindcast but
peak significant wave heights are still much lower than the base case.
Figure 4.16b shows the 12-hour track of the QE2 during which the storm

encountered damaging sea states and veered to the south. The QE2 visual
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Ervors relative to base case hindcast in hindcast
(operational) of surface wind and significant wave

height derived from conventional data alone.

Base

case hindcast made from wind fields derived from

combined convernitional and SASS data.

Mean errors

are computed as operational minus base case hindcast.

Day/Hour Wind Speed Wind
(GMT) Direction
Mean RMS Mean RMS

(m/s) (deg)
Sept 09 1200 -1.30 3.07 10.66 35.86
Sept 10 0000 -3.85 5,34 8.09 27.33
Sept 10 1200 -1.32 5.05 3.59 23.31
Sept 11 0000 - .95 3.65 7.00 35.63
Sept 11 1200 -1.43 4,01 8.19 36.58

Significant
Wave Height
Mean RMS
(m)

- » 43 . 5‘4
-1.09 1,19
- .78 1.51
- ,31 .93
- ,30 .92
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wave height report of 39 feet average seas and individual wave heights in
excess of 50 feet, is entirely consistent with the location and level of
the maximum sea states of the base case hindcast.

The wave analyses available in real time considerably underestimated
the peak sea states in the QE2 storm even on September 11. Figure 4.17,
for example, is the NMC N. Atlantic wave height analyses for 1200 GMT
September 11, Peak sea states are a factor of four too low relative to
the base case hindcast.

4,4 Wave Forecast Experiments

A series of experiments were performed with the ODGP wave model to
assess the impact of SASS data on sea state forecasts. Each experiment
consisted of the simulation of a 24-hour wave forecast starting from an
initial wave state specified from either the base case or operational hind-
cast, In all experiments, the simulated wave forecasts were verified
against the base case hindcast at 6-hourly intervals using the same regions
for the calculation of mean and rms errors in wind speed and significant
wave height specified for the comparison of the alternate hindcasts,

Five separate forecast runs were made. Three of the runs addressed
the 2u4-hour period of explosive development ending 1200 GMT September 10
from initial ccnditions specified for 1200 GMT September 9. Two of these
runs simulated wave forecasts made from operational pressure analyses and
forecasts, with the FNOC PE-model used to-to provide winds. The third
run used the base case hindcast initial state and rressure field forecasts
reported by Anthes et al, (1983), who used SASS enhanced initial fields and
a high vresolution numerical weather prediction model to simulate the period
of explosive development of the QE2 storm. The last two forecast runs
covered the 24-hour period prior to 1200 GMT September 11, at which time
peak storm sea states were indicated in the base case hindcast. These
two runs differed only in the initial state specification as described
below, with forecast winds provided from NMC PE-model surface pressure
field forecasts.

4.4.1 24-hour Forecasts from 1200 GMT September 9
Figure 4,18, (after Gyakum, 1983) shows the initial analysis and 12

and 24-hour forecast sea level pressure fields provided by the FNOC (formerly

T
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Figure 4.18

FNWC (presently FNOC) model analyses at
1200 GMT September 9, 1978 and 12-hour

and 24-hour forecast of sea level pressure
fields (solid lines are isobars at 4 mb
intervals). Minimum central pressures are
also shown. (from Gyakum, 1983a).
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FNWC) PE-model in real time, for the period of explosive deepening. The

model captured less than 15% of the observed deepening, and moved the vor-
tex too slowly. The center was forecast to 42°N, 61°Wat 12 hours and 42°N,
57°W at 24 hours. Actual positions were 41°N, 57°W and 44°N, 51°W, respec-
tively.

One simulated forecast started from the initial wave state for 1200 GMT
September 9 calculated in the operational hindcast, with forecast winds
derived from the FNOC pressure fields using the same digitization scheme
and PBL model used for the operational hindcast.. That forecast is compared
statistically to the base case hindcast in Table 4.4, As expected large
negative biases characterize both the forecast wind speeds and wave heights
with rapid growth of wind speed errors in the first 12 hours and growth of
wave height errors to 24 hours.

