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PREFACE

The CYBER 200 Applications Seminar, held on October 10-12, 1983, in Lanham,
Maryland, under the sponsorship of NASA/Goddard Space Flight Center and
Control Data Corporation, is the second of its kind. These proceedings comprise
the majority of the papers presented at the meeting. Papers for the seminar
were selected on the basis of showing a broad distribution of applications for
which the CYBER 200 may be well suited. These ranged from problems in
meteorology to problems in economies. A breakdown of the disciplines
represented is shown below. Some of the papers actually could fall in more than
one category, but only one is indicated for each.

Papers

Meteorology/Oceanography
Chemistry

Math Algorithms for 205
Fluid Dynamies

Monte Carlo Methods
Petroleum

Electronic Circuit Simulation
Biochemistry

Lattice Gauge Theory
Economiecs

Ray Tracing

bt el = BDND GO WO WO O

In the first seminar held in August 1982, it was evident that much work was yet to
be done in learning to use a vector machine. At that time, only a few of the
CYBER 205's had been installed. One year later, we see numerous examples of
good vectorizing work carried out by still relatively inexperienced vector com-
puter users. Clearly, in time we shall see a great deal more optimization and
effective performance becoming routine.
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Aileen Foreman

Mathematical Algorithms to Maximize Performance in Numerical Weather Prediction

Introduction

Numerical weather prediction models, which involve the solution of non-linear
partial differential equations at points on an extensive three-dimensional grid,
are ideally suited for processing on vector machines. It was logical therefore
that the new global forecast model to be implemented at the Meteorological Office
should be written in vector code for the Cyber 205.

In order to achive full efficiency and to reduce storage requirements the
model used 32-bit arithmetic which had been found to provide high enough precision.
Unfortunately, however, the trigonometrical and logarithmic functions provided
by CDC could only handle 64-bit vectors and, although written in efficient scalar
code, did not take advantage of the special facilities of a vector processor. It
was therefore necessary to rewrite the functions in vector code to handle both
32 and 64-bit vectors. There was also no half-precision compiler available for
the Cyber 205 at that time and so the functions, like the model, had to make
extensive use of the "special call" syntax. This made the code more difficult to
write but it allowed much greater flexibility in that it became possible to access
the exponent of a floating-point number independently of its coefficient.

This paper presents a description of the techniques and it summarises the
results which were achieved. One example, the logarithmic function, is treated
here in detail to illustrate the general approach to the problenm.

Derivation of logarithms

The coding for the logarithm function illustrates both the use of the way in
which floating-point numbers are stored and the use of linked triads to gain
additional speed.

To calculate Y= lg“(;r,) we divide the range of > into two, the first of
which is

a) x P d2 and x<AN2
2
We first write the value of x in a way which can be related to the format

of stored floating-point numbers. Thus, introducing two new unknowns 2 and «,
n being an integer and gwW< | o+ ve may write any number as o = 2"W.

Now the Cyber 205 stores the floating-point number as

2%% coafficiant - 29 20 r

5 where the
factor 2 is introduced by normalization.

Since for logarithms, ¢ must always be positive, for 64-bit numbers bit 17
will be on, 0 j = 46 and for 32-bit numbers bit 9 will be on, so j = 23.

Then relating the two, we have n=exp + J' and - fe



As an example, if x = 2.0 as a 64-bit normalized value
z= o 45 g 46

80 from the above formulae

N= _ﬁf“'f“ [} and u’-'oa

Here, we can obtain the values of A and w very easily as we can access
the exponent and coefficient of a number by using special calls.

The next step is to convert the functions into a suitable form for vectorizatiom
and this involves the introduction of a new variable

2 (w- AT |2
*lw + 422 vhich can be computed at the same
time as w .,
Then w:(nz ) N
1-2 2
From the original definition

z:L"'V‘(ﬁ)
|-

thus z (o
10ge - = (n _'2:) Ige2 + Joge_( I‘-:iz )

b) For the 1_'emin1:.ng values of . , within the range 3 < X< o , the
value of 3 1is defined by: 2 >

2= xX-1/ 80 that xX= 1t &

x+ [y |
Then lofeX= lofe s N for 42 < x<AZ.
I+2 z 142
In each case, the problem then becomes one of vectorizing 3‘(?{ which

is easily done by replacing it with a truncated series which gives the required
degree of precision: P

logg( l+% ) = Z cman-tl
-

mz0

where the constants ¢, are known.

en oge 4y ) -

(L oz v )P Cg) 3™+ )t r ) 22a ) 2™ Ca) 2

Despite its complicated appearance, this reduces to eight vector operations
consisting of a multiplication, six linked triads and a final multiplicationm
by 2 thus



Multiplication to give 2-

First triad = V1 = Cg2'+cg
Second triad = V2 = w1z +Ca
Third triad = V3 = Y22 +Cs ete.

Tests, using the 1.5 compiler, and a range of vector lenﬁths gave the
following results, with times being expressed in unita of 10-" seconds.

Vector length 10 50 100 200 500 1000 2000 5000

CDC logarithms ] 55 .7 1.01 2.00 3.66 7.0 21.50
6h-bit vector L7 61 .78 1,12 2.16 3.87 7.47 20.15
logarithm

32-bit vector .53 .57 .65 82 1.34 2.20 3.99 9.66
logarithm

The first point to notice here is that the full increase in speed for
32-bit vectors is only achieved with large vector lengths. Because of the
overheads associated with the initiation of vector instructions, this is not
unexpected and is common to all of the functions to be described. What is
unexpected is that no improvement in speed was achieved for our 64-bit functiom
when compared to the CDC function. In this respect, this function is unique
among all those treated in this paper. However, the original aim of producing
a 32-bit version has been successfully achieved.

Exponentials

The exponential function is derived from the standard formula

2 3 e 16
=2 2" -2‘& ' chosen to make use of special calls. k, m and ¢
are defined as follows:

If n= ik [u,xl

108¢2
then  R= utb[%] and m=n modulo 16 for x30
J
and Rz wabrn 1 and mz l6-n modulo 16 for <O
(]
; :( l‘;‘> -n
IOJC‘Z
. mlie
Now, since m is integer and O < m < lé , the factor 2 is

obtained from a look-up table of 16 elements of known values, using the "special
call' instruction Q8VXTOV,

Having found the integer & from the above formula, and :«’.m"6 from the
look-up table, to obtain the value 2™. 27/ = 2k+mue we add K to the
exponent part of 2™/'® by using special calls.



The factor . 2.6:“6

zFub i} Pg;a".;z" P.(§+ Po
(g - £+ nf-po)

where f is obtained as above and pPe, P, P3 are known constants.

ie given by

% o
Then, to obtain &  all we need is a final multiply of 29'% py 2"*"/'

The following results were achieved, times again being given in units of
10 seconds.

vector length 10 50 100 200 500 1000 2000 5000
CDC expomential .35 .7 .93 1.b4 2,86 5.25 10.52 33.36
64-vit vector A7 6 .78 1,14 2,29 4,15 7.97 22.75
exponential

32-bit vector L7 .56 .68 .93 1.85 3,14  5.85 14.62

exponential

Here, for a vector length of 5000 the 32-bit exponential routine is only
4LO% faster than the 64-bit routine because of the use of the '"special call”
Q8VXTOV. However the 64-bit routine has achieved a considerable speed-up over
the CDC exponential.

The Hyperbolic functions

The routines to calculate the hyperbolic functions Y= coshx y,_g‘,‘nhz
and y= banh 2 use the following formula, !
cosh < = l(p,r' + &':')
<
The calculation of ¢  is as described e‘aj.crlier., During the calculation of < '
little extra work is required to obtain e which avoids the need to call the
exponential routine twice,

The hyperbvolic sine is given by

. %< -
senh x = _1_2.(@ -2 ) for j=x=lzo0.5
g x‘z,m-ol
vahx = e :
and 5 erron for (xl<o0.9
m=z=90

Here the two distinct cases are treated independently, so that we are dealing
with shorter vector lengths, and then the results are merged together at the end
of the routine. The polynomial expansion of sinh x can be performed in seven
vector instructions, by using linked triads.

The hyperbolic tangent is given by

am«i
Eanh x = 2 - for o< |x=|g0.12

[ag -84



tanhx = | - 2 for o0.\2 < |x|x 8.0

P2

tanhx =z 1.0 for a >18.0

tonhcs -1.9 for < ~-18.0

Again, the distinct cases are treated independently so that we are dealing
with shorter vector lengths, and again we can use linked triads when calculating
the polynomial expansion of Fanhx .

The timings of the hyperbolic sine and hyperbolic tangent routines are data
dependent, but some sample timings are given below. All times are expressed in
units of 10-4 geconds.

vector length 0 S50 100 200 500 1000 2000 5000
hyperbolic

cosine

64-bit vector .55 .79 1.08 1.68 3.45 6.41 13,26 37.65
32-bit vector 5S4 .69 .88 1.27 2.4k L. kb 8,72 22.99
hyperbolic

sinh

6h-bit vector .75 .99 1.30 1.96 3.88 7.27 14.87 Uu3.85
32-bit vector .72 .87 1.07 1.48 2.74 5.00 9.47 24,38
hyperbolic

tangent

64-bit vector .66 .87 1.15 1,68 3.33 6.01 11.79 34,83
32-bit vector b 73 .89 1.21 2.30 3.66 6.87 17.76

Again, we see that for very short vector lengths we do not have a great
advantage by using 32-bit vectors, but for longer vector lengths we are approaching
twice the speed of the 64-bit functions. There were no CDC functions available to
compare with our results.

Sines and cosines

The trigonometrical functions, y-sinx and y=zcos are calculated from
the polynomial expansion of sinx 80 that we can make use of linked triads
again. First the input argument needs to be reduced modulo 277 . This is achieved
by

letting T = 2 |xl and Tz ink| _2 |xl
ar I
then put 2T -y so that ©Osu<l.
and RzT, modulo 4
So sun(x) is given by
Stnx= Sen B for R=0O

sen (1 -=a) for =\

-s¢n 3 for k=2

-sin (I-%)  for k=3



3
where s = Z Crm 2"'"" for 64-bit function
n=90
and the constants Cm are known.

Because the values C, and ¢y are too small to affect the accuracy of the
Z2-bit function results:

o

. am+| . .
sing = z CmZ for 32-bit vector function
ms

The cosine function is given by
cosx = st (.1.7.'4- z,> where s (Jz—_- -rr-) is calculated as above.

If it is known that the input operand, x, is always between -2 and +27
radians, much work can be left out of the routine;

1]

for as above let = 2 | =] and Ty = vab [ zl:x.l_l
m

and S50 OS{L$3
and R= 1 modudo 4 « T2

and again 2:=T,-1, %0 Osz</|

So for R=7-0, = -T=1 six = sin(x) = sen(r)
for R=z-+y- l) T h-To=T -1 , s = “:"C"'z)= 5,;,,(1_,0
for R:T:-2 2=f-To= -2, sinx = ~sun(®) = zn(a-1)

for #=1y-3 2=f-T=1 -3 snm==sa(i-a) = sen (1 -4)

Thus we have two sets of functions, one set to calculate the sine and cosine
of any angle expressed in radians, and the other to calculate the sine and cosine
of angles between -27 and +27 radians.

The polynomial expansion of sin{(z) can be calculated in ten vector instructions
including eight linked triad instructions for the 64-bit function and in eight
vector instructions using six linked triad instructions for the 32-bit functioms.

_, Tests gave the following results with times given are expressed in units of
10 seconds.



vector length 10 S0 100 200 SO0 1000 2000 S000
CDC sine <15 .5 64 .91 1,72 3,07 6.13 22.98
64-bit vector 49 .59 .72 .98 1.74 3.02 5.59 14.98
sine (all angles)

32-bit vector L2 46 .52 .63 .98 1.57 2.76 6.35
sine (all angles)

64-bit vector .37 W4 .53 (72 1.27 2.20 4,07 10.04
sine (-2

to +27 )

32-bit vector 3 .37 1 .50 75 1.20 2.09 4.78
sine (-1

to +20T )

vector length 10 S0 100 200 500 1000 2000 5000
CDC cosine .3 .55 .68 .99 2.08 3.29 6.68 23.59
64-bit vector .57 .60 .73 .99 1.87 3.19 5.9% 16.00

cosine (all

angles)

32-bit vector 69 47 .51 .63 1.0 1,70 2.9% 6.95
cosine (all

angles)

6h-bit vector 72 45 .55 .74 1,42 2.40 445 11,14
cosine (-2

to +2T )

32-bit vector 67 37 M1 50 .77 1.37 2.31 5.51
cogine ( -AT

to +2T7 )

Thus, we can see that we need a vector length of 500 to 1000 before our
64-bit routines for all angles are faster than the CDC supplied routines, but
that ocur 32-bit routines for restricted angles between -~ and 2T are
over four times as fast as the CDC routines for vector lengths of 5000.

Tangents

Similarly for the trigonometrical function, y=#%anx we have supplied
two sets of functions, one set to calculate the tangent of any angle expressed
in radians in both 64-bits and the other to calculate the tangent of angles
between -277 and +27 radians in both 64-bits and 32-bits. The tangent
function is calculated using a polynomial expansion of tan(x) to make use of

linked triads. The calculation is performed by first reducing the argument
modulo 1"

Let = .ﬂ'_ and 4= nt [l 4_1']
o ar
then 2=+ -1 so that ©Og=z<!

Now let s: + modulo 8, putting k=3 if Oss5s3
* and k:s-4 if 4<s<¥



ka.n(;c) is now given by

tan(x ) = kan(z) for k=0
2 = | for k=1
ban(e-1)
- =1 for k=2
tan(s)
> tan (z2-1) for k=3
12
where fan(z)- Z Crp ™! to the required degree of precision.
mz9

Again, if it is known that the input operand is always between -ZTT and
+27 radians, we can write:

e Ax and 1, .t !ul
™ e

and s0 S¢v, ¢ ?

>

In this case $=T, modulo8 = v,

Then R=T1, where 0g +,4¢3
and s 1y~4 vhere +< r¢?

and the calculation continues as before.

The polynomial expansion of tan(z) is calculated in fourteen vector
instructions using twelve linked triads.

The resulting timings of tests are given below, expressed in units of 10~
seconds.

vector length 0 50 100 200 500 1000 2000 5000
CDC tangent 98 .73 .91 1.47 2.61 4.71 9,33 30.80
64-bit vector 90 .82 .99 1.35 2.55 4.48 8.k0 22.67
tangent (all

angles)

32-bit vector .96 .78 .90 1.14 1,92 3.219 5.59 13.29
tangent (all

angles)

6b-bit vector 67 76 .93 1.25 2.36 bL.1+  7.74 20.64
tangent (-2m

to +2M )

32-bit vector 67 .70 .80 .99 1.76 2.9% 5.15 11.98
tangent ( -2

to «2M )

10



These results show that we need a vector length of only about 200 befare
our 64-bit tangent function for all angles is faster than the CDC routine, and
that our 32-bit tangent function for restricted angles between -2T  and

+2T  radians is well over twice as fast as the CDC routine.

The Arctangent function

The arctangent function y=-aéan (x) is again calculated from a polynomial
expansion so that we can use linked triads., The calculation is performed as
follows:

For || 347 +I let w-=

-

)
[E
and for |=]|< AT +/ let - [

Change the variable to z, defined by
= - A
a +wal
where, a is chosen so that z = 1.0 when . /2'+!

Under this condition, az (1-¥2)+d 4 -242 , and is therefore a
constant.

Then atan(x) is given by
atan(x)=atan(z)+atan(a)

Here, atan(a) is a constant and need only be calculated once, and we may replace
atan{z) by the truncated series:

meoQ
For || » 421 , atan(x) =z _'le:" - a_l:an.(é)
and for x<0O , atan () = ~akan (<)

Atan(z) can be calculated in ten vector instructions, eight of which are
linked triad instructions. The results are in the range -F to +T (not
inclusive). 2 2

i The following results were achieved, times again being given in units of
10  seconds.

vector length 10 50 100 200 500 1000 2000 5000
CDC arctangent .38 .90 1.19 1.97 L.06 7.35 16.19 u46.09
64-bit vector A48 .52 .66 .92 1.91 3.07 5,77 15.23
arctangent
32-bit vector A3 49 (55 69 1.10 1.79 334 7.27
arctangent

These results are spectacular, in that the 32-bit arctangent functiom is

over six times as fast as the CDC routine and even the 64-bit version has given
a threefold increase in speed.

11



Derivation of arcsine and arccosine functions

The final trigometric routines to be considered calculate the arcsine and
arccosine of x. The calculations are performed as follows.

for Og¢x < /2 , let a=2¢ so that asin(x) = asin(z)

and for L ¢cx ¢ y let z = (l -Jj)yz' and asin(x) = Z_T_ 2 ann (*)
Z 2 z _
for ~1$x<O , asin(x) = asin(-x) and the same substitutions are used.

Now the new variable, z, must be between zero and 0.7 50 we may write

1]
. Ame |
asen () = MZ; Cma to the required degree of
precision. -

The arccosine function is derived from the arcsine using the substitution

acos(x) s T - asen(x)
2

The polynomial expansion of asin(z) is calculated in thirteen vector
instructions, eleven of which are linked triads. The range of the results for
arccosine is -7 to + 7 inclusive, and for arccosine is O to ™ inclusive.

2 2
The following results were achieved, with times expressed in units of 10'1*

seconds.

vector length 0 50 100 200 500 1000 2000 5000
CDC aecsine 5 .67 .87 1.27 2.6 4,73 9.64 29,84
64-bit vector .52 .61 .75 1,04 2.02 3.55 6.69 16.54
arcsine
32-bit vector Sh 51 .58 .73 1.37 2.25 3.91 9.1
arccosine

vector length 10 0 100 200 500 1000 2000 5000
CDC arccosine 26 .68 .89 1.27 2.41 4.35 9,16 28.55
64-bit vector .51 .61 .76 1.05 1.95 344 6.4 18,73
arccosine
32-bit vector A48 .54 .61 .76 1.25 2.07 3.66 8.59
arccosine

Here our 32-bit functions are over three times as fast as the CDC routines, for
vector lengths of 5000.

Conclusion

The trigonometrical and logarithmic functions, as provided by CDC up to and
including version 2.0 of the compiler are, in gemeral, not very efficient. At
the Meteorological Office, we found it necessary to hand-code these functions in
vector syntax to take full advantage of the facilities of the Cyber 205. For the
32-bit versions, which have a high enough precision for most of ocur purposes,
speed increases of up to six times were obtained and even for our 64-bit versions,

i2



increases of up to three times are possible. However, CDC have undertaken to
provide fully vectorized versions of the trigonometrical andlogarithmic functions
in both 64-bits and 32-bits by release 2.1 of the compiler.

The functions described were written in the "special call' syntax because
of compiler limitations and the difficulties associated with this were partly
offset by the special features which were then available. Users with the 2.0
compiler could find that the extra facilities provided by the "special calls"
do not overcome the difficulties involved with this syntax and that coding
explicitly in the FORTRAN vector syntax achieves sufficient vectorization for
their own purposes.
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COMPUTER SIMULATIONS OF SPACE-BORNE METEOROLOGICAL
SYSTEMS ON THE CYBER 205

M. Halem
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Greenbelt, MD

ABSTRACT

The complete global specification of the state-of-the-
atmosphere on a daily or more frequent basis is required for
numerical weather forecasting. Although the numbex of
atmospheric variables required are small, namely, temperature,
winds, moisture and surface pressure, globally and throughout
the atmosphere, no single space-borne instrument is able to
meet these requirements at the desired degree of accuracy and
coverage. As a result, investigators have proposed to NASA a
number of composite systems with dJdiffering 1limitations in
accuracy and coverage under different atmospheric conditions.

Because of the extreme expense involved in developing and
flight testing these instruments, an extensive series of
numerical modeling experiments to simulate the performance of
these meteorological observing systems have been performed on
the CYBER 205. The studies compare the relative importance of
different global measurements of individual and composite
systems of the meteorological variables needed to determine the
state of the atmosphere. The assessments are made in terms of
the systems ability to improve 12 hour global forecasts. Each
experiment involves the daily assimilation of simulated data
that is obtained from a data set we call "nature." This data
is obtained from two sources: first, a long two-month general
circulation integration with the GLAS 4th Order Forecast Model
and second, global analysis prepared by the National
Meteorological Center, NOAA, from the current observing systems
twice daily. More than two dozen experiments representing
different possible configurations were carried out and
analyzed. The experiments extend over a typical winter 'month,
February, and successive 12 hour forecasts are made from the
analysis twice daily. Thus, statistics "are compiled from a
total of 56 forecasts for each experiment.

This voluminous number of experiments would have taken over a
year on a dedicated 24 hour per day allocation on an Amdahl
V-6. The study was completed in less than a month on an as
available basis on the Cyber 205 at the NASA High Speed
Computing Facility.
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Operational Numerical Weather Prediction on the Cyber 205 at

the National Meteorological Center

Dennis Deaven
NOAA/NWS

Washington,D.C.

The Development Division of the National Meteorological Center (NMC)
has the responsibility of maintaining and developing the numerical
weather forecasting systems of the center. Because of the mission of
NMC these products must be produced reliably and on time twice daily
free of surprises for forecasters. Personnel of Development Division
are in a rather unique situation. We must develop new advanced techniques
for numerical analvsis and prediction utilizing current state—of-the-art
techniques, and implement them in an operational fashion without
damaging the operations of the center,

In the past, modifications have been made to the operational job
suite without adequate testing and evaluation because computational
resources were not available to produce enough case studies for evaluation.
Hopefully, with the computational speeds and resources now available from
the Cyber 205, Development Division Personnel will be able to introduce
advanced analysis and prediction techniques into the operational job

suite without disrupting the daily schedule.



The operational job suite prior to the installation of the Cyber
205 contained four major components: 1. A barotropic numerical model
extending over the Northern Hemisphere giving forecasters an early look
at the new synoptic situation immediately after data collection at the
start of the twice daily operational cycle. 2. A Limited Fine Mesh
(LFM) primitive equation numerical model extending over the North
American continent. The LFM is started about 1 hour 45 minutes after
data collection producing numerical guidance for use by forecasters
when they make their 12 to 48 hour forecasts. 3. A global primitive
equation numerical model using a spectral representation to produce
numerical guidance for use by forecasters in the 2 to 5 day range.
This model is started at about 4 hours after each twice daily collection
of atmospheric data. 4. A global data assimilation cycle is started
about 10 hours after data collection and is used to produce the first
guess fields for the next synoptic cycle. The data assimilation cycle
consists of an optimum interpolation analysis and a global spectral
model which are used to produce two six hour analysis/forecast cycles.
In addition to these four major components, a Moveable Fine Mesh model
is available when needed to produce forecasts of hurricane movement.

The hurricane model has the capability to move with the hurricane as it

forecasts the storm track for periods of 48 hours.
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The operational implementation of these analysis/forecast systems on
the Cyber 205 will have to proceed in a careful controlled manner so that
daily production schedules are maintained. For this reason, each component
of the operational suite must be carefully evaluated and tested after
conversion to the Cyber 205. All components of the present system scheduled
for implementation on the Cyber 205 will be converted in their present
form with the current resolution and numerics in order to evaluate their
performance in a parallel fashion. After about a month of successful
parallel tests the component will become operational on the Cyber 205.

The National Weather Service received their Cyber 205 in May of 1983
and the first operational product appeared on August 30, 1983. The LFM
was successfully implemented on the Cyber 205 and has been producing
numerical guidance twice a day since that time. The final version of
the LFM computer program that was implemented takes about 75 seconds of
CPU time to produce a 48 hour forecaét. This is about 15 times faster
than the IBM/195 version of the same model. The LFM is a grid-point
model containing 7 layers with 53 x 45 grid points in each layer. Five
prognostic variables (pressure, temperature, moisture, and two components
of wind speed) are specified at each of the 16,695 grid points. The
primitive equations are solved in finite difference form for each of the

prognostic variables and then advanced forward in time with an explicit
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time step. Nine 400 second time steps are required for each hour of model
integration which yields a total of 432 explicit time steps to produce
a 48 hour prediction.

The conversion of the LFM computer code to the Cyber 205 was accomplished
in about 1.5 months by a skilled meteorologist/programmer. The 2.0 FORTRAN
compiler was used to produce a half precision version without resorting
to 08 special calls. The data structure of the original version of the
model was changed extensively to take advantage of long vector lengths.,
Minimal vectorization of the radiation and woist physics was achieved
with use of the vector WHERE statement.

Operational use of the Cyber 205 has shown that the system is certainly
reliable and capable of achieving vendor advertised CPU speeds. With
this new resource the National Weather Service should be able to improve
most aspects of numerical weather prediction systems including the
prediction of major precipitation events., With the increase in computing
power, the National Weather Service will be able to run operational
numerical guidance systems with improved analysis methods, improved

model physics and increased mathematical accuracy.
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Ocean modelling on the CYBER 20S at GFDL
Michael D. Cox

1. Introduction

At the Geophysical Fluid Dynamics Laboratory, research is carried out for
the purpose of understanding various aspects of climate, such as its
varisbility, predictability, stability and sensitivity. The atmosphere and
oceans are modelled mathematically and their phenomenology studied by computer
simulation methods. The present paper will discuss the present state-of-the-
art in the computer simulation of large scale oceans on the CYBER 205. While
atmospheric modelling differs in some aspects, the basic approach used is
similar.

The equations of the ocean model will be presented in the following
section along with a short description of the numerical techniques used to find
their solution. Section 3 will deal with computational .considerations and a

typical solution will be presented in section 4.

2. Equations of the model

The model presented here is the multilevel numerical model described in
Bryan (1969). The continuous equations will be given. A detailed description
of the finite difference formulation may be found in the above work. The
equations of motion are the Navier-Stokes equations written in spherical
coordinates and modified by the Boussinesq approximation. Let m=sec#d,
n=sing, u=ail‘1 and v=a3, where a is the radius of the earth,

# the latitude and A the longitude. It is convenient to define the

advection operator
P(X)=na"1[(u%)k+(v¥l'1)¢]+(w3)z. (&
The equations of motion on a sphere are

ug +M(w) -20av=-na~1(P/Py) ) +F, (2)
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vi+D(v) +20nu= -a~1(P/py) oo FP, (3)

ra=o, (4)
gP=-P, 3
where Po is unity in cgs units. The conservation equations for the
ternperature and salinity are
Ty +D(T) =FT (6>
St*I‘(S)=FS (7)
The terms in F contain effects of mixing as well as external driving forces.
The equation of state
£=rP(T,S,2) (8)

is an enpirically derived formula relating the local density of seawater to
temperature, salinity and depth.

The set of equations (1-8) are cast into finite difference form. The
prognostic equations (2,3,6,7) are solved as an initial value problem, placing
all terns except the local time derivative on the right hand side and carrying
out timesteps to predict new values of velocity, t@mperature and salinity on a
prescribed mesh covering the model ocean domain. Given a certain configuration
of steady wind driving and differential surface heating (both entering through
the F terms), a statistical steady state is approached asymptotically in tinme.
Time scale analysis of Eqs.(6,7) reveals that 0(1000) years of integration is
needed to bring the sluggish abyssal layers of the ocean model into a steady

state.
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3. Computational considerations

Let us consider a rectangular ocean basin model comparable in size to the
N. Atlantic Ocean. It extends 60°® in longitude, 65¢ in latitude and
4000 meters in depth. It is desirable to cover this domain with a mesh fine
enough to resoclve mesoscale (0(100 km)) eddies which play an important role in
transporting various properties through the ocean. The minimum resolution
needed for this purpose is roughly 1/3rd degree in latitude and somewhat
larger, say .4 degree in longitude due to the convergence of meridians on the
globe. This results in a horizontal grid space of 150x195 points. Vertically,
18 levels are needed to resolve the scales of interest. This brings the total
to just over 1/2 million grid points for which Egs.(1-8) must be evaluated each
timestep.

The longest timestep which can be used without incurring numerical

instability is given by the Courant-Friedrichs-Lewy condition
cAt/Ax<1 9

where c is the phase velocity of the fastest moving wave in the ocean. Since
high speed external gravity waves have been filtered from this model by the
condition w=0 at the surface, the fastest wave is that associated with the
internal density gradients (internal gravity wave) which has a speed of roughly
3m/sec. The srallest Ax occurs at the northern wall of the model due to
convergence of meridians, and is about 20 km. The resultant At is such

that roughly S00Q timesteps are necessary to integrate one year. Therefore, 5
nillion timesteps, or 2.5x1012 grid point evaluations of Egs.(1-8), are
required to integrate this model to a steady state. Even the fastest modern
day computers cannot accomplish this task in a reasonable time, although steady
progress is being made. The former conpufer at GFDL, the Texas Instruments
ASC, took 15 seconds to compute one time step on the above model. At this
speed, 2.4 years of computing would be needed to reach a steady state solution.
Clearly, compromises must be made in designing experiments which are achievable
in a reasonable amount of computer time. This may involve reducing the domain
size, or integrating for a shorter period, or both. (Interesting results may be

obtained from an integration of 0(10) years, particularly for the upper ocean
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where time scales of adjustment are relatively short.) The greater the
conputational speed which can be attained, the less severe the compromises must

be.
In converting the ASC ocean model to the CYBER 205, the most fundamental

alteration of the code had to do with the treatment of land masses.

Previously, the computation was carried out only over ocean pointg by making
the DO loop limits functions of the placement of land. The contiguity
requirement of the 205 for vectorization allows only the innermost of the three
dimensional loops to vectorize in this case. An alternative method of handling
land is to compute all points as if they were ocean and, at the end of the
timestep, restore the land to its specified value using a masking array.
Contiguity is then satisfied and vectorization is enabled through two
dimensions. (The third dimension cannot be vectorized because it is cycled
through memory from disc.) By using the latter technique, the typical vector
length in the computation is-increased from 150 in the example above (east-west
dimension) to 2700 (east-west times depth dimension) resulting in a
considerable decrease in the relative time spent in vector startup.

An additioneal time saving has been accomplished in an area of the code
which is used heavily, but is inherently unvectorizable due to a recursive
property. Using Q8 calls to insert machine language directly into the FORTRAN,
CDC personnel have "unrolled” this loop, greatly improving on the code
generated by the compiler for the equivalent FORTRAN loop.

The use of half-precision on all floating point variables has resulted in
a gain of only about 15X in overall running speed, although sections of the
code which are 100% vectorized increase in speed by roughly 40%, Additional
work is needed to determine why the overall gain is so small considering the
high degree of vectorization of the code.

Since the model above is too large to fit into core memory entirely, data
is cycled through memory from disc as it is needed each timestep. If this disc
transfer cannot be buffered sufficiently well, computation ceases while waiting
for the I/0 to finish. The result is that the computer may not be used
efficiently, particularly if the other jobs running concurrently have the same
difficulty. Until recently, this was a severe problem on the 205. The above
nodel, when in the 205 alone, ran only about 15% of the wall clock tinme.
Inproved I/0 schemes have been developed by CDC personnel at GFDL and currently

the same model runs about 80X of the wall clock time when alone. This compares
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favorably with I/0 efficiencies on the ASC.

The CYBER 205 version of the model described above currently takes 4
seconds to compute one timestep, almost a8 factor of 4 faster than the ASC.
While this speed atill does not make the experiment proposed at the beginning
of this section feasible, the compromises which are necessary to produce an
attainable solution are much less severe than before. One such experiment will

be described in the following section.

4. An ocean simulation experiment

If one wishes to study the effects of topography on the dynamics of the
Gulf Stream, an arqument can be made that it is not necessary to consider a
domain as large as the one proposed earlier, and that several decades of
integration is sufficient., Therefore, let us reduce the domain from 65 to 27
degrees in latitude and from 60 to 32 degrees in longitude. Also, for this
purpose, the vertical resolution may be decreased from 18 layers to 5 layers.
This produces a model which takes approximately one hour of 205 time to inte-
grate one year of ocean time. Applying surface wind stress and differential
heating similar to that of the N. Atlantic, this model has been integrated fronm
rest a total of 20 years. The resulting temperature pattern at the second
layer, centered at 212 meters depth, is shown in Fig. 1. The land mass in the
northwest corner simulates the gross features of the U.S. east coast. A conti-
nental shelf and slope is also included in this solution. The simulated Gulf
Stream is revealed by the tightly packed isotherms along the coast and bending
out to sea at the point representing Cape Hatteras. In agreement with
observations, there exist both cold and warm core "rings"™ which have broken
from the Stream and are drifting westward. An example of the former is
centered at about 70°W, 30°N and of the latter at 68°W, 37°N.

Three other experiments have been carried out in this series, altering the
topography along the western boundary to study its effect on the path and
behavior of the Gulf Strean.

References

Bryan, K., 1969 A numerical method for the study of the circulation of the
World Ocean. J. Comput. Phys., 4, 347-376.
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Fig. 1 Temperature at 212 meters depth.
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for Numerical Weather Prediction on the CYBER 205

James J. Tuccillo
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1. INTRODUCTION

Numerical Weather Prediction (NWP), for both operational and research purposes,
requires not only fast computational speed but also large memory. In this paper I will
discuss a technique for solving the Primitive Equations for atmospheric motion on the
CYBER 205, as implemented in the Mesoscale Atmopsheric Simulation System (MASS)
(Kaplan et. al., 1982), which is fully vectorized and requires substantially less memory
than other techniques such as the Leapfrog or Adams~Bashforth Schemes. The technique
to be presented uses the Euler-Backard time marching scheme.

Also to be discussed will be several techniques for reducing the CPU time of the
model by replacing "slow" intrinsic routines by faster algorithms which use only hardware

vector instructions.
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MODEL BACKGROUND

2.1 Description

MASS is a hydrostatic primative equation model which is run over a limited
area. The model forecast the 3-dimentional structure of wind, pressure,

temperature and moisture. The actual domain of coverage, along with the

horizontal distribution of grid points, is depicted in Fig. 1. The characteristics of

the model are listed in Table 1.

2.2 Uses and Support

The model has been applied primarily to the problem of forecasting the
atmospheric environment within which severe local storms (severe thunderstorms

and tornadoes) are likely to develop. It has also been applied to the problems of
forecasting and investigating east coast cyclogenesis, upper level turbulence and
shear, and boundary layer transport. Support for the model development has been

provided by NASA/Goddard using the computational facilities of NASA/Langley

(CYBER 203) and NASA/Goddard (CYBER 205)

2.3 History
The original version was implemented on a 500K word CDC STAR 100 Vector

Processor at NASA/Langley in the late 70's using 64-bit FORTRAN. The

availability of the SL/1 programming language at Langley, which permitted easy
access to the 32-bit instruction set on the STAR 100, resulted in an effective
doubling of the memory and the model was recoded with larger vectors. This
allowed for an increase in the area over which the model was run while maintaining

the same horizontal and vertical resolution.
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TaBLe 1 CHARACTERISTICS oF MASS MODEL

MASS (DESCRIPTION)

H YDROSTATIC PRIM ITIVE E QUATIONS
TERRAIN FQLOWING SIGMA-P C OORDINATE

LiMITED AREA DOMAIN

C ARTESIAN GRID ON A PQLAR STEREOGRAPHIC MAP (ARAKAWA “A” GRID)
4TH ORDER ACCURATE HORIZONTAL SPACE DIFFERENCING

2ND ORDER ACCURATE VERTICA. SPACE D FFERENCING

2ND ORDER ACCURATE TIME DIFFERENCING

INITIAL DATA IS DERIVED FROM THE LF M ANALYSIS ALUS R AWINSONDES
INITIAUZATION IS BASED ON THE CALCWLUS OF YARIATIONS

PHYSICS

- LARGE SCALE PRECIPITATION

- PLANETARY BQUNDARY LAYER

- Dy CONVECTION

- MoIST CONVECTION (UNDER DEVELOP MENT)

50 KM GRID SPACING AT 4504

19 EquaLy SPACED LAYERS

125 X 96 CoMPUTATIONA. DOMAIN

TiME DEPENDENT BOUNDARY C ONDITIONS

C OMPREHENSIVE INTERACTIVE DIAGNOSTIC PACKAGE ON THE FRONT END

- YERTICAL PROFLES

- YERTICAL CROSSECTIONS

- CONSTANT PRESSURE SURFACES
- TIME HISTORY

- TRAECTORIES

- YFRIFICATION STATISTICS
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In the spring of 1980, the STAR 100 was upgraded to a 1m word CDC CYBER
203. The new machine effectively had twice the memory of the STAR 100. The
area over which the model is run was again expanded and the vertical resolution
was increased from 12 to 14 vertical layers.

In the spring of 1983, the model was transferred to the NASA/Goddard
CYBER 205. The model was recoded in CDC FORTRAN 2.0 using 32-bit
arithmetic. After being successfully benchmarked against the Langley version, the
vertical resolution was again increased from 14 to 19 layers. The Goddard version
of MASS on the CYBER 205 executes approximately 3 times faster than the

Langley version on the CYBER 203. This can be explained by

1)Reduction in cycle time from 40 to 20 NS.
2)Linked triad instruction on the CYBER 205.
3)Faster gather/scatter instruction.

4)Coding differences.

3. EQUATION SET

The model utilizes a standard primitive equation set cast in a terrain followingo-b
coordinate system. As indicated earlier, the forecasted variables are the 3-D
distribution of wind, pressure, temperature and moisture. The basic prognostic equations
are given below where u and v are x and y coordinate momentum, T is temperature, q is

the moisture mixing ratio and ¥ is the pressure at the terrain minus the pressure at the

top of the model.
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Three diagnostic equations close the system and are given below where 0" is the

vertical velocity, ¢ is the geopotential energy andcoOis the vertical velocity in pressure

coordinates.
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The boundary conditions are

g, =0z = O

q)/ ‘Tén_n,_-.:,v I‘?’Eléur

and the definitions for and TTare

o= P- Ptop T = PSwz."'Ptop
T

the remaining variables are
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m = mapscale grid transformation factor

cp= specific heat at constant pressure
R= gas constant for dry air

Poyr= pressure at the terrain

Ptop pressure at the top of the model

X= horizontal eddy diffusivity

4. GRID SYSTEM
The technique for solving the differential equations is to discretize the equations

into finite difference form and solve them on a 3-D grid. The horizontal grid employed is

the Arakawa "A" grid where all dependent variables are defined at all grid points. The

vertical grid is staggered so that u, v, T and q represent layer averages defined at the
mid-point of each layer and and are held at the layer interfaces. The third diagnostic

variable, w, is held with u, v, T and q. This structure is represented in Fig. 2.

5. NUMERICAL TECHNIQUE

5.1 Horizontal Space Derivatives

The fourth order accurate finite difference approximation to an x-direction

space derivative for an arbitrary variable (P is given below

W w18 (W= Ye)~ (Vi -Yis)] + O (o)

Ix lp  1aax

where i is a horizontal index;. An analogous formula is used for y - direction

derivatives.

41

S
Lo o

§: 1



— — UVLlw — —— K+l

G.¢ K+ Y
uyv,T,qw K
&, K— Y%
— — UV,Tqw K—1

Fic, 2 VerTicAL 6RID SYSTEM oF MASS

42



5.2. Vertical Space Derivatives

A second order accurate finite difference formula is used to approximate the
vertical advection terms of the uv, T and q prognostic equations. The

representation, for an arbitrary variable SU, is given below

| = g [ Sn - )+ o (-0

where k is a vertical index.

5.3 Time Derivatives

A second order accurate approximation to the time derivatives is used. The
Euler-Backward Technique has the properties of frequency dependent damping and
no computational mode. For an arbitrary variable \/I the finite difference

representation is given as

LV* = L// + 3([/ nt Prediction
t

q/ LP + DSU Nt Correction

where n is a time level index and * refers to a intermediate time level.
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This scheme requires the storage of only one time level of information (time
level n) whereas other explicit schemes such as the Leapfrog Scheme requires the
storage of at least two time levels (n and n-1). The penalty is that twice the

computational work is required as compared with the Leapfrog scheme,

6. BASIC MEMORY REQUIREMENTS

As mentioned earlier, the Euler-Backward scheme for time marching the
prognostic equations for the 3-D structure of wind, pressure, temperature and moisture
requires the storage of only one time level of information. The * 'ed time level is an
intermediate time level and only needs to be as deep (with respect to the vertical) as is
required to solve the equations at a layer. It should be noted that only the vertical
advection terms couple the model layers together and that to solve the equations at layer
k requires the dependent variables at layers k+1, k and k-1. Therefore, the * 'ed time
level only needs to be 3 deep (it holds the prediction values to be used during the
correction step) and can be reused for the solution of each layer.

Given that the 19 model layers contain 128 x 96 grid points each, the basic

memory required is

u (128, 96, 19)
v (128, 96, 19)
T (128, 96, 19)
q (128, 96, 19)
pi (128, 96)

ustar (128, 96, 3)
vstar (128, 96, 3)
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tstar (128, 96, 3)
gstar (128, 96, 3)
pistar (128, 96)

If an additional layer were to be added only the u, v, T and q arrays would be
increased. The ustar, vstar, tstar and gstar arrays are always dimensioned 3 deep and
this is a function of the vertical advection terms which require 3 layers of storage to
solve the equations.

In contrast, the Leapfrog scheme would require 2 sets of arrays dimensioned 128 x
96 x 19, therefore, there is a considerable memory savings with the Euler-Backward
Scheme. A technique developed by Tuccillo (1983) shows some promise in reducing the

computational work by increasing the premissable timestep.

7. METHOD OF SOLUTION

The method of solution is depicted in Fig. 3 and shows the sequence of steps
required to solve the equations at all layers. Prediction is the step that advances the
solution from the n to the * time level and correction is the step that advances the
solution from the * to the n+l time level. It there are NZ layers then there are 2*NZ
number of steps required to advance the solution one time step. The number above each
line represents the order of solution where the first step is to perform prediction for
layer 1, the second step is prediction at layer 2, the third step is correction at layer 1

and so on. After correction (the 2*NZ step) at layer NZ is finished the solution has been

advanced one time step.
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LAYER

NZ

NZ-1

2+NZ-2

2+NZ-4

1

PREDICTION

"= P

2+NZ

2+NZ-1

2+«NZ-3

3

CORRECTION

llln—'> djn+1

F16, 3 SEQUENCE OF STEPS TO ADVANCE THE SOLUTION

ONE TIMESTEP
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The *'ed arrays are reused for each layer and the calculations for each layer are

fully vectorized where the vector lengths are NX*NY or 12288. For this vector length

the machine is computing at about 98% of its maximum rate.

8. BOUNDARY CONDITIONS

Since MASS is a limited area model, as opposed to a global model, the solution at
the horizontal boundaries needs to be specified. The technique for specifying the
boundary conditions consist of blending externally calculated values using a weighted
average formula which is represented by

Y - wap

—

ot 2t

)

INTERTOR EXTERX O

where W = 0 on outer column and row
W= 0.333 on first column and row in
W = 0.666 on second column and row in

1.0 on third column and row in

=
i

It should be pointed out that this technique produces an overspecification at the
boundary and higher horizontal diffusion is required near the boundaries to control noise
generation.

This technique is vectorized by holding the externally specified boundary
tendencies in a vector and using the scatter instruction to expand them into the correct
positions prior to computing the weighted average. This technique minimizes to amount

of storage required.
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9. PROGRAMMING TECHNIQUES

The code Is completely vectorized in the horizontal. The average vector length

is about 12000 which represents the number of horizontal grid points. There is a loop

over the vertical layers.

Some specific techniques used during the coding are

o 32-bit arithmetic
Sensitivity tests have indicated that 32-bits provides enough precision.

Using 32-bits effectively doubles the real memory and halves the execution

time.

o Explicitly Vectorized
The code does not depend on automatic vectorization by the compiler.

All descriptors are set up with DATA and ASSIGN statements. Special Q8

calls are used where required.

) Diadic and Triatic Structure
All vector statements are written in a diadic structure (triadic when

linked triads are created) to minimize compiler generated dynamic space

which may cause paging.

o] Subroutines are kept small enough so that the Register File is not
overflowed.

Subroutines which have more local variables then the size of the

register file (approximately 200) can be inefficient since loads from

memory must be executed. All subroutines are kept small enough so that

the swap instruction can load all necessary local variables at entry.
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o Parameter Statement Used for Vector Dimensions

Vector dimensions are easily changed by changing parameter values. .

o Factoring of Equations to yield Linked Triads

The sequence of instructions have been arranged to yield the maximum

number of linked triads.

o Run Only in Real Memory

No page faults are generated during the interative time marching.

o Vectors are Grouped on Large Pages
All large vectors are placed in common and grouped on large pages

using loader options.

) Bit Vectors vs. Gather/Scatter
For those situations where control store or gather/scatter can be
applied, an analysis using the nominal performance figures for each
instruction was performed and the most CPU or memory efficient

techniques was applied.

10. TECHNIQUES FOR REDUCING CPU TIME

A 24-hour simulation with the model requires 1312 timesteps. Each timestep
requires the evaluation of 2*NZ natural logs (for 12288 grid points). This required
approximately 22 mins of CPU time using the 32-bit FORTRAN VHALOG function.

Since the range of arguments for the natural log function was known, a more efficient
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technique was incorporated where the natural log was approximated with a series
factored using Horner's Rule. The evaluation requires 11 vector instructions, nine of
which are linked triads, and runs approximately 40 times faster than the FORTRAN
intrinsic function. This technique reduced the CPU time spent evaluating natural logs to
30 secs.

Other techniques for reducing CPU time consist of approximating the **
FORTRAN function with series of square roots (square root in a hardware instruction)
and inverting scalars to generate vector multiplies instead of vector divides.

The version of MASS implemented on the CYBER 205 at NASA/Goddard requires
13 large pages of memory and 15 minutes of CPU time (same as wall time) for a 24 hour

simulation over the area depicted in Fig. 1.

11. EXAMPLE OF OUTPUT

MASS at Goddard features a comprehensive postprocessing system to produce
output from the model for interpretation. The post processing system runs interactively
and produces hard copies on a GOULD electrostatic plotter. TFuture versions of
the postprocessing system will likely feature interactive color graphics which should
greatly improve the usability of the modeling system as a research tool for studying

atmospheric processes. Figs. 4-12 are examples of the output from three of the six

postprocessing programs currently available.
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Computer Simulation of Protein Systems
D. J. Osguthorpe, P. Dauber-Osguthorpe, J. Wolff, D. H. Kitson and A. T. Hagler
The Agouron Institute, 505 Coast Blvd. South, La Jolla, California 92037.

Introduction. Significant advances are being made in the theoretical treatment of the conformation
and dynamics of biological molecules. Several recent convergent developments are responsible for
opening up new fields of investigation. They include:

1.  The development and application of powerful theoretical techniques taken from statistical physics
such as Monte Carlo and molecular dynamics simulations to biological systems.

2.  The development of powerful computational hardware such as the Cyber 205.
3.  The development of interactive graphics systems.

The increasing availability of experimental structural and dynamic data such as the ever-growing
data base of protein crystal structures, small peptide crystal structures and the structural and
dynamic properties of these same molecules in sotution.

These developments enabled us to undertake the project of studying ligand binding to dihvdro-
folate reductase (DHFR). This is an extremely important enzyme. as it is the target of several drugs
(inhibitors) which are used clinicaily as antibacterials, antiprotozoals and in cancer chemotherapy.!-2
DHFR catalyzes the NADPH (reduced nicotinamide adenine dinucleotide phosphate) dependent reduc-
tion of dihydrofolate to tetrahydrofolate, which is used in several pathways of purine and pyrimidine
biosynthesis, including that of thymidyiate.3 Since DNA synthesis is dependent on a continuing supply
of thymidylate, a blockade of DHFR resulting in a depletion of thymidylate can lead to the cessation of
growth of a rapidly proliferating cell line.

DHFR exhibits a significant species to species variability in its sensitivity to various inhibitors.
For exampie, trimethoprim, an inhibitor of DHFR. binds to bacterial DHFR’s 5 orders of magnitude
greater than to vertebrate DHFR’s.4- 5 We were interested in studying the structural mechanics. dynam-
ics and energetics of a family of dihydrofolate reductases to rationalise the basis for the inhibition of
these enzymes and to understand the molecular basis of the difference in the binding constants between
the species. This involves investigating the conformational changes induced in the protein on binding
the ligand. the internal strain imposed by the enzyme on the ligand, the restriction of fluctuations in
atom positions due to binding and the consequent change in entropy. X-ray crystallographic structures
of DHFR from a few species, in complex with various ligands, are known.58 as well as partial data
about the structures in solution.?-!! The availability of the structure. in the form of atomic coordinates
for the enzyme system, is a prerequisite for performing any kind of energy calculations. In addition.
due to the size of these systems as discussed below, only the availability of supercomputers such as the
Cyber 205 make this project feasible.

Computational Techniques. The techniques we use to investigate the DHFR system ali require the
calculation of the potential energy of the molecular system. This potential energy is expressed in terms
of an analytical representation of all internal degrees of freedom and interatomic distances, as in eqn.
(1).

V= TDll~ e ™22 Dy + 1/2 T Hy @ — 9)? (1)

+ 1/2 2 Hs(1 + scos nd) + 1/2 L Hx?

+ 22 Foy(b— bo) (b' — Bbg)

+ YT Fap(0 = 60)(0 ~ 6¢) + XY Fog(b— bo) (6 — 8p)
+ 2 Faopr cOS (0 ~ ) (0" — ) + LT F, . xx’

+ 2el2(r/0)° = 3(e*/0)°1 + Taqyr

This type of representation of the potential energy in terms of the internal (valence) degrees of
freedom is calied a Valence Force Field. Such valence force fields have long been used in vibrational
spectroscopy in order to carry out normal mode analysis.!2 Basically the terms in equation (1) express
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the energies required to deform each internal coordinate from some unperturbed "standard’ value
denoted by the subscript "0". The first term is a Morse potential which describes the energy required to
stretch each bond from its relaxed value, by. The second term represents the energy stored in each
valence angle when it is bent from its "standard" value, 6g. The third term represents the intrinsic
energy required to twist the molecule about a bond by a torsion angle, ¢. The fourth term represents
the energy required to distort intrinsically planar systems by x from their pianar conformation, i.e. the

mme lamtccman fmbmocmal a2l e :

out of plane term. The next terms represent various couplings between internal coordinates, which are
known to be necessary from studies of vibrational spectra.!3 They are the bond-bond, angle-angle.
bond-angle, angle-angle-torsion and out of plane cross-term respectively. The last 3 terms describe the
exchange repulsion, dispersion and coulombic interactions that occur between non-bonded atoms.

The parameters Dy , Hp , Hy, . H, , and F; are the force constants for the corresponding
intramolecular deformation, r and € characterlze the size of the atoms and the strength of the van der
Waals interaction between them, while the q; are the partial charges carried by each atom. The parame-
ters for the functions were derived from fitting a wide range of experimental data including crystal
structure, unit cell vectors and the orientation of the asymmetric unit, sublimation energies, molecular
dipole moments, molecular structure, vibrational spectra and strain energies of small organic
compounds. 419 Ab-initio molecular orbital calculations have also been used in conjunction with the
experimental data to give information on charge distributions, energy barriers and coupling terms, both
to supplement and confirm the resuits obtained from the experimental data. 202!

Minimisation. Given the analytical representation of the potential energy in eqn. (1), we can
minimize this energy with respect to all internal degrees of freedom, i.e. solve the equation

dE/dx;= 0 =1, 3n (2)

where the x; are the cartesian coordinates of the molecule.

The minimisation results in the "minimum energy structure” of the system. Analysis of the minimum
energy structure reveals the basic structural features of the system along with the interatomic forces
underlying this minimum energy conformation. At the minimum, we can take second derivatives of
the energy and construct the mass weighted second derivative matrix. From the eigenvalues of this
matrix the vibrational frequencies may be obtained and the normal modes from the eigenvectors.22 The
conformational entropy of the system can now be calculated from the vibrational frequencies using the
Einstein relations.2? The conformational entropy of a system plays an important role in both conforma-
tional equilibria and binding.24

Molecular dynamics. Molecular dynamics is the numerical integration of Newtons classical equa-
tions of motion. Having specified the potential, we define the initial conditions of the system, the coor-
dinates of the protein, inhibitor, solvent and a set of initial velocities. Once the initial conditions are
given, Newtons equations of motion

- 8V(F - F)/5T = F(F - - -T,) = md?F/de? (3)

are integrated forward in time, in order to compute the atomic trajectories T; (t)..T, (t) as functions of
time. The forces are calculated from the energy expression in egn. (1) by taking analytical derivatives.
We then take a small time step, At, of =10~!5 sec. and applying the acceleration as calculated from
Newtons law (egn. 3), we update the velocity and position of each atom, to a new velocity and position
using a Gear?> predictor-corrector algorithm or a Verlet algorithm. 26 The forces and acceleration at the
new positions are then calculated and we repeat the procedure, thus tracing the trajectories of the
atoms.
Calculations on the Cyber. One of the systems we are studying, the E. coli DHFR-Trimethoprim
complex, is the system we have been using to develop the programs on the Cyber 205. Table I lists the
no. of atoms, internal coordinates and non-bond interactions for this system, to demonstrate the
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magnitude of the calculation involved.

Table |

E. coli Dihydrofolate Reductase System

atoms
E. coli Dihydrofolate Reductase 2490
Trimethoprim 40
155 Waters 465

2995

Internal Coordinates

Bonds 2875
Valence Angles 4785
Torsion Angles 6784
Bond-Bond cross-terms 4785
Bond-Angle cross-terms 9570
Angle-Angle cross-terms 7584
Angle-Angle-Torsion cross-terms 6784
Non-bond pairs ==1,600,000

Minimisation and moiecular dynamics both require computing the energy using eqn. (1), changing
the coordinates and repeating this process many times. Note that each energy calculation involves
evaluating the appropriate terms in eqn. (1) for each of the internais listed in table I. Thus the last
three terms in eqn. (1) need to be evaluated for each of the 1,600,000 non-bonded pairs. As the time
required to compute the change in the coordinates once the energy has been caiculated is small. the
time required to calculate the energy determines the time to perform the minimisation, or how many
steps of dynamics can be done. For a minimisation the number of iterations depends on how close 1o
zero we require the derivatives, for a conjugate gradient minimiser previous experience indicates that
about 3 times the number of atoms iterations are required to get derivatives to less than 0.05
kcal/molA, which is about 10,000 iterations for the protein. In molecular dynamics we would like to
simulate at least 100 picoseconds, preferably a nanosecond, as this is still a very short time compared to
molecular events such as binding. This requires 100,000 i-erations at a 1 femtosecond timestep. Thus
the speed with which the energy calculation is carried out is crucial.

Non-bond interaction caiculation. Table Il shows the timings of the energy routines used to com-
pute eqn. (1) on the VAX 11/780 and the Cyber 205 for the Dihydrofolate Reductase system. The
non-bond part of the calculation takes by far the major portion of the CPU time, 78% of the iteration
time on the VAX, so this was vectorised first. The routine computes the non-bond energy, see eqn.
(1), by calculalirgg the interaction between all pairs of atoms, except for bonded atoms and 1-3 interac-
tions. For a 10A cutoff this is =1.6x 10° pairs, which is the reason this is the major time consuming
portion of the energy calculation. This was implemenied on the VAX by a residue neighbour list in
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Table II

Comparison of the Timing of Energy Calculation routines for 1 Iteration

CYBER
Routine VAX 11/780 Vectorised
Large Pages

Bonds 2.42 0.055
Valence Angles 9.06 0.13
Torsion Angles? 30.69 0.55
Bond-bond 5.25 0.14
Bond-Angle 11.9 0.25
Angle-Angle 16.55 0.17
Out of Plane 2.35 0.10!
Non-Bond 448.98 1.23
Iteration Timing? 573.58 2.7

1.  The out of plane routine is not vectorised. ‘
2. The iteration timing is slightly larger than the sum of ail the individual routine timings as it in-
cludes the time for the minimisation routine itself.

which for each residue a list of all the residues it interacts with is stored. This neighbour list is set up
prior to the non-bond calculation and has to be recalculated every so often if a cutoff is used. In the
non-bond calculation a loop is performed over all the residues and for each residue the interactions of
all atoms in it with all atoms of the residues in the neighbour list of this residue are computed. This
routine was vectorised by calculating the interaction of 1 atom with all its neighbouring atoms as vector
operations. This gives vector lengths of up to 1000 for a 10A cutoff. A bit vector with the length of
the number of atoms in the molecule is set up for each atom which indicates whether an atom interacts
with this atom or not. This is a large array, N%/2, where N is the number of atoms, but because of the
bit addressing capability of the Cyber 205 this only takes up 70,000 words in memory. The perfor-
mance improvement of this routine after vectorisation is 365 over the VAX, which includes the intrin-
sic scalar speed of the Cyber 205, some 14 times faster than the VAX. The vectorisation of the non-
bond routine took approximately 1 month.

Valence energy calculation. The valence energy and cross-term routines take == 20% of the iteration
time on the VAX. These routines were vectorised next, starting with the torsion angle routine which is
the next major time consuming routine, 6% of the iteration time on the VAX. The bond, valence
angle and torsion angie routines already used a list of the internals in the VAX version. These were all
vectorised by creating vectors for the bonds, valence angles and torsion angles, which gives vector
lengths from 3000 to 9000 for the dihydrofolate reductase system. see table I. These vectorisations
resulted in performance improvements of 37 to 90 over the VAX in these routines.

To date we have achieved a net gain in speed over the VAX 11/780 of 212 for the enzyme simulation
study described above.
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ABSTRACT

Simulation of circuits having more than 2000 active devices requires the
largest, fastest computers available. A vector computer, such as the CYBER 205,
can yield great speed and cost advantages if efforts are made to adapt the simu-
lation program to the strengths of the computer.

ASPEC and SPICE (1) are two widely used circuit simulation programs.
ASPECYV and VAMOS (5) are respectively vector adaptations of these two simu-
lators. They demonstrate the substantial performance enhancements possible for
this eclass of algorithm on the CYBER 205. ASPECYV is in use at ISD. VAMOS is in
daily production use at MOSTEK.

INTRODUCTION

Over the past decade, the design of integrated circuits has become inereas-
ingly complex. Manufacturers who once had special purpose circuits of only a few
dozen components now have microprocessors and random access memory chips
constructed of thousands of devices. While early circuits were readily designed
and debugged by hand, the more complex circuits have necessitated computer
assistance.

During one phase of computer aided design, circuit simulation programs are
used. These programs are given circuit interconnection information (nodes) and
device characterizations (models). After establishing initial current and voltage
conditions at time zero, they simulate circuit operation by evaluating device con-
ductances and node voltages over small increments of time. Due to the rapid
response of microcircuitry to voltage changes, circuit simulation must often be
performed at timesteps of a few hundred picoseconds. This small timestep may
necessitate thousands of steps to simulate circuit performance for a given set of
initial inputs. Many such simulations (which may each require hours on an IBM
3081 or CDC 176) are required to thoroughly explore a circuit's characteristics
over a wide range of temperatures and input sets.
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The speed of a supercomputer is valuable to engineers designing such large
scale integrated (VLSI) circuits. These engineers are, however, unwilling to com-
promise simulation accuracy for speed. For this reason, various projects have
investigated veetor computers (2) (3) (4) for use in the transient analysis of VLSI

circuits.

Two well-known and widely used circuit simulators are ASPEC, copyrighted
by Mr. Frank Jenkins, and SPICE, copyrighted by the Regents of the University of
California. ASPECV is the product of a technical team from the San Francisco
Distriet of Control Data Corporation Professional Services Division. This team
spent approximately one man-year analyzing ASPEC in detail. Their effort
included extensive conversations with the program's author and the rewriting of
select areas of code for enhanced performance.

The program VAMOS was developed by Steven D. Hamm and Steven R.
Beckerich of MOSTEK Corporation. VAMOS evolved from a simple installation of
SPICE2 into a program in which 80 percent of the analysis routine code is
vectorized. Many sections of code were radically changed due to the application
of algorithmie, rather than simple syntactie, vectorization.

ARCHITECTURAL CONSIDERATIONS

ASPEC AND SPICE were initially developed for a type of computer similar
to the Control Data Corporation 6400. Originally, the programs were designed to
handle circuits with fewer than 600 devices. Intentional minimization of memory
requirements increased central processor time. Many users modified ASPEC and
SPICE for use with large-scale circuits, extending the programs into areas far
beyond their design. When any design is so overextended, there are often
undesireable consequences. One obvious consequence was long running time on
circuits with more than 2,000 devices.

Optimum performance for both ASPEC and SPICE required retailoring pro-
gram design to fit the architecture of the CYBER 205. The Cyber 205 used has
two vector pipes, a 16 megabyte memory, and is capable of 200 million floating
point operations per second (Megaflops) on 64 bit operands. To maximize perfor-
mance, the characteristics of this hardware must be considered. Some major con-
siderations are:

1. The CYBER 205 defines a vector as contiguous memory locations. While
ASPEC has a compatible memory organization, SPICE2 linked list storage needs

re-organization.

2. The scalar functional units on the CYBER 205 are pipelined. Code that eannot
be vectorized can be optimized by taking advantage of inherent parallelism. Even
so, the performance of scalar code will probably be substantially less than the
theoretical maximum of 50 Magaflops.
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3. The hardware can generate and use bit vectors, which are useful in vectorizing
loops containing conditional statements. These bit vectors aid in producing rou-
tines that have no scalar code and run at full veetor speed.

4. The virtual memory of the CYBER 205 provides over 2 trillion words of user
memory space. Any program that repetitively uses more than the entire physical
memory may, however, generate a great amount of paging delay. This fact con-
strains the choice of algorithms, as a fast algorithm may require additional
memory.

PROGRAM DESIGN

Both ASPEC and SPICE perform their simulations by alternating modeling
routines with a current matrix solution routine. The modeling routines calculate
the new device conductances based on device operating points. There is one
model for each type of device, such as diodes, jfets, mosfets, and bi-polar tran-
sistors. One model must simulate many different operating modes and
consequently has many branches and special cases.

The matrix solution routine calculates branch currents based on the con-
ductances calculated by the modeling routines. From these currents new node
voltages are obtained. This routine uses sparse Gaussian Elimination techniques.
The time required by this routine grows very rapidly and non-linearly with circuit
complexity.

In SPICE, to best utilize the long vector capabilities of the CYBER 205,
an interface routine was written between the vectorized analysis routines and the
rest of SPICE2. This routine reorganized memory into contiguous vectors and
established new element pointers. ASPEC was similarly treated. The task was
less formidable as data was already in homogeneous arrays.

In both VAMOS and ASPECYV, vectorization of device equations is done by
long vector operations with conditional stores for the results. All devices are
evaluated in all regions of operation and the results are masked together to form
composite result vectors. This technique avoids the data motion overhead charac-
teristic of other methods at a cost of extra operations in each region. For
VAMOS, the data given in Table 1 shows the tremendous advantage vectorization
provides. The small amount of scalar store code remaining in MOSFET
contributes 19.4 of the total 25.5 seconds.

ROUTINE SCALAR VAMOS RATIO
LOAD 19.9 1.8 11.1
DIODE 79.4 3.6 22.1
MOSFET 325.4 25.5 12.8

Table 1. VAMOS Routine Comparisons
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In VAMOS, the vector startup time required by the CYBER 205 caused the
rejection of a vectorized matrix solution method for subeircuits as used in the
program CLASSIE (2). Instead, effort was expended in scalar code optimization to
achieve maximum instruction overlap. As part of the preprocessing phase of the
program, the row-column lookup is performed once and the indices are stored in

an auxiliary array.

In addition to the VAMOS techniques, ASPECV's routine EQNSOL detects
perfect alignment between rows in the matrix. As circuit size increases, the
number of such rows increases dramatically. Full row-length linked triads are
executed in this case.

PROGRAM PERFORMANCE

Table 2 illustrates a comparison between a scalar version and VAMOS. The
scalar version was already heavily optimized. The circuit tested contained 2256
mosfets, 1312 diodes, 1774 resistors and capacitors, and had 1429 equations with
98.9 percent matrix spareity. Overall VAMOS performance was 3 times scalar,
with 4 times in transient analysis. VAMOS performed the analysis over 100 times
faster than a VAX-11/780.

ROUTINES SCALAR VAMOS
READIN 68.4 51.9
SETUP 34.7 22.7
DC SOLUTION 47.8 19.0
TRANSIENT 503.8 126.4
OUTPUT 5.6 5.6
TOTAL 660.3 225.9

Table 2. VAMOS Program Performance Comparison

Table 3 shows the characteristics of a series of flexible circuits which can
be made any size by repeating a basic circuit block. Resistors and capacitors are
also present but are irrelevant to modeling time. Table 4 gives execution time for
two processors running ASPEC, and the current version of ASPECV on the CYBER
205. It is projected that, with continued effort, for large circuits the CYBER 205
mosfet run times could be reduced by another factor of 2 to 3. Table 5 shows that
the time to model a given device decreases with increasing circuit size, a very
desireable characteristic for VLSI circuitry.
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CIRCUIT DIODES MOSFETS NODES MATRIX

1 50 50 30 119
2 100 100 54 220
4 200 200 102 470
8 400 400 182 860
16 800 800 358 1718
32 . 1600 1600 718 3473

Table 3. Circuit Characteristics

CIRCUIT TIME UNIVAC CDC CDC
STEPS 1182 176 205
1 420 30 6 3
2 622 82 16 6
4 869 208 42 15
8 1658 697 141 40
16 1658 1421 301 76
32 1658 TOO BIG TOO BIG 158

Table 4. ASPEC/ASPECYV Comparison

CIRCUIT AVERAGE TIME (micro-secs) VECTOR
diode mosfet EFFECIENCY
1 9.7 39 50
2 7.1 32 66
4 5.8 28 80
8 5.2 26 89
16 4.7 25 94
32 4.5 24 97

Table 5. ASPECYV Size/Efficiency

Sinece most circuit simulation runs produce a great deal of printed output,
current simulations using ASPECV spend the majority of their time in Fortran
I/0. As an example, one ASPECYV circuit containing 1000 devices and 950 nodes
initially ran in 980 seconds on a UNIVAC 1182 and in 141 seconds on the CYBER
205. After optimizing everything but the diode and mosfet models, the same
circuit required 72 seconds on the 205. Of the 72 seconds, 39 were spent in the
models. ASPECYV requires only 44 seconds to simulate the same circuit. Only 6.3
seconds are required in the models: 1.3 in diodes, 5.0 in mosfets. Although the
mosfet model is still several times slower than theoretically possible, further

effort would yield small returns indeed. The simulation mentioned spends over 66
percent of its time in Fortran I/O routines.
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CONCLUSION

Program speedups of 3 to 4 were accomplished through vectorization.
Future work directed at vectorization of the remaining scalar code may result in a
similar speed increase. Fortran I/O provides an effective limit to maximum

attainable speed.
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This report details some of the new computational methods and equivalent math-
ematical representations of physics models used in the MCV code, a vectorized
continuous-energy Monte Carlo code .for use on the CYBER-205 computer. While
the principal application of MCV is the neutronics analysis of repeating reac-
tor lattices, the new methods used in MCV should be generally useful for vec-
torizing Monte Carlo for other applications. For background, a brief overview
of the vector processing features of the CYBER-205 is included, followed by a
discussion of the fundamentals of Monte Carlo vectorization. The physics mod-
els used in the MCV vectorized Monte Carlo code are then summarized. The new
methods used in scattering analysis are presented along with details of
several key, highly specialized computational routines. Finally, speedups
relative to CDC-7600 scalar Monte Carlo are discussed.

lntroduction

Monte Carlo calculations fill a special and important need in reactor physics
analysis -- they represent ''truth' against which approximate calculational
methods may be calibrated. The Monte Carlo method permits the exact modeling
of problem geometry, a highly accurate mathematical model for neutron inter-
actions with matter, and a cross section representation that is as accurate as
theory and measurement permit. The precision of Monte Carlo results is prima-

rily limited by the computing time required to reduce statistical
uncertainties.

Conventional (scalar) Monte Carlo codes simulate the complete history of a
single neutron by repeated tracking through problem geometry and by random
sampling from probability distributions that represent the collision physics.
The accumulation of data for 1,000,000 neutron histories will typically
require three to seven hours of CDC-7600 CPU time. On newer computers such as
the CYBER-205, scalar Monte Carlio codes may run one and one-half to two times
faster (with some tailoring of the coding) because of the reduced cycle time
and improved architecture of the scalar processors. Much larger gains are
possible when the vector processing hardware of the CYBER-205 is utilized.

The random nature of the Monte Carlo method seems to be at odds with the
demands of vector processing, where identical operations must be performed on
streams of contiguous data (vectors). Early known efforts to vectorize Monte
Carlo calculations for other vector computers were either unsuccessful or, at
best, achieved speedups on the order of seven to ten times for highly simpli-
fied problems. Recent results for Monte Carlo in multigroup shielding
applications and in continuous-energy reactor lattice analysis have demon-
strated that Monte Cario can be successfully vectorized for the CYBER-205
computer. Speedups of twenty to fifty times faster than CDC-7600 scalar cal-
culations have been achieved without sacrificing the accuracy of standard
Monte Carlo methods. Speedups of this magnitude permit the analysis of
1,000,000 neutron histories in only five to ten minutes of CPU time and thus
make the Monte Carlo method more accessible to reactor analysts.
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General Considerations for Vectorized Monte Carlo

Conventional scalar Monte Carlo codes may be characterized as a collec

tion of random decision points separated by short and simple arithmetic.
Individual neutron histories are simulated, one at a time. The basic idea of
vectorized Monte Carlo is to follow many neutrons simultaneously through their
random walks, using vector instructions to speed up the computation rates.
The many conditional branches (IF...GOTO), few DO-loops, and largely random
data retrieval embodied in conventional Monte Carlo codes preclude vectoriza-
tion through the use of automatic vectorizing software or by a syntactic
vectorization of coding. Instead, experience has shown that a comprehensive,
highly integrated approach is required. The major elements of such an
approach are as follows:

1. The entire cross section and geometry database must be restructured to
provide a unified data layout.

2. The entire Monte Carlo code must be restructured (rewritten).
3. Deliberate and careful code development is essential.

Clever programming and machine ''tricks" alone will not ensure successful vec-
torization of a Monte Carlo code. The key to successful vectorization of
Monte Cario is that a well-defined structure must be imposed on both the data-
base and Monte Carlio algorithm before coding is attempted. This structure may
arise simply from the reorganization of existing data/algorithms or may entail
the development of special mathematics or physics. Careful and systematic
development helps to preserve the structure as the vectorized code becomes
more complex.

Vectorization Technigues

The principal obstacle to vectorizing a conventional scalar Monte Carlo code
is the large number of |F-statements contained in the coding. Examination of
sections of coding shows that, typically, one-third of all essential FQRTRAN
statements may be IF-tests. Careful consideration of the Monte Carlo program
logic and underlying physics permits categorizing these |f-statements and
associating them with three general algorithmic features of Monte Carlo codes
-- implicit loops, conditional coding, and optional coding. Implicit loops
are vectorized using shuffling, and conditional coding is vectorized using
selective operations. This approach to vectorizing Monte Carlo is effective
on the CYBER-205 and other vector computers having hardware capabilities for
vectorized data handiing. In successful attempts to vectorize Monte Carlo
methods, 40 to 60% of all vector instructions used in actual coding were vec-
tor data handling instructions {(gather, compress, bit-controlled operations,
etc.) .

The data-handling operations associated with shuffling and selective oper-
ations in the vectorized code constitute extra work that is not necessary in a
scalar code. This extra work offsets some of the gain in speed achieved from
vectorization. For vectorization to be successful, overhead from shuffling
and selective operations should comprise only a small fraction of total com-
puting time. It is thus essential that all data handling operations be
performed with vector instructions. Vector computers that must rely on scalar
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data handling operations are severely limited in vectorized Monte Carlo per-
formance.

Conclusions

Continuous-energy Monte Carlo methods have been vectorized for the CYBER~205
and the speedups are large. Due to the drastic restructuring of the Monte
Carlo coding and data base, the MCV code has been limited to the treatment of
repeating reactor lattice geometry. This restriction has been deliberate,
however, to permit an orderly and careful program of development. There are
no a priori limitations on the methods used in vectorization that would pre-
clude extension to more general applications. Profound changes in the methods
used for reactor physics analysis are anticipated now that 1,000,000 neutron
histories may be run in only five to ten minutes with the CYBER-205 vectorized
Monte Carlo vs. the three to seven hours that are typical for CDC-7600 scalar
Monte Carlo.
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Abstract

A miscroscopic dynamical treatment of chemical systems comprising both
light particles that require a quantal description and heavy ones that may be
described adequately by classical mechanics bhas recently been presented
{J. Chem. Phys. 78, 2240 (1983)]. The application of this '‘'hemiquantal’’
method to the specific problem of the vibrational relaxation of a diatomic
molecule embedded in a one—dimensional lattice is presented, The vectorization
of a CYBER 205 algorithm which integrates the 103-104 s-imultaneous
' 'hemiquantal'’'’ differential equations is examined with comments on opti-
mization. Results of the simulations are briefly discussed. :

»
David Ross Fellow
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I. Introduction

A microscopic dynamical description of a chemical system composed of both
light particles that require a quantal description and heavy ones that may be
described adequately by classical mechanics has been proposed receantly [J.
Chem., Phys., 78, 2240 (1983)]. The description consists of a self-consistent
set of ''hemiquantal’'’ equations (BQE) arrived at by taking a partial classical
limit of Heisenberg’s equations of motion for the system. In form, the HQE
appear to consist of Heisemnberg's equations for the light particles coupled to
Hamilton'’s equations for the heavy particles, The coupling is self-consistent
in that there is an instantaneous feedback between the 1light and heavy
subsystems, with total energy and probability of presence of the gquantal
subsystem being conserved.

This paper will focus on the numerical solution of the BEQE on the CYBER 20§
for the special case of a diatomic molecule embedded in a cold, one—~dimensional
lattice. In Section II, we detail the model and specific form of the HQE,
while the CYBER 205 algorithm and steps taken to optimize performance are
included in Section III. [Results of the simulations and some discussion of

their physical significance are presented in Section IV,

II. Model and Equations of Motion

Figure 1 depicts the physical situation, i.,e, a single diatomic molecule BC
occupying a substitutional site in an otherwise pure ome—dimensional lattice of
atoms A, the end atoms of the lattice are assumed free. So that the normal
modes of the lattice are known analytically, the mass of BC is taken to be
equal to that of A, The heavy, classically behaving degrees of freedom are

considered to be the displacements (ui) of the lattice atoms, including the
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center of mass of BC, from their equilibrium positions. The internal vibration
(q) of BC is treated quantally and, for simplicity, as a harmonic, two-state
system. We assume that only nearest—neighbor atoms interact with ome another:
A-A interactions are harmonic; A-B and A~C interactions are approximated by
Morse potentials,

Under these conditions, the HQE take the form

R |
o (£) = ~i Tle o (t) + } vy (a0 e ()]
J
ui(t) = pi(t)/mA (1)
b (t) = -2 U({u.(t)}) + Y o o(t)e (F,  ((n_()])
Py Ju, j j 'k ijk m .

1
jk

Here c, is the occupation probability amplitude for quantal state i, P; is the

momentum conjugate to ui; U is the harmonic part of the potential, i.e.

n~2 N-1
-k _ 2 _ 2
U=3 [2 (0 8"+ 2 (w4 — 8L (2)
i=1 i=n+1

where N is the number of lattice atoms. F is the quantal force

defined by

Fijk = avij/auk (3)

where
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vij({uk}) = <ilvg +v,.li> (4)
and the Morse potential VAB is explicitly

(s - +L- qu)]—l}z (5)

VAB = DAB[exp[—aAB a1

with a similar expression for vAC'

Since the ci are complex, the HQE comsist of 2N+4 coupled first—order
ordinary differential equations, Given initial conditions appropriate to the
physical situation, we can integrate these numerically by standard techniques.

Our principal problem now is to develop and optimize an algorithm appropriate

to the CYBER 205.

III. CYBER 205 Algorithm

The HQE [Eqs. (1)] can be cast in terms of the vector differential equation

X = £f(X(t)), defined by

xl(t) = fl(xl, cess xn), xl(O) =%
. : (6)
* _ _ .o
xn(t) = fn(xl, cens xn), xn(O) =x
The vector X can be written as
X = [C,U,P] where, for example,
C = [C1, C2, C3, C4] . (7)
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From experience, we have found the HQE extremely well-behaved. Therefore, they
can be handled with a relatively simple differential equation solver. We
employ the familiar fourth-order Runge—Kutta algorithm (RK4) which, for our

case, is summarized by the following equationmns:

Kl =T £(X)

K, =T (X + K,/2)

K, =T £f(X + K2/2) (8)
K, =T £(X +K)

X[(n+1)T] = X(aT) + (Il+K4)/6 + (12+K3)/3

where T is an appropriately chosen time step. Our choice of RK4 is guided by
several considerations, it is quite stable, self-starting and easily coded for
the CYBER 205. In addition, we need no direct method of estimating truncation
error since we can calculate total enmergy and probability of the system as a
check. Eventually, the RK4 algorithm will be used to calculate input values
for a more sophisticated predictor—corrector routine.

Since our simulations require widely varying amounts of memory, we would
like to assign storage at execution time. Clearly, the vector pipelimnes are
used more efficiently if the entire derivative vector is manipulated at once.
If we are to deal almost exclusively on the dynamic stack, we need a method of
parsing the vector X into subvectors C,U,P which can then be handled
independently. This ''breaking up’' is accomplished by building descriptors
using SHIFT and OR operations on an integer equivalenced to a descriptor which
points to an area in dynamic space. The subroutine BREAKUP is presented in_the
Appendix, This routine allows the RK4 mainline to allocate storage dynamically

while permitting the derivative routine to access each subvector individually.
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We now concentrate om the vector function subprogram that calculates the
derivative f(X). In our model, the four probability amplitudes must be
accessed individually each time the function is called. Rather than waste a
vector instruction to store the subvector € in a temporary array, it is faster
and more convenient to use the following sequence of hardware calls to load

them directly into registers:

ASSIGN TEMP, C
CALL Q8LOD (TEMP,, C1)
CALL Q8IX(TEMP, 64)

CALL Q8LOD(TEMP,, C2), etc.

The constants needed to calculate the potential and force fumctions -are
computed in advance and passed via labeled common, By reviewing an assembly
listing of the program, one can minimize the number of loads mnecessary to
access these constants. The evaluation of ﬁ is easily done by a vector

multiplication with a stored reciprocal mass,

P can be conveniently calculated by evaluating the derivative of a fully

harmonic potential U’. Thus we have

-9 = k(-
auiU ({uj}) = k(-2u +o,  +u, .) where

o T %1 » UNe1 T %W (9

which can be effected by two vector additions and two vector multiplications as

follows:
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--%ﬁU'([uj}) = UTEMP(1;N) = K*(-2,.%UTEMP(1;N) + UTEMP(O,;N) + UTEMP(2;N))

where UTEMP is a temporary array set to the current values of U. Finally, i is
obtained by replacing the n—~1, n, and n+l elements of UTEMP by the proper
values reflecting the Morse potentials at the diatomic. To accomplish this, it
is necessary to access the five displacements {ui, i = n-2, n+2}. Alternative-
ly, descriptors could be built to define the necessary vectors on U and the
values stored in UTEMP, 1In this case, hardware calls would be required to set
the first and last elements of UTEMP, to access the five elements of U around
u and to store values in the three middle positions.

The conservation of total emnergy and probability gives us two necessary
criteria to check the accuracy of the numerical solution. The total emergy is

given by
E = U({ui}) + P'P/(ZmA)

2 2
+ lcol e, + lcll e, (10)

2 2
+ |c°| Voo 2Re{co'c1]V10 + |c1| V11

while total probability is simply
_ 2 2
P = lcol + |c1| , (11)

which must remain unity. These checks were made every 1000 iterations using
values calculated in the first pass through the derivative routime. To

calculate U’ [Eq. (9)], the following code is used:
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ASSIGN TEMP, .DYN. N-1
TEMP= Q8VDELT(U:TEMP)

EU= (K/2)* Q8SDOT(TEMP, TEMP) .

In Table I, sample iteration times and estimates of floating point
operations per second are given. The timings are for loops without I/0 or
accuracy checks., The results of several simulations are presented in the next

Section,

IV. Results of Simulations

Our simunlations all take the diatomic to be in its excited state and the
lattice to be at OK initially. This means that all elements of X(0) are zero,
except the real component of 01(0), which is unity. The time step size is .01
m—l, where o is the transition frequency of the diatomic. The quantity of
principal interest here is fcllz, the probability of the diatomic being
excited. The physical constants for the system, which are chosen roughly to
mimic HC1 in Ar, are listed in Table 2. The only variable quantitfies are v and
N. The transition frequency is chosen low in order to observe relaxation on
the time—scale of the simulation,

Figure 1 displays plots of lcll2 versus time for a sampling of simulations.
Frames (a)—(c) demonstrate the effect of increasing the diatomic’s transition
frequency o, (cm—l) holding the number of lattice atoms fixed. It appears that
the rate of loss of energy from the diatomic increases with increasing
frequency up to a point, In fact, frame (c) suggests that the diatomic evolves
to a metastable state in which it loses no further emnergy. To. test this
hypothesis, we increased the number of lattice atoms to N = 2000. The result,

shown in frame (f), bears this notiom out., For purposes of comparison, we
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include a simulation for a smaller lattice (N = 200). Here we see the effect
of a pulse, which bounces back and forth, interfering with the monotonic

relaxation of the diatomic.

V. Conclusion

These simulations represent the first application of a new description of
the dynamics of chemical processes. Most previous approaches employ long—time
asymptotic approximations, in which the coupling between the subsystems is weak
and the decay is therefore very slow on the time scale of molecular motions
(10—145). The advancement of ultrafast laser spectroscopy now allows chemists
to monitor directly fast relaxation processes (10—12s). In this regime, the
coupling is more significant, and accurately solving the equations of motion
becomes crucial, The HQE can be used for this purpose. However, any practical
implementation will require a vector processor, such as the CYBER 205. Our
calculations would be essentially impossible on Purdue University'’s
6500/6500/6600 system, for example. The calculations would take 50-100 times
longer, even if the storage for the vectors were available,

The main feature of our CYBER 205 algorithm is a mainline that assignmns
storage at execution time, The vector function subprogram that evaluates the
derivative can access the subvectors individually while the mainline processes
the entire vector, This is accomplished by building the appropriate
descriptors using the BREAKUP subroutine (see Appendix).