A second run from the FNOC forecast pressure field was made but with
the forecast storm track adjusted to agree with the observed track. This
procedure removed contributions to forecast errors from simple phase shifts
in the forecast winds and wave height pattern. Table 4.5 gives the errors
found for this run. Much of the negative bias in the forecast fields
remains.

Forecast winds for the third forecast covering this period were pro-
vided from experiment #4 of the series of QE2 storm numerical weather fore-

casts reported by Anthes et al, (1983). Figure 4.19 shows the properties

& Sep

of that forecast at 24 hours. Experiment #4 was the control experiment in

.
U eallh R N

Anthes et al. (1983) series. It used a numerical weather prediction model
with 90 km grid spacing, ten vertical layers, simulation of the fluxes
of momentum, heat and water in the boundary layer, and a parameterization
for convective heating in the entire troposphere. Great care was taken in
their study to provide as accurate an initial state as possible at 1200 GMT
September 9. Initial fields were provided by Gyakum (1983) from a combina-
tion of all conventional surface and upper air data and SASS winds over
the ocean from rev 1066,

The NWP model forecast provided a vortex with central pressure of

984mb at 24 hours at a position only 100 km from that observed, and maximum

boundary layer winds of 32 m/s (estimated surface winds of 21 m/sec). We

ST O P N S
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TABLE 4.4

717

Errors relative to base case hindcast in 24-hour

forecast

from 1200 GMT September 9 of surface
winds and significant wave heights based upon

operational FNOC surface pressure field forecasts,
Initial state for forecast specified from operational

hindcast.

Day/Hour Forecast Wind Speed Wind Significant
(GMT) T Direction Wave Height
Wean RMS Mean  RMS  Mean RMS

(hours) (m/s) (deg) (m)
Sept 09 1200 0 -~1.29 3.07 10.6 356.7 - 43 .54
Sept 09 1800 6 -5,02 5.79 9.8 38.5 - .55 .66
Sept 10 00060 12 -7.02 8.08 3.0 50.2 -1.33 1.47
Sept 10 0600 18 -6.29 7.71 6.9 47.2 -1.74 2.09
Sept 10 1200 24 -6.67 8,36 9.4 65.3 -1.86 2.4Y4
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Errvors relative to base case hindcast, in 24 hour

forecast

from 1200 GMT September 9, based upon

operational FNOC surface pressure field forecasts,
except forecast storm track adjusted to observed

track.

operational hindcast.

Initial state for forecast specified from

Day/Hour Forecast Wind Speed Wind Significant
(GMT) T Direction Wave Height
Mean RMS Mean RMS Mean RMS
(hours (m/s) (deg) (m)
Sept 09 1200 0 -1.29 3.07 10.6 35.7 - .43 .54
Sept 09 1800 6 -4.46 5.67 12.7 33.6 - .57 .71
* Sept 10 0000 12 -5.52 6.95 1.1 30.0 -1.18 1.34
. Sept 10 0600 18 -5.24 6.81 5.3 20.8 -1.50 1.89
b Sept 10 1200 24 -4.80 6.81 7.7 37.1 -1.57 2.15
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note that Anthes et al, (1983) were able to simulate almost all of the ob-
served deepening in some sensitivity experiments through modification of
the numerics and physics of the models though usually at the expense of
accuracy of forecast track. For the purposes of our study, however, we
take their control experiment as representative of the impact of improved
initial state specification over the ocean (as may be provided by SASS)

on numerical forecasts of cyclogenesis with currect operational numerical
weather prediction models,

Table 4.6 gives the errors in sea state forecasts driven by the con-
trol experiment sea level pressure field forecasts. To be consistent with
the improved initial atmospheric states provided to the atmospheric model,
the initial wave state for the wave forecast was provided by the base case
hindcast. The errors are greatly reduced relative to the wave forecasts
made from operational atmospheric forecasts. Indeed at 24 hours, the
mean and rms wave height errors are comparable to errors achieved in hind-
casts made from accurate wind fields. Maximum sea states are also rea-
sonably well pesolved, as shown in Figure 4.20, which compares the signif-
icant wave height fields at 24 hours derived from the FNOC and Anthes et al,
atmospheric forecasts. Peak sea states however, in the latter forecast

were still about 20% lower than those of the base case hindcast peak.