Some preliminary results were presented in Section IV. Future research
will deal with the actual mechanism of energy exchange between the two
subsystems. Also planned are some N-state models with applications in surface

chemistry.
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Table I. Increase of calculation speed with increase

of number of equations

Equations Iteration Time Mega FLOPS
24 .157 ms 6.1
204 .204 ms 22.8
804 .256 ms 37.9
2004 .671 ms 69.3
4004 1.19 ms 77.7
10004 2.75 ms 83.8
20003 5.37 ms 85.6
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Table II. Parameters of model system

9.25 x 10-15 ergs DAC = 1.24 x 10—14 ergs

1.83 x 108 cm—1 a = 1.66 x 108 cm_1
AC

814 ergs/cm’ m, = 6.64 x 10 23 ¢

1.67 x 10 2% 4 m, = 5.88x 10723 4
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Appendix

SUBROUTINE BREAKUP(X,NSUB, LENSUB, DESSUB, NDIM)
IMPLICIT INTEGER(A-Z)

BREAKUP- TAKES A DESCRIPTOR (X) AND MANUFACTURES OTHER
DESCRIPTORS [DESSUB(N)] THAT POINT TO SUBVECTORS OF
LENGTHS LENSUB(N) WHICH COMPRISE THE VECTOR POINTED
TO BY X

ARGUMENTS:
X- DESCRIPTOR TO BE ’'BROKEN UP'
NSUB- NUMBER OF SUBVECTORS
LENSUB—- ARRAY CONTAINING THE SUBVECTOR LENGTHS
DESSUB— ARRAY CONTAINING THE RESULTING DESCRIPTORS
NDIM- DIMENSION OF LENSUB AND DESSUB

DESCRIPTOR D,X,DESSUB(NDIM)
DIMENSION LENSUB(NDIM)
EQUIVALENCE (D,DTEMP)

ASSIGN D, X
ADD= SHIFT( SHIFT( DTEMP,16 ), -16)
DO 100 N=1,NSUB
LENGTH= SHIFT( LENSUB(N),48 )
DTEMP= OR( ADD,LENGTH )
ASSIGN DESSUB(N),D
ADD= ADD + 64*LENSUB(N)
100 CONTINUE

RETURN
END
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Figure 2. Plots of probability of finding diatomic in the excited

state versus time for a selection of simulations of the system defined

by parameters of Table 2.

Time is in units of 0.18 picoseconds.
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The diffusion quantum Monte Carlo (QMC) method gives a stochastic
solution to the Schrodinger equation. This approach has recently been
receiving increasing attention in chemical applications as a result of
its high accuracy. However, reducing statistical uncertainty remains a
priority because chemical effects are often obtained as small differences
of large numbers. We give as an example the singlet-triplet splitting of
the energy of the methylene molecule CH2.

We have implemented the QMC algorithm on the Cyber 205, first as a
direct transcription of the algorithm running on our VAX 11/780, and
second by explicitly writing vector code for all loops longer than a
crossover length C*., We discuss the speed of the codes relative to one
another as a function of C*, and relative to the VAX. Since CH2 has
only eight electrons, most of the loops in this application are fairly
short. The longest inner loops run over the set of atomic basis
functions. We discuss the CPU time dependence obtained versus the number
of basis functions, and compare this with that obtained from traditional
quantum chemistry codes and that obtained from traditional computer
architectures. Finally, we discuss some preliminary work on restruc-
turing the algorithm to compute the separate Monte Carlo realizations in
parallel--potentially allowing vectors of unlimited length.

*This work was supported in part by the Director, Office of Energy
Research, Office of Basic Energy Sciences, Chemical Sciences Division of
the U. S. Department of Energy under Contract No. DE-AC03-76SF00098,
Director's Program Development Fund, Lawrence Berkeley Laboratory, and
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*Also Department of Chemistry, University of California, Berkeley,
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BACKGROUND

In recent years Monte Carlo methods have been increasingly
applied to quantum-mecnanical problems. Quantum Monte Carlo (QMC)
methods fall into two major categories. Variational QMCl is a
method of evaluating expectation values of physical quantities with a
given (generally optimized) trial wave function ¥r. The procedure
in effect amounts to evaluating a ratio of two integrals, although
the actual Monte Carlo procedure is generally more sophisticated.
The second major category of QMC is the "exact" type.2 In these
latter approaches the Schrddinger equation is actually "solved". It
is not necessary to already nave a highly accurate wave function in
order to compute the expectation values. Properties of interest are
in effect "measured" as the system evolves under the Schrodinger
equation., When a stationary state is obtained, averages of the

measured quantities give the desired expectation values.

Only recently have chemical calculations by exact QMC methods
peen carried out.3’4 We will discuss here one such QMC method --
the fixed-node, diffusion QMC -- which we have been using in cal-
culating molecular energies. In Section 2 we present the basic
theory. Section 3 describes the algorithm. The implementation of

this algorithm on the Cyber 205, its optimization, and results, are

discussed in Section 4.
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2.

4
BASIC THEORY

The Schradinger equation may be rewritten in imaginary time,

and with a constant shift in the zero of energy in the following form:

Y(R,t 2 .
3‘%72'—)= [0V - V(R) * E;] HR,t) . (1)

Here D E'ﬁZ/Zm R is the three-N dimensional coordinate vector

e’ <
of the N electrons, and V(R) is the potential energy (the Coulomb
potential for a molecular system). Equation (1) is simply a
diffusion equation combined with a first-order rate process, and thus
may be readily simulated. The function W(g,t) plays the role of the
density of diffusing particles. These particles undergo branching
(exponential birth or death processes) according to the rate term

[ET - V(R)] ¥(R). Thus, the number of diffusers increases or

decreases at a given point in proportion to the density of diffusers

already there.

The steady-state solution to Eq. (1) is the ground-state
eigenfunction of the Schrodinger egquation. Furthermore, the value of
ET at which the population of diffusers is asymptotically constant
gives the energy eigenvalue EO. The lowest eigenstate, however, is
that of a Bose system. In order to treat a Fermi system, such as a
molecule, we need to impose anti-symmetry on W(E). A method which

does this, and at the same time allows us to sample more efficiently

(to reduce our statistical error), is importance sampling with an
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anti-symmetrized importance function WI' The zeros (nodes) of WI
become absorbing boundaries for the diffusion process, maintaining

the anti-symmetry. A simple form for ¥1 which gives the necessary
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anti-symmetry is a S

multiplied by a symmetric function of the coordinates.

To implement importance sampling, one simply multiplies Eq. (1)
by WI and rewrites it in terms of a new probability density f(R,t)

given by

f(R,t) =¥ (R) HR,t). (2)
The resultant equation for f can be written as
3 _ovlF + [E. - E (R)If - DV-[fF.(R)] . (3)
at T L'~ Q'~

The local energy EL(B) and the "quantum force" FQ(R) are simple
functions of ‘ﬁ(g). Eq. (3), like Eq. (1), is a generalized
diffusion equation, now with the addition of a drift term, due to the
effect of FQ. It is Eq. (3) that we solve stochastically. Using a
Green's functioq approach, our diffusers are made to follow a "random
walk" (Markov chain) in such a way that their asymptotic distribution
is given by the steady-state solution, f,(R), of Eq. (3). Properties
of interest (such as the energy) are measured during the "walks", and

are thus averages over the distribution f_(R).

~
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ALGOR TTHM

We present here an outline of the algoritnm for performing
diffusion QMC. For more detail see Ref. 4. This algorithm is not
structured specifically for the architecture of the Cyber 205. We

will return to this point in the next section.

(0) Initialization. First generate an ensemble of NC

configurations of the N-electron system. Typically NC ~ 100-500.
These coordinates may be chosen randomly, or more efficiently from
the distribution |%(R)[%. This initial distribution is

o

f(R, t=0).

(1) Loop over blocks. In each block:

(2) Repeatedly loop over the ensemble until the time in each

configuration has reached the chosen target time. For each
member of the ensemble compute the inverse of the Slater

matrix. Then:

(3) Loop over the electrons. Compute FQ for the current
electron. Move to

ro=r *0tFy *+ X (4)

where T is the discrete time-step size, and X is a

3-dimensional Gaussian random variable with a inean of zero
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and a variance of 20T. This corresponds to the diffusive
motion. [f tne electron crosses a node, eliminate the
configuration from the ensemble and continue loop (2) over
the ensemble. Otherwise update the Slater matrix and its

inverse, and continue loop (3).

After all electrons in the current configuration have been

moved, advance the time associated with this new configuration

R by 1. Calculate EL(R ). Also calculate the branching

~

factor, or multiplicity.

(S}
g

M= exp (-t{lE_(R) * E_(R")1/2 - E]). (

Return M copies of this configuration to the ensemble. This
branching, or birth and death process, corresponds to the rate
term in Eq. (3). Weight all averages by M. Continue loop (2).
After all members of the ensemble have reached the target time, the
current block is finished. Use <EL> to update ET. Store <EL>
and the other averages. "Renormaiize" the ensemble back to its
original size Nc' (This is necessary because the population grows
or shrinks exponentially. Altnough we have endeavored to make the
exnonent close to zero [cf Eq. (5)], asymptotically at large time tne
population will either vanish or overflow the allocated storage.)
Reset all averages to zero. Continue loop (1) for the desired numoer

of blocks.

(4) Average over blocks.
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CYBER 205 IMPLEMENTATION.

The problem we chose to study is the singlet-triplet energy
splitting of the methylene molecule, CH2. CH2 is fairly typical
of the molecules we nave been studying by QMC, in terms of the number
of electrons and the number of nuclei. As a result, most of the
inner loops in this appliication are quite short. The longest inner
loop runs over the set of atomic hasis functions. With this in mind,
we present our results on the relative performance of the Cyber 205
and the VAX 11/780. To compare with the CDC 7600, we note that our

code runs almost exactly ten times faster on the 7600 than on the VAX,

We nave implemented the QMC algorithm on the Cyber 205, initially
by simply transcribing our working program from the VAX to the Cyber.
The major impediment at this stage was the lack of unformatted I/0 on
the Cyber and, even worse, its inability to handle logical records
longer than 137 bytes. After rewriting these portions of the code,

the program finally ran.

With automatic vectorization both on and off, the Cyber ran
approximately 16 times the speed of the VAX. Apparently, any
speed-up from vectorization of the longer loops was lost to the
start-up time for vectorizing the short loops. It seemed clear that
explicit vectorization was required. Thus, as our next step, all

long inner loops of constant length were written explicitly in vector
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syntax, while short constant-length loops were left as DO loops.
Most loops in the code, however, are of variable length. These were

all recoded in the form:
IF (length .GT. C¥*) THEN
[Vector code]

ELSE

[Scalar code]
END IF.

We present in Figure 1 our performance results as a function of
the crossover length C*. At values of C* greater than 26 the scalar
section of code is always being exacuted, and thus the curve flattens
out. For C* less tnan approximately 16, it appears that vector
start-up time hinders performance. The optimum crossover point
appears to be around 16. The lowest of the three curves corresponds
to the implementation described above. Subroutine calls are quite
costly on the Cyber 205. Thus in the middle curve we show the result
of removing two short subroutines (both written in IF-THEN-ELSE

form) and substituting vector code directly into the calling
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programs. The speed-up is fairly dramatic, providing a peak speed of

close to 20 times the VAX (up from 17).

Interestingly, although the compliler recognizes that A**2 should
be replaced by A*A, inside of vector code A**2 calls the float-to-an-
integer-power routine. Needless to say, this is costly. Essentially,
changing one line of vector code from A**2 to A*A led to tnhe improve-
ment shown in the top curve. Clearly the improvement is most
pronounced for small C*, where tnis line of code is being executed

more frequently.

As mentioned earlier, the longest inner loop is over the number
of atomic basis set functions, n. Traditional quantum chemistry
codes scale as n4 or n5. Thus increasing the size of the basis
set can be very costly. In our QMC approach, the algorithmic
depandence on n is linear. In Fig. 2 we plot the relative run times
as a function of basis set size on both the VAX (upper curve) and the
Cyber 205 (Tower curve). Both curves are indeed fairly linear in n.
However, the slope for the Cyber is almost flat. This smaller slope
is due to an increase in the vector length rather than an increase in

the number of machine instructions being executed. The result is a

speed enhancement of 30 over the VAX (up from 20) by n=50.

Although a factor of 30 over the VAX (or equivalently a factor

of 3 over the 7600) is certainly good, it is nowhere near our hoped
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for performance. This can be explained by the fact that even loops

of length 50 are relatively short on the Cyber 205. Possibly more
important, however, is that the relatively long inner loops constitute
only a fraction of the code being executed. Thus, truly high speed
for this kind of application requires on architectural rewrite of the

cade.

Looking over the algorithm (cf Sect. 3) it is clear that the
entire structure is highly parallel. This is a fairly general
characteristic of Monte Carlo codes. Thus, on a parallel processor
the Toop (1) over blocks can be eliminated, and each block can be
computed independently on a separate processor. There is no communi-
cation required between processors until the very end, when [step (4)]

the average over blocks is computed.

For a truly efficient Cyber 205 algorithm, however, loop (1) is
too short to vectorize, generally ranging between 10 and 100. Loop
(2) is much more desirable to vectorize, with NC ~ 100-500. To do
so, this loop must be made innermost in the new algorithm. In other
words, the entire ensemble must be treated in parallel. Furthermore,
the vector length is dynamic, since at eacn time-step the birth and
death process modifies the ensemble size. We are currently develop-
ing this fully vector code for future implementation. This code
appears to have great potential for fully exploiting the vector

capabilities of the 205.
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Finally in Table 1, we present our results on the singlet-triplet.
energy splitting of methylene, and compare these results with theory

and experiment.
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TABLE 1.

The ground-state (3B1) and first-excited state (1A]) energies of metnylene.

Method 3Bl—ener‘gy (hartrees) 1Al—energy (hartrees)
Hartree-Fock -38.9348 -38.8944
CI-SD -39.1071 -39.0956
CI-SDQ (est.) -39.122 -39.105
QMC -39.128+0.004 -39.108+0.004
Experimental -39.148 -

La, - 38 kcal/mo]

, - By energy (kcal/mole)
CI 9.9-11.3
Expt 8.5-19.6
aMC 12.3%3.4
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RELATIVE PERFORMANCE
CYBER 205 VS UAX 11,780

L
3 0 - 2 1
SCALAR-VECTOR CROSSOVER, C*

&+
&

Figure 1. Relative speeds of the Cyber 205 and the VAX 11/780 for
gquantum Monte Carlo calculations of the ground-state energy of CH2.
The crossover point C* is the vector length below which variable-
length loops are run in scaler mode. Thus, for large C* these loops
are all run in scaler mode,whereas for very small C*, vector start-
up time hinders performance. The three curves correspond to differ-
ent degrees of hand-optimization of the code. See text for details.
Note that the curves interpolating the data points are simply poly-
nomial fits to the data. The actual curve for a particular molecule
is a set of steps at the values of the various loop lengths that
occur in the problem. The fits can be considered an "average"
behavior for this type of calculation.
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CPU TIME vs VECTOR LENGTH
TIME (ARBITRARY UNITS)
a
—
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Figure 2. CPU time versus the number of atomic basis set functions,
n. Conventional codes scale as n* with A =~ 4-6 while QMC scales
simply as n. Both the VAX and Cyber show this n dependence clearly.
However, the slope for the Cyber is almost zero. At n=16 the Cyber
is 20 times the speed of the VAX while at n=50 the Cyber is 30

times faster.
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1. Introduction

Many important results for quantum field theories in general and, in
particular, for the gauge theory of strong interactions known as Quantum
Chromodynamics (QCD) have been obtained by formulating the dynamics on a
space-time Tattice. The lattice version of a quantized gauge field theory,
as proposed by Wilson [1], has the properties of introducing an ultraviolet
cut-off independently of any perturbative expansion and of preserving
manifest gauge invariance. It permits a variety of investigations by
non-perturbative techniques, strong-coupling expansions [2] and Monte
Carlo (MC) simulations [3] being the most notable ones. Monte Carlo
simulations, indeed, have probably produced the most important results
for QCD, being able to probe the structure of the theory in the domain
where the transition between the strong-coupling behavior at large distances
and the asymptotically-free behavior at small separation takes place.

Numerical methods must be used to explore the vary crucial domain
of intermed{ate couplings, since there are no known analytical techniques
for solving or even efficiently approximating gauge theories throughout
that region. 0On the other hand the fact that quantum fluctuations on
a finite lattice extending for n sites in four dimensions are given
by integrals of a dimensionality 4n4ng (ng is the number of independent
parameters in group space), which can easily exceed 2,000,000, leaves
importance sampling, i.e. Monte Carlo simulations, as the only calculational
possibility.

Monte Carlo calculations are of a numerical nature, and gquite
demanding on computational resources. The simulation of a system with
SU(3) gauge group (i.e. the system underlying QCD) on a lattice extending
for n sites in each of the four space-time dimensions requires storage

4

of 4n? Tlink variables, i.e. 4n’ SU(3) matrices, and the systematic
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replacement, or "upgrading", of each of these matrices with new, updated
values, for several hundred or séeveral thousand sweeps of the whole
lattice. One MC iteration is defined as a sweep of the lattice, i.e.,
one upgrade per link variable. A computation involving M MC iterations
thus implies amn® individual upgrades of SU(3) matrices. The upgrading
of each SU(3) matrix requires approximately 4,150 elementary arithmetic
operations and 180 table look-ups (if 10 attempts at changing the 1ink
variable are made for each upgrade). For a lattice large enough for
obtaining physically meaningful results, the amount of computation needed
for a Monte Carlo simulation of QCD becomes extremely high.

Because of the aforementioned difficulties, Monte Carlo simulations
of QCD have been generally limited to lattices of rather small extent,
a lattice of 84 sites already representing a large lattice with respect
to the scale of most calculations. On the other hand, with the progress
in the field, it has become apparent that one must definitely analyze
larger systems to develop confidence in the numerical results. This need
may be understood on physical grounds. If 2 GeV is considered as a
universal energy for the effects of asymptotic freedom to begin manifesting
themselves, one would 1ike the lattice spacing to be smaller than (2GeV)']
(and the corresponding ultraviolet cut-off larger than 2GeV) i.e. smaller
than 0.1fm. Conversely, if the goal of the computations is to determine
hadronic structure, the extent of the lattice should be larger than the
typical size of a hadron. Taking this size to be (minimally) 1 fm,
it becomes apparent that the parameter n ought to be larger, if possible

substantially larger, than 10. With, e.g., n =16 and M = 1000 the

12

calculation of a MC simulation requires more than 10 © operations not a

small task even for the largest machines currently available.
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The number of the data elements involved, and the amount of
computations needed for manipulating this data, makes it worth while
to investigate ways for vectorization of the code.

The purpose of this article is to illustrate the vectorization and
implementation on the CDC CYBER 205 of a code for Monte Carlo simulations
of the SU(3) lattice gauge theory. (For previous implementations of
vectorized code see Ref.4.) As will be discussed in more detail in
the final section of this paper, the characteristics and performance are
such that 1 MC iteration of a 164 lattice can be done in 10.72 seconds
(corresponding to an upgrade time of 40.9 usec per SU(3) link variable).
Thus, 16% and larger lattices can be considered for meaningful
simulations of QCD. While we describe in this article the program for
the basic Monte Carlo algorithm, we are currently using it, together
with other vectorized codes, for a reevaluation on a large lattice, of
several quantities of theoretical and phenomenological interest in QCD.
The results of these investigations will be presented separately [5].
Here we proceed with a description of the computational algorithm and
an outline of its vectorization in Sect. 2, with a more detailed
account of the program in Sect. 3 and a summary of performance data in

Sect. 4.

2. The Monte Carlo Algorithm
We consider a hypercubical lattice of n. sites in each of the
three spatial directions and Ny sites in the temporal one. The
dynamical variables of the SU(3) gauge theory are 3x3 unitary-
3

unimodular complex matrices, which are associated with the 4nsr1t Tinks

of the lattice. We denote by Ui the matrix associated with the
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oriented link coming out of the lattice site of (integer) coordinates

X = (x],xz,x3,x4) in the direction u (u=1,2,3,4). The goal of the
Monte Carlo algorithm is to produce a stochastic sequence of configurations
of the system C(i), (a configuration being defined as the collection

of all Ui), such that the probability P(C) of encountering any

configuration C 1in the sequence approaches, after a reasonable

equilibriation time, the distribution
P(C) a exp{-S(C)} s (2.1)

where S s the action of the configuration C in that sequence. S
is given by a sum over plaquette variables p , a plaquette being an

oriented square of the lattice defined by the origin x and two directions

p and v
]
= L = Z(1 - = Re T , )
S psp 8 2;5( 3 Re Tr Up) (2.2)
where
B T RTAAT P
Up = UX Ux Ux+va+qu s 2.3)

8 is the coupling parameter and : ,3 stand for unit lattice
vectors in the . and v directions, respectively. When Egn. 2.1 is satisfied,
quantum mechanical expectation values of observables &', defined rigorously

as averages over all possible configurations, namely
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@ =77 [ 1 duM) O)expl-5(U)] (2.4)
X,H X

with

f
z= (T U )expl-s(V)] (2.5)
XU
can be approximated by averages taken over the configurations generated
by the Monte Carlo algorithm:

T=Ng*N

@ =3 gty (2.6)
i=Ng+]

N0 represents the number of initial configurations discarded in order
to allow for the stochastic sequence to reach equilibrium.

In our code we implement the MC algorithm following the method of
Metropolis et al [6]. Each individual dynamical variable Ui is
replaced by a new one Gi according to the following procedure:

i) a new candidate matrix U: is obtained from UE by group muitiplication:

b u
UX = Rka ,

where Rk is an SU(3) matrix randomly selected from a prepared set

{R1,...,RM} of M matrices, to be discussed later.
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ii)  the change in action, AS induced by the variation U

is calculated:
- H u .
AS = S(Ux ,...)-S(Ux,...), (2.7)

iii) a pseudorandom number r with uniform distribution between 0

and 1 1is generated and

-
Ux = U if r< exp(-AS)
U = U otherwise.

X X

The steps i) to iii) define what is called a "hit" on one of the link
variables. These steps are repeated Nh (number of hits) times. This
completes the upgrading of one (1link) variable Ui . One MC iteration
(or one sweep of the lattice) is executed when all the variables have
been processed in this manner.

A crucial consideration for the whole algorithm and also for its
vectorization is that the calculation of the variation of the action
AS involves only a few of the dynamical variables apart from Us
itself, namely those defined on the remaining 1inks of the six
plaquettes which share the 1ink between x and x+: . It is
convenient to be slightly detailed at this point and to introduce some
terminology. Given the link from x to x+i there are three

“forward" plaquettes incident on it, namely those with vertices
X, X+u, Xx+u+v and X+0 s
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(v taking the three values # u) and three "backward" plaquettes,

namely those with vertices
X, x+u, x+u-v and x-v ,

(see Fig. 1).

We shall define as the "force" acting on Ui the sum of the expressions

wv o ot M Y
Ff,x Ux+u Uesd Uy (2.8)

(corresponding to the forward plaquettes) and

T N NT SR TLN
Fb,x Ux+u-va-va-v (2.9)

(corresponding to the backward plaquettes) over the three values of

V#u

W uv KV
Fx = Viu(Ff’x + Fb,x) ; (2.10)

One can easily convince oneself that of the terms contributing to the

action in Egn. 2.2 all those containing UE can be written in the form

81 - Jj ReTr(FTU)] (2.11)

and therefore
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= .8 uto g L e
s = - 3 ReTr[Fl (U - UZ)] . (2.12)

Thus, we become aware of two fundamental facts:

i) once the force FE is calculated, the Nh subsequent hits on

the link variable UE can be done without any further recourse to the
values of other U variables.

ii) several upgradings can be done in parallel, provided only that the

forces Fi required for the computation do not involve any of the Ui

variables that are simultaneously upgraded.

While point i) is relevant for any MC simulation, point ii) acguires
particular importance if one wants to write a vectorized code. Indeed,
as we shall show, all Ui variables with fixed 1 can be separated into
two sets such that the forces for one set only involve elements of the other.
Then, all the Ui variables belonging to one set can be grouped together
in an array and upgraded simultaneously. Finally one proceeds to upgrade
the elements of the other set (the red-black or checkerboard algorithm
(4]). We will see in the next section that the ability to separate
the link variables into two independent sets is a key to efficient vector-

ization.

3. The Vectorized Implementation of the Algorithm
The previous discussion has demonstrated that Monte Carlo lattice
gauge theories are worthy candidates for vector processing. Until recently,

however, people were doubtful as to whether the vector capabilities of current
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supercomputers can be effectively utilized for such applications. The
main source for this skepticism is the inherent conflict between random
access to data, an integral part of a Monte Carlo process, and the strict
order of data elements required for pipelined computations. In other words,
unless data can be "gathered" at rates comparable to computation rates no
efficient vectorization can be achieved.

One of the major strengths of the CDC CYBER 205, and what makes it
a particularly powerful Monte Carlo machine, is the ability to order a
random collection of data by means of a vector instruction, namely, the
“Gather" instructibn. This instruction is equivalent to a series of
random, or, indirect "load" operations on a serial computer. The
Gather instruction uses a vector of integers as an "index-list"
pointing to the elements to be fetched. These elements are stored
in the order they have been encountered into an output vector. The
result rate for the Gather operation is one element every 1.25
cycles (a cycle, or clock-period on the CDC CYBER 205 is 20 nonoseconds).
For a comparison, note that the floating-point arithmetic rate, excluding
division, is one element every cycle per pipe for 64-bit operands. The
CYBER 205 hardware also supports 32-bit operations with twice the
result rate for vector floating-point operations. For example, on a
two pipe machine 32-bit arithmetic is performed at a rate of 5 nsec¢
per result, or 200 MFLOPS.

The effective utilization of the computational tools build into
the vector processor is closely related to the data structure, as are
most of the important algorithmic decisions. It is, therefore,
appropriate, at this point, to discuss the memory requirements. A

3x3 complex matrix is represented by 18 real numbers. The constraints
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of being unitary and unimodular reduce the number of independent para-
meters to 8, but such a minimal representation of the Uz variables
implies a substantial increase in the computational complexity. To obtain
optimal performance it is useful to keep all the 18 values representing
the real and imaginary parts of the elements of Ui . For a lattice
with ng =Ny = 16 a configuration will be defined by 18 x 4 x 164 =
4.718592 million values, which may be more than can be put in the fast
memory of many computer systems. Fortunately, the sequential nature of
the MC algorithm suggests that only a fraction of the varjables need

to be in memory at any one time. The others can be kept on disk.

The factors which determine an optimal size for the partition between
variables in memory and on disk are the following:

i) the partition should not make the code unnecessarily complicated;

i1} the I/0 operations should not take longer than the actual computations;
iii)sufficiently long vectors should be available.

On the basis of the above requirements we decided to upgrade one

3
s

time coordinate Xg o and then to proceed to the next X4 etc. We

space at a time, i.e. to upgrade all the 4n~ variables Ui with fixed
shall refer to this procedure as time-slicing and to the collection of
variables with fixed time coordinate X4 as one time-slice of the system.
If the variables with a given xq = t are being upgraded, the
calculation of the force requires knowledge of the UY with x, = t-1,
X4 = t and Xq = t+1 . Thus 3 time slices need to be in memory
throughout this stage of the calculation. As a matter of fact, since

I/0 operations can proceed independently from CPU operations, it
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is possible to achieve concurrency of 1/0 and CPU operations if

extra memory buffer space is allocated for holding the Xq = t-2 slice
(to be written out), and the Xg = t+2 slice (to be read in). The
conventional way of implementing concurrent I/0 is to allocate space

for two more slices. The resulting five slices in memory act as a
circular buffer as shown in Fig. 2. However, the virtual memory hardware
on the CDC CYBER 205, and the supporting software provide the capability
to swap data between disk and memory. Hence, the memory area of one
slice only is needed to write out the Xq = t-2 slice, and read in

the Xy = t+2 slice. Consequently, the total memory requirements for
the 1ink variables are thus 4 x ng x 4 x 18 locations. Allowing for some
additional work-space we find that lattices with ng = 16 can be
considered in a machine with 2m words (16m bytes) in full precision
(64-bit words) and ng = 20 in half precision (32-bit words). The length
in time does not constitute a problem any longer and lattices with any Ny
may be simulated.

With the slicing mechanism in place we now turn to vectorization
aspects of the code. In Sec. 2, the Red-Black ordering was introduced.
The motivation for this choice merits some discussion. The computation
involves, mainly, matrix multiplications. This operation is easily
vectorized, but the matrices concerned are 3x3 matrices, and the resulting
vectors are going to be 3 elements long. For efficiently vectorized code
one needs to seek longer vectors. This results from the observation

that the timing formula for a vector instruction may be written as

(Start-up + a-N) cycles (3.1)
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where the start-up time is a constant, independent of the vector length.
It amounts to aligning the input and output streams, filling up the
pipelines up to the point where the first result is available and storing
the last result. The start-up time is also independent of the number of
pipelines and whether 64-bit or 32-bit arithmetic is performed. On the
CDC CYBER 205 it amounts to about 50 cycles, or 1 usec. The "a-N" temm
is known as the "stream time". N 1is the number of elements in the vector,
so that the stream time is proportional to the vector length. o 1is a
constant associated with the number of pipelines and the arithmetic mode.
Table 3.1 contains the a values for some relevant circumstances.
It is now obvious that high performance is achieved by minimizing the number
of "start-ups" as a consequence of using longer vectors, or, increasing
N for each vector operation.

The SU(3) matrices are too small as an object for vectorization;

3

however, there are ng such matrices in every time slice. One cannot

use all of these link values simultaneously because -
i) updating each link requires all its immediate neighbors, and

ji) the correct convergence of the Metropolis process depends upon

using "new" values as soon as they are available.
The Red-Black (checker-board) ordering resolves this apparent recursive
relationship. The separation of the Ui variables into two sets, for
each value of u and at fixed Xg s is achieved by putting in the two
sets all the variables belonging to links originating from odd and even
sites, reépective]y, f.e. with X3 + x5, + x3 =1 or 0 (mod 2). This
assures the independence of the forces Fi from the variables Ui being
upgraded. On a lattice with n_ = 16 the above separation gives a vector

s
length of ng/Z = 2048, sufficiently large to insure almost optimal
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performance (in fact, 91% and 95% in 32-bit and 64-bit arithmetic,
respectively). The calculation of the force FE requires knowledge
of the Ui variables associated with links neighboring the one under
consideration. Because of boundary conditions, which we take to be periodic,
the variables which enter the calculation of Fﬁ will not, in general,
have a simple location-index relative to UE in the array of dimension
ng/z . This is easily remedied by the introduction of auxiliary
integer-valued arrays, where the indices of the various neighbors of
Ui are prestored. The Gather instruction plays a crucial role in the
way these index arrays are used. When F: is evaluated, all the
needed variables are gathered into temporary arrays, so that the indices
of all elements entering into the computation of Fi are the same, and
this proceeds in a fully vectorized manner.

Once the Fi's are determined the algorithm for the upgrading
of all the Ui (in the same set) 1is straightforward and completely
vectorizable. The matrices R which are used for finding the new
candidates Uil , are Gathered according to an array of indices extracted
at random from a table. The table contains M SU(3) matrices which have
a distribution centered around the identity of the group and are obtained
in the following fashion. For each value of i between 1 and M/2
(M must be even) an eight component vector Vi with approximately

2

gaussian distribution and V> = 1 is pseodoramdomly generated. The

fourth-order approximation to Ri is given by

2 a3 4
0 - , A iA A
Ri—T*+iA-7 -3+
(3.2)
~ exp(iA) ,
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where

(3.3)

A are Gell-Mann's matrices (i.e., a set of generators of the Lie

algebra of SU(3)) and b

of the distribution. The final value for R.

i

R? to a unitary-unimodular matrix.

three columns of an SU(3) matrix by ?],Fé and

of being unitary and unimodular is expressed by

-

2 = 2
BINERDAEE
ry - rE =0

and ry = (F]XFE)*

Given a matrix RO with the first two columns ?? and

??x?g # 0 , we shall define as the normalized form of R

R with columns

7y = (79 - I AR (R 7)1
— —_ —_ *
and ry = (r]xrz)
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is a real parameter specifying the spread
is obtained by normalizing
In general, if we denote the

Fé the constraint

(3.4)
=0 .
ro o with
0 the matrix
(3.5)



The reason for the nonmenclature is due to the fact that, if RO differs
slightly from a unitary-unimodular matrix, e.g. as a consequence of
roundoff errors, then R is an SU(3) matrix close in value to RO
Thus, the approximately unitary-unimodular matrix R? obtained by
truncated exponentiation in Eqn. 3.2 is converted to a proper SU(3)

matrix Ri by normalization. The last M/2 matrices are obtained by

(3.6)

o]
"
X
—_
)
1A
—-—

| A

N
—

so as to insure that, together with any given matrix Ri , the inverse
should also belong to the table.

The procedure for normalizing the SU(3) matrices of the random
table, as described above, is also applied, every few iterations, to the
1ink matrices. This is done to insure that the group symmetry of the
matrices is preserved regardiess of rounding errors which may be
introduced by the hardware after many arithmetic operations. This
renormalization process is particularly important when the computations
are performed using low precision arithmetic. It gives us confidence, which
was also tested and verified, in using 32-bit arithmetic for our calcul-
ations on the CDC CYBER 205.

Once Ugl is determined, using the table of random SU(3)
matrices, the action difference is obtained by calculating, separately,

L

T ut L’
ReTr(rx Ux) and ReTr(Fx UX )

(notice that ReTr(A'B) 1is the vector product of the arrays containing
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the real and imaginary parts of A and B) , forming an array with
exp(-AS) , comparing with an array of pseudorandom numbers and
accepting or rejecting the change, via a masking operation, according
to the outcome of the vectorized comparison between the random numbers
and the exponentiated action differences. These steps are repeated

for a prefixed number of hits before commencing the upgrade of the other
set or the variéb]es corresponding to different directions.

The conditional acceptance of elements in a vector, or, the masking
operation referred to above, is handled through the usage of a "bit-vector"
(the CDC CYBER 205 is bit addressable and the software allows the Fortran
user to use this feature). It is exploited as a part of the vector
instruction, and inhibits storing results where zeros are encountered
in the bit-vector.

The reader should by now realize that many thousands of random
numbers are required for each iteration. The conventional congruent

method for generating random numbers is recursive, and may be described

by
Yipp = (@y;y)mod(b) (3.7)

where a 1is the "multiplier" and b 1is determined so as Yie will
be approximately the lower half of the coefficient of the product ary;
The nature of this calculation suggests that in order to produce N
random numbers one has to repeat it serially N times. There is,
however, a way to reproduce the same sequence of N numbers in

parallel, using vector instructions [7]. Define a new multiplier by
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A = (aV)mod(b)
= (...(axa)mod(b)+»a)mod(b)...#»a)mod(b) (3.8)
and Jet
Yy = (yyaYpseeiayy) (3.9)

be the vector containing the first N random numbers.

Then

Y

Yipp = (AxY;)mod(b) (3.10)

reproduces the same sequence of random numbers one gets with a
repeated application of Eqn. 3.7 (the computation of Egn. 3.10 requires
only 3 vector operations on the CDC CYBER 205).

To conclude this section, let us discuss the way matrix multiplication
is done, being the most time-consuming aspect of the computation . First,
the reader will remember that we do not vectorize the matrix multiplication
as such, but, rather, perform the operations on many matrices in parallel,
where for each matrix the "scalar" sequence of operations is followed.

When computing the products of two SU(3) matrices, one need not
evaluate all the columns of the result, since the third column of the
product matrix (which is again unitary-unimodular) is related to the
first two by Egn. 3.4. In the code we have exploited this fact whenever
possible. It is particularly advantageous when several SU(3) matrices
must be multiplied together, since one may 1imit the calculations to
two columns out of three in all intermediate products and simply

reconstruct the third column of the final result as shown in Egn. 3.4.
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Finally, all complex arithmetic has been done in terms of real
variables, separating real and imaginary parts (which would aiso
resulit in a more efficient code for a scalar machine), and we have

used the identity
(A+iB)(C+i D) = (A+B)(C-D)-BC + AD + i(BC+AD) (3.11)

to perform the product of two complex matrices in terms of three real
multiplications and five real matrix additions. Using complex
arithmetic the product of two matrices would require four real
multiplications and two additions. Due to the fact that matrix
multiplication requires 2N3 operations, where N is the dimension
of the matrix, and matrix addition requires only N2 operations, our
method pays off even for N = 3 .

A schematic outline of the flow of the calculations is shown

in Fig. 3.

4, Performance and Timings

The figures quoted here are based on runs executed on a two-pipe,
2m 64-bit words CDC CYBER 205. They apply to a 164 lattice (ns = 16, Ny = 16},
SU(3) gauge theory with 10 hits per link upgrade {(uniess stated explicitly
otherwise). We present performance figures for both 64-bit and 32-bit
arithmetic operations. In botﬁ modes the exponentiation and the generation
of random numbers were carried out using 64-bit arithmetic. It should be
noted here that due to our slicing mechanism the 32-bit version requires
real memory of only 852,000 words (64-bit words, or 6.8m bytes), so it

actually fits comfortably on a Tm words system. With these parameters
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the code performs at 98% CPU utilization. The 64-bit version requires,
of course, twice as much memory.

In Table 4.1 we give the percentage of the execution time for the
two arithmetic modes spent in the force (FE) and the Metropolis
updating calculations. It becomes clear from these figures why it is
worth while using a single force computation for a number of attempts at
updating (rather than the one attempt proposed by the original Metropolis
method).

It should be added here the normalization procedure discussed in
Sec. 3, performed every 5 iterations adds only 0.74% and 0.59% in
64-bit and 32-bit modes, respectively, to the total execution time.

Table 4.2 presents a percentage breakdown of the code by operation
type. The reader will notice that the Gather, random number generation
and the exponentiation operations are more heavily weighted in the 32-bit
mode compared with that of the 64-bit mode. These three types of
operations perform at the same rate in both modes. The last two
execute in 64-bit mode in both versions of the code. The Gather instruction
performs at the same rate regardless of whether the operands are 64-bit
or 32-bit variables. This is because the performance of the Gather
operation is driven by memory access (and not by computation complexity).
The matrix multiplication, being made up of floating-point operations
only, executes at near peak rate of 95 MFLOPS and 182 MFLOPS for the
64-bit and 32-bit modes,respectively. The effect of vectorizing the
random number generator can be illustrated by noting that this operation
amounted to 6% (64-bit) and 11% (32-bit) of the total time when it was
not vectorized. The "action" involves taking the real part of the
trace of products of SU(3) matrices (purely floating-point operations).

The "“acceptance" is the portion of the code where the conditional acceptance
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of new Ui matrices occurs under the control of a bit-vector
created for that purpose.

The actual time for one iteration of the 16% lattice
with 10 hits is 16127 secs. (64-bit) and 10.72 secs. (32-bit). This
amounts to a substained performance rate of 66.8 MFLOPS (64-bit) and
101.5 MFLOPS (32-bit). Another way, commonly used by physicists, to
express the performance of Monte Carlo lattice gauge theories implemented
on a computer system, is the link update time, i.e., the time needed
to update one link of the lattice once. This measure is useful for
comparisons since it is independent of the lattice size. The link
update times (in psecs.) for our implementation are given in Table 4.3.
These figures may be compared to a 1ink update time of about 1,100

usecs on the CDC 7600 computer system with a highly optimized code.
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Table 3.1. Stream rate proportionality factor (a) .

Arithmetic
No. ,
of pipes mode 64-bit 32-bit
2 1/2 174
1/4 1/8
Table 4.1. Breakdown by percentage of sections
of code.
T |
| s4-bit |  32-bit |
: i i
force i 43.49 ; 42.46 ?
indate | 56.40 . 57.40 |

Table 4.2. Breakdown by percentage of the main operation

types.
operation type 64-bit 32-bit
matrix muitiplication 58.33 47.05
Gather 20.78 29.27
random number generator 0.95 1.83
expanentiation 7.43 11.72
action 5.93 4.70
acceptance 3.62 3.01

Table 4.3. The upgrades times for a link (in usecs).

number of hits 64-bit 32-bit
10 62.1 40.9
8 55.1 36.3
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Figure 1. "Forward" (upper half) and
"backward" (lower half) plaquettes in the

u-v plane, where x = (xl,xz,x3,x4) is a

point in our four-dimensional lattice.
This is one out of three such planes which
can be formed in a four-dimensional space.
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FLOW CHART

new iteration

NEW TABLE
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INITIATE PAGING

new time-slice

"colors"/directions (8)

"FORCE" MATRICES

Loop over & plaquettes
"Gather",Matrix Multiply ,
"old" action Wy oy 8

IO Thits
g

METROPOLIS UPGRADING

Random Gather from Table
Matrix Multiply— "new" action
Weight Factor (exponential)
Acceptance Test:
Random-=bit vector = update

SUM ACTION

RENORMALIZE
(every 5 iterations)

L

Figure 3. Schematic description of the computational
process.
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* Adapting and designing mathematical software to achieve
optimum performance on the CYBER 205 will be discussed

* Comments and observations are made in 1light of recent work
done at the Center for Numerical Analysis on
- modifying the ITPACK software package

- writing new software for vector supercomputers
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Research goal - develop very efficient vector algorithms and
software for solving large sparse linear systems
using iterative methods

(older) SCALAR APPROACH - develop algorithms that minimize
either number of iterations or arithmetic operations

* Not necessarily the correct approach for vector computers

(newer) VECTOR APPROACH - avoid operations such as table
lookups, indirect addressing, etc. +that are inefficient on a
vector computer, i.e., non-vectorizable

* Fully vectorizable code may involve more arithmetic operations
but can be executed at a very high rate of speed *

* Advances 1in high performance computers and in computer
architecture necessitates additional research in mathematical
software to find suitable algorithms for the supercomputers of
today and of the future *
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THE VECTORIZATION OF THE ITPACK SOFTWARE PACKAGE

Scalar ITPACK:

package for solving large sparse linear systems
7 iterative algorithms available

sparse storage format used

Kincaid, Respess, Young, & Grimes [1982]

ITPACK 2C (ALGORITHM 586) in T.0.M.S.
"Transactions on Mathematical Software"

VECTORIZATION:

- First step: 1look for obvious vectorization changes since this
was a large package of over 11,000 lines of code and we did not
want to completely rewrite it

- Vector ITPACK (standard Fortran version): used a minimum of

vector syntax available in CYBER 200 Fortran for a portable
version of Vector ITPACK 2C

- Vector ITPACK (CYBER 205 version): a modified version of
Vector ITPACK written wusing CYBER 200 Fortran vector syntax
where possible
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ADAPTING SCALAR ITPACK 2C FOR HIGH PERFORMANCE COMPUTERS

- DO loops which had been unrolled for scalar optimization were
not recognized as vectorizable by optimizing vector compilers

-~ These 1loops were rewritten as simple tight DO loops so that
they would be executed in vector mode

- The sparse storage scheme used for the matrix in Scalar ITPACK
was Tow-oriented and inhibited vectorization (The IA-JA-A data
structure as in Yale software YSMP used.)

-~ A column-oriented data structure was used in Vector ITPACK +to
increase vectorization (The COEF-JCOEF data structure as in
Purdue software ELLPACK used.)

- The version of Vector ITPACK specifically for the CYBER 205
was tested on the CYBER 205 at Colorado State University (CSU)
and has been added to their Program Library

- The improvements in time of the vector syntax version over the
one 1in standard Fortran were not as significant as we had
anticipated

- The automatic vectorization available in the CYBER 205 Fortran
compiler did a very good job of optimization and vectorization

Moral: vector syntax best when used in designing and writing
new code
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PROBLEM:
u + 2 u =0 on S=(0,1)x(0,1)

u=1+Xxy on boundary of S

Discretization: standard 5-point finite difference formula

-6
Stopping Criterion: 5.0 x 10

Mesh Sizes: 1/16; 1/32; 1/64; 1/128; 1/256

Number of Unknowns: 225; 961; 3969; 16,129; 65,025
Computer: CSU CYBER 205

CYBER 200 Fortran: Large pages, unsafe vectorization

Scalar ITPACK (unrolled DO-loops & YALE storage used;
T.0.M.S. version)

Modified Scalar ITPACK (rolled DO-loops & minor changes:
Q8SDOT used)

Vector ITPACK (rolled DO-loops, ELLPACK storage, &
CYBER 200 Fortran vector syntax used)
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TABLE I: CHANGING SPARSE STORAGE
(Iteration Times in Seconds with H = 1/64)

Method Iterations Scalar Modified Vector
ITPACK Scalar ITPACK ITPACK

(Natural Ordering)

JACOBI CG 178 2.509 2.184 . 262
JACOBI SI 362 5.214 4.480 .580
SOR 216 4.700 4.597 2,453
SSOR CG 34 1.976 1.788 .831
SSOR SI 43 1.791 1.682 .970
(Red-Black Ordering)

JACOBI CG 178 2.402 2.056 .268
JACOBI SI 362 4.987 4.209 .590
SOR 196 4.110 4.017 .523
SSOR CG 341 20.327 18.472 2.177
SSOR SI 196 7.734 6.690 .701
RS CG 90 1.445 1.358 .118
RS SI 182 2.980 2.779 .223
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TABLE II: CHANGING PROBLEM SIZE

(Number of Iterations)

Method H= 1/16

(Natural Ordering)

JACOBI CG 49
JACOBI SI b€
SOR 50
SSOR CG 16
SSOR SI 19

(Red-Black Ordering)

JACOBI CG 49
JACOBI SI 56
SCOR 52
SSOR CG 34
SSOR SI 51
RS CG 25
RS SI 42

1/32

94
179
104

22

94
179
101

62
107

48

88
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1/64

178
362
216
34
43

178
362
196
341
196

90
182

1/128

330
772
422
51
61

330
772
396
1058
373
167
375

1/256

629
1372
872
73
88

629
1372
839
3061
752
321
704



TABLE III: CHANGING PROBLEM SIZE

(Iteration Time in Seconds)

Method H= 1/16

(Natural Ordering)

JACOBI CG .010
JACOBI SI .014
SOR .035
SSOR CG . 027
SSOR S1I .029

(Red-Black Ordering)

JACOBI CG .010
JACOBI SI .013
SOR .011
SSOR CG .018
SSOR SI .021
RS CG .006
RS SI .008

1/32

.040
.091
.292
.133
.163

.041
.091
.066
.075
.113
.019
.033
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1/64

.251
.560
.446
.828
. 967

. 287
.571
.475
.105
.663
.109
.207

1/128

LRI

-

. 800
.196
.828
.953
.583

. 847
277
.028
.779
.452
.757
.557

1/256

14,
28.
. 940
28.
32.

164

14.
.394

29

34.
302.
36.
.981
11.

115
741

187
249

511
939
712
083
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COMMENTS ON TABLE I

- Two versions of Scalar ITPACK were compared with the CYBER 205
version of Vector ITPACK

— Mesh size H = 1/64 used for all runs

- Scalar ITPACK: unrolled DO-loops used 1in basic vector
operations for increased optimization on scalar computers

- Modified Scalar ITPACK: standard tight DO-loops used

- Vector Fortran compiler recognizes tight loops as vectorizable
but not unrolled loops

- A slight increase in speed from Scalar to Modified Scalar
version

- Vector ITPACK uses tight loops, Fortran vector syntax, and a
column-oriented sparse storage scheme

- This data structure allows the matrix-vector product operation
to vectorize to a great extent

* Considerable improvement in performance from scalar to vector
version of ITPACK *
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COMMENTS ON TABLE II & III

- These tables are results of using Vector ITPACK on the same
problem with varying mesh sizes

- The number of iterations increase as the problem size increase

- Comparisons based on number of iterations misleading as to the
best method!

-~ On scalar computers, SOR with natural ordering is widely used
while JACOBI 1s not but on vector computers

- Most efficient method on the CYBER 205:
JACOBI CG method when natural ordering 1is used

RS CG when red-black ordering is used
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SCALAR ITPACK vs. VECTOR ITPACK

- Total time for each method is not significantly greater than
the diteration time in the vector version (this was not the case
in the scalar version)

- Only N additional workspace locations required for the vector
version over the scalar version

- Faster scaling and permuting of the system with the
column-oriented sparse storage scheme

- Improved performance of the SSOR methods with the red-black

ordering in the vector version in spite of the greater number of
iterations
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A PRE-CONDITIONED CONJUGATE GRADIENT PACKAGE
Thomas C. Oppe, a graduate student at. UT Austin, is working on
a package which allows flexibility 1in +the choice of basic
methods and acceleration schemes.

The package has been designed to make the addition of further
preconditionings and acceleration schemes easy.

Particular attention has been paid ¢to the choice of matrix
storage schemes with a view to maximizing vectorizability.

Features of Package:

- Conjugate Gradient Acceleration

- Pre-conditioning matrix Q (Jacobi, Symmetric  Successive
Overrelaxation, Reduced System, Incomplete Cholesky, Modified
Incomplete Cholesky, Neumann Polynomial, Parameterized

Polynomials, Other pre tonditionings planned such as Incomplete
Block Cyclic Reduction)

- Realistic Stopping Tests

- Automatic estimation of iteration parameters with adaptive
procedures

- Two possible data structures allowed
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DATA STRUCTURES

Data structures which allow vectorization to varying degree:

EXAMPLE:
4 -1 -2 0
A= -1 4 0 -2
-2 0 4 -1
0 -2 -1 4

ELLPACK Data Structure:

4 -1 -2 1 2 3
COEF =) 4 -2 -1 JCOEF ={2 4 1
4 -1 -2 3 4 1
4 -2 -1 4 2 3

- matrix-vector product vectorizes with the wuse of gathering
routines

~ operations such as forward (back) substitutions using lower
(upper) triangular matrices do not vectorize

DIAGONAL Data Structure:

4 -1 -2 JCOEF = (0, 1, 2)
COEF =1 4 0 -2

4 -1 *

4 * *

- the matrix-vector product operation vectorizes without the use
of gathering routines

- . operations such as forward (back) substitution and
factorizations vectorize to some extent
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Abstract

Two of the most challenging problems of Orgamo-
moetallic chemistry (loosely defined) asre pollution
control with the large space velocities needed and nit-
rogen fixstionm, s process so capably done by nature and
so relatively poorly done by man (industry). For a
computational chemist these problems are om the fringe
of what is possible with conventional computers (large
models needed and accurate energetics required). A
summaery of the algorithmic modification needed to
address these problems on a2 vector processor such as the
Cyber 205 and a sketch of ouar findings to date on deNOx

catalysis and nitrogen fixation are presented.
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Introduction

Two of the most challenging problems in Organometallic chem-
istry (loosely defined) are pollution control with the large
space velocities needed and nitrogen fixatiomn, a process so
capably done by nature and so relatively poorly done by man
(industry). For a computational chemist these problems (and
other similar problems) are on the fringe of what is possible
with conventional computers (large models needed and accurate
energetics required)., The advent of vector procecssors such as
the Cyber 205 is making such studies feasible. A summary of the
algorithmic modification needed to address these problems on a
vector processor is presented in sectiom I, a sketch of the
findings to date for deNOx catalysis is presented in section
IT,and finally a sketch of the nitrogem fixation results is
presented in sectiom III.

I. Algorithmic Modification.

The advent of vector processors is leading to a reexamination
of fundamental computational slgorithms of general use to comp-
utational chemists and the redesign of large scale codes. The
present work illustrates both processes for the Cyber 205 comp-
uter. Reexamination of fundamental algorithms is illustrated
with an examination of the similarity transform, a matrix oper-
ation of use to computational chemists. Large scale code rede-
sign is examined through the implementation of a highly vec-
torized MC-SCF code,

A. Similarity Transform., A common sequence of matrix operations
is the similarity transform
c = AT B a (1).
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For computational chemistry applications the matrices B and C are
usually symmetric and generally stored in lower diagonal form, If
the initial B matrix is expanded from upper diagonal form to full
matrix representation vector operations are possible for both
matrix multiplications. The linked triad instruction om the Cyber
205 is utilized for the first matrix multiplication and a1 vector
dot product operation is used for the second matrix multipli-
cation. In primciple one could transpose matrix A and to use the
linked triad instruction for both matrix multiplications;
however, in this case since we only want slightly more than half
of the final results the vector dot product is preferable as it
permits selective manipulation of the column indices I and 7J. As
is apparent from Table I the vectorized matrix transformation
represents a substantial improvement over scalar mode with
enhancements ranging from a factor of 10 to a factor of 40. Note
for the 300x300 matrix case we are still approximately a factor
of 2 off the maximum rate for the Cyber 205. The consideration
of an algorithm where several matrices are transformed at once is
in order. In additionm it should be noted from Table I that the
expansion from lower diagonal form does not add a significant
cost (less tham 10 percent). Finally, it should be apparent that
the MFLOPS rate will be independent of the number of orbitals
involved (indices I and J); the vectorized loops rum over number
of functions not orbitals (indices K and L).

B. SCF Coding Comsiderations. The fundamental kernel of self

11.2

consistent field (SCF) codes in genera is the energy

expression
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n - n s o
E®l = 3 o} my; ¢+ pp{Cixlin) (5),

1, 1,)]
k.1
where
m s -
= 1
hy ;o= 2 Cucd X lnlxpd (6)
H,v
S cickeicl L
(iklj1) = vE cickeicl «x, (1Xe(2) I, IX (DX (2> (D
p,v,0,n

HIH

The integrals (Xulhlxv> and (analr zlxvxn> need only be
evaluated once (for a given geometric point), stored conven-—
iently, and repeatively accessed during the orbital coefficient
(Ci) and density matrix element LD};Di{) optimization stages.
For the Restricted Hartree Fock (RHF) wavefunction Di = 2, Dig =
2, D}{ = =~1, and the remaining terms are zero.1 For wave-
functions beyond RHF the wavefunction optimizationm step repre-
sents a vast majority of the time needed to variationally deter-—
mine E, that is, the calculation of the xu integrals is usually
relatively insignificant.z For this reasonm initial vectorization
efforts have concentrated on enhancing the time intensive stages
of an MCSCF (multiconfiguration SCF) program. It is generally
accepted2 that one of the most time intensive steps of a general

MCSCF code is the 4 index transformation needed to convert the Xu

integrals to Oi integrals where

i
oi ’zpcuxu (5).
On scalar processors only the unique integrals are stored (the
Canonical list) and the loops are structured so as to minimize

the number of multiplications performed. On a vector processor
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such as the Cyber 205 this step simply amounts to two sequential
applications of the matrix transformation described in (1). This
transformation will proceed at vector speed provided that for a
given ij pair all k1 integrals are available for k>1 (this
corresponds to an effective doubling of the integral file from
its canonical length). This expansion of the canonical integral
tape is accomplished through a straightforward two level bin sort
written to take advantage of the 2 million 64 bit words available
on the éyber 2053. Since the vectorizable portions of this
integral transform are contained in the matrix transform
discussed above, the timing information in Table I applies here.
Four index transformations for 50 basis functions will proceed at
28 MFLOPS and 300 basis function transformatioms in general will
achieve 82 MFLOPS. Enhancements over scalar computation on the
Cyber 205 will range from a factor of 9 to a factor of 34 for 50
to 300 _bnsis fanctions, For example, a full integral
transformation for 50 basis functions will maximumly take 28
seconds and for 100 basis functions 10 minutes on the Cyber 2035,
For a wide class of useful wavefunctions (open—shell HF and
perfect pairing—generalized valence bond [GVB-PP] are two sach
examples) the one— and two— electron density matrices D} and Di{

1

are expressible in diagonal form:; that is, the only nonzero

elements are

i, ij o ij =
Di Zfi, Dij 'ij‘ and Dji bij (6).
The energy expresion (2) simplifies to
n n
E =2} £.hy; + 3y (a;;F,. + b K0 (7).
1 1,)
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where

Iij = (ii/jj) and xij = (ij/ij) (8)
are the usual Coulomb and exchange integrals. Restricting our
attention to this class of wavefunction leads to particumnlarly

1 partitionable into a step where

simple variational equations
occupied and virtual orbitals are mixed variationally (OCBSE)4
and a step where independent occupied orbitals are mixed through

pairwise rotations.s The OCBSE step utilizes terms

representable as a vectorizable summation of Ii eand Xi operators

X 17;1X0> and <X, 1K1 (9)
where
- i i
x 17;1x> = 3 ci,cl (uvlam)
og,n
(10).
ici
<x, Ix 13> = } cl.cl (uolvn)
g,n
That is
X, IBIX> = F a, <X 170205 + b, <X, 1K 11X (11),

i
where a set of loops can be written (which are in linked triad
form and will run at >170 MFLOPS for more than 50 basis

functions) to evaluate the Ith hamiltonian (K runs from 1 to

n{n+1)/2).
DO 300 JT=1,NHAM
A= A(I,T)
B = B(I,JT)
DO 100 K = 1, MXS (12)

100 H(K)=H(K)+A®*AJ(K,T)
DO 200 K=1, MXS
200 H(K)=H(K)+B*AK(K,T)

As the rotations step utilizes a subset of the above integrals,

the needed vectorization effort is narrowed dowan to rapidly

168



generating the terms in (10), If all o,n terms od>n are stored
for a given puv the double sums in (10) can be reduced to a single
dot product over a combined index ¥ of length a(n+1)/2

= irpv
<x, 17,135 g pirk

. (13)
- iruv
<x, 1 13> g pirk
where
i . pieid
DY Cccn
I#v = (pv/agn) (14),

K#v = ((po/vn) + (pn/ve))/2

Currently the Dé are precalculated, stored, and used for an
entire SCF iteration., Formulating the problem as inm (13) permits
vectors ranging from 1275 for 50 basis functions to 45150 for 300
basis functions., This step will function at between 80 and 100
MFLOPS representing enhancements of between 40 and 50 over scalar
computation on the Cyber 205, Table II summarizes the timing for
calculations ranging up to a 79 basis function calculation con-—
sisting of 4096 spatial configurationms; that is, a GVB-PP(12/24)

wavefunction.1

If the calcunlation were stopped after the RHF
step the SCF wounld represent less than 1% of the computational
effort. Overall the GVB(12/24) wavefunction optimization repre-—
sents 14% of the total effort. This is in sharp contrast to
computations on scalar computers where this step would account
for greater than 95% of the effort. The timing for an SCF iter-
ative cycle for three cases is broken down in Table III. Note
that the time needed to generate the terms in (13) is comparable
to that needed to diagonalize the variational hamiltonians

(OCBSE) .
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II. DeNOx Catalysis.

The catalytic reduction of mnitrogen oxides has become increa-
singly important in recent years due to legislation aimed at
reducing emission levels from noan~biological sourcoss. As Nitric
7

Oxide is the major NOx component of exhaust streams’ research has

focused on the reduction of nitric oxide. Both honogen;ous and
heterogenous deNOx studies have been performads-ll. The use of
base-metal catalysts is of particular interest due to their ready
availability and low cost. A transition metal iom of singunlsr
importance in pollution coatrol is Fe(II) either as the bdunlk
oxide or ion exchanged into zeolites. These Irom systems have
been demonstrated to catelyze the conversion of amitric oxide to
nitrogen with a co—reactant such as CO or 328'9. The mechanism

12

originally proposed by Shelef and Kummer consists of a two

stage oxidation reduction sequence. The initial step involves
the coupling of two nitric oxides to form nitrous oxide plus an
Iron oxide.

2NO =3 N,0 + 'O’ (15)

The thus formed nitrous oxide is rapidly reduced by the cata-
lyst8b,8d.10'
Ny0 == N, + 'O’ (16)
Completing the cycle the Irom oxide is reduced by reactiomn with
carbon monoxide forming carbon dioxide plus the regenerated cata-
lytic site.
‘0’ + CO - CO, (17)

Efforts have primarily been directed at characterizing reac-

tion (15) as this is likely to be the kinetically most difficult
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stepsd. For homogeneous systems (15) has been suggested to
involve an intramolecular coupling of nitrosyls to form a

dinitrogen dioxide ligandll’ which rearranges to a bound cis

hyponitrite.

/.N¢° /N&o /O\N

K\N > u\l —_—— M i (18)
“ A Yo~
1 2 3

Metal hyponitrites have been established to either decompose to

nitrous oxide and the metal oxide13‘ or react with carbon

monoxide to from carbon dioxide and nitrous oxidel3b-°.

It should be stressed that transition metal dinitrogen di-
oxide complexes have never beenm isolated nor unambiguously
detected. Further, only a single mononuclear transition metal
hyponitrite complex has been idontifiedlsb.

In this section we report energetic support for the reaction
seéuenee (18) for a model Fe(II) system: the dinitrosyl complex
of Iron dichloride FeClz(NO)214. The relative enor;eticsls and
geometriesls for the chosen complex 1, its coupled cognate
dinitrogen dioxide complex 2, and the cis hyponitrite product 3,
are discussed below. We find that the coupled products are
potentially accessible; 2 is only 29 kcal/mol higher in energy
than 1 and 3 only another 19 kcal/mol higher. These species,
though unobserved, should be viable givenm anm appropriate ligand
backbone. Addition of waters of hydratiom profoundly affects the
relative energies of the hdyrated forms of 1, 2, and 3 (4, 5, and
6 respectively). We find that intermediates 5 and 6 are

thermally accessible. Intermediate 5 is 24 kcal/mol more stable
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than 4 and 6 is only 4 kcal/mol above 4, This is not suprising
as 1 is a 16 electron system, 2 is a 14 electron system, and 3 is
a 12 electron system (unusual participation by the pi lone pairs
vas not observed in the wavefunction of 3 or 6),.

A correlation of the bonding orbitals demonstrates that the
coupling reaction 1 to 2 or 4 to 5 will be thermally allowed
{occupied reactant orbitals correlate with occupied product orb-
itals17). Further, the LUMO is a non-bonding d orbital of B,
symmetry indicating that this correlatiom diagram will be valid
for systems with up to 2 more electrons. Finally, ocne of the
kRigh lying occupied orbitals is & noam-bonding A1 d orbital
suggesting that the correlation diagram will be vali? for systems
withup to two fewer electrons., Thus group VI through group VIII
metal dications are potential active catalysts.

Because Fe(II) dinitrosyls are structurally uncharacterized,
because only a single trancition metal hyponitrite complex has
been structurally characterized, and because dinitrogen dioxide
complexes are unprecedented a2 detailed discussion of the bond
distances and bond angles that were optimized is in order. Ve
find the N-Fe—~N angle for the dinitrosyl is 94.9 degrees, as
expected for a {M(NO)2) 8 system16b. The Fe—-N distance of 1,69 A
is in agreement with experimental structures for linear Iron
dinitrosyls (1.66 Als‘ to 1.71 A18b). For the dinitrogen dioxide
complex 2 we find a N-N distance of 1,53 A, longer than normal N-
N single bonds (ranging from 1.402 A to 1.492 Al%?) but still
significantly shorter thaa that for free dinitrogen dioxide (2.24

Azo). This is consistent with substantial nitrogen—nitrogen sigma
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bonding. The Fe—-N distance found for the diritrogen dioxide
complex (2,23 A) is in accord with the Fe(II) nitrogem bond
distance of 2.26 A2l in [Fe(C,HgNH) 1[Fe,(CO),,]. Finally, for
the cis hyponitrite complex 3 our Fe~-0 distance of 1.74 A
compares favorably with 1.69 A (the sum of the ionic radii for
OH™ (1.18 A) and an estimate for the ionic radius for four coor-~
dinste Fe(IV) (0.51 A)22), Our N-N distance of 1.21 A is the same
as the N-N distance determined by'x-ray crystallography for
[(PhsP)th(Nzoz)]lsb, the only structurally characterized
hyponitrite.

Summarizing, we have demonstrated that (17) is a probable
reaction sequence for group VI through group VIII transition
metal deNO, catalysts. Specifically our energetics and correla-
tion diagram su;gost that dinitrogen dioxides are thermo-
dynamically and kinetically accessible cognates of dinitrosyl
complexes., We believe that these results can be extended to
heterogeneous Fe(II) catalyzed deNO, processes as well. In fact

we speculate that the stretching frequencies observed by Hallsc

1 1

at 1917 cm” and 1815 cm - are due to bound dinitrogen dioxide
which is blue shifted relative to the free compound (which has
frequeﬁcies23 at 1870 cm~ ! and 1776 oem_ 1. Because the
coordination sphere of Fe(II) ion exchanged into zeolites is

thought24

to contain three oxygen ligands our energetics suggest
the frequencies assigned to a dinitrosyl are instead due to the
kinetically accessible and thermodynamically favored dimitrogen
dioxide moiety. Funzther, it should be noted that dinitrosyl
stretching frequencies as high as 1900 ca~1 are rare,. In

conclusion ws suggest that the kinetically (and thermodynamical-
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1y) most difficult step in (17) is the isomerization of the
dinitrogen dioxide complex 2 (or 5) to the cis hyponitrite com~
plex 3 (or 6).

ITI. Nitrogen fixation,

The fixation of dinitrogen is & reductive process of both bio-
logical and large scale industrial interest. Thermodynamically
the conversion of dinitrogen to ammonia is straightforward and
the conversion to hydrazine is feasible under high pressures
(A6298 for these processes are -7.9 kcal/mol and +22.0 kEcal/mol
respectively; if the pressure is increased to 100 atm then the
AG,9g for hydrazine formatioam is +16.7 kcal/mol),

In the known nitrogen—-fixing organisms the catalytic redunction
of dinitrogen is carried out by molybdoenzymes known as nitro-
genaseszs. These nitrogen—fixing enzymes consist of two protein
components, a Fe—-Mo protein and a Fe protein. Further, an iron-
molybdenum cofactor hss been isolated from the Fe—-Mo component
protein of mitrogenase. In fact extracts of the Mo~Fe compomnent
from inactive mutant strains of microorganisms are activated by
addition of this cofactor. Two models of the active site have
been proposed that are consistent with Mossbauver apnd EPR spectro-
scopic data2® and EXAFS analysisZ7 of the Fe-Mo cofactor,.
Unfortunately the models of such active sites synthesized to date

do not reduce dinitrogenzs-so.

Industrially, dinitrogen reduction occurs over an Iron cat~-
alyst at hish temperatures and pressures, The rate determining
31

step is either the dissociative chemisorbtion of dinitrogen

2¢ + Ny ———— 2N-* (19)
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or the simple chemisorbtion of an activated form of dinitrogen

. + Ny —— Nz-‘ (20)
Both of these processes aro.likolf followed by rapid reaction
with hydrogen (either molecular hydrogen of chemisorbed =atomic
hydrogen).

Thus, for both biological and industrial nitrification the
activation of dinitrogen is a prerequisite for reaction with
reductants such as hydrogen. Until very recently the observed
forms of dinitrogen were bound to the metal with the nitrogen~-

nitrogen multiple bond largely intact (non—-activated).

N
M=NaN M=NaN=M M| (21)
"N
7

Thus these model compounds will only reduce dinitrogen under
rather harsh conditions32.
An understanding of a recently observed dinitrogen binding mode

(analogous to organic azines)

MuN-NuM (22)

B
will provide additional insight into biological and industrial
nitrification, The recactivity and structural characteristics of

a new class of Tantalum conplexe333

suggest the bonding pattern
8 in (22). The Ta-N bond distances of 1.796 A and 1,840 A are
quite similar to those observed in normal Tantalum imido
complexes3> (1.765 A to 1.77 A). In eddition, reactioms (23) and

(24) are both obsorvod33 (reactions characteristic of metal-

ligand multiple bonding).
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M=N-R + R'2C=0 — R'2C=NR + 'M=0' (23)

M=N-N=M + 2R4C=0 —— R2C=N—N=C2R + 2'M=0' (24)

Finally, there is an observable 'activation’ of the nitrogen-

nitrogen bond (N-N bond distances of 1.282 A and 1.298 A compared
to free dinitrogen which has a N-N bond distance of 1.0976 A).

ITn this section we report energetic sapport for the kinetic
and thermodynamic accessibility of 8 for molybdenum complexes.
Our model consists of a bimetallic complex consisting of two
Molybdenumtetrackloride units bridged by a dinitrogen molecule.
For this complex we have characterized the 'reaction path’
connecting the two likely resonance structures 7 and 8

C14Mo-N=N—MoC14 e 4 C14Mo-N-N=MoC14 (25)

9 10

We find local minima characteristic of each resonance structure
indicating the 'resonance’ interaction between these two forms is
not enough to result in a single averaged strnctu:934. However,
the resonance interaction is suafficient to provide a very low
barrier interconnecting them (less thanm 1 kc2l/mol). Thermodyn-
amically we find 9 to be 20 kcal/mol more stable than 10 for the
tetrachloride ligand backbone., This thermodynamic difference
could easily be overcome by an alteratiom of the ligand backbone
and future studies will concentrate om this, Geometrically, for
9 the Mo-N distance is 2.28 A and the N—-N distance is 1,10 A and
for 10 the Mo-N distance is 1.82 A and the N-N distance 1.23 A,
This is in accord with a suggestiom that the tetrachloride

backbone does not fully activate the dinitrogen (a fully

activated N-N distance should be on the order of 1.30 A).
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Table I. Comparison of Scalar and Vector Matrix Transformations.
(for various sized matrices,

Matrix Scalar (with Opt.)
size First Second Total Expand
NzN) Nult. Mult. Time Array
50 0.041 0.083 0.124 0.063
100 0.32 0.65 0.96 0.23
150 1.07 2.58 3.64 0.51
200 2.52 6.74 9.25 1.01
250 5.39 14.35 19.74 1.83
300 9.90 27.14 37.03 2.92
Table II.
Step
Calculate
One electron
Integrals 0.13 36.4
Calculate
Two electron
Integrals 1.06 86.6
Sort Two
Electron
Integrals 0.05 14.7
Generate
Extended Huckel
Starting Guess -—--—-—- 0.8
Obtain
Hartree Fock
Energy 0.11 1.8
(10 it.)
Obtain
MC~SCF
Energy ——— ———
(10 it.)
Total Tinme 1.35 140.3
% of Time
HF 8.1 1.3
MC~-SCF -———- ———

times in seoc.)

Vector (times x 100)

First Second Total
Mult.

Malt.

0.78
3.65
9.34
19.34
33.43
§3.22

0.51
2.59
6.91
14.32
25.64
42.23

(times in seconds)

Molecule/No.

Time

1.36
6.48
16.76
34.67
60.90
109.84

Ratio
(8/V)

9.1
14.8
21.7
26.7
32.4
33.7

Timing Breakdown for MC-SCF Energy Generation.

of basis functions

MFLOPS
(vec.)

27.8
46.5
60.5
69.3
77.1
82.4

H,0/7 FeCly"(H,0),/43FeC1,(NO),/65 FeCl,y(NO),(H,0),/79

177

48.5

191.7

94.3

81.

535.5

247.7



Table III. SCF Timing Breskdown for an Individual Cycle,
(Times in seconds, rates in MFLOPS)

Wavefunction Generate Transform OCBSE Orbital Optimize Total
Description Ii and K, J'i and Ki Rotations a;.; and b.
- - J ij
Matrices Matrices
Time Rate Time Time Time Time Time
H,0 MBS HF 0.0001 4.6 0.006 0.004 ——— ———- 0.011

HF 0.0082 49.0 0.017 0.078 ———— ———— 0.177

HF 0.0310 60.6 0,034 0.241 ——— ——— 0.306

GVB(12/24) 2.012 81.4 2.832 1.990 0.328 0.091 7.253

FeC1,(NO), (H,0)
i g i 302 88.2

GVB(12/24 §.322 3.515 0.516 0.090 13.745
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Absiract

The supersonic flow fleld over a body of revolution
incident to the free stream is simulated numerically on
a large, array processor (the CDC Cyber 205). The
conflguration is composed of a cone-cylinder forebody
followed by a conical afterbody from which emanates
a centered, supersonic propulsive jet. The free-stream
Mach number is 2, the jet-exit Mach number is 2.5, and
the jet-to-free-stream static pressure ratio is 3. Both
the external low and the exhaust are ideal air at a
common total temperature. The thin-layer approxima-
tion to the time-dependent, compressible, Reymnolds-
averaged Navier-Stokes equations are solved using an
implieit finite-difference algorithm. The data base, of
S miilion words, is structured in a “pencil” format so
that efficient use of the array processor can be realized.
The computer code is completely vectorized to take
advantage of the data structure. Turbulence closure
is acheived using an empirical algebraic eddy-viscosity
modei. The conflguration and flow conditions cor-
respond to published experimental tests and the com-
puted solutions are consistent with the experimental
data.

Introduction

In 1980, a computational study was described in
which the three-dimensional flow fleld over axisym-
metric boattailed bodies at moderate angles of attack
was simulated.! The exhaust plumes were modeled by
solid piume simulators, and a second-order-accurate,
implicit finite-difference algorithm was used to solve
the governing partial differential equations on the
ILLIAC IV array processor. Several flow fleids were
computed and the resuits compared with published ex-
perimental data. The promising results of that first
study provided the incentive to extend the work to
include propulsive exhaust jets emanating rrom the
afterbody base. The ILLIAC IV was subsequently
removed from service, however, and it became neces-
sary to scale down the size and scope of the study to
the capacity of existing computer resources.

sResearch Scientist, Member AIAA_
tComputer Analyst.

This paper is declared a work of the U.S. Government and
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In January 1983, the resuits of a study of super-
sonic axisymmetric flow over boattails containing a
centered propulsive jet were presented.? Those results,
obtained using a Cray 1S computer with 10 words
of main memory, were compared with existing ex-
perimental data. Jet-to-free-stream static pressure
ratio and nozzle exit angle were varied parametrically;
and the predicted trends agreed well with experiment.

The purpose of this paper is to describe the
vectorized implementation of the three-dimensional
Navier-Stokes code on a Cyber 205 computer for boat-
tailed afterbodies at moderate angles of attack that
contain a centered propuisive jet. Some computed
results, which correspond in part to a published ex-
perimental study for a like configuration and flow con-
ditions, are included for illustration.

Afterbody Conflguration

The geometric conflguration is a 9 caliber body of
revolution composed of a 14° half-angle conical nose,
a cylindrical forebody, and an 8° haif-angie conical
afterbody of 1 caliber length. Centered inside the
afterbody is a conical nozzle with exit diameter of 0.6
caliber that is flush with the afterbody base. The
nozzle exit half-angle is 20°.

Experimental studies for the same configuration
were performed by White and Agrell® for the model
immersed in an air stream flowing at M, = 2.0 and
a jet-exit Mach number of 2.5. White and Agreil con-
sidered angles of incidence to the free stream up to 8°
and jet-to-free-stream static-pressure ratios up to 15.
Because of limited acces to the Cyber 205 computer,
computed resuits are inciuded in this paper only for
the case in which the angle of incidence is 6° and the
jet-to-free-stream pressure ratio is 3.0.

Governing Equations

The equations describing the flow are the
Reynolds-averaged Navier-Stokes equations. These are
written below in strong conservative form in general-
ized coordinates as

BQ + 8eF - 7)+ n(F -+ 8(F-F)=0 (1)
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where
’ 3
po. g+
Qulrtw), F=IY 0§+ r3
pu pui 4 18,
e 1§~ KT/

and 2,,2,, and?, are the Cartesian unit vectors and
7°,7", and 7° are the contravariant base vectors, which
can be written as

P =62+ 62, + 62,
[l ® Nyly 4 NaZe
T == Q2+ G2yt G2
The components of” momentum, pu, pu, and pig,

are in Cartésian space and the velocity vector 7

is generally expressed in terms of the contravariant
velocity compenents, U, V', and W as
To= uZy vyt Wiy
= UQe + V7, + W2,

where 7, 7,, and 7, are the covariant base vectors writ~
ten as

Je = Zes +Yely +2¢%

Ty == TnZs + YnZy + 2nZs

yf = T2y 4+ 9% + %2
The Jacobian J of the transformgation is given by

I == zeynze + Zoyaze + Taysze
= Z¢Yein — InYe2c — ZcYnie

The flux vector F' can be decomposed into a
parabolic part, Fp, which contains only gradient
diffusive terms, and a hyperbolic part, Fy, which con-
tains only convective-like terms, as

o9
puﬁ + Pznt
pug + péy |
pwq + pés
(e+2)d

Fy = Fp=F—Fyg (2)

For flows in which the shear layers are thin (when Re >
> 1) and aligned with one principal plane (say the
plane normal to the n coordinate), the parabolic part
of F' can be neglected in the other two coordinates (£
and ¢), without any real loss in accuracy. This is con-
sistent with boundary-layer theory and yet maintains
the coupling between the viscous and inviscid regions
that is critical in simulating interactive flows. With
this thin-layer approximation, Eq. (1) is rewritten as:
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8:Q + 3(Fir - 1)+ 05(F - ")+ 0,(Fur - ) = 0 (3)
Caomputational Grid

A body-oriented computational grid is constructed
in 2 manner compatible with the thin-layer approxima-
tion. Shown in Fig. 1 is the grid used in the
present computations. Figure 1a shows the compiete
configiration and Fig. 1b the detail in the base region
of the afterbody. Radial grid lines on the forebody join
the surface orthogonally. On the afterbody and in the
exhaust plume, the radial lines are normal to the body
axis. There are 31 points distributed along the body,
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Fig. 1 Computational grid: bilaterai piane of sym-
metry. a) Complete configuration (140 x 100 x 20);
b) Base-region detail.



with clustering near the nose and near the base. Of the
81 points, 21 are used to deflne the afterbody shape;
the afterbody is 1 caliber long. An additional 59 points
are distributed downstream of the afterbody to a dis-
tance equal to 21 forebody diameters from the nozzle
base. These 140 total points define the £ coordinate
distribution. The radial distribution, corresponding to
the » coordirate, extends from the body surface to a
distance equal to 30 forebody diameters both ahead
of the nose and normal to the body axis. A total of
60 points is used in this region, with a high degree of
streching used in order to resolve the sublayer of the
turbulent boundary layer. (Here the first grid point off
the body surface corresponds approximately to a value
of n of 8 where nt = (pu7w)/X(n — Nw)/te.) AR
additional 40 points are distributed across the nozzle
and its blunt base, extending from the centerline to
the body surface. Of these, 20 are in the jet exit plane:
and 20 are on the blunt base itseif.

One- and two-parameter hyperbolic-tangent strech-
ing functions* are used in the base region to focus
resolution near the corners and to achieve 3 smooth,
piecewise continuous distribution of points across the
exhaust plume and base. At the nozzle exit, points are
distributed along an arc describing the conical
flow exit plane (thst is, the arc radius is
equal to the nozzle exit radius of 0.3 caliber

divided by the sine of the nozzle-exit half-
angle of 20°). Downstream of the nozzle, the
grid lines are aligned so as to closely ap-

proximate the exhaust piume shape for an ex-
perimentaily observed axisymmetric flow by Agrell
and White,®> which is for the same geometric
conflguration and fres-stream conditions, but for a
jet-to-free-stieam pressare, ratio of 9. The
third dimension, ¢, is generated by rotating the
two-dimensional (&, n) grid about the cylindrical
axis while maintaining a uniform angular dis-
tribution between the rotated pianes. Here,
20 radial pianes are used with pianes 2 and
19 coinciding with the bilateral plane of sym-
metry, where plane 2 corresponds to the lee and
piane 19 to the windward. Planes 1 and 20
are image planes used to enforce a symmetry
boundary condition. Thus, there are (&, 1)
planes distributed every 10.588° around the half-

body.

The total grid dimensions are (140 x 100 x 20), cor-
responding to the &,7, and¢ directions, oespectively,
for a total of 280,000 points. Of these, (80 x 40 x 20),
or 64,000, lie inside the body and are not used in the
computation, leaving an actual total of 216,000 points
used in the computation.

Data Structure

There are 23 variables required at each grid point
corresponding to the 5 conserved quantities in the @
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vector, 5 residuals for the solution vector, 9 metric
coeflicients, the Jacobian of the transformation, and
3 components of vorticity used in the turbulence
transport model. This results, for a computational grid
of 216,000 points, in a data base of 5 x 10% words.

To accommodate this large data base on a vector
processor with a limited main memory, the computa-
tional grid is divided into subsets cailed “blocks.” This
data structure was originally devised for implemen-
tation on the ILLIAC IV array processor by Lomax
and Pulliam and is described in detail in Ref. 6. In
the present case, each block is a 20 x 20 x 20 cube
for a total of 8,000 points and a data base subset of
184,000 words for the 23 variables. The blocks are
stacked together in each coordinate direction to form
a sequence of bloeks called “pencils.”

For a given coordinate direction, one complete
pencil of data is loaded into the central memory, and
computations are performed on that data correspond-
ing to the coordinate direction. At any point in the
computation, only 17 variables are required to be in the
main memory at one time (6 of the 9 metric coeficients
are not used in any given direction). This resuits in
3 data-base subset of 136,000 words. For a proces-
sor with 10* words of main memory then, as many
as seven blocks of data can be held in storage for im-
mediate processing. The block dimension is an ad-
justable parameter and is limited only by the maxi-
mum pencil length and the main memory of the vector
processor.

Shown in Fig. 2, in physical coordinates, are the
block boundaries for the present configuration. Figure
2a shows the complete conflguration and Fig. 2b the
detail in the afterbody region. Figure 3 shows the
corresponding block structure in computational space.
The mesh nodes of the computational domain are ar-
ranged in a rectangular latice with positive integer
coordinates (£, 7,¢). Each node belongs to three pen-
cils, a £-pencil, an 7-pencil, and a ¢-pencil. The pencils
of each sweep direction are given a deflnite order. For
the &-pencils, the 7-coordinate varies most rapidly as
the pencil index increases; for both the #-pencils and
¢-pencils the coordinate £ varies most rapidly. Figure
4 illustrates this sequencing for the present data struc-
ture.
Within a pencil, the planes are naturally ordered
by the sweep coordinate. The penciis of data can be
stored in the correct pencil ordering for just one sweep
direction only. When sweeping in the other direc-
tions, pencils of data are gathered and fetched for com-
putation and scattered back when writing the updated
values. Additionally, the ordering of nodes within a
plane can be correct for just one sweep direction, and
it is necessary to transpose the the data in memory
so that each piane of nodes normal to the sweep direc-
tion forms a contiguous set of memory locations. In



the present code, the ordering of nodes is correct for
the &direction and transpose routines are-used for the
ather sweep directions.
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Fig. 2 Block boundaries: physical space. a) Complete
configuration; b) Base-region detail.
L 4
¢
A ) ® 3-2
¥ 2 wa
(,«('f/ p= 4| @ e
24 15 sz
x| T F @38
c12 bl @
18 9 =
T 19 10 3] ,@ R
x| 20 11 E *g\)e&
b AN
£ 3 4
Bl 1 g BLUNT BASE
z 1
3l 1 JET EXIT PLANE
2
e =,
(e]
- @ «!\5‘ \,\“e
H o%g‘x

Fig. 3. Block boundaries: computational space, com~
plete conflguration.

)
£-PENCIL PLANES L ; I
! 7 |
2132 __40
1-2-—-20 .

——— 7
l
®1——a0| | I/
#-PENCIL PLANES I ya ||
v/ ! |
21240
re——al _,
7
+
. | 'f
w-—0| | i
{-PENCIL PLANES L | l
7/
niz__a
1-2——20 ¢

Fig. 4 Data structure within pencil data base.
Numerical Algorithm

The numerical algorithm used to solve Fq. (3)
xs ths ap ‘Pronma.te factored scheme of Bea~ and
Rewriting Eq. (3) as

8:Q = —8¢(Fir-T)—0(F-TN—8,(Fu-7) = R (4)

the corresponding difference equation is then

LololeAe@ = Re+ Ry+ R, (5)

where the operators are defined by

Le=(I+At6c A® — e/ J"'VeAeJ)
Loa=(I+At5,C" — ¢ T 'V qlqJ — Atby JT' M)
Le=(I+AtbB™— e/ J'9.ALJ)
Re=—Atbe(JFu-7%)" — eg TN (Veae2r Q"
Rg=—Atby(JF - N — g T (V4,27 Q"
Re=—At6(JFy-F) —ee T (V4,27 Q"

where the d¢, &, and §; are central-difference
operators; Vg, V,, and V. are backward-difference
operators; and A¢, Ay, and A, are forward-difference

operators in the ¢-, 7-, and ¢-directions, respectively.
The A¢ term is a forward-difference operator in time.