4.4.2 24-hour Forecast from 1200 GMT September 10

Two forecast runs were made for the 24-hour period following the period
of explosive development, during which the storm pressure actually filled
(see Figure 4.4)., For this period, sea level pressure forecasts were
taken from the operational NMC-PE atmospheric forecasts. Figure 4.21 shows
the 24-hour sea level pressure forecast from the NMC-PE model. The central
pressure is forecast to be about 20 mb higher than observed.

The two forecast runs both used wind fields derived from the NMC sea
level pressure field forecasts. ‘One run, however, began with initial
states taken from the operational hindcast; for the second run the initial
state specification from the bése case hindcast was used. Tables 4.7 and
4.8 give the errors for each run. The effect of the "perfect" initial state
is to provide a greatly improved forecast at 6-hours and 12 hours, but
the advantage in the initial state is largely lost by 24 hours. This is
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TABLE 4.6

Errors relative to base case hindcast in 24 hour
forecast from 1200 GMT September 9, based upon sea
level pressure forecasts in QE2 storm from experi-
ment #4 of Anthes et al. (1983). 1Initial state
for forecast specified from base case hindcast.

Day/Hour Forecast Wind Speed Wind Significant
(GMT) T Direction  Wave Height
' Mean  RMS Mean RMS Mean RMS
(hours) (m/s) (deg) (m)

Sept 09 1200 0 0 -0 0 0 0 0
Sept 09 1800 6 -1,15 2,90 7.64 23.7 -.07 .26
Sept 10 0000 12 ~2.06 5.03 7.58 29.4 -.26 .81
Sept 10 0600 18 -1.,72 4,34 -1.54 13.9 -,19 1.04
Sept 10 1200 24 -2,30 5.46 -7.19 28.2 -.39 1.13
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TABLE 4.7
Errors relative to base case hindcast in 24 hour
forecast from 1200 GMT September 10, based upon
NMC model sea level pressure forecast. Initial
state specified from operational hindcast.
Day/Hour Forecast Wind Speed Wind Significant
(GMT) T Direction Wave Height
Mean RMS Mean RMS Mean RMS
(hours) (m/s) (deg) (m)
Sept 10 1200 0 -1.,37 5,12 3.4 22,7 - ,79 1.52
Sept 10 1800 6 -3.06 4,28 5.1 16.9 - .76 1.49
Sept 11 0000 12 -4,65 6.57 11.6 31.8 - .97 1.47
Sept 11 0600 18 -4.55 6,15 .6 22.7 -1.40 2,02

Sept 11 1200 24 -3.95 6.03 2.6 uy.8 -1,51 2,25
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TABLE 4.8
Errors relative to base case hindecast in 24 hour
forecast from 1200 GMT September 10, based upon
NMC model sea level pressure forecast. Initial
state specified from base case hindcast.
Day/Hour Forecast Wind Speed Wind Significant
(GMT) T Direction  Wave Height
Mean RMS Mean RMS Mean = RMS
(hours) (m/s) (deg) (m)
Sept 10 1200 0 0 0 0 0 0 0
Sept 10 1800 6 -1.83 2.30 7.4 13,2 - .21 29
" Sept 11 0000 12 -4,65 6.57 11.6 81.8 - .71 .98
Sept 11 0600 i8 -4.55 6,15 6.6 22.7 -1,16 1.864
Sept 11 1200 24 -3.95 6.03 2.6 4y.8 -1.32 1,38
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seen also in the significant wave height compariscn for 24-hours shown in
Figures 4,22. Both forecasts show the maximum wave height to be about half
that specified in the base case hindcast. Thus, the effect of the improved
initial wave state is largely masked by large errors in forecast winds
after about 12 hours of forecast range.