For example,
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A‘Q’Ql-{-l_qn

AQ = Q£+ A& 1, ¢)— Q& m,¢)
and
VQQ - Q(f: n, f) - Q(e- Afl ”tf)

The Jacobian matrices
A=0g(Fi-T)

B=08g(Fu-3")
C = 0q(Fu - T)
M =08g(Fp-3")

are described in detail by Pulliam and Steger.® Fourth-
order explicit terms (preceded by the coeficient eg)
and second-order implicit terms (preceded by the
coeflicient ¢;) have been added to control noniinear in-
stabilities.

Equationr (5) is solved in three successive sweeps
.of the data base, each sweep inverting one of the
operators on the left-hand side:

LoleAe@ =L (Re+Rq+R,)
" LeAQ =LIL)(Re+ Ry +R)
AQ =LPLILT (Re+ Ry + R¢)

The soiution is advanced in time by adding A¢Q to Q-

after the £ sweep.

In the general case, peacils of data are loaded into
central memory four times.and operated on for each
time-step advance: once each for the £ and n direc-
tions and twice for the ¢ direction. First the right-
hand side of Eq. (5) is formed and then the left-
hand-side operators are inverted one by one. A flow

schematic showing the ordering of operations, includ-
ing data reads, transposes, computations, and data
writes is shown beiow where the symbois R and w
represent variables used to accumulate the right-hand-
side elements and vorticity elements, respectively, for
each coordinate direction.

&-pencils: (initial step only)

Read: Q, J, &-metrics
Compute: R = R¢, w = w(§)
Write: R, w
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Loo
¢-pencils:
Read: Q, /, R, w, ¢c-metrics
Transposs: Q, /,R, w
Compute: R =R, R,,
w = w(£) + w(s)

Transpose: R, w
Write: R, w

n-pencils:
Read: Q, J, R, w, n-metrics
Transpose: @, J,R, w
Compute: w = w(§) + w(s) + w(n)
pr{w)
LyR)
Transpose: L;'(R)
Write: L} (R)
¢-pencils:
Read: Q, 7, LF(R), ¢-metrics
Transpose: Q, J, L;'(R)
Compute: L;‘ L:,‘(R)
Transpose: L:'L}'(R)
Write: LIJR)
&-pencils:
Read: Q, J, LY'L(R), &-metrics
Compute: A¢Q, @, R = R¢, w=w(f)
Write: Q R, w
End Loop

In this flow sequence, 62 variables are read, 57
variables are transposed, and 31 variables are written.
For the special case in the present study in which the ¢-
pencils are just one block long, 2 more efficient opera-
tion sequence can be used that substantially reduces
the number of reads and writes required. This is shown
below.

£-pencils: (initial step only)

Read: Q, J, {-metrics
Compute: R =R¢, w=w(f)



Begin Loop

¢-pencils:
Read: ¢-metries
Transpose: @, J, R, w
Compute: R = R¢-4 R,
w = w(§) + w(s)
Transpose: R, w
Write: R, w
n-pencils:
Read: Q, J, R, w, n-metrics

Tranpspose: @, J,R, w
Compute: w == w(§)+w(¢) -+ w(n)
pr{wy
R=Re+ R+ Ry
LJ}R)
¢-pencils:
Read: ¢-metrics
Transposer @, J, L;'(R)
Compute: L;'L7'(R)"
Transpose: L.'(;'(R)
Write: LILR)

& pencils:

Read:
Compute:

Q, 4, LI L3 (R), é-metrics
8¢Q, Q
R=R¢, w=w(f)
Write: Q,
End Loop

In this low sequence, 32 variables are read, 52 are
transposed, and 18 variables are written, a savings of
nearly 50% in the I/O. In both the general case and the
special case, the data read-transpose sequence and the
transpose-write sequence can be replaced by,/the more
efficient “gather” and “scatter” commands “available
for the Cyber 205 (Ref. 9). Further improvements in
eficiency can be obtained by using asynchronous I/O
in conjunction with a rotating memory backing store.
The most efficient code, however, will be realized by
using a solid-state backing store in conjunction with
gather and scatter commands or with a code that is
fuily core contained.

The numerical aigorithm conforms well to large
vectorization. For block sizes of 20 x 20 x 20, the vector

length is 400. Timing studies with the present code in-
dicate an MFLOP rate (million of floating- point opera~
tions per second) of'115 when computing in haif preci-
sion (32-bit word lengths) on a 2-pipe configuration.
Oun a 4-pipe configuration the MFLOP rate increased
to 207. There are approximately 3,800 floating point
operations executed for every grid node per time step
tesulting in a CPU time of 33 x 10°® sec per point per
time-step on a 2-pipe machine and 18 x 10™® sec per
point per time-step on a 4-pipe machine. The transpose
times (transposes do not contain any floating-point
operations) are 5.8 x 10°® sec per point. Equivalent
transposes performed by gather and scatter instruc-
tions require just 1.8 x 10°9 sec per point. When
synchronized /O to and from rotating backing store
was used, the average I/O time was 25 msec per vari-
able per block. This transiates directly into 172 x 10°°
sec per point, but overlapping the I/O reduces this to
94 x 10°® sec per point. (The Cyber 205 used for these
timing studies was conflgured with four I/O channels
to accommodate overiapping.) This time, a resuit in
large part of the latency time in accessing disk flles,
can be reduced to. nearly zero by using I/O buffers in
conjunction with asynchronous I/O or with solid-state
backing storage. The use of I/O buffers, however, im-
plies the availability of additional main memory and
imposes an additional constraint on the pencil size. To
avoid this constraint, the data fow shouid be modified
such that a subset of contiguous blocks of data in a
pencil are operated on while blocks at each end of the
subset are being buffered in and out.
Boundary Conditions

Boundary conditions are imposed. at the euds of
each data pencil; the data pencils are identifled by
number in Fig. 3. For the {-direction, pencil No. 1
starts at the jet-exit plane. Supersomic conical flow
conditions corresponding to a jet-exit Mach number of
2.5 and a static pressure of 3p., are imposed at the
first data plane. At the last plane of each of the five
é-pencils, which correspond to the outflow boundary,
first-order extrapolation is used so that 3.Q = 0.
Pencil No. 2 in the é-direction begins at the blunt base.
Here slip conditions and an impermeable adiabatic wall
are imposed so that

8¢(p) = d¢lpv) = B¢(pw) =0
pu=20

Bele — 0.5(pu® + pv? + pw?)| =0

Pencils 3, 4, and 5 in the &-direction begin on the
grid centerline of revolution (at § == 0) ahead of the
forebody nose. Here a second order extrapolation to

the centerline is used sach that

Be(p) = Fe(py) = B¢(pw) = Fe(pe) = 0
while the laterai momentum is set to zero
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pv =0

In addition, at each 7, the Q values are averaged aver
¢ on the centerline and used as boundary values for all
¢ at each . Special treatment of the base corner at
the afterbody-blunt-base junction is used to account
for the singuiar nature of that line. For the {-sweeps,
the ¢-line of data in pencil No. 3 that corresponds to
this corner is treated in the same manner as the first
plane of data in pencil No. 2 that corresponds to the
blunt base. This line of dats Is treated differently in
the n-sweep and is described in the second paragraph.
following.

After the forebody flow fleld is fully developed
during the course of the solution, the first two n-pencils
can be dropped from the computation and boundary
conditions imposed on the £-pencils that correspond
to the fully developed flow at the plans that is the
upstream boundary of n-pencil No. 3. This reduces
the total data base by six blocks without altering the
validity of the soiution. This simplification is strictly
valid only for supersonic external flows. The solution
downstream can be further developed to steady state,
and jet parameters can even be varied to generate ad-
ditional solutions.

Boundary conditions for the n-direction consist of
the imposition of free stream conditions at the last
plane of each of the seven n-pencils; no-slip, adiabatic
wall condition for the first plane of n-pencils, 1 through

4, which correspond to the body surface; and first-order.

extrapolation to the centerline for pencils §, 6, and 7
such that 8,Q = 0. Centerline averaging, as described
for the ¢-pencil boundary ahesd of the body, is also
used for the n-pencil boundary in the jet. The line of
data in 7-pencil No. 5, which corresponds to the corner
between the afterbody and the blunt base, is treated
in the same mannper as the first plane of n~pencils 1
through 4. As a result, this line of data is double
valued: one value for the £ sweep described previously
and the no-slip, adiabatic value for the n-sweep.

For the ¢-direction, bilateral symmetry is imposed
by setting the data at the first and last ¢-planes equal
to the values in the third plane and in the second from
last plane, respectively, with a sign change included in
the lateral momentum component (pv).

Turbulence Closure

The Reymnolds stresses and turbulent heat-fux
terms have been inciuded in the stress temsor and
heat-flux vector by using the eddy-viscosity and eddy-
conductivity concept, whereby the coefficients of vis-
cosity and thermal conductivity are the sum of the
molecular (laminar) part and an eddy (turbuient) part.
Eddy-viscosity models incorporate turbulent transport
into the molecular-transport stress tensor by adding
the scalar eddy-viscosity transport coefficient ur to

the coefficient of molecnlar viscosity, ( ue = s +
4T), thereby relating turbulent transport directly to
gradients of the mean-flow variables. In a Cartesian

coordinate system, the three-dimensional molecular
stress tensor can be written as

Te == (p+ 0,)2:2; + Tsy2sly + 73222
Tyslyls + -+ 0’,)!,2, <+ TysZyls
Tanlsls + Taylsly + (P + 0382

In the thin-shear-layer approximation, the only com-
ponents of the stress tensor that are retained are those
having gradients with respect to 5 only.

Turbulent heat transport is defined in terms
of mean-energy gradients and an eddy-conductivity
coeflicient K, such that K, = K -+ Kp. Typically,
the eddy-conductivity coeficient is related to the eddy-
viscosity coeficient via a turbulent Prandtl number

Prp where
Prp = Cypr/Kr

The turbulent Prandt! number is assumed constant at
s value of 0.9.

The aigebraic eddy-viscosity model used here is
that proposed by Baldwin and Lomax.!? This model
is particularly well suited to complex flows that con-
tain regions in which the length scaies are not clearly
defined. It is described briefly as follows: For wall-
bounded shear Iayers, a two-layer formulation is used
such that

Br = (BT)inner fOF 1 < Ncressever

B = (Br)ester fOF 7 > Noressever

where 7 is the normal distance from the wall and
Neressever i3 the smallest value of n at which values
from the inner and outer formulas are equal. The
Prandtl-Van Driest formulation is used in the inner (or
wall) region.

(BT)inner = Ptziwl
£ = 0.4n {1 — ezp(—n/A)}

A= 23»“-/\//’77:

The formulation for the outer region is given by

(BT)euter = 0.0168 Cep Fuaie Frerei(n)

F - ( Nmas Fmazs )
weke Cwi Mmas q‘zt.]/qu
The quantities 7mee and Fmay are determined from
the function

F(n) = nw|[1 — ezp(—n/A)]

where F, ., is the maximum value of F(7), and mg; is
the value of n at which it occurs. The function Ficies(n)
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is the Klebanoff intermittency function given by

Fraa(n) = (L + 5.5(Ckies 1/mes)’T"
The quantity ¢3,, is the difference between the maxi-

mum and minimum total velocity in the proflle
(along an n-coordinste line),
ﬁa‘r - ‘Iozua - ‘I-zm'n

and for boundary layers, the minimum Is defined as
zero. The other constants are given by

Ce' = 1.6 » C'ﬁ = 0.25 ’ CK“‘ == 0.3

The of this model for boundary-lxyer
flows are as follows: 1) for the inner region, the velocity
mdlength.scalaarealw weill defined, and the
model is consistent with the “law of the wall”; 2) in the
outerregion for well-behaved (simpie) boundary layers,
where there is 2 well-defined length scale (q,...,), the
velocity scale is determined by F’,,..,, whichisa length
scale times a vorticity scale; 3) in the outer region of
complex boundary layers where the length from a wall
becomes meaningiess, 2 new length scale is determined
from a velocity (giis) divided by a vefocity gradxent
(lwl}, and the veloeity scale is gu;y.

The outer formu]a.t.xon, which is independent of 7,
is also used in the free-shear flow regions of separated
fow and in regions of strong viscous/inviscid inter-
action. In these regions the van Driest damping
term, [exp{—n/A)}, is neglected. For jets and wakes,

the Klebanoff imtermittency factor is determined by '

measuring from the grid centeriine, and the minimum
term in gq4iy is evaluated from_the proflle instead of
being defined as zero.

The validity of the eddy-viscosity model constants
for high-pressure, compressible exhaust jets has not
been established, and compressibility effects are not
accounted for.

At the exhaust-jet exit plane and in the near-base
region, the eddy viscosity is assumed to be negligibly
small and to increase spatially to the value given by
the outer modei over a short distance downstream of

the base.
Computed Resuits

As mentioned in a preceding section (Afferbody
Configuration), a flow field has been computed for
the body placed at an angle of incidence of 6° to
a free stream at Mach 2. The jet-exit Mach num-
ber is 2.5 with a static pressure 3 times that of the
free stream. Beginning with an impuisive start in a
uniformly flowing stream at Mach 2, the solution was
advanced timewise to a dimensioniess time (¢ d/Uy ) of
5.1, where 4 is the forebody diameter and U, is the

undisturbed free-stream speed. Although a solution
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at a time of 5.1 is probably not sufficiently converged
to permt valid quantitative comparisons with experi-

, it is sufficient to establish the basic flow-fleld
ehnncter and to illustrate the features of the solution
and the computer code. .

The initial time-step size of A¢ =0.0001 was in-
creased to At ==0.001 as the solution passed through its
initial rapid transient. A variable time-step was used
in the snbsonic flow regime downstream of the base in
order to minimize the growth of nonlinear instabilities
aggravated by changes in sign of the eigen-values in
this region. The time-steps in this subsonic region were
scaled down by a factor equal to the local streamwise
Mach number with a cutoff minimum factor of 0.001:
imposed to prevent the time-step from going to zero.

Oeccurring physically in this region is a rapid ex-
pansion of the jet around the nozzle lip followed im-

' mediately by a strong recompression in the form of a

barret shock; in addition there is a slip surface defining
the boundary between the exhaust plume and the ex-
ternal low. Each of these three high-gradient features
is focused at the nozzle lip and demands a high degree
of resolution that has not been provided for in the com-
pusational grid used here.

Shown in Fig. 5 are computed density contours
in the bilateral plane of symmetry in the vicinity of
the body. The lower surface is the wind side. Clearly
defined downstream of the afterbody is the slip sur-
face demarcating the boundary between the exhaust
plume and the external flow. The propulisive jet ex-
pands rapidly around the nozzle lip and can induce 'low
separation on the afterbody surface. For low-pressure
jets, or no jet at all, there wiil be a region of recir-
culating flow on the biunt base. The afterbody drag is
strongly influenced by the detail of the separated flow.

: /

L

24 / K
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=21 WIND SIDE
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Fig. 5 Computed density contours, piane of symmetry:
Mo =2, M;=2.5, P;/Pwx =3,
a == 6°, Reg = 1.5x10°.
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Fig. 6 Afterbody flow detail: surface streamiines and dansity contours oa bilateral plane of symmetry.

The detail of the separation patterm is shown in
Fig. 6 in which computed surface streamlines have
been mapped on the afterbody and projected on the
bilateral plane-of-symmetry view of the density con-
tour plot over the aft portion of the body only. There
is a separation node on the lee generator of the coni-
cal afterbody at z == 8.92. All surface streamlines on
the lee side of the body flow into this node. A line of
separation extends from this node, downward on the

afterbody surface, to a separation saddle at-z == 8.98,

33° from the wind generator. The flow direction along
this line of separation is upward from the saddle to the
node. There is aiso flow outward from the separation
saddle downward to the end of the base, around to the
wind generator.

Shown in Fig. 7T is a perspective view of the
surface streamlines on the afterbody and the blunt
base. The outer edge of the base is a dividing surface
LEE SIDE

50, = SEPARATION NODE g 00 o
i :-'/_ /
T ™\ NODE
c e
e ) NODE
e SADDLE
\~
WIND SIDE
800 825 450 &75 900 -25 0 28

X Y

Fig. 7 Perspective view of surface streamiines over
conical afterbody and annular base.

streamline extending from a saddle point on the lee
generator to a node point approximately 33° from the
wind generator. A dividing streamline.can be seen cir-
cumscribing the annuiar base connecting a saddle point
on the windward and a nodal point on the lee. This
line separates the external flow frem the flow from the
jet. Flow is upward from the windward saddle to the
lee-side node.

Shown in Fig. 8 is a sketch of an end-view projec-
tion of the full view of the afterhody (not to scale)
showing all the dividing streamiines and their cor-
responding singuiar points and flow directions.

Fig. 8 End-view schematic of dividing surface and
singuiar points streamlines.
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The trajectories of the fluid particles in the plane
of symmetry in the base region are shown in Fig. 9. On
the lee, seen in Fig. 9a, the fluid {rom the jet expands
around the noszle lip and moves outward toward the
edge of the base. Upon meeting the external flow, it
turns downstream and defines the exhaust plume boun-
dary. A region of reverse flow can be clearly seen above
the afterbody lee generator. The path of the fluid in
the external flow is over this separation region and
around the afterbody base to the slip surface deflning
the boundary between the exhanst plume and external
flow. The point defined by the outer edge of the base
and the afterbody lee generator is a singuiar point that
from the fluid streamiines, appears as a saddle point in
both the circumferential plane and in the radial plaze,
and as a nodal point in the streamwise bilateral plane
of symmetry (the piane of the base).

On the windward, shown in Fig. 9b, the stream-
lines just off the wind generator of the afterbody
turn the corner and move toward the slip surface
between: the jet and the external flow. All external
flow streamlines (exciuding the surface streamliine) ap-
proach the slip surface downstream of a saddle point
in the bilsteral plane of symmetry located at z =
9.016 on the piume-external fow boundary. The sur-
face streamline turns the corner and approaches the
windward saddle point on the base itseif. Fluid fram
the jet expands around the nozzle lip and moves out-
ward. The fluid just off the lip moves to the saddle
point on the base and the fluid farther inside the lip
expands toward the piume boundary downstream of
the saddle point on the slip surface.

Fig. 9 Base-region pach lines: plane of symmetry. a) Lee;

Surface-pressure distributions over the afterbody
surface and over the base are showm in Figs. 10a
and 10b, respectively. An expansion at the forebody-
afterbody junction over the afterbody surface can be
seen. This expansion is greatest on the windward,
where the pressure level is highest, and decreases
toward the lee. The circumferential variation of pres-
sure near the lee side is quite small for the entire length
of the afterbody. Toward the end.of the afterbody
there is a slight recompression on the lee side which
is not obeerved on the windward. Just at the end of
the afterbody there is an expansion as the flow turns
around the afterbody toward the base.

Figure 10b shows a projected view of the base
and jet-exit pressure distribution. The left side of the
“top hat” pressure distribution corresponds to the lee,
sad the far side corresponds to the windward. The
large uniform pressure distribution of the “top hat”
conflguration corresponds to the high-pressure jet, and
the unduiating “brim” of the hat is the distribution on
the annniar base. On the windward there is a rapid
expansion at the nozzie lip foilowed by a fairly large
recompression toward the outer edge of the base. The
same trend is observed at other radial positions aronnd
the bass but t0 2 lesser degree. Tlhe circumferential
variation of base pressure is consistemt with the ex-
perimentaily observed variation of White and Agreil
for the same jet-to-free-stream pressure ratio. It is
interesting to note, however, that in most experimen-
tal studies the radial variation of pressure is assumed
negiigible and is not measured. The distribution in Fig.
10D clearly indicates a sabstantial variation across the
sunuisr base.
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Fig 10 Surface pressure distribution: perspective. a) Conical afterbody; b) Annular base and jet exit plane.

Conciuding Remarks

An implicit solutior procedure for the thin-
layer approximation to the three-dimensionsal, time-
dependent, compressible, Reynolds-averaged Navier-
Stokes equations on a large array processor has been
described. An example problem was simulated on the
Cyber 205 computer that required a data base of 5 x
10* words, The efficient trestment of this large data
base has been described in some detail.

The flow-fleld simulated was the supersonic flow
over a body of revoiution at incidence to ths free
stream. A propuisive jet emanated from the bosttailed
afterbody, inducing a complex, three-dimensional
separated-low pattern. This separated flow-fleid,
which contributes substantially to the afterbody drag,
has been described in detail for the particular geometry
and flow conditions considered. The computed solu-
tion is consistent with experimental data observed for
the same configuration and flow conditions.
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ABSTRACT

Viscous flow past a circular cylinder becomes unstable around
Reynolds number Re = 40. With a numerical technique based on Newton's
method and made possible by the use of a supercomputer, steady (but
unstable) solutions have been calculated up to Re = 400. It is found
that the wake continues to grow in length approximately linearly with
Re. However, in conflict with available asymptotic predictions, the
width starts to increase very rapidly around Re = 300. All numerical
calculations have ©been performed on the CDC Cyber 205 at the CDC
Service Center in Arden Hills, Minnesota.

INTRODUCTION

The structure of viscous steady flow past a circular cylinder at
high Reynolds numbers forms one of the classical problems in fluid
mechanics. In spite of much attention, several fundamental questions
remain open. Apart from a previous calculation by the present author
[6], complete, steady flow fields have been obtained numerically only
up to around Re = 100. This is also close to the upper 1limit for
experiments (due to temporal instabilities). Both the early numerics
and the experiments point to a recirculation region growing linearly
in length with Re. Figure 1 shows the length of the wake bubble
against Reynolds number according to some different calculations.
Persistence of this growth for Re -> oo has been assumed in most
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recent asymptotic studies of steady high Reynolds number flows past a
body (e.g. F.T. Smith [13]). & possible Buler flow, consistent with
this idea, was analyzed by Brodetsky [3] in 1923. It is known as the
Helmholtz- Kirchhoff free streamline model. This suggested limit is
characterized by two vortex sheets leaving the body tangentially
approximately 55 from the upwind center 1line and extending +to
downstream infinity, enclosing a region of stagnant flow. Although
this undoubtedly is a solution for Re = oo, G.K. Batchelor [2] gave
in 1956 several arguments against this being a possible limit for
Re -> oo. He proposed an alternative in which a finite wake with
piecewise constant vorticity was Dbounded by vortex sheets. Some
suggestions about how such a flow might be reached as a 1limit for
increasing Reynolds number have been given by Peregrine [10].
However, only very few Euler solutions of this so called
Prandtl-Batchelor type have been calculated (e.g.[12] contains one
example and some further references). None of these are for flow past
a cylinder. Figure 2 gives an 'artists impression' of what <the two
models for infinite Re might look like. The calculation [6] hinted
at a process leading to a shortening of the wake. The present work
suggests (in agreement with F.T. Smith [14]) this shortening at
Re = 300 was erroneous and caused Dby insufficient numerical
resolution. However, our Dbest current evidence is that the
qualitative result was correct. We beleive that a reversal of trends
towards a shorter wake can be expected around Re = 500. This
contrasts with the conclusions in [14]. Our main evidence is that
the wake increases in width far more rapidly after Re = 300 than the
asymtotic analysis allows for. Independently of the position of
artificial boundaries and of numerical resolution, we find that the
flow is of different character past Re = 300. Significant amounts of
vorticity are then re-circulated back into the wake bubble from its

end. We hope to soon carry this study past Re = 400.

All the numerical calculations 1in this present work were
performed on the Control Data Corporation Cyber 205 computer located
at the CDC Service Center 1in Arden Hills, Minnesota. We wish to
express our gratitude +to Control Data Corporation for making this
system available for this work.
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MATHEMATICAL FORMULATION.

With a cylinder of radius 1 and a Reynolds number based on the
diameter, the governing time independent Navier-Stokes equations,
expressed in streamfunction WY and vorticity ¢o , take the form:

(1) &Y +w= 0

Re » 3"?
(2) b(—d + —— 4\ ’6_2{ . ?f‘.). - o= _3_“3} = 0
2 0 x oy dy 4 x

Accurate numerical approximation and economical computational
solution of these equations in the given geometry poses a series of
difficulties which previous investigators have dealt with in a
variety of ways. The most serious of the difficulties seem to be:

1. Boundary comditions for ¥ at large distances.
2. Boundary condition for ¢3 at the body surface.

3. Avoiding the 1loss of accuracy that comes with upwind
differencing.

4. Economical choice of computational grid.

5. Reliable and fast rate of convergence of numerical
iterations.

The point 5 above has been the limiting factor in virtually all
previous attempts to reach high Reynolds numbers. No reliable
technique has emerged to prevent slowly converging iteration schemes
from picking up physical instabilities in the artificial time of the
iterations.
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NUMERICAL METHOD

All vorticity is concentrated on the body surface and in a quite
thin wake downstream of the body. Outside this region we can use the
much simpler equations:

(%) AY = 0
0

(4) )

The top part of Figure 3 shows the upper half plane minus a unit
circle and, dotted, a region which contains all the vorticity (apart
from the far wake). The bottom part of the figure shows how the
mapping z = t/—‘+ 1/{/X maps these to the first quadrant and a
rectangle respectively. Figure 4 shows what a rectangular grid in
the z-plane (with non-uniform stretching in the vertical direction)
can look like in the x-plane. The Navier-Stokes -equations,
transformed to the z-plane take a form almost identical to (1) and

(2):

(5) AW + Ww/g = 0

c.o 4 dwy
(6) A+ -2 { '3’6"5'2}"0
|42 12

where J = | & is the Jacobian of the mapping. These equations
were modified further by subiracting out potential flow. The stream
function for the difference is ¥ = '32-2 5 « On a grid in the
(stretched) z-plane, equations (5) and (6) were approximated at all
interior points with centered second order finite differences. To
close the system, boundary conditions have to be implemented for
Vv and w at all boundaries.

The extreme sensitivity of the final solution to small errors in
these conditions has only recently been fully recognized [6] For
example already at Re = 2 it was found that use of the free stram
value for Y along circular outer boundaries at distances 23.1 and
91.5 caused 18 % and 4.4 % errors in the level of vorticity on the

body surface.
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The 'Oseen’' approximation is the leading term in an asymptotic
expansion for the flow far out in a wake (e.g. Imai [8]). 1In polar
coordinates, it takes the form

Cp 8
(7) Y = —57- ( T erf Q )
2
CoRe Q -Q
(8) S

Q
_ \ V2, ., _ =ty -sz
where Q = (-Z'Re r) 31n—ie , erf Q = 2% e ds and C, the drag
coefficient. Cyp can be evaluated as a line integral around the body.

The performance of this Oseen condition as an outer boundary
condition 1is disappointing. The percentage errors mentioned above
improve, but only to to 3.4 % and 1.2 % respectively. For increasing
Re, direct use of (7) becomes meaningless. Figure 5 illustrates this
by comparing the true W (here the difference between streamfunction
and free stream, mnot potential flow) with the values from (7) at
Re = 200. The two fields bear no resemblance to each other at the
distances from the body we are interested in.

Comparison with numerics suggest that (8) is far more accurate
than (7). Furthermore

1. Any errors in (8) are present only in a very narrow region
along the outflow axis, not along the whole upper boundary
as with (7).

2. The governing equation for W is of a type which cannot
transport incorrect information for ¢ back up towards the
cylinder.

With this background, let us briefly outline how +the boundary
conditions of high accuracy can be implemented on the edges of the
present computational region. Figure 6 shows this region in the
z-plane with a typical vorticity field together with its reflections
in the coordinate axis.
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BOUNDARY CONDITIONS FOR Y.
Left boundary: §= 0 ,0 <q< 9,. Y=o.

Bottom boundary: ©}= 0 ,0 < &K Sy W= 0.
av o

Right boundary: ¥=8, ,0 <n<M,,. gt ~ W (noting that 57 <
v .
<< 3\')7’ along this boundary).
i‘\ f’u 2 2
Top boundary: V)= 1,0 _<_§.<_§" . "Y,‘. : g gwln((i;-!)+('9-‘)))/J dgd_\]
g /XS
A correction to the integral above for vorticity reaching
outside the downstream boundary can easily be incorporated. For a

fixed grid, the dependence of W at each boundary point on w at
each internal point is independent of Re and can be calculated as a
large matrix once and for all. A boundary condition of this kind was
used in all the calculations presented below. However, we currently
use a different condition. A wide two level difference formula can be
found which is consistent only with the decaying modes of the
equation DW = 0 (as opposed to the wusual 5-point 3-level formula
used )inside the region to approximate both growing and decaying
modes).

BOUNDARY CONDITIONS FOR WJ.
Left Dboundary: 8= 0 ,0 <M<Y, . w= 0.

Bottom boundary: = 0 ,0 < §< 2 . A relation based onA\Y+W/:{= 0
and W an even function of -
2 {88 w= 0.
Right boundary: §=%, ,0 5, =% (5,/5.)°
igh oundary: §= m 0 S$HM,, . M B T/ T
Top boundary: ¥)= R E 4 TN =0,

The condition at the right Dboundary comes from the observation
that the leading term of (8), transformed to ¥ ,\3 -coordinates
simplifies to

. -c
(9) Ww = -—31e >3

where ¢, and co are constants. The mapping has achieved a
separation of variables.
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The discrete approximations at the interior points together with
the boundary conditions form, after minor simplifications (explicitly
eliminating all boundary unknowns apart from at the +top
boundary), a non-linear algebraic system of (M-2)(2N-3) equations
with equally many unknowns. In most earlier works, great care has
been taken to ensure that, at this stage, this (or some equivalent)
non-linear system has a diagonally dominant form for low Re. This
would allow direct functional iteration to convergence. Techniques
like upwind differencing [1],[4],[11] help in this respect at the
cost of lowered accuracy. Newton's method, described below, offers an
outstanding alternative.

NEWTON'S METHOD.

Newton's method is a very well known procedure for finding zeros
of scalar functions. If a function f(x) is given, we can find an x
such that f(x)=0 by the procedure:

(10) X o 'close' guess of root
f(x)
(11) X“+‘ = x“ - --'-Z——S n-= O, 1, 2, se e
' ix,
The iteration step can be written
(12) £'(x,) Ax, = -£(x,)
Known, f' evalu- Unknown, the Known, residual.
ated at the latest correction we Should be zero
available approxi~ should apply if x ,, had been
mation x, . tox, , i.e. exact.
Xnar xn+ Axn'
Written in this form, the generalization to systems is
straightforward. For example the system with three equations in

three unknowns:
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f(x, y, z) =0
(13) g(x, Y Z) =0
h(x, v, z) =0
can be iterated
3 oar el f 1 .=
i 8X By oz ! | Ax ! } £f(x ,y ,z )}
| ) ] i | I
25 2 ael | e
°X By 5Ty Ay 7 - delxay.z )
| i | | | |
SOV VIR O |
L2x By Oz. LAz L h(x ,y ,2 )j
Known, "Jacobian"  Unknown, Known,
of system. corrections. residual.

Each iteration involves the solution of a linear system. Like in the
scalar case, convergence 1is quadratic and guaranteed to occur for
approximations sufficiently close to any 'simple' solution. The
realization that this procedure is practical for extremely large
systems (several thousands of equations) is rather recent and linked
to the emergence of powerful computers.

For our present problem, use of Newton's method offers several
major advantages:

1. The quadratic convergence allows no possibility of 'inheriting'
temporal instabilities to the artificial time of the iterations.
Convergence is guaranteed if an isolated solution exists in the
neighborhood of a guess.

2. If +turning points or bifurcation points are found, they will
cause no difficulties.

3. No upwind differencing is needed. This procedure is typically
employed for two reasons:
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1. To ensure convergence of an iterative method.
2. To avoid mesh size oscillations.

The first reason no longer applies. The second one alone can
then be addressed in more refined ways.

4. Boundary conditions at the body surface become easier +to
implement. The fact that we have two conditions on ¥ and none
on L) can cause a problem if (5) and (6) are treated separately.
With Newton's method, all we need is that the number of
conditions is right.

The only disadvantage with Newton's method is the computational
cost. This is where supercomputers enters our picture.

SOLUTION OF LINEAR SYSTEM

Let [\VJ” 3F2,%3,...,8 be vectors with W -values from grid lines
2,3,....N and similarly for Wy (j=2,...,N8-1). For example Y, would
contain the W -values along the grid row nearest to the ¥ -axis and
W, the values along the top boundary. The structure of the entries in
the Jacobian matrix reflects directly on the difference stencils and

the boundary conditions. Figure 7 shows a suitable ordering of
equations and unknowns and the corresponding structure of the
Jacobian. Since the top right corner contains a single diagonal,

explicit multiples of the top (N-2)(M-2) equations can be superposed
on the equations below to modify the structure to the one in Figure
8. The bottom left corner form a separated system of size (N-1)(M-2).
This system was solved by a border algorithm similar +to the one
described in [9]. The major cost comes from the LU-factorization of
A. However, one more rearrangement can be done to achieve a
significant speedup. The A-matrix has a block 5-diagonal form with
the structure shown in Figure 8. A similarity transform with a
permutation matrix can rearrange this into another matrix of
identical structure. Instead of N-2 rows of blocks, each of size M-2,
we get M-2 rows of blocks of size N-2. With M typically around 6*N
and cost proportional to the square of the bandwidth, this reduces
the memory needed for the LU-decomposition about 6 and the operation
count by 36.

The complete linear  solver lends itself  ideally to
vectorization. Every part of significant cost turns out take a form
of a 'linked triad' with vectors never shorter than 4(N-2)+1 or M.
The 1linked +triad on the Cyber 205 is the fastest floating point
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operation the machine offers. Expressions of the form
vector-op-vector-op-scalar where one 'op' is + or -, the other ¥ can
execute with ©both operations running simultaneously. On the 2-pipe
205, the algorithm has a potential for 200 mflops (million floating
point operations per second, 64-bit accuracy). Including a startup
cost of 8% macihne cycles per linked triad operation, average vector
length of around 166 (which we will exceed in later test cases) could
give a full 100 mflop overall computational performance. In the
calculations presented below, the grid had 131 by 21 points.
Building up the Jacobian (in scalar mode) takes 2.3 seconds and the
solution of the linear system 3.7 seconds (for an average of 55
mflops during this part). Recently implemented vectorization of the
Jacobian and the new boundary condition brings these numbers to 0.026
seconds, 1.75 seconds and 60 mflops respectively.

PHYSICAL CONCLUSIONS

This report is a preliminary one of work in progress. Only a few
initial test runs have been performed so far. However, we can already
conclude that the wake appears to continue a linear growth in length
with increasing Reynolds numbers up to Re = 400. Figure 9 shows wake
length versus Re for some previous calculations compared with current
results. Figure 10 shows streamlines and Figure 11 vorticity fields
for different values of Re up to 400. The vorticity field at Re =
400 shows a recirculation back into the wake from the end of the
bubble as well as a quite sudden increase in width. Our most recent
tests with a computational grid of 196 by 31 points (density
increased by 3/2 in each direction) leaves these features completely
unchanged. The onset occurs near Re = 300 and the widening progresses
at a rate which can be determined accurately and which far exceeds
the one predicted by available asymptotic models.

The flow fields in figures 10 and 11 were obtained from a 131%*21
grid in the z-plane with
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(13) ¥, =1i/12 , i=0,1, ... ,130
a

(15) 93=ug3+ (1'4”‘);3’ §5= j/18 , §=0,1, ... ,20 , K=0.15
This places the right boundary at a distance 115.4 from the center of
the cylinder. Preliminary tests involving moving this and the top
boundaries in and out suggest that they are sufficiently far out with
the present choice of grid. Figure 4 showed part of this grid.

The major open questions at the moment are:
Physically:

1. Will the wake keep on growing?

2. Are there any other branches of solutions (bifurcations
etc.)?

Numerically:

1. Is there any alternative +to Newton's method which still
possesses a reliable rate of convergence?

2. Is there any faster way than Gaussian elimination to solve
the linear system in Newton's method?

At present, the numerical questions are wide open and of
fundamental importance to many other applications as well. Current
numerical methods together with vector computers like the Cyber 205
probably form sufficiently powerful tools to settle conclusively the
physical questions raised here.
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Figure 2. Schematic illustration of free streamline and
the Prandtl-Batchelor models.
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Figure 5. True difference between streamfunction and free stream compared with
Oseen approximation for Re = 200.
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Figure 9: Length of wake bubble for different Reynolds numbers.
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ABSTRACT

A computer code which solves the Navier-Stokes equations for three-dimensional,
time-dependent, homogeneous turbulence has been written for the Cyber 205. The
code has options fos both 64-bit and 32-bit arithmetic. With 32-bit computation,
mesh sizes up to 64° are contained within core of a 2 million 64-bit word memory.
Computer speed timing runs were made for various vector lengths up to 6144.
With this code, speeds a little over 100 Mflops have been achieved on a 2-pipe
Cyber 205. Several problems encountered in the coding are discussed.

1. INTRODUCTION

Turbulent fluid motion is common to many branches of engineering and science.
Since turbulence phenomena are highly nonlinear, they are not amenable to classi-
cal analytical approaches. Consequently, turbulence predictions are generally
based on semi-empirical models. Experiments which generate model information
are expensive, but are needed because current models are not generally accurate
enough for engineering purposes. Detailed simulations of turbulent flows can help
complement laboratory data. Direct numerical simulations of turbulent flows are
more accurate than current semi-empirical computational methods and can be
used to both generate physical understanding and to improve the models. In these
simulations, turbulent flows are directly computed from the Navier-Stokes equa-
tions. Computations of this type are necessarily three-dimensional and time-
dependent; they require a large number of grid points, and thus, long computation
time. The Cyber 205 computer appears ideally suited for efficient numerical
simulations of this type. Exploration of the use of the Cyber 205 for direct
numerical simulation of turbulence is a principal objective of this work.

The basic code was written by one of the authors (RSR). It was modified to take
advantage of the 205 compiler's automatic vectorizing capability. Vector syntax
and special functions were applied to the code segments which could not be auto-
matically vectorized. Finally, machine language instructions were used for the
parts of the code that existing compiler could not handle,
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In the next section, a description of the particular problem to be solved is given.
In Section 3, the numerical methods used are discussed. This is followed by a brief
description of the Cyber 205 at Colorado State University. The construction of
long vectors is discussed in Section 5. In Section 6, performance data obtained to
date are presented, and in Section 7, problems encountered are described. A typi-
cal simulation of homogeneous isotropic turbulence is presented in Section 8. In
the final section, a brief statement of coneclusions is presented.

2. PROBLEM STATEMENT

Homogeneous turbulent flows, of which there is a considerable variety, can be
simulated numerically at low Reynolds number without using any turbulence
model. In the flows we will consider, the computational domain contains a fixed
mass of fluid within a rectangular parallelepiped, the opposing sides of which can
move inward or outward with time. Thus, the cases which can be computed are
quite varied: decaying homogeneous isotropic turbulence is generated if all six
sides are stationary; turbulence undergoing uniform compression (or expansion) if
all three pairs of sides move inward (outward) at same rate; turbulence undergoing
one-dimensional compression, if one pair of sides moves inward; or turbulence
undergoing plane strain if one pair of sides moves inward at the same rate a
second pair moves outward, while the third pair remains stationary. Isotroplc
turbulence has been computed before, ‘but turbulence undergoing compressmn or
expansion has not. The compression cases are of interest, for example, in internal
combustion engine modeling and in the interaction of turbulence with a shock
wave.

It will be assumed that the Mach number is sufficiently small that the fluid is
compressed uniformly in space, so that the fluid density depends only on time.

The govermng Navier-Stokes equations for a fluid of uniform viscosity and uni-
form density in space are:

?UL ULJ +Blf) (U i'),k +BK¢,‘HJ: = V'Bfﬂ B{/ utfkl L\'—-//B

'Bt
{ /
5“\ UC)J‘ =O
where Ul Pl, vz, and t are fluctuating velocity components, fluctuatmg pressure,

klnematlc viscosity and time respectively. The summation convention is implied.
This set of governing Navier-Stokes equations allow us to simulate homogeneous
turbulent flows in Lagrangian coordinate system that moves with the mean flow.
Coordinate transformation tensor Bij is determined by:

Note that mean strain rate tensor, Wi, j is zero and Bij=J ij for isotropic homo-
geneous turbulence.
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Periodic boundary conditions are applied in all three space directions. The
velocity field is initialized to an isotropic state that satisfies continuity and has a
given energy spectrum which approximates that of experimental isotropic tur-
bulence.

3. NUMERICAL METHOD

The spectral method is used to compute all spatial derivatives. This method,
which uses FFT's, is good for problems with periodie boundary conditions and has
very high accuracy. To avoid aliasing f“ the nonlinear terms, both the truncation
and phase shifting techniques are used.

A second order Runge-Kutta method is used to advance the solution in time.
Thus, all spatial derivatives need to be computed twice each time step. The time
step was chosen small enough that no significant error is produced. It was deter-
mined by increasing the step size until the error was approximately 1 percent over
the full integration period.

4. THE CYBER 205

The Cyber 205 we are using is thf Colorado State machine with 2-pipes and a 2
million 64-bit word fast memory.“ QTE Telenet has been used for data transfer
between Stanford and CSU. We have found that both are reliable, convenient to
use, and have provided satisfactory service so far.

Figure 1 shows the performance for add/multiply as function of vector length.
The asymptotic performance which requires maximum vector lengﬁh (65535) is 100
Mflops for 64-bit arithmetic and 200 Mflops for 32-bit arithmetic.

It is obvious that the performance improves with vector length. Vector length
1000 (64-bit case) or 2000 (32-bit case) is required to reach 90 percent of the
asymptotic performance. Constructing a code which uses long vectors is there-
fore important if maximum performance from the machine is to be obtained.

5. DATA MANAGEMENT

Based on the "longer vector gives better performance" philosophy, we chose to do
the Fourier transforms in parallel. This will be explained in detail later.

In Figure 2, NX, NY, and NZ are the number of mesh points in the x, y, and z
directions respectively; MY and MZ are called "pencil sizes".

On the first sweep, MZ x-y planes of data are Fourier transformed in the y direc-
tion in parallel. The transform length is NY, but by doing them in parallel, a
vector length of NX/2*MZ*3 is achieved; the factor 3 is due to the simultaneous
processing of three velocity components, and the factor 1/2 is due to only half of
the modes are needed in wave space to represent a real function in physical space.
To accomplish this, it is useful to lump every dependent variable into a single big
array. The main array in our code is DATA(NX/2,NY,NZ,4,2); the dimensions
represent X, y, Z, a dependent variable index, and real and imaginary parts of a
complex number.
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On the second sweep, MY x-z planes are processed. Fourier transforms in z and x
directions are done on this sweep. The vector lengths are NX/2*MY*3 and

NZ*MY*3 respectively.

A Cyber 205 vector is defined as a contiguous set of memory locations. Since the
two sweeps are in different directions, an array transr:< .e has to be done between
sweeps and within the second sweep in order to keep processed data in a
contiguous set of memory locations. The transpose is done by using gather
instructions. The gather instruction puts array elements which are at various
locations into a contiguous set of memory locations. An index vector is needed to
pick up desired elements. Q8VGATHR function (64-bit) or Q8VXTOV subroutine
(32-bit) is used to do the transposing. As the array gets bigger, so does the index
vector31ength, and an appreciable amount of overhead working space is needed. In
the 64° (32x16) run, the index vector has 17,408 elements.

6. COMPUTER PERFORMANCE

The performance data obtained to date, based on a hand count of the number of
operations per time step, are presented in Table 1. The mesh size is given in
column 2 (each node requires 7 words of data storage). The pencil size is given in
column 3; this, together with mesh size, determines the vector length shown in
column 4. The computational precision is given in eolumn 5, the CPU time in
column 6, and the CPU computation rate in column 7. The I/O time per step in
seconds is meaningful only for runs with virtual memory paging. Explicit 1/O
Iv;%uld reduce I/0 time considerably, but we have not yet attempted to use explicit

Figure 3 shows computation rate as function of vector length for our code on the
2-pipe CSU Cyber 205. It approaches an asymptote as vector length increases.

Comparing Runs 3 and 4, and Runs 5 and 6 in Table 1, it is found that the CPU
time for a 32-bit (half) precision run is 60 percent of that for the corresponding
64-bit (full) precision run. We kept track of the timing in the transpose part of
the code and found an interesting fact. In full precision runs, the transpose takes
15 percent of the CPU time; 85 percent of the CPU time is spent in floating point
operations. In half precision runs, due to the lack of a half precision gather
utility, the transpose takes the same amount of time as in full precision runs,
while the floating point operations require only half of the full precision CPU
time. Consequently, for half precision run, the transpose takes 25 percent of the
total time.

Detailed timing from Run 8 shows that 51 percent of the CPU time is spent in the
FFT subroutine, which contains 78 percent of the floating point operations. In
other words, the FFT operates at 157.6 Mflops. The remaining 22 percent of the
floating point operations are executed at 95 Mflops due mainly to shorter vector
lengths and IF statements.

7. PROBLEMS ENCOUNTERED
Runs 7 and 8 of Table 1 require 3.5M words storage, and hence, do not fit within
the 2M core memory at CSU with full precision. Thus, we must use 32-bit com-

putation for efficient use of the CSU Cyber 205. Half-precision computation is
sufficiently accurate for this code, and twice the operating speed is achieved.

232



butbed
3100 uTr

3100 UT

putbHed

3100 Uut

9100 UuTt

2100 ut

9100 UT

POXyOXp9

VOXy 9Xy9

VOXy9X¥9

VOXy9xXy9

CEXTEXTL

CEXTEXTE

CEXTEXTL

8X8X8

SLNIWWOD

(SAIOM W)
XMOWHH

(°03s)
dais ¥dd
JHIL O/I

(-0ds)
ddLs ¥3d
TIWIL NdD

(Idd NI)
HLONIT
JOLOIA

(SEAON)
9ZIS
TIONId

(SEAON)
471S HSHAW

(@4OM LI89-99 WZ HIIM SAJId T)
SO LV GO0C ¥ILAD J0 HONVWIOLIHJ--°T HTHYL



¢ sanbtg

HLINTT HOLIIN

at 0T o1 0T 0T
| AL preyveeTey | LB L ey O
tm#&V\
3aze
N\ Hoot =
Jl—
—I
Q
v,
- 0
-100<2
less s 2 | s I TN ] -r.

J00J AN3FS3FHd 40 FINVWHOAH T

234



Since there is no compiler avai]',)able -yet for half precision gather/scatter4 calls,
we have to use special Q8 calls” (machine instructions) to get the half preecision
code to compile properly on the CSU Cyber 205; the special Q8 instructions exe-
cute at full precision speed. Mr. Herbert Rothmund of CDC Sunnyvale was most
helpful to us in providing these utilities.

It is apparent that the I/O rate is not balanced with the CPU time. The reason is
that the CSU Cyber 205 has only two channels to transfer data between fast
memory and disk and they are inherently slow. Solid-state backing memory (or
equivalent) would speed up, the data transfer rate. For our problem, faster 1/0
would allow us to go to 128 mesh size.

Since December 1982, three different compilers have been used: cyeles 201109,
L575, and 575B. Cyele 201109 did not have the half precision feature. Cycle
L575 had half precision but lacked some automatic vectorization features. Cycle
575B, the most recent version, does not have gather/scatter in half precision.
Further improvements are needed if users are to get optimum performance from
this machine.

8. SIMULATION OF ISOTROPIC HOMOGENEOUS TURBULENCE

A typical simulation of homogeneous isotropic turbulent flow is presented in this
section. Figure 4 shows the time history of the three-dimensional energy spec-
trum from initial time step to 300 time steps. Figure 5 shows the 3-D spectra of
the components of the turbulent kinetic energy at time step 300. The flow is
slightly anisotropic at low wavenumbers. This is due to the small number of
modes at low wavenumbers.

All of these resuljés are in excellent agreement with both experiments6 and pre-
vious simulations.’ Thus, we are confident that the code is performing satis-
factorily and we will proceed to the simulation %f compressed flows. The code
presently runs at 1.9 second per time step for a 64° mesh on the 2-pipe Cyber 205;
this compares with 5 seconds for the same type of code on the CRAY-1S in
VECTORAL language.

9. CONCLUSION

In summary, we have written, debugged, and tested a code for solving the Navier-
Stokes equations and for computing various turbulence statistical quantities. Mos

of the operations are readily vectorized, and 100 Mflops has been obtained for 64

mesh size in-core runs on a 2-pipe Cyber 205. The major problems encountered so
far are concerned with the lack of compiler utilities, such as half-precision com-
piling capability for transpose operations.

The program works well and has been validated for homogeneous isotropic tur-

bulence. The code will next be used to help develop turbulence models for com-
pressed flow in engines.
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NOMENCLATURE
Bij Coordinate transformation tensor
MY Pencil size in Y-direction
MZ Pencil size in Z-direction
NX Number of mesh points in X-direction
NY Number of mesh points in Y-direction
NZ Number of mesh points in Z-direction
p' Pressure fluctuations
t Time
Ui,j Mean strain rate tensor
u Veloeity fluctuations in i-direction
X Space coordinate
y Space coordinate
z Space coordinate
J ij Kronecker delta
N'd Kinematic viscosity

238



(¢ 2]

REFERENCE

Rogallo, R. S., "Numerical Experiments in Homogeneous Turbulence,”" NASA
TM81315, September 1981.

"Guide to Vector Processing Services," CSU Computer Center and the
Institute for Computational Studies, October 1982.

Kasecie, M. J., Jr., "Vector Processing on the Cyber 200," Workshop I, CSU,
December 1982.

"CDC Cyber 200 Fortran Version 2 Reference Manual," Control Data Cor-
poration, November 1981.

"CDC Cyber 200 Model 205 Computer System Hardware Reference Manual,"
Control Data Corporation, March 1981.

Camta_Rallat and Carrcin, Q "Si

m
vvllll. LICLAV Ly ey QuiUu WwUVLLOM l’ ey a

llpw RALNSL ACAL

Full- and Narrow-Band Velocity Signals in Grid-Generated 'Isotrop Tur-
bulence," J. Fluid Mech. (1971), Vol. 48, part 2, pp. 273-3317.

le Eulerian Tim

Shirani, E., Ferziger, J. H., and Reynolds, W. C., "Mixing of a Passive Scalar
in Isotropic and Sheared Homogeneous Turbulence,* Rept. No. TF-15,
Thermosciences Division, Department of Mechanical Engineering, Stanford
University, Stanford, Calif. May 1981.

239






EFFICIENT SPARSE MATRIX MULTIPLICATION
SCHEME FOR THE CYBER 203

JULES J. LAMBIOTTE, JR.
NASA/LANGLEY RESEARCH CENTER
HAMPTON, VIRGINIA






Efficient Sparse Matrix Multiplication Scheme
for the CYBER-203

Jules J., Lambiotte, Jr.
NASA/Langley Research Center
Hampton, Virginia
Abstract

Many important algorithms for solving problems in linear algebra require
the repeated computation of the matrix-vector product b = Ax where A is
gsymmetric and sparse. Examples are the conjugate gradient and Lanczos
methods.

This work has been directed toward the development of an efficient
algorithm for performing this computation on the CYBER-203. The desire to
provide software which gives the user the choice between the often conflicting
goals of minimizing central processing (CPU) time or storage requirements has
led to a diagonal-based algorithm in which one of three types of storage is
selected for each diagonal. For each storage type, an initialization sub-
routine estimates the CPU and storage requirements based upon results from
previously performed aumerical experimentation. These requirements are
adjusted by weights provided by the user which reflect the relative importance
the ugser places on the two resources,

The three storage types employed were chosen to be efficient on the
CYBER-203 for diagonals which are sparse, moderately sparse, or dense;
however, for many dengsities, no diagonal type is most efficient with respect

to both resource requirements. The user-supplied weights dictate the choice.

Introduction
Many of the important numerical techniques used today to solve linear
equations require repeated computation of a symmetric matrix times a vector.
Examples are the conjugate gradient method, with all its variants, for solving
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simultaneous linear equations (refs. 1 and 2) and the Lanczos algorithm for
eigenvalue and eigenvector extraction (ref. 3). These methods are
particularly attractive when the matrix is sparse since, unlike direct
methods, they do not require storage of the entire matrix. The matrix is only
used to multiply a vector and to do this one only needs to know the nonzero
elements and their position within the matrix.

The primary objective of this work has heen to develop software for the
CYBER~-203 that provides an efficient means for computing b = Ax when A |is
an n X n, symmetric, sparse matrizx,

Because use of vector hardware instructions on a vector processor has
very definite implications about the storage, a user's desire to minimize both
the required central processing unit (CPU) time and the total storage needed
to represent A are often conflicting goals. Thus, a more specific objective
of the work has been to design the software so that it provides alternative
storage/computational procedures for the matrix A and automatically selects
the procedure which best reflects the users relative concerns about minimizing
the two resources,

These objectives have led to the development of a diagonal-based storage
and computation scheme in which a preprocessing subroutine, QMPACT, chooses
one of thre; storage methods for each diagonal using CPU and storage estimates
and user-provided regource weighting information. The subroutine, QMXV, can
be called repeatedly to compute Ax using the compact form of matrix A.

Subsequent sections of the paper will describe the relevant CYBER-203
instructions used, the diagonal-baged algorithm with the tradeoffs between the
methods, a description of the implementation used, and results for saveral

sparse matrices.,
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CYBER~-203 Characteristics
The CYBER-203 at Langley Research Center is a vector processing computer
capable of producing 50 million floating point results (64 bit) for a vector
addition and 25 million for a vector multiplication. It has one million words
of bit addressable central memory in a virtual memory architecture.
The high CPU rates are achieved by operations on long vectors whose
y stored

in memory owaver

if
vector lengths are short (say, S0 or less), the fast scalar capability makes
serial computation superior.

In addition to the usual arithmetic operations (+, -, *, and +), several
nontypical hardware instructions exist which proved useful in this work.

These were the vector compare, compress, expand, and bit count. Figure 1

demonstrates their use,
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Fiqure 1. CYBER-203 nontypical vector instructions.
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Diagonal-Based Matrix Multiplication
It is possible to describe the multiplication process b = Ax for a
matrix A in terms of elements of each diagonal. Let A(L2) denote the
gth superdiagonal (also the zth subdiagonal since A 1is symmetric) and let

Ak(l) be the kT component., That is, Ak(l) = A 1pg ® Aeg,k° The procedure

for computing b = Ax for the n xn matrix A is

bk * %(o) xk k = 1,2'000'“.0

For 2 = 1,2,...,“‘-1.
bk « bk + Ak(z) Xess for k= 1,2,.c.,n-4 (1)

bk+£ + bk+£ + Ak(l) X, for k= 1,2,4e0e,n=2 (2)

End F
Note that if A is banded, £ need only go from 1 to the bandwidth B8
and that if any diagonals are identically zero, they can be easily identified
and all computation for ‘them in (1) and (2) can be omitted.

The diagonal-based scheme has been selected as the foundation for this

work for several reasons:

a. Nonzero structure of real problems - Many matrices arising from finite

difference or finite element formulations naturally lead to a sparsity
pattern in which most of the nonzeros lie along a few of the diagonals.
The 5 diagonal matrix arising from central differencing of Poisson's
equation is an extreme example. Of course, there the pattern is so pre-
dictable that special storage techniques are not needed; but for irregular
grids, or more complex equations with more comﬁlicated differencing, the
sparsity is not so easily specified., This is especially true in finite
element formulations where one of the strengths of the method is the

ability to use nonuniform elements.
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b. Vectorization - The n - £ multiplications and additions in equations (1)

and (2) can be carried out by vector operations of length n - L.

c. Symmetry of diagonals - The £th subdiagonal is also the zth super-

diagonal. Since equations (1) and (2) are identical in form, the storage
and computation most appropriate for the subdiagonal is alsc most appro-

priate for the superdiagonal.

Storage Tradeoffs
The vector computations implied in equations (1) and (2) assume A(L) is

available as a vector of length n - £. However, if the diagonal is rela-
tively sparse, one might not want to store the entire diagonal with all its
zeros. In fact, if the diagonal is very sparse, neither vector storage nor
vector computation is likely to be very efficient.

Described below are three types of diagonal storage and their associated
computation to execute equations (1) and (2).
Full Vector (Type 1) - Here the entire diagonal is stored including any

zeros. Vectors of length n - 4 are used. This mode will be most

efficient when A(L) is very dense,

Compresgsed Vector Plus Bit Pattern (Type 2) - Here only the nonzeros are

stored along with a bit vector to give positional information within the
diagonal. The computation is identical to that with type 1 diagonals
after an expand is performed to generate the full diagonal A(L). The
extra expand makes type 2 CPU requirements always exceed type 1, but the
storage can be considerably less.

Compressed Vector Plus Row Pointers (Type 3) - Here the assumption is that

A(f) is so sparse that it will be inefficient to expand the compressed
vector. Equations (1) and (2) are executed serially making use of the row

indices stored for positional information.
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Figures (2) and (3) show the CPU and storage requirements for a diagonal
of length 1000 as a function of density. A comparison of the two figures
shows that, unfortunately, one cannot identify intervals of density where a
particular diagonal type is most efficient with regpect to both resources.

For instance type 3 CPU is least for 4 € 0.11 buf has a greater storage
requirement than type 2 for 4 » 0.02. Even in those regions where one
diagonal type is mogt efficient for both resources (tygg 1 for very dense and
type 3 for very sparse), the boundaries of these regions vary with the length
of the diagonal.

Since the minimization of both resources is frequently not possible, and
since different users may attach different importances to the two resources,
it was decided to let the user influence the storage selection through
resource weighting factors. To implement this the initialization subroutine,
CMPACT, does the following for each diagonal:

(1) Estimates the CPU and storage requirements for each of the three candidate
types.

(2) Applies a user-supplied weight to compute the weighted resource require-
ment for each method.

(3) Selects the storage type that minimizes the sum of the two weighted
regsource requirements.

That is, denoting the predicted storage and CPU requirements for the jth

diagonal type by 8. and c¢. respectively, their minimum by s and ¢, the

J J m
ugers specified weighting by Sy and Cyyv then the normalized and weighted
resource, ry, for the jth diagonal type is computed as
s, c.
r, =—4- s +—d-¢ j=1,2,3
j s . W c_. W
min min

Subroutine MPACT computes rj and selects the diagonal type which yields the

minimum value of r.
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For this approach, CMPACT must be able to estimate S5 and 5 for

all n and d. The storage estimates are easily made in terms of a diagonal

of length n having 2z nonzeros.

Sq n
So =2 + W
S, = 2z
where w 1is the least number of 64-bit words needed to hold n bits.
The CPU estimates were obtained by timing the computation for a range
of n and density d. For type 1 and 3 diagonals, single formulas were
obtained, but the complexity of the expand used in type 2 diagonal computation

required a table of values. The time in .microseconds to perform the computa-

tions implied in equations (1) and (2) for a single diagonal can be estimated

by
Cq =29 +0.122 n
Cy = See Table I
Cy =7+ 1.74 2

Since these values are used only in a selection process, their accuracy

to a percent or two is sufficient.

Table I,- Type 2 diagonal CPU times (microseconds) as a function

of diagonal length n and density 4.

d
. 0. .1 o2 -4 .6 .8 1.0
100 53 53 53 57 60 63 68
500 123 123 124 141 160 176 197
5000 901 901 918 997 1134 1280 1429
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Implementation

The matrix is received in subroutine CMPACT in its expanded form as an
N by IB array. Each of the IB diagonals is treated individually as the
compact representation, array C, is formed. C is a linear array in which
the pertinent data for the Lth diagonal is stored behind that for the L - 18t
diagonal. As illustrated in fiqure 4, this can be, for types 1, 2, or 3
respectively, either the entire diagonal, the nonzero bit pattern for the
diagonal followed by the nonzeros, or the nonzeros and index data. A vector
compare with broadcast zero generates the bit pattern and provides the number
of nonzeros and density. If the weighting procedure determines that the
diagonal should be type 2 or 3, a compress is performed. In addition, two
integers for each diagonal are stored in a separate array. The first identi-
fies the diagonal type and the second the number of nonzeros in the diagonal.

The subroutine returns to the user the CPU and storage estimates for the
user provided weights. In addition the estimates for combinations s, = 1,

e, =0 and s, =0, ¢, =1 are returned to aid the user to adjust his weights

W

in subsequent computations.
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Figqure 4 - Storage for A(%) (n - £ = 6),.

Results

Results from two test matrices are presented here to demonstrate the
effect and control the user has on the matrix storage and computational
requirements by giving the gtatistics for different combinations of s, and
c,. Refer to Tables II and III.

Case 1 - This is a randomly generated matrix with 400 equations and a
bandwidth of 21. The densities are approximately uniformly distributed
between 0., and 1. The average density is 55.7%. The storage selection that
minimizes the CPU time (1.57 msec; mostly type 1) yields the largest storage

requirement. The selection to minimize storage (4713 words; mostly type 2)

yields the largest computation time.
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Case 2 - This is a sparse matrix resulting from a finite element formula-
tion with triangular elements and 3 degrees of freedom at each node. The
matrix has 1086 equations, a bandwidth of 81, and an average density of 7.8%.
Most of the diagonals are sparse. Of the 81 diagonals, 57 are less than 5%
dense and approximately half of the nonzeros are on the four diagonals closest
to the main diagonal. Because of the relatively few dense diagonals, most of
the diagonals are type 2 (to minimize storage) or type 3 (to minimize CPU).

Both examples demonstrate the conflicting goals of minimizing both
resources. They also show that use of the weighting factors can give the user
a rather wide range of resource distributions. For instance, in the second
example a weighting of 1 for ¢, leads to a CPU time that is minimum but a
storage requirement which is 1.73 times that if one set s, = 1. However,
setting S, =1 yields a CPU time which is 2.6 times the minimum. A reason-

able middle ground occurs when S, = Cy = 0.5. In this case, the CPU is 1.09

times the minimum and the storage is 1.2 times the minimum.
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Table II.~ Case 1;

21 %X 400 random matrix.

Weights Resources Diagonal Selection
CPU st 1

c s orage

w w (secs) 9 2 3
0 1 .00271 4713 1 20 0
.3 .7 .00217 4950 7 13 1
.5 .5 .00193 5481 11 9 1
.7 .3 .00174 6053 14 5 2
1 0 .00157 7495 19 0 2

Table III,- Case 2;

81

x 1086 finite element matrix,

Weights Resources Diagonal Selection
CPU St 1

c S orage

w w (Secs) g 2 3
0] 1 .01680 8032 1 72 8
.3 .7 .00800 9200 3 17 61
.5 .5 .00703 9622 3 8 70
-7 .3 .00682 9820 3 4 74
1 0 .00646 13883 8 0 73
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Summary

This paper has described a computational and storage algorithm for sparse
matrix multiplication on the CYBER-203. The multiplication is performed using
diagonals of the matrix as the candidate vectors since this is where nonzero
patterns predominate in many scientific applications. Three types of diagonal
sparsity patterns are identified (roughly speaking, either dense, moderately
sparse, or sparse) and storage and computational procedures developed for
each.

Since, for most densities, no single diagonal type minimizes both storage
and CPU requirements, an initialization subroutine selects the most
"efficient" type for the diagonal based on estimated resource requirements and
user-provided weights which indicate the relative importance the user attaches
to each resource.

Examples are given which illustrate that, for a given matrix, the weights
can be used to achieve minimal CPU time (at the expense of storage) or minimal

storage (at the expense of CPU time) or some compromise between the two.
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ABSTRACT

The computational aspects of model ing material fallure in structural wood
members are presented wlth particular reference to vector processing aspects.
Wood members are conslidered to be highly orthotropic, Inhomogeneous, and
discontinuous due to the complex microstructure of wood material and the pres-
ence of natural growth characteristics such as knots, cracks and cross grain
in wood members. The simulation of strength behavior of wood members is
accompl Ished through the use of a special purpose finite element/fracture
mechanics routine, program STARW (STrength Analysis Routine for Wood). Pro-
gram STARW employs quadratic finlte elements combined with singular crack +tip
elements In a finite element mesh which accounts for the complexities Inherent
in wood structural members. The need to use a highly refined finite element
mesh to adequately model material behavlor, results In the formulation of
thousands of simultaneous equations which must be generated and solved repeat-
edly To model the nonlinear failure process which occurs., The avallability of
the CYBER 205 at Colorado State Unlversity has made implementation of program
STARW at the level described not only possible, but also relatively economi-
cal. Vector processing techniques are employed in mesh generation, stiffness
matrix formation, simultaneous. equation solution, and material fallure calcu-
lations. The paper addresses these techniques along with the time and effort
requirements needed to convert existing finlte element code to a vectorized

version. Comparisons In executlion time between vectorized and nonvectorlzed

routines are provlided.
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INTRODUCTION

Accurate knowledge ot the strength of a structural member Is essential
information +to the design englneer concerned with structural safety and effi-
clent material use. A means to predict material strength is necessary, since
all materials exhiblt some varlabliity in strength and It is not feasible to
pnysically test every structural member to determine Its load carrying capa-
clfy.. The sophlstication of strength prediction models have generaily
advanced, not only with the discovery and refinement of new computational
methods, but also w --h the Increase In computer capablllities which enable

erficient application of the new methods.

In the case ot wood structural members, the current strength prediction
method 1Is a highily approximate procedure based on empirical concepts from the
1930's. This results in a strength prediction that Is relatively uncertain.
The current sfreﬁgfh prediction procedure Is based on the results of physical
tests because untll now [t has not been possible to mathematically mode!l wood
member fallure and ratlonally predict strength. The most obvious difflcul=~
ti1es; orthotropic material propertlies, the presence of knots and assoclated
grain deviations, and the presence of cracks from seasoning and partial
material fallure, can now be successfully modeled with program STARW (SIrength

Analysis Routine for Wood) (2).

The nature of the nonlinear fallure modellng process, presents a computa-
tional problem of such a large magnltude that It can not be efficlently
accompl ished on computers that do not have the capacity of a CYBER 205. Pro-
gram STARW represents a case where modest effort In Invokling vector processlng
syntax has not only made Implementation of the program possible, but has also

resulted In a relatively economical solution.
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Program STARW uses two-dimensional orthotropic finite elements 1o model
behavior In the longltudinai-transverse plane of a loaded wood member. Ten-

sile |load is applled In the longltudinal directlion as shown In Fig. 1.

1 11
|

— ———
‘—————\
| —
— f‘[‘

KNOT ASSOCIATED CROSSGRAIN /
APPLIED STRESS

Flgure 1. Loaded Wood Structural Member
(Longitudinai-Transverse Plane)

A knot In a structural specimen of wood creates l|ocallzed graln deviation
as Indicated In Fig. 1. This graln deviation has an extremely important
etfect on stress distributions at locations near the knot (3). An Iterative
procedure To locate mesh coordinates corresponding to the grain deviation
around a knot Is employed In program STARW.  This procedure relates distortion
of wood graln around a knot to streamiines of laminar fluid flow around an

el liptical object and has therefore been named the "flow-grain analogy" (4).
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Utltizing the flow=grain analogy, a representative finite element mesh Is
automatically constructed of eight node quadrilateral elements, six node tri-
angular elements, and elght node singular elements. Since tangentlial elastic
stiffness of wood may be as little as 1/20 of the longitudinal elastic stiff-
ness, all three types of finite eiements are required to model different elas-
tic material behavior In the longltudinal and +tangential directions.
Appropriate elastic stiffness values for each element are automatically

assigned.

Singular elements are used to model material behavior around the +ip of
cracks that form as the load on the member is Increased. These elements were
developed using theory from |linear elastic fracture mechanics (1), Experimen-—
tal investigations have indicated that cracks In structural lumber will usu-
ally form ana propagate along a grain llne.- Thus, cracks are modeled by pro-
gram STARW by "unzlppling" the finite element mesh aiong the material separa-
tlon ana placing the singular elements around the crack tip. A resulting fin-
[te element mesh Is shown In Fig. 2. The "unzipping" process and placement of
the singular elements are pertormed automatically upon cue by the user when

the appropriate faliure conditions are indicated In the program output.
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Flgure 2.

Example Finite Element Mesh including Crack

The output directly calculated from each analysis |s as follows:

1) Horizontal and vertical displacement at each node In the mesh.

2) Stresses for each eiement,

paral lel-to~-grain,

perpendicular-to=-
grain, and shear.

3) Stress Intensity factors resulting from the use of singular ele~
ments.

4) A failure summary that Indicates to the

user what appropriate
action should be taken to modei the next step in the faillure pro-
cess.
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The stress intensity factors directly reflect the strength of the stress field
around the crack tip. The stress Intensity factors are compared within the
program to a fracture crilterlia for structural wood members to determine if the
exlsting crack propagates at a given applied load. The element stresses are
compared to a fallure criterla for structural wood members to determine If a
crack will form near the element under consideration. The resuilts of these

comparlsons are expressed In the fallure summary.

Analyses are performed repeatedly with stress and stress Infensity fac-
tors monitored at each step and compared within the program logic to the
fracture/fallure criteria. As the load on the member |is increased, more
cracking and material fallure occurs. The user, based on the information in
the failure summary and the overall stress plcture, gives the program the
necessary Information to model! the successive step In the fallure process. In
the future, as research progresses, program loglc wil! be expanded to Include
the declislon making process the user currently makes based on the fallure sum-
mary., Failure may be continually modeled In this fashion wuntlil the member
unuer conslderation has failed to the point where [t cannot resist an increase
In load. At this polnt, the predicted strength Is realized. In studying the
behavior of a wood member, 30 analyses may typlically be performed before the

member reaches its capacity. A simplifled diagram of the failure model Is

containea In Fig. 3,
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Figure 3. Strength Prediction Model

ASPECTS AND IMPLICATIONS OF VECTORIZATION

For each analysls, program STARW performs five generai sets of

+lons:

1)

2)

3

computa-

Generation of a suitable finite element mesh using the flow-grain anal-

ogy and an unzipping process to include cracks.

Formation of a set of simultaneous equations which may be 2000 to 5000

equations In length.

Solution of the simuitanecus equations using Gauss el imination.
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4) Calculation and coordinate fransformation of element stresses based on

the solutlion vector and the element grain angles.

5) Computations with the fallure/fracture criteria using element stresses

and stress Intensity factors as [nput,

Routines included In ltems 1 through 4 existed in |Imited form and were
executed for small problems on a CYBER 720 prior to applicatlon on the CYBER
205. Fallure calculations In Item 5 and additional mesh generation capabl!i-
tles were added and designed specifically for use on the CYBER 205. After
compi ler Inauced vectorization proved to be Iinadequate, In significantly
reducing execution +time, It became apparent that it was essential to expli-
cltly vectorize selected portions of the existing routines., At the same t+ime,
it was not +the primary goal of the project to expend unlimited effort to
achleve the maximum In vector processing, rather the goal was +to produce a
powerful research tool that could be economically Implemented. The bulk of
the conversion (and execution time savings) were achieved with modest effort

after becoming famiilar with vector processing syntax,

To date, a means to vectorize the |terative solution of the fluid mechan-
ics equations contained In the flow=grain analogy has not been establilshed.
This Is not of great concern since, as in many finlte element routines, mesh
generation does not account for a significant portion of the total execution
time. However, the unzipping of the finlte element mesh +to model cracks
Involves, In part, a uniform renumbering of nodal points. This renumbering is
easi |y accomplished with basic vector commands since nodal coordinates are

stored in vector form,
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Formation ot the set of simultaneous equations can typically take from 5
to 50 per cent of total execution +time In a unvectorized finite element
analysls. In program STARW, a 16 by 16 element stiffness matrix must be con-
structed for each element and properly combined with other element stiffness
matrices to form the coetfliclent matrix (global stiffness matrix) of the
simultaneous equations. Formation of the 16 by 16 matrix Invoives dot pro-
ducts or vectors of length 16, Some time savings [s attalned here through the

use of the CYBER Q8SDOT command even though the vector length Is rather small.

Solution of the simultaneous equations typically requires 40 to 90 per=-
cent of the rotal execution time of a finite element analysis. The 90 percent
figure [s not uncommon for large two-dimensional analyses. Therefore, large
time savings can be attalned by vectorizing the solutlon algorithm alone. In
program STARW, Gauss el imlnation is used to. decompose +the global stiffness
matrix, followed by a back substitution to obtain the solution. For the prob-
lem under conslderation the stiffness matrix is banded and symmetric, and
therefore, only the upper dlagonal half of the matrix Is stored. Furthermore,
1f the global stiffness matrix is stored In columns reather tThan rows, then
adJacent terms In a row of the global stiffness matrix wiil be stored contigu-
ously. Since Gauss eolimination Involves operations of one row upon another,
by storing the matrix as described, each row will be a vector, "Gather" and
"scatter" vector formation commands are unnecessary. Gauss el Imination
Invoives operations on the matrix rows In a number of nested DO loops. Yector-
ization of even the Inner most loop results In large time savings. Back sub-
stitution Involves repeated dot products of previously formed vectors. Thls
can agalin be easlly accomplished with the CYBER Q8SDOT command. An unvector-
ized and otherwise Identical vectorlzed portion of the back substitution Is

shown In Fig. 4 to Illustrate typlcal vectorization.
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DO 460 J =2, JEND

Ji=11+Jd-1

B(11) = B(IT) = ACJIT) * B(JD)
468 CONTINUE

LE = JEND - 1
J1 =11 + 1
B(11) = B(11) - @8SDOT (A(2, t1: LE), B(J1:; LE))

Figure 4. Example DO Loop and Corresponding Vector Syntax

With the solution of the equations established, element strains and
stresses can be calcuiated In gliobal coordinates. Since this caiculation Is
essentially the same for every ejement, and care |s taken to store the neces~-
sary quantities In vector form, baslc vector operations accomplIsh this fask.
The solution vector Is found In the giobal coordinate system and thus the cali-
culated stresses are also expressed In this system. It Is desireable, however,
to know the stresses In the coordinate system of each element or +the
perpendicular=-to-grain and paralliel-to-grain directions. The element stresses
must be transformed according fo the element grain angle. Since the element
grain angles are stored contiguously and In order, this computation can be

accompl ished with basic vector commands,

To complete an analysls, the stresses and stress Intensity factors for
cracks must be Inserted Into the fallure/fracture criterlia. The

fallure/fracture criterlia Interfaces the mathematical results from an analysis
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to the real l|ife fallure actions. Requlired Information Incliudes the maximum
stresses and thelr locations within the flow-grain mesh. Since stresses are
stored In element order In vectors, this Iﬁformaflon can be obtained much
quicker and more easily by using CYBER Q8 commands than with scalar search

algorlthms,

To put the vectorlzation dlscussed Into perspective, a +typical problem
was analyzed uslng unvectorized and vecterlzed routines. Since unvectorized
versions of the mesh generator (Item #1) and the maximum stress searching rou-
tine (item #5) do not exlst, vectorlized routines had to be used for both sides
of the example. The example problem consisted of 4180 degrees of freedom
(equations) and for simpllification no cracks were included. The corresponding

CPU execution times for dlfferent phases of the analysis are shown In Tabie 1.

TABLE 1. EFFICIENCY OF EXECUTION TIME FOR VECTORIZED ROUTINES

UNVECTORIZED  VECTORIZED EFFICIENCY
TIME IN SEC, TIME IN SEC, UNVECT/VECT

MESH GENERAT ION 1.99 1.90 1.08
STIFFNESS MATRIX FORMATION 4,84 2.80 1.73
SOLUTION OF EQUATIONS 97.87 4.91 19.90
MISCELLANEOUS COMPUTATIONS  5.85 4.60 1.10
ToTAL w9.66 w2l 778

As clearly shown for thls problem, the vectorized equation solver was 20
times faster than Its otherwise ldentical unvectorlzed version. This savings,

along with other vectorization, reduced analysis time by nearly a factor of
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eight. One wil! note that while the miscelianeous computations were somewhat
Insignificant In the unvectorized analysls, they ftake on new importance In
the vectorized analysis. Additional effort may be well spent in further vec-

torlzation of the miscel laneous computations.

CONCLUS |ONS

Failure In wood members |s belng successfully modeled and analytically
Investigated In greater detall than before possiblie through Implementation of
program STARW on the CYBER 205 (2). An understanding of materlal fallure Is
essentlal to accurately predict member strength and to safely and efficlentiy

use the materlal in englneering application.

Yectorization of program STARW has reduced an unwieldly and expensive,
nonl inear faliure modeling method into an efficlient research tool. Vectoriza-
tlon of existing routines need not be a lengthy and laborlous effort to
achleve execution time savings. |t has been shown that careful organization of
cperands Into vectors and modest effort In invoking vector syntax can cut pro-
gram execution time by a factor of nearly 8 for a typical problem in this
research. The largest savings ls reallzed In the solutlon of the slmultaneous

equations,

While use of program STARW Is expected to provide new [(nformation on
fracture and failure in wood members, the avallabiiity of machines with the
capabilities of the CYBER 205, in general holds promise for advances In the
analytical modeling of all materials. These advances in research wiill Inj=-
tiate new applications of materials and more efficient and rellable use of

materials In existing applications.
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ABSTRACT

Very efficient algorithms for solving large sparse systems of

simultaneous linear equations have been developed for serial
processing computers. These involve a reordering of matrix
rows and columns in order to obtain a near triangular pattern
of non-zero elements. Then an LU factorization is developed to
represent the matrix inverse in terms of a sequence of

elementary gaussian eliminations, or pivots.

In this paper we show how to adapt these algorithms for

efficient implementation on vector processors. Results
obtained on the CYBER 200 Model 205 are presented for a series

of large test problems which show the comparative advantages of

the triangularization and vector processing algorithms.
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Preliminary Results in Implementing a Model of the
World Economy on the Cyber 205: A Case of Large
Sparse Nonsymmetric Linear Eguations

Abstract

Daniel B. Szyld
Institute for Economic Analysis
New York University

A brief description of the Model of the World Economy
implemented at the Institute for Economic Analysis is
presented, together with our experience in converting the
software to vector code.

For each time period, the model is reduced to a linear
system of over 2000 variables. The matrix of coefficients
has a bordered block diagonal structure, and we show how som=
of the matrix operations can be carried out on all diagonal

blocks at once.

We present some other details of the algorithms and
report running times.
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1. Description of the Model

The first input-output model of the world economy was
originally developed for the United Nations by Leontief, Carter
and Petri [1977] as a tool for evaluating alternative long-term
economic policies. The most recent version that has been
implemented spans the period 1970-2030 in 10-year intervals.
The model is dynamic in the sense that the solution for each
l10-year period requires information obtained from the solution
for the previous period. 1In this paper we focus on the solution
of a single time period.

In the current version of the model, the world is divided
into 16 regions (r=16) and for each of the regions the detailed
economic activities are described by a set of linear algebraic

equations of the form

Ajyi + Siw = 0 (i =1,e0.,r). (1)

The components of the vectors yj correspond to levels of
domestic production, imports, and exports of goods and ser-
vices, and so on, for each region, and w is the vector of

total world exports. In addition there are global constraints

described by the equation

[[MaeTa

lGi.Y_i =0 , (2)

i
which imposes the consistency among regional trade relations.
A more detailed description of the model can be found in

Leontief, Carter and Petri [1977], Duchin and Szyld [1979], and

Szyld [1981].
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All the matrices involved are very sparse. For example
Aj could be 200 x 250 with 2500 nonzeros.
Sj could be 200 x 50 with 50 nonzeros.
Gj could be 50 x 250 with 100 nonzeros.
Each matrix Aj has more columns than rows and therefore some
components of yj have to be prescribed.

If xj are the vectors of unknown components of yj and Mj
and Ej are the corresponding submatrices of Aj and Gj, the whole
model for a single time period can be regarded as a linear
system of equations of over 3000 variables with a nonsymmetric

bordered block diagonal matrix of coefficients of the form:

My S1 X1 b
M2 S2 X2 b>

. . . = . (3)
My Sp Xr by
ElE2-'°Er 0 w 9

where the blank blocks in the matrix are zero blocks.

When the model was first implemented, the program for
the solution of (3) inverted the matrices Mj and stored the
inverses. The approximate computer time to perform this task
was 4 hours on a PDP-1l. The (dense) inverses_were_saved for
subsequent runs during which they were updated depending on
the components of yj prescribed and on changes in the. matrices
Aj. Each of these subsequent runs required 110 seconds on an
IBM 370 for each time period.

The set of prescribed components of yj and the matrices
are used to determine a scenario, i.e., a set of economic

assumptions. Studies carried out with the World Model compare
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results of different scenarios, i.e., the implications of the
different assumptions. The consequences of the introduction
of new technologies, different development strategies, or
shifts in trade patterns are among the numerous scenarios that
can be analyzed. Thus, the World Model is a flexible tool to
analyze alternative policies. Several large scale empirical
studies have been carried out with this model. The most recent
ones are reported in Leontief and Duchin [1983], Leontief and
Sohn ([1982], Leontief, Koo, Nasar and Sohn [1983] and Leontief,
Mariscal and Sohn [1982].

To make this tool much more flexible we needed to greatly
reduce the computational resources required to run a scenario.
A first step in that direction was the application of sparse
matrix techniques for the solution of (3). 1In the present
implementation the matrices Aj are stored using a sparse
scheme, i.e., qnly the nonzero elements are stored, together
with some integer arrays indicating their locations. A single
array of approximate length 3200 contains all vectors xj, i=l,...r.
Other such arrays contain the vectors bj, the nonzero values
of the matrices Sj and Gj, or other data objects. Similarly,
cbjects like the nonzeros of the matrices Mj appear in single

arrays of length close to 5000.

2. Method of Solution

The algorithmic details of the solution of (3) are given in
Duchin and Szyld (19791, Szyld (1981], and Furlong and Szyld

[1982]). Here we enumerate the operations for the solution

of (3) very schematically.
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loop 1. For i=l,...,r
l.1. Read Aj,Gi,Si, and the prescribed elements of yj
1.2. Produce Mj,Ej and bj

1.3, Obtain factorization of Mj

loop 2. For i=1l,...,r
2,1. Prepare different right hand sides with columns of Sj

2.2. Solve systems with matrix Mj
loop 3. Obtain w

loop 4. For i=l,...,r
4.1, Compute bj = Sjw

4.2, Solve Mjxj = bj - Siw

The factorization of the matrices Mi (in step 1.3) and the
solution of several linear systems with them (in steps 2.2 and
4.2) are performed with routines from the MA28 set developed
by Duff (1977].

We report the running times for a single time period with

this method of solution without any vector code in Table 1.

Table 1.
System/compiler options CPU sec.
IBM 370/168 ~38
IBM 3033 ~20
Cyber 205, no options 11.46
Cyber 205, vectorization by the compiler 9.04
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Architectural features combined with the sparse matrix
techniques resulted in running times three to ten times faster
than the 110 seconds that subsequent runs required after compu-
tation of the inverses in the first implementation of the
World Model. The goal is now to obtain vector code for the

Cyber 205 that will further reduce the overall running time.