The magnitude and location of the peak sea states specified in the
simulated forecasts shown in Figure 4.22 is remarkably close to the
corresponding features of the 24-hour wave forecast used in real time by
the NMC and FNOC, as seen in their forecast wave contour analyses (Fig-
ures 4.23 and 4,24). In view of those wave forecasts, which serve as
guidance to most operational marine warning and ship routing services, it
is not surprising that several merchant ships and the QE2 did not evade
the dangerous sea states generated by this storm.
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5. Conclusions

1. The SEASAT-A SASS provided wind data with sufficient coverage in space
and time to allow the specification of the evglution of the surface wind
field in the QE2 storm from an incipient vortex through the stage of
explosive deepening to the fully mature stage as a large N. Atlantic
extratropical cyclone. The SASS data allowed identification of large
errors in wind fields derived from operational sea level pressure analyses
and therefore in the pressure fields themselves. There were large errors
found in the location of the center, in the location of the area of strongest
winds and in the magnitude of peak surface winds. Conventional ship data
aided greatly in the specification of the initial guess wind field used
for the selection of the correct SASS wind, but the conventional data base
assembled for this study consists of about twice the number of reports
available in real time. Future operational versions of SASS should pro-
vide far greater spatial and temporal coverage than SEASAT and should
therefore allow the detection of '"bombs" in very early stages of develop-

ment over the global oceans.

2. Application of a calibrated, validated spectral wave prediction model
to the QE2 storm together with alternate wind field histories showed that
extremely large errors can occur in wave analyses specified from conven-
tional data alone. Given the probable errors in the surface wind history
derived from the SASS data (% 2 m/sec rms, negligible bias), the errors T
in significant wave height in the base case hindcast are probably unbiased
with rms errors near-.75m. The hindcasts made from conventional data, how-
ever, were biased low by 1 m overall, but more significantly, that hind-

ciast underspecified the average wave heights in the area of highest waves

by a factor of 2 during the period of maximum deepening, and by about 30%

in the mature storm stage. An independent verification of the base case
hindeast from remote sensing data is not possible in the QE2 storm because
the Seasat-A altimeter was not operational during this period. However,

the wave hindcast model used for all the QE2 simulations has been extensively
validated against in-situ wave measurements in many severe historical storms,

including the storm in which ROWS directional spectra were acquired as
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described in this report. The peak sea states specified in the base case
hindcast also agree well with visual wave height estimates made from the
QE2 during its encounter with the storm.

3. Simulated wave forecasts made from operational numerical weather pre-
diction products agree closely with operational wave forecasts issued

in real time from NMC and FNOC. Those forecasts seriously underpredicted
the wave heights in the area of maximum seas. Since three very different
wave forecast models produced very similar wave forecasts, it can bhe safely
concluded that errors in forecast wind fields are the dominant source of

errovs in operational wave forecasts for storms of the type studied.

4, The degree to which‘SASS marine wind data can improve numerical wea-
ther forecasts remains a somewhat controversial issue. Most likely, the
SASS data will show beneficial impact if combined with conventional data
such that the sea level pressure field and the geopotential distribution
in the entire troposphere may be updated. Such a procedure was followed
for the numerical weather prediction experiments reported by Anthes et al.
(1983). They found significant improvements in atmospheric forecasts

of the exnlosive development, which were translated in this study to sig-

nificantly 1improved sea state predictions.

5. Remote sensing wind data, augmented possibly by remote sensing wave
data, applied operationally with a calibrated numerical spectral ocean
wave model will allow accurate monitoring of the state of the sea globally.
The resulting improved initial state specification for wave forecast sys-
tems should alone cause greatly improved short range (12-24 hour) wave
forecasts in severe storms, and improved swell forecasts at larger range.
However, improved sea state forecasts in storms beyond 24 hours will
reqﬁire improved operational numerical prediction of cyclogenesis and

cyclone intensification.

6. Finally, all of our conclusions must be qualified as tentative, be- B
cause they are based upon study of just one case. The QE2 storm, however,

was special only in the sense that it was viewed by SASS during the short
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Seasat experiment, and caused damage to a luxury oceanliner. Otherwise,
the QE2 storm was a typical strong bomb, and the errcrs observed in con-
ventional analyses and forecasts were quite typical of those observed in
most such storms (see e.g. Sanders and Gyakum, 1980), We can be there-
fore more confident that the improvements in sea state analyses and
forecasts to be derived from remote sensing data suggested by this ctudy,
would be realized routinely from data provided by an operational oceano-

graphic remote sensing satellite system.
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