3. Code vectorization

The redesign of the World Model software for its efficient
use on the Cyber 205 was conceived in three phases:

I. Elementary operations over all regions

II. The MA28 package inner loops

III. New concepts for MA28

Phase I consists essentially of the vectorization of all
operations except those associated with the factoring of the
matrices M; and solutions of-the corresponding linear systems.
Those operations correspond ®o steps 1.2, 2.1, and 4.1. Each
of these steps has a different structure but they all are
loops operating on vectors of length about 200, inside another
loop of length 16. The basic idea was to split the outer loop
and perform simultaneously the operations on all vectors of the
different regions, i.e., on vectors of length of about 3200.
Cyber 205 FORTRAN commands such as scatter, gather and bit
operations were used throughout.

We illustrate the vectorization of step 4.1. The length
of w is about 50. §j is a rectangular matrix of about 200 rows,
with only one nonzero entry per column. It is stored as a

vector with an accompanying integer array indicating in which
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row each nonzero entry lies. The following FORTRAN statements
are part of sequential code for step 4.1.

DO 100 II=1,NREG

IBEG=(II-1)*NTRADE

IBEGB=IPNTB(II)~-1

DO 50 I=1,NTRADE _

INDEX=KTRDBG({IBEG+I}+IBEGB
B(INDEX)=B(INDEX)~-EXPSH(I+IBEG)*W(I)
50 CONTINUE
100 CONTINUE

The running time for these loops was 1008 ysec. Different vec-
torization options were analyzed. One of them consisted of
scattering the vectors that contain the nonzero values of Sj
and w to vectors of length of about 3200 and then performing
the triad operation. This required 9514 clock cycles, or about
190 usec. The version adopted performs the multiplication of
the vectors containing the nonzeros of Sj and w first, a
vector operation of length about 800, scatters that vector and
performs the final subtraction in 7250 clock cycles or 145 usec,
a gain of a factor of 7 from—+the sequential code.

Similar gains have been achieved in the other portions of
the code vectorized in phase I. Unfortunately only a small
portion of the total running time of the World Model is spent
in the code vectorized in phase I. Thus the overall gain was
relatively small.

About 30% of the total running time of the World Model is
spent on routines of the MA28 package in which the matrices Mj
are factored (step 1.3), and solutions with many right hand
sides computed (steps 2.2 and 4.2). At the present time we

have completed only part of phase II, the vectorization of

some of the inner loops in the MA28 set.
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Due to the startup time in any vector operation, it is
common practice to look into the length of the vectors involved
in the operation to decide if the vectorization is really worth-
while. In codes for sparse matrices, the vector length for an
operation 1is usually the number of nonzero elements in a particular
row or column, and thus varies within the code. The technique
used in this case is to assess if the vector length is above
a particular value and branch the process of that particular row
or column to vector or sequential code. The running time of the
code incorporating these features is 7.33 CPU seconds, cf.
Table 1.

Phase III, not yet implemented, consists of reconceptualizing
the MA28 set. We will investigate the possibility of solving
several right hand sides simultaneously, as well as other features

like special treatment of right hand sides with few nonzero

elements.
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The object of our project is to calculate the masses of the
"elementary particles”. This ambitious goal apparently is not
possible using analytic methods or Known approximation methods.
However, it is probable that the power of a modern super computer
will make at least part of the low lying mass spectrum accessible
through direct numerical computation. Initial attempts by
several groups at calculating this spectrum on small lattices of
space time points have been very promising. Using new methods and
super computers we have made considerable progress towards
evaluating the mass spectrum on comparatively large lattices.
Even so, we are examining regions of space just barely large
enough to contain the particles being examined. Only more time
and faster machines with increased storage will allow
calculations of systems with guaranteed minimal boundary effects.
In what follows we outline the ideas that currently go into this
calculation

While a long time ago it was believed that there were only a
relatively small number of such objects (for example, protons,
neutrons,electrons, photons and so on) it is now known that there
is a virtual alphabet soup of so called elementary particles. A
partial 1listing of these in terms of standardized short hand

L C -+
descrlptlon is: 77 ‘Tu ,),\ K# ko /(0 D DO

o F 2
D ) F N ‘A_ 2 — ( ‘ !— Y
V?J K.‘ ) Vy\, "‘»‘ vf) S‘
We emphasize that this list is but a fraction of the particles
observed to date. fortunately, the properties of these particles
suggest a pattern consistent with them 1in turn being made out of
a "small” number of more elementary objects called quarks. To

date, despite many attempts, there are no reliable reports of an
isolated quark actually being observed.
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Clearly, a theory is needed that explains the rich particle
spectrum in terms of quarks and yet 1is compatible with quarks
being unobservable if isolated from other matter. Further, from
past experience with mathematical formulations, it is natural to
insist that this description be reasonably simple and elegant.
There is exactly one existing candidate for such a description.
It is called Quantum Chromodynamics or Q.C.D. It is based on the
very successful quantized description of the electromagnetic
field interacting with electrons or Q.E.D. Q.C.D. is more
complicated than 0Q.E.D. because the several species of quarks
needed to explain the group structure of the observed particles
as well as the confinement of single quarks allows for a very
rich mathematical structure. This structure is carried in a
partition function 1like object which is the exponential of an
action made of qlue fields (designated by the symbolA and quark
fields designated by the symbolyV . Here we have suppressed the
space time dependence of these fields as well as the fact that
each symbol is actually a vector with at least 12 components. The
interaction described by the action is highly non-linear but any
term contains either zero or two quark fields which somewhat
simplifies the formulation. The primary content of the
assumption that system examined be a quantum field theory is that
at any given time every point in space bhas assigned to it
independent quantized degrees of freedom associated with the glue
and quark fields. It is thus very natural to describe space time
mathematically as a discrete lattice of points with separation a
that approaches zero.

The object U(i,j) defined as

€)g¢A~-(f—J—>)

Uli,j =

plays a primary role in this theory. It has the property that
Uli,j) = U(j,i). Further the U{i,j) are members of the group of
unitary unimodular matrices SU(3). For these fields alone we have
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the (effective) partition function

S |
Here g& - s SE
Je
where the sum is taken over all independent square plaquettes and

S o= L UG VLY D) VD]

We could stop with this form for the partition function and have
more work to do than current available machine power will allow.
However, to calculate the elementary particle spectrum (except
for glueballs ) we must include the quark fields in our action.
The form used because of various symmetry and guage principles is

Se = T E wOlwale Kg P0BOIA)

i

Here K is a numerical parameter. The matrix B depends explicitly
on the glue field & (of course Jleaving out gravity and weak
interactions)Sis then taken to be

\S;.T: f;;; ~+ 15%9

Physics is obtained by calculating the correlation functions or
vacuum expectations of polynomials of the field (quark and glue)
of the partition function formed from this action. The general
problem that must be confronted is the evaluation using the
appropriate group measure of the following type of integral.

< PO, 0> < St A dpdg] P8

This has many variables . Since each U(i,j! is an SU{3) matrix it
is specified by 12 numbers. 1f we study a hypercubic lattice with
N points in each space-time direction we are dealing with the
order of Nxx4x12*4 numbers just associated with the glue fields.
The quark fields are characterized by (for our discussion} 12
complex numbers at each lattice point. However, this is just the
beginning. The quan11t1es are in fact not numbers! They have the
property that q«.;yn)~ y4¢)¢40 This anticommutivity property
is essential in order that the quarks describe objects with
intrinsic half integral spin. Because the action S is quadratic
only in quark fields it is possible (using very natural
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definitions) to explicitly perform the integration over quark
fields and leave the problem of evaluation of correlation
functions expressible entirely in terms of integrals over glue
fields. For example, if we examine the correlation function of

four quark fields we have ’d |7/'(<” V’(B\ (7/((4) ‘//(4)>:

U] [ ks j;glc_ (/- /‘85;’4 O{ef(f—kﬁ\@j

Note that 1-KB 1is a (Nx*x4x12)x*2 complex matrix. Det(1-KB) is
more or less unspeaKable for any reasonable size of N. Evaluation
of the correlation function above is essential for determining

meson masses {such as the pion) in this theory. Calculation of
correlations of expectations of six quark fields is needed to
evaluate properties of baryon fields (such as the proton). As a

practical matter, numerical evaluation of six quark correlations
is not much more difficult than four quark correlations. Clearly
as N gets larger the problem gets more complicated. However, we
are really only interested in the 1limit when N is wvery large
since this corresponds to the infinite physical world. Indeed, we
want to examine the limit were N becomes infinite and the lattice
spacing a approaches zero. Under some circumstances it can be
argued that neglecting the determinant should not make dramatic
changes is the nature of the physical answers we obtain. For this
discussion (and the particular project it is outlining) we chose
to set the determinant to unity. We are then left with a class of
integrals to evaluate which can be handled using Monte Carlo
importance sampling methods in conceivable amounts of time for
reasonably big lattices. Such systems have been studied
extensively using Vax (780) computers on lattices with 6x*3x14
points. Using the C.S.U. Cyber 205 it is possible to examine far
larger systems. Indeed we are in the process of examining (on
several class 6 computers ) systems with 10**3x24, 12xx3x32 and
20**3*50 lattice sites.

After neglecting the determinant we are left with the basic
structure

< F) y(8) i) frd)> -~§Df 1 u][Q“fKB);'c (18

We evaluate this numerically in two steps. First, we define a
probability

S
d PLu)E écﬂ dy
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Using Monte Carlo (Metropolis) methods we generate a sequence of
lue configurations which are are distributed according to
ngﬂlt is important that these distributions be thermalized and *
statistically independent”. By careful tuning of the way the
Wonte Carlo hits are made taking into consideration the nature of
the group measure we can enormously speed up the decorrelation of
consecutive lattice configurations, Indeed for most cases, it is
not difficult to obtain a factor of four increase in speed of
lattice generation over conventional methods through careful
tuning. Even careful tuning of the physics of this problem does
not give reasonable run times for large lattices unless full
advantage is taken of the possibility of vectorizing the code. To
do this efficiently we use red black methods of sweeping through
lattice configurations. In addition, the memory requirements for
large lattices rapidly become excessive so we use time slicing to
control our memory allocations. We must do this since the demand
paging algorithm on the 205 does not work efficiently with the
codes which are naturally written for this problem.

After a collection of independent lattices are generated we
continue to evaluate the basic integral for the problem by
evaluating the inverse of 1-KB for the guage configurations of
each lattice. This is somewhat simplified since this inverse need
be evaluated for only one base site-that is a fixed row of the
matrix. However, it turns out that this inversion must be carried
out for three or four different values of the parameter K. The
method that has been most commonly used to invert the matrix
employs a Gauss Seidel method. This is slow, taking almost an
order of magnitude more time than the lattice generation. We have
other methods under study which for the particular systems
involved promise to be much faster. The Gauss Seidel method is
used in a form first applied to this problem by Weingarten. We
need to evaluate the form

s= (1-k8)" 4

Here h is at a fixed lattice point but can vary through the 12
values associated with the indices of the quark field at that
point. This equation is now re-written in the form

S= A+ kgs
N S - Af’(@'&-\FQ—))/‘S"/\"k&\S}
= Q~)+/\/<S}§ "*/\/\

’k is a parameter which can be tuned in order to obtain the
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fastest convergence in the solution of this equation by iteration
in f. In practice we code this procedure using red black ordering
and time slicing to obtain vectorization and efficient memory
management.

After the matrix inversion is performed and the correlations
are evaluated through weighting over the available lattices we
must extract physical information from the output functions. The
easiest information obtained is the masses of the particles
described by this formalism. It is ,for example, a general
property of the theory that we are dealing with that if we look
at correlation functions depending on only two space time points
and then sum over all spatial directions that the resulting time
dependent functions depend only on sums of exponentials with the
exponent linear in the masses of the appropriate particles and
the time separations. It is an easy matter to fit to exponentials
and extract numerical values for the masses. However to do this
we must tune the parameters of the theory to match the physical
mass spectrum at some value of the mass. In effect we have a two
parameter fit for the entire mass spectrum. It is found however
that the Gauss Seidel method fails to converge for the physical
value of the pion mass and hence the need to do the extrapolation
in K mentioned earlier. After this is done, it has been found
that on smaller lattices a fairly accurate fit can be obtained to
the relatively 1light particles. We expect to find much better
fits for a 1large lattices where edge effects shouid ha ve a
smaller effect on the calculated results,
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ABSTRACT

The full multigrid (FMG) method is applied to the two
dimensional Poisson equation with Dirichlet boundary
conditions. This has been chosen as a relatively simple
test case for examining the efficiency of fully vectorizing
of the multigrid method. Data structure and programming
considerations and techniques are discussed, accompanied by
performance details.

April 1983

l. INTRODUCTION

The multigrid (MG) method has been shown to be a very efficient solver
for discretized PDE boundary-valve problems on serial (scalar) computers.
However, it was not clear how well can the MG approach be adapted to
execute effectively and efficiently on a vector processor, such as the CDC
CYBER 205, where considerations other than operations—count may play an
important role. The purpose of this paper is to. report our experience in
implementing -an MG code on the CDC CYBER 205. More specifically, the
test—case considered is the two-dimensional Poisson equation with Dirichlet
boundary conditions. It will be assumed here that the reader has some
familiarity wicth the philosophy, the motivation and the basic computational
processes of MG as a fast solver. These processes are described in detail
in a number of papers in these proceedings and [1] and [2] and references
therein. The algorithm described in this paper is basically the same as
the one given in the appendix of [3], whose description is detailed in
sections 8.! and 6.4 of {3]. Therefore, no full description of the MG
algorithm {s given here, but the relevant details are included in the
appropriate context. The main emphasis of this paper is the vectorization
of these processes. Thus, we will not assume an in-depth knowledge or
experience in applying MG solvers on a vector—processor type of a computer
system.

* Presented at the International Multigrid Conference, Copper Mountain,
Colorado, April 6-8, 1983.
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Consequently, Section 2 contains a brief summary of architectural and
conceptual features of a vector processor (specific to the CDC CYBER 205),
which are relevant to this application, as well as software tools available
for a tight correlation between the hardware and the computational process.
Sections 3, 4 and 5 are devoted to the description of the techniques used
for vectorizing the procedures for the relaxation, the residual transfer
calculation and the interpolation, respeccively. The total full multigrid
(FMG) process and various parameters and comstraints are described in
Section 6 interleaved with convergence and timings (performance) details.
Finally, Sectiom 7 contains some concluding remarks and comments regarding

future plans.

2. VECTOR PROCESSING

The most significant difference between a traditiomal, serial computer
and a vector processor is the ability of the latter to produce a whole
array ("vector") of results upon issuing a single hardware instruction.
The input to such a vector-instruction may be one or two vectors, one oOr
two elements ("scalars"), or a combination of the above. The instructions
fall into two main categories—those that perform floating—point arithmetic
(including square root, sum, dot-product, etc., as well as the basic
operations), and those which may be collectively called "data-motion"
instructions. These may be used, for example, to "gather'" elements from
one array into another using an arbitrary "index-list"; to "compress" or
"expand" an array; to "merge'" two arrays into onme (with arbitrary
"interleaving" patterns), etc.

The need for vector data-motion instructions becomes apparent when one
considers the definition of a vector on a CDC CYBER 205. 4 vector 1is a set
(array) of elemenrs occupying consecutive locations in memory. It means,
by the way, that a vector may be represented in FORTRAN by a multi-
dimensional array; i.e., a two- or three~dimensional array may be used in
computations as a single vector. The reason for this vector definition is
that when performing vector operationms on the CDC CYBER 205 the input
elements are streamed directly from memory to the vector pipes and the
output is streamed directly back into memory without any intermediate
registers.

The timing formula for completing a vector instruction contains two
components. Ope is fixed, i.e., independent of the number of elements to
be computed, and is called "start—up” time. In fact, it amounts to
start-up and shut-down; it involves fetching the pointers to the input and
output streams, aligning the arrays so as to eliminate banmk conflicts and
getting the first pair of operands to the functional unit (the pipe=line)
and the last one back to memory. Typical time for the "start—up" component
is | microsecond, or about 50 ¢ycles (clock periods). The other component
of the timing formula 1is the "stream—time” which is proporational to the
number of elements in the vector. The result rate for a 2-pipe CDC CYBER
205 for an add or multiply is 2 results per cycle. It 1is apparent now that
in order to offset the "wasted" cycles of start-up times it is beneficial
to work with longer vectors. The system is better utilized if a single
operation is performed on a long vector, rather than several operations to
compute the same number of results. Given a vector length, N, one can
evaluate the efficiency of the computation as the ratio between the number
of cycles used to compute results and the total number of cycles the
instruction has taken; 1.e., (N/2)/(N/2 + 50). The maximum vector length
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the CDC CYBER 205 hardware allows is 65,535 elements. The start-up time
becomes quite negligible long before that.

The vector "arguments” for vector instructions are inserted through a
construct called Descriptor. It is a quantity occupying 64 bits which
fully describes a vector through two integer values: one is the virtual
address of the starting location of the vector, the other is the number of
elements, or the length, of the vector. An element may be a bit, a byte, a
half-word (32-bits) or a word (64-bits) depending on the intruction and the
argument within the instruction. The CDC CYBER 20S FORTRAN provides the
ability to declare variables of "type" Descriptor and Bit, as well as,
extensions for assigning Descriptors to arrays and syntax for coding vector
instructions without such an explicit association. Bit arrays occupy
exactly one bit per element, since the CDC CYBER 205 is bit-addressable.
Bit vectors are used for creating a "mapping" between an array containing
numerical values and a subset of it. A Bit vector may be used to control a
vector floating—point operation (hence the term "control-vector" which is
commonly used for a Bit vector) as follows: Take, for example, an add
operation. All the elements of the two input arrays are added up, but only
those result elements where the corresponding element of the control-vector
is 1 will be stored into the results vector. The other elements will not
be modified. Alternatively, one may specify storing on zeros in the
control-vector, and discarding results corresponding to a 1.

Another common use of bit vectors is associated with some of the data-
motion instructions. Two examples will be given here: The "compress"”
instruction is used to create a vector which is a subset of another vector.
This operation has two input descriptors—one points to a numeric vector,
the other to a bit vector. Whenever a ! is encountered in the bit-vector
the corresponding numeric element is moved to the next location of the
output vector, i.e., the input array is "compressed”" (the reverse process
may be accomplished with an "expand" instructiom). A single bit-vector may
also be used to "merge”" two numeric vectors {nto ome. The bit-vector is
scanned and when a 1 i3 encountered the next element of the first input
vector is put into the next location of the output vector, when a zero is
found in the bit-vector the next element of the second input vector {is
moved into the next location of the output vector. The timing for both
these instructions is dictated by the total length of the bit-vector. The
result-rate 1s the same as that of vector arithmetic, i.e., on a two-pipe
CYBER 205 it 1is two elemets per cycle (whether they are moved or not). It
will be noted here that there are vector instructions for creating repeated
bit patterms at a rate of 16 bits per cycle.

Before concluding this section let us briefly mention the existence of
an "average" instruction, which computes an average of two vectors, or
adjacent means of a single vector, at the rate of a single floating—-point
operation. One can also "link", for example, an add and a multiply opera—
tion, provided at least one of the three inputs is a "scalar", and perform
the two operatioms as if it were only one. All the instructions mentioned
above are directly available through Fortram in-line function calls.

32 RELAXATION

Now we are ready to examine the ways in which to utilize the tools and
the vector processing concepts discussed in the previous section for
vectorizing the Multigrid application. The success of such an exercise
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hinges, to a large extent, upon the efficiency with which the relaxation
process may be accomplished.

Discretization of the two-dimensational Poisson equation is achieved
via the S5-points differencing scheme. Thus, assuming geometric interpreta-
tion of the indices for the moment, the set of the simultaneous equations
to be solved may be written as

ug,j-1 +ug-1,3 ¥ uLsl, tug, geL - 4 *ug g o= b2Fg g

wvhere u is the unknown function, h is the interval between two grid points
(in either direction) and F is the right-hand side function. 1 varies from
2 to Nj~1! and j from 2 to Ny-1l, where N; and N9 are the number of

grid points along the two directions.

One may want to consider the usual (lexicographic) Gauss-Seidel relaxa-
tion procedure. This, however, will be in conflict with vectorization, as
may be easily deduced. The Gauss-Seidel relaxation is characterized by the
use of updated values as soon as they become available. Vectorization means
processing many such values in parallel, i.e., not waiting for the previous
element to be updated. The obvious altermative is the red-black or
checker~board ordering, where all the four neighbors of each point belong
to the other "color”. The convention used here {s that the "color" of the
grid polnts at the corners of the rectangle is red. The grid =may accord-
ingly be divided into two vectors and the relaxation performed in two
stages: first, the values at red points are updated using "old" values,
then the values at black points are updated using the "new" red values.
Throughout the code the two vectors of the unknown function (and of the RHS
function) are stored consecutively following each other, where inside each
vector the values are stored column-wise as shown in Figure l. This
storage applies, of course, to all the grids used.

ll 1" ‘l ral 11-

". 4‘ ". ’! 2‘0

2l v, 7, 22, 2,

\5. sx zo_ 10‘ zsl
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N N | : ‘_w._u.j
] . ’, Y , 26}
2x Tx 2y | 7, 2, ]
l s, 10, : sy 20, 28}
IR S Lus =z,

Figure 1. Mapping of the Lexicographic into the '"Rad-Black” Ordering. The
dotted line indicates the separations of the grid points into two vectors.
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The reader will notice that cthe vectors thus created are not confined
to one column, but extend over the entire grid. It was done in order to
achieve longer vectors in line with the desire expressed in Section 2.
This, however, introduces the hazard of overwriting values residing on the
boundary of the grid. To avoid this a bit control-vector was creatad for
each grid, in a set-up routine, which contains zeros where boundary points
exist and ones for interior points. We use this "boundary control vector”
to assure storing new values only into the interior of the grid.

The computation requires the sum of cthe 4 neighbors for each grid
point. One can easily verify that, using vector add operatiomns this can be
done with two operations only. One to add a vector into itself, with some
offset (e.g., start with elements 2 and 5 in Figure 1) and the second to
add the resultant vector into itself (with some other appropriate offset).
The remaining calculation involves subtracting the result from the RHS
values and multiply by a constant (being -0.25), which is accomplished as a
linked—-triad operation; the result is then stored into place under the
control of the boundary bit-vector. Thus, each of the two stages (two
"colors") requires three floating—point operations using vector length of,
approximately, (Ny * N2)/2 elements long. In fact, some more savings
in the computations occur in the first relaxation sweep after moving to a
coarser grid, since the sum of the "neighbors" need not be computed for the
first "color," being known to be zero. This is because we are beginning to
compute a correction-function whose first approximation is zero. The
vector—-operations count for this relaxation sweep is thus reduced from 6 to
4. Also, when transferring a solutiom-function (not "correction") to a
finer grid, as part of the FMG process, an interpolation can be used which
will save the relaxation on the first "color" (see Sec. 5).

In conclusion, the relaxation process can obviously be done extremely
fast on the CYBER 205. Timing details will be given in Section 6.

4, FINE TO COARSE RESIDUAL TRANSFER

Residuals have to be computed at those fine—grid points which also
belong to the coarser grid. These residuals are directly transferred to
the corresponding coarse-grid points weighted by 1/2 ("half injection'; the
factor of 1/2 is motivated by the fact that the fine—grid residual is zero
at black fine-grid points, hence the other residuals should be multiplied
by 1/2 to represent the correct average). See Figure 2.

The computation involves four floating=point operations (two of them
are linked triads) for evaluating the residuals of the red points on the
finer—grid and multiplying them by 1/2, This, however, does not conclude
the procedure. At this stage wve need to apply the "compress" operation
three times as follows: using a pre—defined bit=vector we extract the
residual values corresponding to coarse-grid points, i.e, belonging to
odd=-numbered columns of the red section of the finer grid. (Note that we
have thrown away half the calculated residuals. This procedure is both
simpler and a little faster than having to perform all the comprass
operations needed for computing only the required residuals.) Now, as 1is
evident from Figure 2, we have all the desired values for the coarser grid
stored in lexicographic order. To separate them into "red" and "black"
sections the "compress" instruction is applied twice (once for each color)
using a pre—defined "picket fence" bit—vector. The procedure as described
here produces optimum performance even though some redundant operations are
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performed. The alternatives are to perform different (more "coatly") data
motions or to operate om much shorter vectors. Finally, another vector
operation is executed to zero out the unknown function of the coarser grid
in preparation for evaluating the correction function. In total the proce~-
dure requires 8 vector "start-ups' associated with 5 operations of approxi-
mate lengch of (Ny * Ny)/2, and 3 operations of length (Nj * N2)/4, where
Ni and N9 are the dimensions of the finer grid.

Figure 2. Transfer to a Coarser Grid: The residual calculation. Each
"3ox" contains the fine grid points involved in the computation for the

corresponding coarse grid point.

5. INTERPOLATION

Interpolation, in the context of this paper, is the process by which we
transfer from a given grid to a finer one. Two types of interpolations are
employed here: Type I interpolation is used whem a correction is ‘interpo-
lated from the coarser grid and added to the finer grid. The Type II inter-
polation 1s used to compute a first approximatiom on the finer grid, based
on existing values on the coarser grid. The use of the red-black ordering,
combined with the fact that a relaxation always follows an interpolation,
implies that only one color of the finer-grid points need to be interpolated
(the other color will be computed by a relaxation pass on that color).

Type I interpolation is bilinear employing points as showa in Figure 3.
Only interior black points on the finer grid need to be evaluated. Due to
the required averaging of the coarse grid values i{t is convenient to first
merge the red and black points of this grid using the "picker-fence" bit
vector to produce the lexicographic ordering. Next, two averages are
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computed. The average over the coarse grid, where the two input vectors
are offset by a column, will produce the quantities to be added into black
polnts on even-numbered columns on the fine grid. A second average, where
the offset between the two vectors is one element, is executed for fine
8rid black points corresponding to odd numbered columns. This laat opera-
tion produces redundant values (at the end of each coarse grid column)
which are thrown away using the “compress" operation with an appropriate
pre~defined bit vector. The two resultant coarse grid "average—vectors"
are then interleaved, using a "merge" instruction, under the control of the
bit vector where the ™1°s" and "0‘s" correspond to odd and even columns,
respectively. Fisally, the merged values are added to "black” points of
the finer grid under the control of the "boundary” bit=vector which inhibits
storing values into the boundary of the grid. The whole procedure amounts
to 3 floacing-point operations, 2 "merges" and ! "compress." The 6 vector
operations may also be divided into 4 operations of length (Nj * Njp)/4

and 2 operations of length (N; * N;)/2, approximately. (N; and N,

are the dimensions of the finer grid.)
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Figure 3. Type I Interpolation. It shows where averages of coarse grid
values are added into "Black" points on the fine grid.

Type II interpolatiom is a 4th order one, described, for example, in
seccion 6.4 of [3]. It produces new red unknown—function values on a finer
grid using rotated difference operators. The values at the black points
are produced by half a relaxation sweep, i.e., a relaxation pass over the
fine-grid black points. (This pass may be regarded as part of the interpo~
lation process. In the timing tables below, however, the time spent in
this pass is counted as relaxation time.) The process 1is described picto-
rially in Figure 4. All the interior coarse grid values are moved to occupy
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the corresponding fine-grid points. The relaxation operator is applied to
these values in order to compute interior red points of the even-numbered
columns on the fine grid. The only difference between the relaxation here
and the one described in Section 3 is that the operator is the "rotated"
S5-point Laplacianr and the interval between each point and its neighbors is
changed from h to Jﬁ‘h. The RHS function values required for this relaxa-
tion are available from the fine grid RHS array (a "compress” operation is
performed to retrieve even-numbered column values). The whole procedure,
thus, requires 2 "merges” (one for merging red-black values of the coarse
grid, the other for merging the "transferred” and "relaxed" values of the
red fine grid points); 3 floating-point operations for the relaxationmn; 2
"compress"” operations (one for throwing away redundant, incorrect averages
and one for collecting RHS values); and, finally, one vector-move operation
under the control of the boundary bit-vector for storing the new red fine
grid values into place. Five out of the 8 vector operations have length of
about (Nj * N7)/4, the other 3 are associated with a length of (Nj * N7)/2;
Ny and N2 being the dimensions of the finer grid.

x [ x L] x -] b L] x

(] x L) x [ x [ ] x o
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l\ / x x
i'/-—-ll) o x 9
]
X/ \ ) x L] x
L x -] N x ~d
N %
x - x G/ \l

Figure 4. Type II Interpolation. Coarse grid values are transferred to
odd numbered columns on the fine grid. These values are used to compute,
via the relaxation operator, the even numbered column values.

6. PERFORMANCE AND CONVERGENCE

The basic computational procedures, studied in the previous three
sections, can now be linked together to form the FMG process. Figure 5 is
a schematic description of the sequence of events which leads to an
approximate solution of the difference equations. The finest grid (where a
solution is sought) is assigned the highest level number. The example
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depicted in Figure 5 describes an FMG with 5 levels vhere the process
starts at level number 2. This may not be necessary, as will be argued
below, and one may visualize the FMG starting at a higher level sinmply by
deleting the left—hand-side of the figure. This starting level is a '
paramater controlled by the user. The FMG shown in Figurs 5 is composad of
what is known as "V" cycles. Ian each "V" cycla one performs relaxatioo=
residual calculation-relaxation...until reaching the coarsest grid, them a
sequence of interpolation—relaxation is exscuted. The transfer from one
“Y* cycle to the next is achieved via Type II intsrpolation. More
spacifically, the FMG we implemented may be characterizad as

™G (M,L,R1,R2 R3,R4), where M is the number of levels and L is the
starting level; Rl and R2 indicate the number of relaxations before moving
to a coarser grid and before moving to a finer grid, respectively. B3 and
R4 have the same meaning and apply to the last "V" cycle only. All these
parametars are provided by the user. The user may also specify the size of
the coarsest grid to be used. I must have an even oumber of intervals in
each direction. (In our experimentcs the coarsest grid had 3 by 3 points;
i.a., 2 by 2 intervals.) The user also specifies the mesh size h (asaumed
to be the sams in both directions) or the finesz grid.

LEVEL

Figure 5. The Full Multigrid (FMG) Process: MG (5, 2, Rl, R2, R3, R4).
The circles indicate the aumber of relaxations performed at a given level.
Dowvawards arrow signifies residual calculation between relaxatiouns, upwards
arrow implies interpolation. (When a level is encountered for the first
time the interpolation is of Type 1I, indicated by a double line above,
otherwise it is of Type I.) When level ! contains only one interior point
only one relaxation sweep is performad thereon, ragardless of the values
given to Rl and R3.

The process described above is detsrminiscic, in the sense that the
user defines the staps to be taken, based oun prior knowledge of the
charactaristics and smoothness of the function to be solved. It is also
known that if L=2 the FMG guarantees a solution error smaller than the
truncacion error (introduced by the differencing scheme), for L; norm,
for example. We have 3llowed, however, as a user-option, the evaluation of
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the L}, L; and L, norms of the residual at varizus points. Testing was
done for problems which have solution of the fora:

C* cos (k (x+ 2y))

with and without the addition of a 6th degree polynomial which vanishes on
the boundary. In all these cases the FMG process with L=2 indeed produced
a solution with an algebraic error (error im salving the difference
equations) much smaller than the truncation exror, in the Lj, L; and L,

norms.

Only "V(2,1)" cycles were used for the results and timings to be quoted
here. This turns out to be the optimum combirzation for the Poisson
equation. More relaxations at each stage do =0t improve the final result
enough to justify the additional work, less relaxations may cause deteri-
oration in the accuracy. (If full weighting were used instead of half
injection, the optimal cycle would be "V(1,1)™. This would, however, be
less efficient than the present procedure since full weighting is substan-
tially more costly than a relaxation sweep.) In the performance details
which follow, we will give results for various values of L since, in many
cases, in particular when a reasonable initial guess is available, high
values of L, even L=M, may provide sufficient accuracy. This is, in
particular, the situation when the Poisson solver is used within some
external iterative process, or at each time step of an evolution problem.

Before discussing the timings we should briefly mention some set—up
procedures. A routine is provided for re~ordering the initial array (from
lexicographic to red—black) if it is not so structured yet. This is dome
through two "picket-fence compress' operations and amounts to 0.185 msecs.
for a 65 by 65 grid, for example. Putting the solution back into lexico=
graphic order is done with a single "merge" instruction and takes half as
long. Next, there is a routine which defines various pointers and lengths
for all the grids used, as well as the bit—vectors discussed earlier. For
many applications, where the solver is used many times with the same grid
definition, this will be done only once. It will not, therefore, be
included in the total times quoted below (it takes 0.29 msecs. for a 65 by
65 grid with 6 levels). The last set—up routine is included in the timings
information. This routine defines the boundary values and the RHS for all
the levels between L and M=1. It also sets the initial guess on the level

L grid.

The code was run with grid sizes of 33 by 33, 65 by 65 and 129 by 129
(M =5, 6 and 7, respectively) with L=2,...,M. Total execution times are
given in Table l. It shows, for example, that a 65 by 65 grid may be
solved in as little as 1l msec., and, at most, in 2 msecs. By examining the
procassing time per grid—point one can see the effect of vector—instructions
start-up times or the dependence of the performance upon vector lengths.

On a serial processor the time per element would have been, approximacely,
a constant across each line in Table l. We observe, however, that the
processing of the 129 by 129 grid is roughly twice as efficient as that of
the 33 by 33 grid. This is due to the fact that even though the number of
vector "start—ups' remains nearly the same (across a given line), the
number of elements solved for has increased by a factor of 16. Hence, more
time is spent doing useful arithmetic in the vector pipelines.
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TABLE 1. Execurion times for various parameters of the FMG. The entries
on the left are total times in milliseconds. The entries enclosed in
parenthesis are the execution times in microseconds per grid-point (only
interior points are taken into account).

M=L+1
(No. of "V"’s)

33 by 33

) (M = 5)
0.360 (0.37)
0.604 (0.63)

| 65 by 65
1

|

!

1 0.729 (0.76)

i

1

!

(M = 6)
1.006 (0.25)
1.552 (0.239)
1.810 (0.46)
1.947 (0.49)
2.009 (0.51)

129 by 129
M =7)
3.293 (0.20)
4.910 (0.30)
5.440 (0.34)
5.687 (0.35)
5.807 (0.36)
5.875 (0.36)

0.801 (0.33)

A WN -

Tables 2 and 3 present a more detailed amalysis of timings for a single
example, namely for solving a 129 by 129 grid with 7 levels and starting at
level 2. The entries in Table 2 show timings in msecs. by level and by
procedure. One notices that the total time spent performing relaxations is
less than 50% of the total time. This is to be compared against the 80-90%Z
of total time used for relaxations on a serial processor. This is, of
course, due to the fact that the vectorized relaxation is extremely
efficient and does not involve any data-motion operations. The interpola=-
tion and the residual calculations, though fully vectorized, involve some
data-motion operations, and, therefore, consume a relatively higher propor-
tion of the execution time than they would on a "scalar" computer. Another
observation worth mentioning is that the contributions to all the procedures
arising from levels 2 to 4 is roughly the same, even though the amount of
work differs by a factor of 4 between levels. This is a consequence of tlLe
relatively short vectors which characterize the coarser grids. It also
explains the larger weight the coarse grids have in the vectorized code
compared to that of the serial process.

TABLE 2. Execution times in milliseconds for solving a 129 by 129 grid
with starting level 2. Breakdown by procedure and by level. For the
residual calculation and the interpolations the entry in the table
corresponds to the finer grid involved.

1 | Grid | | Residual | ] |
| | Initiali- | Relaxa— | Calcula- | Interpolation | ]
| lLevel | zation | tion | tion | Type 1 | Type II | Total |
1 1 (3x3) | | 0.010 | | | 0.010 |
| 2 (5x5) [ 0.011 { 0.179 | 0.014 | 0.011 | 0.215 |
I 3 (9x9) | 0.015 | 0.160 | 0.060 | 0.049 | 0.024 | 0.308 |
1 4 (17x17) | 0.034 I 0.189 | 0.068 | 0.053 | 0.028 | 0.372 |
I 5 (33x33) | 0.106 I 0.320 | 0.117 | 0.095 | 0.053 | 0.691 |
| 6 (65%65) | 0.388 I 0.690 | 0.261 | 0194 | 0.141 | 1.674 |
1 7 (129x129) | 1 1.257 | 0.497 ] 0357 | 0.494 | 2.605 |
| | i | ! I | |
1 TOTAL | 0.554 i 2.805 | 1.017 | 0.759 | | 5.875 |

0.740




In Table 3 we have measured the time in =microseconds for each time a
procedure is executed for a given level, accompanied by the number of times
the procedure is performed. It should be noted here that when level ] is
involved in any of the procedures a scalar code was used, since it has only
one interior point. Again, the effect of vector lengths is such that the
level 3 relaxation is comparable to that of level 2, for example. Only
when we get to the finest grids do we observe timing ratios which
correspond to the ratios of the number of elements processed. The reader
should be reminded that the average time of the relaxation procedure is not
fully accurate, since some relaxations are not quite "complete" as was
explained in Section 3 (i.e., after Type II interpolation and after
residual calculation). The residual calculation takes longer than the
relaxation (in contrast to the scalar case), which is understandable from
the discussion in Sectioms 3 and 4.

TABLE 3. Procedure-calls count and average times in microseconds per
call. Breakdown by levels for the 129 by 129 problem with starting level 2.

Note: Some of the relaxations are not "complete.”" (See Sectiom 3)

I 1 ] I Interpolation ]
| |. Relaxation | Residual | Type I Type II I
| Level | No. | Time | No. | Time | No. | Time  No.| Time |
| 1 (3x3) I 6 | 1.7 | l l ] ] !
| 2 (5x5) | 18 } 9.9 1 6 | 2.3 1 6 | 1.8 | i |
1 3 (9x9) P15 | 10.71 5 1 12,01 5 | 9.8 | 1 | 24.0
| 4 (17x17) 112 | 15.81 4 { 17.01 & { 13.3 1 I 1| 28.0 ]
1 5 (33x33) i 9 | 356 3 1| 39.0}! 3 | 31.71 1l | 53.0
! 6 (65x65) 1 6 1 115.0 1 2 1 13051 2 | 97.0 ] 1 | l41.0
| 7 (129x129) | 3 | 419.0 ) 1 | 497.0 ¢t 1 | 357.0 | 1 | 494.0 |

To conclude the performance discussion we will mention that the vector-
ized code executes about !5 times faster than the scalar version on the CDC
CYBER 205, and roughly 500 times faster than the CDC CYBER 720.

The lesson from what was said above is that relaxations are relatively
"cheap” in terms of execution times, and computations on the coarser grids
are realtively "costly” (compared with the ratios found on scalar

pProcessors).

7. CONCLUDING REMARKS

One important lesson, known very well to those involved in vector
processing, is that it demands careful data structuring and analysis of the
"mapping" between the data and the operations to be performed, if the
vector capabilities of the processor are to be efficiently utilized. We
have also demonstrated that the traditiomal operations—count as a measure
of processing time is not sufficient. Omn a vector processor ome has to
take into account the number of vector operations (or the lengths of the
vectors) and the data-motion operations (which occur on a serial processor,
too, but are often ignored when algorithms are evaluated). The result of
the above is that one may have to re-examine the various parameters of the
algorifhm when migrating the Multigrid application from a serial to a
vector processor. This aspect requires further investigation.
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We feel that the experiment with the model-case studied in this paper
was successful and the performance achieved very pleasing. It certainly.
warrants continuation work. Some obvious areas we intend to engage in are
the following: Extending the application to three-dimensional Poisson
equations; code a similar application to cater for the, more general,
Diffusion equation; and implement "full-weighting” residual calculation and
cubic interpolation. In addition one may, of course, generalize this work
in many directions. More general boundary conditions (Neumann, etc.) can
be implemented. The solution of non-linear problems (using FAS multigrid
version) and systems of equations can also be vectorized in a similar
fashion. More difficult, but potentially important, is the extension to
general domains, which will require a lot of thought about data structures
and data motion. As a last comment, it will be noted that all the timings
quoted here were achieved using 64-bit aritlmetic. On the CDC CYBER 205
one can use 32-bit arithmetic as well, and, thus, double the result rate
for vector operations while halving the memory requirements. For the
purpose of obtaining albebraic errors smaller than truncatiom errors in
solving second order equations, the 32-bit aritlmetic is indeed enough. We
intend to examine this optiom.
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ABSTRACT

Ray tracing is a widely used method for producing realistic computer-generated images.
Ray tracing involves firing an imaginary ray from a view point, through a point on an image
plane, into a three dimensional scene. The intersection of the ray with the objects in the scene
determines what is visible at that point on the image plane. This process must be repeated
many times, once for each point (commonly called a pixel) in the image plane. A typical image
contains more than a million pixels making this process computationally expensive. A tradi-
tional ray tracing program processes one ray at a time. In such a serial approach, as much as
ninety percent of the execution time is spent computing the intersection of a ray with the sur-
faces in the scene. With the CYBER 205, many rays can be intersected with all the bodies in
the scene with a single series of vector operations. Vectorization of this intersection process
resuits in large decreases in computation time.

The CADLAB's interest in ray tracing stems from the need to produce realistic images of
mechanical parts. A high quality image of a part during the design process can increase the
productivity of the designer by helping him visualize the results of his work. To be useful in
the design process, these images must be produced in a reasonable amount of time. This discus-
sion will explain how the ray tracing process was vectorized and gives examples of the images
obtained.

1. Authors’ Address:
CADLAB, Potter Engineering Center
Purdue University
West, Lafayette, IN 47907
{317) 494-5944
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GEOMETRIC MODELING AND MECHANICAL DESIGN

In mechanical design, there are two broad reasons for using the computer: (1) predict
behavior, and (2) visualize. Behavior that needs to be predicted includes every test that one
would normally perform if given a physical prototype of the design: weight, center of gravity,
strength, movement, clearances, etc. This is why a computer model of a part is often referred
to as a ‘'‘virtual prototype.” Visualization is, in effect, another form of behavior prediction. In
this case, knowing the actual appearance of a proposed design is a valuable aid in conceptualiz-
ing.

In order to feed information into visualization and analysis routines, a geometric model of the
design must first be created. In the early days of computer aided engineering, a wireframe data-
base was used to model the part shape. This was deemed inadequate, because the wireframe

could only mode] a part’s edges, not its solid volume.

One of the methods by which we model part shapes in the CADLAB is with a newer tech-
nique called Solid Modeling. A solid modeling database has sufficient geometric information to
completely and unambiguously define the shape of a three dimensional object. One method of
building a solid model database is with a technique called Constructive Solid Geometry, or CSG.
A CSG geometric creation sequence is characterized by applying boolean operators (union,
difference, intersection) to groups of primitive shapes (boxes, cylinders, cones, etc). Complex
designs may be created in this manner, with the resuits being sufficient to drive visualization
and other analyses. The remainder of this report will discuss the use of the CYBER 205 to pro-

duce image information in order to view an object constructed using CSG operations.
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INTERSECTIONS OF RAYS WITH A PRIMITIVE

One mnice side effect of using a CSG representation is that the resulting object can easily be
displayed using ray tracing. Ray tracing involves firing an imaginary ray from a view point,
through a point on an image plane, into a three dimensional scene. It is not mathematically
feasible to determine the visible surface of an entire CSG object in a single computation. How-
ever, it is fairly easy to determine the intersection of a ray with each of the individual primitives
which make up a CSG object. Then, a little more calculation produces the point along that ray
which is visible. If one ray is fired through every pixel in the image plane, an image of the

object is obtained (see Figure 1).

| W

view
point

— — X

Figure 1. The Image Environment,
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The typical (serial) ray tracing program must:
e [ntersect all primitives in the scene with one ray.

e Traverse the CSG database to determine which primitive intersection is the visible surface

for that ray.

e Determine the surface intensity using the surface relationship between the surface normal,

the eye position, and the position(s) of the light source(s).

This is the visible surface algorithm. It is repeated at every picture element (pixel) in the image

plane.

The intersection of the ray with the primitives is by far the most time consuming part of the
visible surface algorithm. However, it is also the easiest part of the algorithm to vectorize.
Instead of just finding the intersection of one ray with a primitive, a queue of rays is built (seri-
ally as in a traditional ray tracing program). Then the intersections of each primitive with
every ray in the queue is found in a series of vector operations. Table 1 gives computation
times for 100,000 rays intersecting a sphere and a cylinder primitive. For the vector results in

this table, a queue length of 2000 rays was used.

FINDING A RAY’S VISIBLE SURFACE

The above timings are only for the lowest level in the visible surface algorithm. After all the
intersections are found, the CSG database must,still be traversed to determine which primitive
intersection is the visible surface for that ray. Tixis constrains the length of the ray queue, since
it implies that all the ray intersection information must be stored (after the intersection calcula-
tion) and then retrieved (for the visible surface calculation). If the ray queue is too long, the

time spent page faulting will be enormous. For this reason, the ray queue in our application is
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TABLE 1.

CPU Times®
Primitive | Cyber 205 | Cyber 206 | Cyber 720
Scalar Vector
sphere 944 .0279 13.1
cylinder 2.729 .1614 51.48
steiner 11.157 1.047 216.0
Speedup®

Primitive | S2if vector | G205 vector

sphere 33.81 469

cylinder 16.91 318

steiner 10.67 206

2 CPU times are in seconds

CPU time P,

- P| -
3 Speedup =S, = Totime P,
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approximately 2000 rays. The visible surface algorithm has not yet been vectorized. However,

it is apparent that at least parts of this process are vectorizable.

SPECIAL EFFECTS

One of the reasons ray tracing has been so widely accepted is that it can show very realistic
image synthesis effects. Shadows are perhaps the easiest extension to the algorithms described
above. To determine if a visible surface is in a shadow, one ray must be fired toward each light
source from the visible surface. [f this ray hits a solid object before it encounters the light
source, the visible surface is in a shadow. Reflection can be shown by spawning another ray
from each surface such that the angle of reflection equals the angle of incidence. Transparency
and refraction can be modeled if a refraction ray is spawned after a hit on a solid, transparent
object. What should be clear from these special effects is that the extra rays to be fired do not
come in a predictable, vectorizable progression. However, after a serial section of code has

determined that another ray must be fired, this ray can be placed in the queue and intersected

using vector code when the queue is full.

SURFACE PATCHES

Surface patches are used in computer aided design to sculpt the surface of a part that would
be difficult or impossible to model using conventional primitives such as cylinders and boxes.
Hence, surface patches play an important role in the design process of parts such as air foils and
car bodies. At the CADLAB we are currently investigating the uses of Steiner surfaces as a

sculpting device. Ray tracing is then used to visualize the resulting sculpted surface.

A Steiner surface is a bi-quadratic surface. This means that computing the intersection of a

ray with a Steiner surface requires the solving of a quartic equation. Approximately 65 precent
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of the computation time for this intersection calculation involves the solving of the quartic equa-
tion while the rest is attributed to the determination of the coefficients for the quartic equation.
The determination of the polynomial coeflicients is a straight forward process and is easily vec-
torized. Vectorizing the process by which a queue 6( rays may be intersected with a Steiner sur-
face requires the vectorization of the root solver used for solving the quartic. For our applica-
tion we are only interested in the first positive real root closest to zero. Table 1 shows the

results of vectorizing the Steiner intersection process.

To determine the roots of the quartic polynomial the slope and curvature functions (i.e. the
first and second derivatives) are examined to determine the intervals over which a possible solu-
tion exists. Modified Regula Falsi is then used to determine the roots within these intervals.

Once a root is found it is evaluated to see if the root is acceptable.

The vectorized version of the root solver finds the roots of a series of quartic polynomials,
each polynomial corresponding to a ray in the ray queue. The roots for all the polynomials
must be found before the process can complete. Unlike the scalar version, it is most likely that
all four roots will have to be determined and evaluated as it is likely that at least one ray will
not intersect the surface. This process is sped up by ensuring that a sign change does not occur
before using the Falsi method to determine subsequent roots once an acceptable root has been
found for a particular polynomial. Gather-scatters are then used to compress the vectors used
during these iterative processes. Convergence occurs when all of the roots being found converge

within the specified tolerance.

The quartic root solver can be used for a variety of applications. One extension to the ray
tracing program will be the inclusion of tori and other elliptical surfaces as primitives. These

primitives will also require solving a fourth order equation to determine the intersection of a ray

with their surface.
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OTHER APPLICATIONS

Another application of ray tracing at Purdue is radiant heat transfer analysis of finned
Tubes [MAXW383].4 Rays are fired to determine the radiation shape factor of one or more finned
tubes. Unlike the visualization of a CSG object, maximum length vector operations may be
used since it is only of interest knowing that the ray strikes the tube and not where on the
tube. The computational requirements of this application have been reduced from 600 seconds

on a CDC 6600 down to 3 seconds on the CYBER 205.

CONCLUSION
Ray tracing is, in general, a parallel algorithm. This paper examined how the parallel algorithm
can be modified for use on a vector computer. In design work, the speed with which results are
available is often critical. Vectorization of ray tracing programs promises shorter execution

times. This will benefit not only visualization, but also such diverse areas as heat transfer, mass

properties analysis, and nuclear engineering.

4 [MAXWS3]| Maxwell, G.M., “Mathematical Modelling of a2 Gas Fired Swimming Pool Water Heater”, Ph.D.

Thesis, Purdue University, in preparation.
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ABSTRACT :

Conventional finite-difference migration has relied on approximations to
the acoustic wave equation which allow energy to propagate only downwards.
Although generally reliable, such approaches usually do not yield an accurate
migration for geological structures with strong lateral velocity variations or
w#ith steeply dipping reflectors. An earlier study by D. Kosloff and E. Baysal
(Migration with the Full Acoustic Wave Equation) examined an alternative approach
based on the full acoustic wave equation. The 20, Fourier-type algorithm which
was developed was tested by Kosloff and Baysal against synthetic data and against
physical model data. The results indicated that such a scheme gives accurate
migration for complicated structures. This paper describes the development and
testing of a vectorized, 3D migration program for the CYBER 205 using the
Kosloff/Baysal method. The program can accept as many as 65,536 zero-offset
(stacked) traces. In order to efficiently process a data cube of such magnitude,
(65 million data values), data motion aspects of the program employ the CDC
supplied subroutine SLICE4, which provides high speed input/output, taking advan-
tage of the efficiency of the system-provided subroutines Q7BUFIN and Q7BUFQUT
and of the parallelism achievable by distributing data transfer over four differ-
ent input/output channels. The results obtained are consistent with those of
vosloff and Baysal. Additional investigations, based upon the work reported in
this paper, are in prcgress.

This research was supported by the Control Data Corporation and the Allied
Geophysical Laboratories at the University of Houston.

*Department of Computer Science, Unversity of Houston, Houston, Texas
**Bell Telephoine Laboratories, Naperville, Illinois
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1.1 THE ROSI.OFF/BAYSAL STUDY

In an attempt to develop a migration technique that did not have
the faults of conventional finite-difference migration techniques,
Kosloff and Baysal introduced a migration technique based on the full
acoustic wave equation ([1]. While conventional finite-difference
techniques used an approximation to the wave equation, they allowed
energy to propagate only downwards. Although these techniques yield
reliableigigration in most cases, they usually do not yield an accurate
migratien for geological structures with strong lateral velocity
variations or with steeply dipping reflectors. The results of the
migration technigue developed by Kosloff and Baysal showed their
technique to be able to accurately migrate these complicated geological
structures. Furthermore, they found that there was no need to invoke
complicated schemes in an attempt to correct the deficiencies of

one-way equations [2].
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1.2 DESCRIPTION OF THE PRESENT STUDY

Although the technique developed by Kosloff and Baysal provides an
excellent migration algorithm, it still is a two-dimensional migration
technique. The cbject of this research was to extend the 2D migration
technique of Kosloff and Baysal into a 3D migration technique that
would migrate a cube of 65,536 (or less) traces, each of length 1,024
samples. This goal immediately imposed several problems that were much
greater than extending the numerical methods of Kosloff and Baysal. Of
these problems, execution time and data motion were the most
significant. Although the 2D migration of Kosloff and Baysal was
implemented on a Digital Equipment Corporation VAX-11/780 incorporating
a FPS-100 array processor, with favorable processing time, it was
observed that this hardware was much too small to expect it to handle
the 3D technique in a reasonable amount of time. Consequently, for its
high rate of computation, the CDC CYBER 205 located at Colorado State
University (CSU) was chosen to be the target machine. In Chapters II,
IIT and IV, the following aspects of the 3D migration technique are
developed: (1) the numerical metheds involved:; (2) the major features
of the program implementing the 3D migration technique; and (3) the

results of numerical tests of the program.

329




IO THE ROSLOFY/BAYSAL FOURIER TECHNIQUE

2.1 INTRODUCTION

Conventional finite—difference migration has relied on
approximations to the wave equation which allow energy to propagate
only dowrwards. Although generally reliable, such equations usually do
not give accurate migration for structures with strong lateral velocity
variations or with steep dips. The migration technique presented here
is a three—dimensional extension of a two—dimensional migration
technigque developed earlier by Rosloff and Baysal {3]. The migration
technigue presented here, referred to in this paper as the KBF
migration technique (for Kosloff/Baysal Fourier type), is based on the

full acoustic wave equation, (2.1).

:'10’
o
ot
[ —— ]
M
e
°
1>
[ — ]
i
—
o
R
[ S— )
NS
¥Ps



2.2 INRUT

It is assumed that input to the KBF program consists of a “cube"
of zero-offset traces in (x,y;z=0,t) space. The KBF technique
presented here is designed to handie Nx * Ny such traces corresponding
to Nx * Ny uniformly spaced points in the x and the y directions. The

implementation discussed is desigrned so that the following must be trues

32 <= Nx <= 256 and Nx-Ziforsaneintegeri

32 <= Ny <= 256 and Ny = 2J for same integer j

These restrictions were chosen so as to test program efficiency;

they do not apply, in general, to the KBF scheme.

For each (x, y) pair, there will be N\: sample points in time, e

m =1, ..., Nt' at which values of pressure, P(x,y,z=0,t;) are given,

Nl: must also be a power of two.

In equation (2.1) it is assumed that the density, pr 1S constant
and that the velocity function, c(x,y,z), will be provided by the

user. For testing purposes, velocity is given by a Fortran function
subprogram in the code presented in Appendix. Other forms
representing the velocities may be used to replace the supplied

function,



2.3 TE _KSLOFT/BAYSAL TECHNIQUE, IN 3D
GBJECT OF THE PROGRANM

Given P(x, y, z=0, t) for t = 0, lDT, 20T, ..., TMAX
obtain P(x, y, 2, t=0) for z = 0, 1DZ, 2D2, ..., 2MAX

BASIC NOMERICAL FETHOD

Equation (2.1) is Fourier transformed with respect to time,
assuming density, p» 18 constant. The second order transformed
equations can then be reduced to a system of first order equations in
the usual manner. If density is oonstant, then we can write the

following series of equations:

P(x,y,z,t) = F'IP(x,y.z,w)
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- 6] [3e Q8] =

wvhere

v - %)2?:, 253,2 (2.3)

which is of the form

g"— = f(z,v) (2.4)
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The expression "transformed with respect to time® means that the

functions Plx,y.z,tp) are represented by Discrete Fourier
Transforms:
Ne
Pix,y,2 ptm) = Z i(XOYr z'wi)ejVﬂ'-m (2.6)
i=1
vhere

(m1) Dr form= ], 2( -oor-;]-: + 1
t =
m (m-(N,+1))DT for m = 12& +2, ceey N

P is given by the Inverse Discrete Fourier Transform:
Ne

Bix,y,z,w;) = %,-; 2 Pix,y.2,ty) e Vitm 2.7
m=l

where
20 (i-1) foris=1,2, .., N 41
DIN, 2

1 2@ (i-(N + 1)  for =Nt 42, L, N
BTN, 2
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DT is the sampling interval in time; j = J[;. Equation (2.6) is then
substituted in (2.1). ‘This results in (2.2), which must be satisfied
for each T for i =1, '?‘ + 1,

Thus, the N, partial differential equations which provide a
discrete approximation to (2.1), involving unknown functions
P(x,y,2z,t ) are replaced by Bt 41 partial differential equations
involving unknown functions P(x?y,z,wi) . Note that in the transformed
equations, dependence on time, t, has been eliminated.

With an appropriate approximation to Vb = gz;; + %g

the "classical® 4™ order Runge-Kutta algorithm is applied to integrate
equation (2.2) numerically in z. The (vector) computational equations
are summarized below:

Kl =Dz * f(z, Vord
K2 =Dz * £(z + 32 vy q + 30
K3=Dz*f(z+ 22y + 50
K4 =Dz * £(z + Dz, Voig t K3

Vnew ™ Vold + (K1 + 2K2 + 2K3 + K4) / 6
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2.4 KBF DESIGN QUTLINE

The program has four main subdivisions, whose tasks are summarized

below:

Part I: For each pair of (x,y) values, the corresponding
zero—offset trace of P(x,y,0,t) values is converted to another "trace"”
of B(x,y,0,w) values by application of the discrete Fourier transform

(2.7).

Part II: For each w; value (i=1,2,...,Np) the ﬁ(x,y,o,wi) values
are re—-ordered into w;-slices organized either sequentially in y for
each x, or sequentially in x for each y, as appropriate for further

transformations.

Part II1: Each w;-slice, from the transformed input cube of
?(x,y,o,wi) values (see Figure 2.1), is developed into an (X,y,z,w;)
cube of ﬁ(errszi) values. This development is performed by
integrating equation (2.2) numerically. The resulting ?(x,y,z,wi)
values are accumulated for all w; for each (x,y,z) combination. Since
all the related exponential multipliers ed™itl equal 1 in magnitude
(see equation (2.6)), this results in the generation of P(x,y,z,t=0)

values, as required. (Note: k=0
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P

{——=— w-slice

Note: =z = 0 throughout this data cube.

Figure 2.1
Transformed Input Cube

There are two sub-prcoblems of Part III:

Part JII.,1: Initial values for ég—are obtained by the application

of a two-dimensional Fourier transform to P followed by multiplicaticn
5 :

by SQRT[-1 * (u2 - VA]. Evanescent energy components are then

c
eliminated and %g— is obtained by the application of a 2-dimensional

inverse Fourier transform to %5:
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Part I11.2: B(x,y,z,w) and g%-(x,y,z,w) are propagated fram z to z+
Yz using the Runge-Kutta 4th order method to integrate equation (2.2)

numerically. To do this

v2p=§§+ gz;

must be approximated four times for each Vz. This is achieved by the
use of a two~dimensional Fourier transform, followed by multiplication
by -(kx2 +ky2). Evanescent energy is eliminated fram P by applying a
two—dimensional Fourier transform to B, obtaining P. For all (Kx,xy)
pairs such that sz + KY2 > wi/clx,y,2), P is set to zero. 'Then a
two-dinensional inverse Fourier transform is applied to yield B', which
is input to the next step of numerical integration. Evanescent energy

is also removed fram %‘:—in the same manner.

Part IV: For each (x,y), the P(x,y,z,t=0) values in Part III are
retrieved so as to be contigquous in Z. These space traces are each
Fourier transformed and the downgoing energy is eliminated by filtering
out components with negative wave numbers K,. The resulting filtered
traces are inverse Fourier transformed, retaining only the real part of

the result, which is the desired 3D depth migration.
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III PROGRAM [ESIGR FEATURES

3.1 INTRODUCTION

The speed and capacity of the computer available to an individual
researcher imposes certain restrictions on the types of problems that
can be solved. The CYBER 205's vector features and high speed scalar
processor provide a tool for solving problems in a matter of minutes
that would take on the order of days on a conventional scalar machine
(this speed increase depends, to a considerable extent, on the degree
to which it is possible to "vectorize"™ the scalar code). Of the
problems that can now be solved using the CYBER 205, the migration
application presented here makes extensive use of the CYBER 205's
vector facilities. This chapter contains an overview of vector
processing on the CYBER 205 and an in—depth discussion of the data-flow

required by the KBF migration algorithm.
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3.2 QONCEPTS OF VECTOR PROCESSING

This section deals primarily with the concept of vector machines;
however, it is not within the scope of this paper to bring the novice
up-to-date on vector computing. Several texts and papers have been
written to perform that task. Hockney and Jesshope [4] present a
comprehensive text covering vector and parallel processors as well as
vector and parallel algorithms. Section 2.3 of Bockney and Jesshope
[5] is dedicated to the (DC CYRER 205. For more information on the

CYBER 205, see also Kascic [6].

THE OOC CYBER 205, HISTORY

The CYBER 205, announced in 1980, replaced its predecessor, the
CYBER 203. In turn, the CYBER 203, introduced in 1979, was a
re—engineered version of the STAR 100. Conceived in 1964, the first
STAR 100 became operational in 1973. The instruction set for the
vector operations in the STAR 100 were based, primarily, on the AFL
language. The STAR 100 was designed to execute at a rate of 100
Mega-flops (1 Mega-flop = one million floating point instructions

executed per second).
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THE OOC C(YBER 205, DESIGH

The CYBER 205 is a member of the family of "pipelined" machines.
Pipeline refers to an assembly-line style of performing certain
operations; thus more than one set of operands can be operated upon at
a time. The vector processor of the CYBER 205 has what are known as
vector pipes. These vector pipes are designed to stream contiguous
data elements (vectors) through their pipelines. Presently, the CYBER
205 can have as many as four vector pipes, all of which can operate
concurrently. A four pipe CYBER 205, processing 32-bit words, can

operate at a peak rate of 800 mega-flops.

The various data types utilized by the CYBER Fortran 2.0 language
include the following:

Type Comments

Bit the machine is bit addressable

Half-word : 32-bit floating point

Full-word : 64-bit floating point; 64-bit integer
Double-precision : 128-bit floating point

Complex : two consecutive 64-bit words
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VECTOR OPERATIONS AND CONSIDERATIONS

Vectors on the CYBER 205 are "pointed to™ by vector descriptors.

A vector descriptor is a 64-bit entity with the following two fields:

(1) Vector length, which consists of 16 bits and (2) Virtual address of

the first vector element, which consists of the remaining 48 bits.

Thus, a vector can have a length ranging fram 0 to 65,535.

Note that a

bit vector can be no longer than 65,535 elements even though it

consists of only 1024 64-bit memory words.

Vector operations come in a variety of forms on the CYBER

same of which are displayed in Table 3.1.

Table 3.1. Vector Operation Examples.

205,

L = 100

NUMBER VECTOR QODE

(1 A(l; L) Q8VINTL(0, 1; L)

(2) B(l; L)

A(l; L) * 20.0

(3) C(1; L) A(l; L)*2.0+B(1; L)

DIMENSION A(100), B(100), C(100)

10

20

30

EQUIVALENT
SCALAR (ODE

D010I=1, L
A(I) =T-1

DD20I1=1,L
B(I) = A(I) * 20.0

D0D301=1,1
C(I)=A(I)*2.0+B(I)
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The examples in Table 3.1 are rather simple but resemble many
operations in scientific programs. Exanples 1 and 2 show a vector
function call and a vector-scalar operation. Example 3 shows a "linked
triad™ operation. A linked triad opération takes advantage of CYBER
205 hardware which supports such operations. As one can see in Table
3.2, the linked triad operations are quite efficient. An operation is
generally considered a linked triad when it consists of two vector

operands and one scalar operand.

In certain situations, the results of some elements of a vector
operation need not be saved. In this case, there is a mechanism for
avoiding storage which involves a control vector. A control vector is
a bit vector that specifies the storage of vector results. The control
vector will be the same length as the result vector and where it has a
value of one the corresponding result vector element will be saved and
where it has a value of zero the corresponding result vector element
will not be saved. The programmer also has the choice of reversing the

meaning of the one's and zero's in the control vector.

A certain number of clock cycles are needed to set up the vector
pipes. As this setup time is constant for a given operation, it is
more efficient, in terms of total execution time, to reduce the number
of vector operations by 'increasing the vector lengths whenever
possible. Table 3.2 shows the set-up times, as well as the timings for

the actual operations for various operations on the CYBER 205.
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Table 3.2. Vector Timing Information

Number of Number of
Vector Instruction Set-up Cycles Operating Cycles
Addition, Subtraction 51 N/ 4
Multiplication 52 N/ 4
Division, Square root 80 N/ .61
Linked triad 84 N/ 4

Where:
N = Vector length
1 Cycle = 20 nano-seconds

The vector operations are on 32-bit words




3.3 A NOTE ON THE APPLICATION OF VECTOR PROCESSING TO THE KBF METHOD

The KBF migration technique is such that almost all of the
necessary operations can be vectorized. When working with a particular
w-slice, all of the operations, including the two-dimensional FFT's,
are vector operations. The computations performed at any given point
of the amega-slice must be performed at all of the points. If there is
a certain criteria that causes something different to occur at a given
anega-slice point, a control vector can be created, dynamically, and
the operation can still be performed in a vector manner. An example of

this may be found in the routine CQUTOFF where the evanescent energy is

eliminated. In summary, there is no

particular cperation in the KBF migration scheme that can not be
treated as a vector operation. To enphasize this point, one should
examine the technique presented in chapter 2 and notice that there are
no tricky operations that would prevent vectorization. In particular,
it is inmportant to note that there are no operations that have the
following structure:

DO 100 I =1, N
X(1) = F(Y(I))
IF (X(I) .LT. VAL) GO TO 200
100 QONTINUE
200 CONTINUE

The above code can not be efficiently vectorized because of the
inherently sequential nature of the computations.
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3.4 DATA CONSIDERATIONS

As previodsly discussed, a program implementing the KBF migration
technique, extended into three dimensions, is easily expressed in terms
of vectof operations. The program developed here contains very few
scalar dperations, many of which are operations needed in order to
control .various vector instructions or vector subroutine calls. Having
such a match of software to hardware, one might conclude that there are
no remaining barriers to running the program. There are, however, a
few major items that one tends to overlook, being overwhelmed by the
computational power of the CYBER 205. The greatest of these is the

data motion required to keep the CYBER 205 vector pipes busy.

One penalty for the use of vector operations is that the data must
be contiguous in memory for greatest efficiency (let alone for some
vector operations to run at all). Furthermore, the vectors must reside
in main memory as much as possible in order to prevent sure death from
thrashing., With this in mind, one must realize that the memory
requirement for the vectors that are necessary to perform a single step
of the integration of one amega slice is quite large. For example, a
(256 by 256) complex XY plane will require eleven vectors of length
131,072 half-words. These, along with various support vectors,
comprise 12 large pages (1 large page = 65,536 full-words). This is
slightly less than half of the memory available to a user on a

346



2fmegaword 205, however it is about all one can expéct.to get fbr any
reasonable period in a time-sharing envirorment. But this is really
just the tip of the iceberg - these are just the work arrays. The
total data set consists of the input data cube, the work arrays, and
the output data cube.

Continuing with the previous example, the input cube could very
well be of size 256%*256*1024 half-words and the output cube could be as
much as twice the size of the input cube (the size of ;he output cube
depends upon the number of ZSTEPS in the migration). This would be a
total of 201,326,592 half-words, which is equivalent to 1536 large
pages. Obviously, this is much more data than any CYBER 205 can have
in memory at any given time. Consequently, the question of how to
handle the data-flow arises. A solution that one may consider is to
declare the data cubes to be huge arrays and to let the virtual memory
mechanism handle the data cubes.

To consider declaring the two data cubes as arrays, oOne must
realize that access to these two arrays would have to be in a
contiguous manner. Otherwise severe thrashing would result. In the
case of the KBF migration algorithm, access to the data cubes must be
done in several ways that would break the rule of contiguous access.
Thus, it would be wise to check into at least one alternate method of

handling these data cubes as large arrays.



Before presenting the data motion method used in this study, the
need for efficiency must be established. Continuing with the previous
example and without discussing the code in detail, the subroutine RHS3
takes on the order of 100 milli-seconds to run, each time it is called.
In this example, RHS3 would be called on the order of 4*512*5]12
(1,048,576) times. The time needed for all of these calls is
approximately 29 hours. Thus, any time for performing the data-motion
is added onto the 29 hours. Therefore, one needs to find a mechanism
to perform the data-motion without making the program run for an

unacceptable amount of time.
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3.5 A FOUR-WAY PARALLFL DATA MOTION TECHNIQUE

CYBER 205 Fortran provides several routines that may be used to
implement I/0 that runs concurrently with other instructions being
executed as well as with other I/0. These routines include (Q7BUFIN,
Q7BUFOUT, and Q7WAIT. For detailed information on these routines, see
the CDC CYBER 200 FORTRAN VERSION 2 manual (7]. A typical use for

these routines would be as follows:

QIJ.L Q?Bm(......'.."...‘)
CALL mRK(..o-a-a.oo..)

In this example where the programmer wishes to write information
out to a unit and have the routine WORK run concurrently with the I/0.
In general, as long as WORK does not use the I/0 unit referred to in
the Q7BUFOUT call, it can do anything it wishes. Thus, there is CPU

activity concurrent to I/0 activity.

Another example where two I/0 requests cause concurrent 1/0, is as

follows:

QLIJ Q7B[JFIN(.-......¢.'--.)
C‘ALL Q7BUFGJT(.-.....--....-)
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According to the CDC CYBER FORTRAN 2 manual [8], these calls are
legal, so long as they do not access the same data block on the same
disk. Also, two Q7BUFIN, two Q7BUFOUT calls, or a QJ/BUFIN and a

Q7BUFOUT call can be active at one time for a given unit.

It should be obvious that these "Q7" calls are the basis of a
solution to the problem of data-flow that was presented in the previocus
section. Indeed, they are; yet they are only the basis of the method
used in this study. Dr. Bjorn Mossberg [9], of Control Data
Corporation, wrote a utility known as SLICE4. Mossberg used the ™Q7"
utilities; however, the scheme he developed is much more elaborate

than a series of Q7 calls to a particular I/0 unit.

SLICEA

It is not within the scope of this paper to duplicate Mossberg's
documentation of SLICE4. However, the concept and the terminology of
SLICE4 will be presented as it applies to this study. For efficient
operation, SLICE4 must be tightly integrated into the master program.
Therefore, its terminology affects the view that one takes of the

master program.

In this study, two implementations of SLICE4 were needed and used;
one for the input data cube and one for the output data cube. To
explain the use of SLICE4, only the input data cube will be treated.

The output data cube is‘'handled in a similar manner.
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SLICE4A TERMINOLOGY

The first step in using SLICE4 is to impose a coordinate system
upon the data cube such that the cube is Nl by N2 by N3 elements in
size, where N1 is the number of elements in what one normally considers
the 2 direction, N2 is the number of elements in the X direction, and
N3 is the number of elements in the Y direction. The next step is to
define a second coordinate system on the data cube. Instead of being
coordinates of individual data items, this second coordinate system
gives ooordinates of “super-blocks." Super-blocks are small cubes of
the original data set. The super-block coordinate system has NSl
super-hlocks in the l-direction, NS2 in the 2-direction, and NS3 in the
3—direction, where NS1 and NS2 must be multiples of four. NS3 does not
have this restriction; however, for greatest efficiency, it should be
one or a multiple of four. The reason for the multiple of four rule is
that the super-blocks will reside on four different I/O units. No
matter which direction the cube is accessed, each I/0 unit will have
one quarter of the super-blocks accessed. This is not the case when
only a partial row or column of super-blocks is accessed; thus, it is
most efficient to access a complete row or colum. If it should happen
that more than one I/0 unit be controlled by a given controller, then
SLICE4 will still execute, but in a less efficient manner (i.e. the
parallelism is partially inhibited). Thus, one may access any four
adjacent super-blocks at a cost which is one fourth the cost of

accessing the same data with conventional techniques.
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The super-blocks themselves have a coordinate structure imposed
upon them. This coordinate structure is Ll by I2 by IL3. Where Ll is
the number of elements from the data cube in the l-direction; I2 and

L3 are defined in the same manner for their indiv_idual directions.

Summarizing the terminology presented so far, the original data
cube is broken up into NS1 by NS2 by NS3 super-blocks. Each
super-block has L1 by I2 by L3 data elements. Thus the following rules

must apply:

NL =NS1 *L1 with NS1l=4%i, i=>1
N2 =NS2 *L2 with N2=4%*73, j=>1
N3 = NS3 * L3

SUPER-BIOCK MXESS

The rows and columns of super-blocks are referred to as slices. A
l-slice is same column of super-blocks in the l-direction, a 2-slice is
some row of super-blocks in the 2-direction, and a 3-slice is some row
of super-blocks in the 3-direction. One may access all, or just same,
of the super-blocks of a slice via SLICE4. However, in this study,
only the most efficient access is performed - accessing all
super-blocks of a given slice. As access can be by any given slice,
SLICE4 must have the super-blocks all formatted in the same manner.
Thus, when accessing a given slice, the slice is written into a buffer
by SLICE4 and the user must re—-format the data from the buffer into a

work array in the format that corresponds to the direction of access.
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DIMERSTON (UNRSIDERATIONS

One needs to be careful to have enough array and buffer space to
access the data cube in all the necessary directions. Thus, the size
of the super~block comes into question. The larger the super-block,
the fewer accesses to the data cube are needed and vica versa. In this
study, the L1 dimension was set permanently to the value of 2. The
reason for this is that, as one recalls fram the migration technique, a
complete XY plane is processed at any given time and there is only

enough memory space to have two input planes in memory at the same

time.
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IV RESULTS AD NOLUSIONS

4.1 EXEQUTION TESTS

As discussed in section 3.4, it would take over 29 hours of
execution time to migrate the maximum (assumed) data cube; thus for
testing purposes, an input cube of size (64x64x64) was used. For both
of the test runs discussed here, all of the traces consisted completely
of zeros, except the center trace that had a single wavelet peaking at
sample 16 (in time). The correctly migrated result, in this case,
consists of a hemisphere. The first run (Figures 1 and 2) incorporated
a padaing in the time direction to delay the wrap-around effect
inherent in Fourier algorithms. The second run (Figures 3 and 4) did
not incorporate a padding - thus, wrap-around effects appeared. The

first run took 240 CPU seconds and the second run took 115 CRU seconds.

Iaat_ml_l: The migration of the input cube described above,
using a constant velocity of 3000 m/s, a Dz interval of 6.0 meters, a
Dx interval of 12.0 meters, a Dy interval of 12.0 meters, and a time
interval of 4.0 milli-seconds, yields the results shown in Figqures 1
and 2. Figures 1 and 2 are slices of the ocutput cube in the XZ and in
the YZ directions, respectively, intersecting at the center of the

output cube (Note the absence of the wrap-around effect).
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Test Run 2: The migration of the same input cube used in Test Run
1 using tne same sampling rates in all dimensions, but with a velocity
interface (see Figure 3; V1 = 4000 w's; V2 = 3000 m/s), yields the
results displayed in Figures 3 and 4. Note the wrép—éround effect

present in these figures.
4.2 FACTORS AFFECTING SPEED OF COMPUTATION

Until a superior algorithm for performing the I/0 required by the
KBF migration algorithm appears, SLICE4 will remain the most efficient
method available to perform the I/0 task. However, should a CYBER 205
ever be equipped with 8, or even 16, I/0 channels, SLICE4 should easily
be adapted to create SLICE8 and SLICE1l6 versions. Until then, there is

little chance of decreasing the time required to perform the I/0.

Other than I/0, the Runge-Kutta 4th order algorithm employed in
the KBF migration technique is the most expensive feature.
Consequently, use of a less costly method for numerical integration
(e.g., a multi-point method, using the Runge-Rutta method to get

started) might result in increased computational efficiency.

4.3 CONCLUSIONS

The 3D KBF migration program, implemented on the CYBER 205
Supercomputer presented in this thesis, yields results that are
consistent with those of Kosloff and Baysal ([10]. This was confirmed
by Kosloff [11]. Thus, a 3D migration program, using the KBF migration
technique (based on the full acoustic wave equation) permitting lateral

velocity variations is now available for use on the CYBER 205.
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Vectorization of a Penalty Function Algorithm for Well Scheduling
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San Francisco,California

Abstract:

In petroleum engineering, the oil production profile of a reservoir can be
simulated by using a finite grided model. This profile is affected by the
number and choice of wells which in turn is a result of variocus production
limits and constraints including, for example, the economic minimum well
spacing, the number of drilling rigs available and the time required to drill
and complete a well. After a well is available it may be shut-in because of
excessive water or gas productions. In order to optimize the field
performance a penalty function algorithm was developed for scheduling wells.
For an example with some 343 wells and 15 different constraints, the
scheduling routine vectorized for the Cyber 205 averaged 560 timnes faster
performance than the scalar version.
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Introduction:

iathematical modelling of the fluid production from a naturally occurring
reservoir involves considering the reservoir as a network of interconnected
blocks. To each grid block is associated a yeologic description throuyh
properties, e.g., thickness, porosity, permeability, etc. Each yrid block is
considered to be in niaterial balance with its surroundings, i.e., the auount
of fluid in the block at time t +At is equal to the amount of fluid in that
block at time t plus fluid influx in the time interval At minus fluid outflux
in the time intervalAt.

In Figure 1A, the reservoir is shown by a curved boundary. Overlaid
areally is a rectangular grid. The sizes of the blocks can be chosen to
represent the geoloyical features of the reservoir as accurately as possible.
Figure 1B shows a two dimensional cross-section of a reservoir and the yrid
used for its simulation. Notice that the reservoir contains water, 011 and
gyas in various reyions, and only some blocks are in communication with the
wells by means of perforations in the well bore. To simulate the production
profile, the material balance of the grid blocks in which wells are perforated
must also take into account the fluid production or injection. In this manner
one obtains pressures and saturations for each of the yrid-blocks. For
details on wmathematical modelling of 0il reservoirs please refer to a standard
text, for example, references 1 and 2.

Once a reservoir simulator is foruulated, it can be used in unany ways,

e.g.:

1. Assist in makiny economic decisions for field operation, e.y., the
investments to date at Prudhoe Bay exceed $9 billion,

2. Design of production strategy. The effect of changes in the number,
location, spacing, or timinyg of wells can be studied.

3. Prediction of reservoir performance.

4, Matching of the production history.
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When an o0il field is developed, of course the most important objective is
to maximize oil recovery. However, this objective is tempered by limitations,
economic and physical, e.y., costs and capacities of various installations and
devices.

The dashed curve in Figure 2 represents oil production when all wells
flow at their maximum capacity. The area under this curve represents
cumulative oil production. The ratio of cumulative o0il production to in-place
oil represented as a fraction or percentage is called the 0il1 Recovery
Factor. If facilities were constructed for this production profile, they
would have to be constructed to handle o0il production at the maximum rate,

9 max- Economic considerations give us a target oil rate, Gy less than gpaxs
at which oil production can be sustained for a period of time. The solid
curve in Figure 1 represents this strategy. HRote that sometimes this can be
achieved without appreciable sacrifice in cumulative 0il production,

Well Scheduling Problen:

Once Ay is established, the problem of optimal scheduling, i.e., selecting for
operation a given number of wells (say n) can be represented mathematically as
follows:

Maximize, n

;. % & ag
i=

The waximum production rates of oil, gas and water are, however, limited to
the capacity of the reservoir facilities. Thus, the field oil production is
subject to constraints of the form:

2 xiqi & L

i
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where,
gi is the o1l production rate from well i,

e is the target oil production rate for the field,

Xij is either 1 or the gas-oil ratio or the water-oil ratio for well i,
X§qi is then the oil or gas, or water production/injection rate.

and L is the oil or gas or water production of injection constraint.

Some examples of these limits are:

1. Fieldwide gas hardling capacity,

2. MWater injection limit,

3. 0i1 production Timit at a station due to pipeline size,
4, Gas-Tift capacity available.

In order to select wells for production, each well can be assigned a
priority. In the penalty function approach priority assignment, is made with
a function which becomes Tarye as a particular constraint approaches violatiaon.

Suppose (k-1) wells have been already chosen.

For choosing the k th well subject to a constraint of the form:

2 xiai & Ls

a simple peralty function is:

k=1
plk) = (

Xiqj + xka)/ L
i=1

The penalty function p(k) has a value for each of the available wells,
and arranges the set of available wells in order according to this particular

constraint.
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When there are several (say m) constraints, penalty functions p1(k),
p2(k)---py(k) can be obtained similarly.

Since each constraint is indjvidually fatal for well scheduling purposes,
the violation of one constraint is as bad as any other.

Hence, an overall penalty function can be of the form:

p(k) = max Pj
j=1 «vom

Results and Discussion:

The implementation of this schene involves calculating for each available
well, m different p;j (k) and then obtaining an overall penalty, p(k) as the
max imum of these m values. Thereafter the well with the lowest value of p (k)
is selected. This procedure is repeated selecting one well at a time until
the target rate q is achieved without violating any of the constraints. If
the target rate cannot be achieved without violating one or more constraints,
we are on the decline portion of the production curve.

This scheme was programmed into a three dimensional, three phase (oil,
gas, water) simulator. The simulator originally used a simple prioritization
scheme based on gas-oil ratios. When a scalar version of the penalty function
algorithm was introduced, the simulator ran appreciably slower. It was
therefore decided to vectorize the penalty function algorithm.

To calculate the penalty function in a case with n wells and m
constraints declare an array p (n, m). Usually n is much greater than m.

For each of the m constraints vectorize the penalty calculation, e.g.,
for constraint i, store the values of pj(k) in the elements of p (n, m),
starting with p (1, i) and ending at p (n, ).

Next, using a WHERE comparison statement pick out ‘the Tlargest of the m
values for each well. We now have the priority p (k) for each well. Use the
Q8SMINI call to pick out the minimum value. If this value exceeds 1., no well
can be chosen without violating a constraint.
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TABLE T,

Case 1 Case 2

No. of wells 116 343
No. of constraints 9 15
Average Well
Selection Time (sees)

Scalar: 14 1.6

Vector: 001245 .00287
Scalar: Vector 112 560

Ratio

A summary of results for two cases 1is presented in Table 1. For a
reservoir with 119 wells and nine constraints, the vector algorithm was on the
average 112 times faster than the scalar version. For a larger example, Case
2 in Table 1, 343 wells with 15 constraints, the vector algorithm achieved
even more spectacular results, an average acceleration factor of 560.

The details of Case 1 are represented graphically in Figure 3. In the
scalar algorithm, the time required for selection of wells increases
monotonically for each subsequent selection. The selection of the first well
required only .005 secs while the selection of the &5th well required .226
secs. However, in the vector algorithm, each well selection required .001244
secs, except for the first, which required .00155 secs.

Similarly, for Case 2, the vector algorithm took .00287 secs for each
well selection, except for the first well, for which it took .00447 secs. The
scalar algorithm had a monotonic increase from .0185 secs for the first well,
to 2.641 secs for the 220th well. This means that the selection of the 220th
well was some .920 times faster in the vector algorithm as compared to the

scalar version.
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Conclusions:

Clearly as the number of wells and the number of constraints increase,
the advantage of the vectorized version over the scalar version becomes
yreater.

The reservoir simulator with the vectorized well selection scheme,
including the more complicated penalty function scheme, ran faster than the

original version with the simpler scalar well selection scheme.

In short, judicious use of vectorization can make feasible highly
desirable enhancements to larye simulators.
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