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The diffusion quantum Monte Carlo (QMC) method gives a stochastic 

solution to the Schrodinger equation. This approach has recently been 

receiving increasing attention in chemical applications as a result of 

its high accuracy. However, reducing statistical uncertainty remains a 

priority because chemical effects are often obtained as small differences 

of large numbers. We give as an example the singlet-triplet splitting of 

the energy of the methylene molecule CH2. 

We have implemented the QMC algorithm on the Cyber 205, first as a 

direct transcription of the algorithm running on our VAX 11/780, and 

second by explicitly writing vector code for all loops longer than a 

crossover length C*. We discuss the speed of the codes relative to one 

another as a function of C*, and relative to the VAX. Since CH2 has 

only eight electrons, most of the loops in this application are fairly 

short. The longest inner loops run over the set of atomic basis 

functions. We discuss the CPU time dependence obtained versus the number 

of basis functions, and compare this with that obtained from traditional 

quantum chemistry codes and that obtained from traditional computer 

architectures. Finally, we discuss some pre1iminar.y work on restruc- 

turing the algorithm to compute the separate Monte Carlo realizations in 

parallel--potentially allowing vectors of unlimited length. 
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Research, Office of Basic Energy Sciences, Chemical Sciences Division of 
the U. S. Department of Energy under Contract No. DE-AC03-76SF00098, 
Director's Program Development Fund, Lawrence Berkeley Laboratory, and 
the Control Data Corporation. 

+Also Department of Chemistry, University of California, Berkeley, 
California. 
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1. BACKGROUND 

In recent years Monte Carlo methods have been increasingly 

applied to quantum-mechanical problems. Quantum Monte Carlo (QMC) 

methods fall into two major categories. Variational QMCI is a 

method of evaluating expectation values of physical quantities with a 

given (generally optimized) trial wave function YT. The procedure 

in effect amounts to evaluating a ratio of two integrals, although 

the actual Yonte Carlo procedure is generally more sophisticated. 

The second major category of QMC is the "exact" type.* In these 

latter approaches the SchrSdinger equation is actually "solved". It 

is not necessary to already have a highly accurate wave function in 

order to compute the expectation values. Properties of interest are 

in effect "measured" as the system evolves under the Schr6dinger 

equation. When a stationary state is obtained, averages of the 

measured quantities give the desired expectation values. 

Only recently have chemical calculations by exact QMC methods 

been carried out. 394 We will discuss here one such QMC method -- 

the fixed-node, diffusion QMC -- which we have been using in cal- 

culating molecular energies. In Section 2 we present the basic 

theory. Section 3 describes the algorithm. The implementation of 

this algorithm on the Cyber 205, its optimization, and results, are 

discussed in Section 4. 
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4 
2. BASIC THEORY 

The SchrBdinger equation may be rewritten in imaginary time, 

and with a constant shift in the zero of energy in the. following form: 

“y;$‘t’ = [DO2 - ‘-‘(El + ET1 ‘U&t) l 

Here D = a2/2me, R is the three-N dimensional coordinate vector 

of the N electrons, and V(E) is the potential energy (the Coulomb 

potential for a molecular system). Equation (1) is simply a 

diffusion equation combined with a first-order rate process, and thus 

may be readily simulated. The function Y(R-,t) plays the role of the 

density of diffusing particles. These particles undergo branching 

(exponential birth or death processes) according to the rate term 

[ET - V(!gl ‘y@). Thus, the number of diffusers increases or 

decreases at a given point in proportion to the density of diffusers 

already there. 

The steady-state solution to Eq. (1) is the ground-state 

eigenfunction of the Schradinger equation. Furthermore, the value of 

ET at which the population of diffusers is asymptotically constant 

gives the energy eiqenvalue Eo. The lowest eigenstate, however, is 

that of a 3ose system. In order to treat a Fermi system, such as a 

molecule, we need to impose anti-symmetry on Y(E). A method which 

does this, and at the same time allows us to sample more efficiently 

(to reduce our statistical error), is importance sampling with an 
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anti-symmetrized importance function Y I' The zeros (nodes) of YI 

become absorbing boundaries for the diffusion process, maintaining 

the anti-symmetry. A simple form for YI which gives the necessary 

anti-symmetry is a Slater determinant of molecular orbitals 

multiplied by a symmetric function of the coordinates. 

To implement importance sampling, one simply multiplies Eq. (1) 

by YI and rewrites it in terms of a new probability density f(k,t) 

given by 

The resultant equation for f can be written as 

af - = DV2f + [ET - E&R)]f - DV=[fFU(R)] . 
at (3) 

The local energy EL(R) and the "quantum force" FQ(R) are simple 

functions of lu,(IJ). Eq. (3), like Eq. (l), is a generalized 

diffusion equation, now with the addition of a drift term, due to the 

effect of F Q’ It is Eq. (3) that we solve stochastically. Using a 

Green's function approach, our diffusers are made to follqw a "random 

walk" (Markov chain) in such a way that their asymptotic distribution 

is given by the steady-state solution, f,(R), of Eq. (3). Properties 

of interest (such as the energy) are measured during the "walks", and 

are thus averages over the distribution f,(R). 
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3. ALGORITHM 

We present here an outline of the algoritnm for performing 

diffusion QMC. For more detail see Ref. 4. This algorithm is not 

structured specifically for the architecture of the Cyber 205. We 

will return to this point in the next section. 

(0) Initialization. First generate an ensemble of NC 

configurations of the N-electron system. Typically NC * 100-500. 

These coordinates may be chosen randomly, or more efficiently from 

the distribution This initial distribution is 

f(l?, t=O).O 

(1) Loop over blocks. In each block: 

(2) Repeatedly loop over the ensemble until the time in each 

configuration has reached the chosen target time. For each 

member of the ensemble compute the inverse of the Slater 

matrix. Then: 

(3) Loop over the electrons. Compute FQ for the current 

electron. IMove to 

r' = r + DrF 
Q+ x (4) 

where T is the discrete time-step size, and x is a 

3-dimensional Gaussian random variable with a mean of zero 
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and a variance of 2Dr. This corresponds to the diffusive 

motion. If the electron crosses a node, eliminate the 

configuration from the ensemble and continue loop (2) over 

the ensemble. Otherwise update the Slater matrix and its 

inverse, and continue loop (3). 

After all electrons in the current configuration have been 

moved, advance the time associated with this new configuration 

R' by T. Calculate EL(R'). Also calculate the branching 

factor, or multiplicity. 

M = exp (--r{[EL(R) + EL(R')I/2 - ET))* (5) 

Return M copies of this configuration to the ensemble. This 

branching, or birth and death process, corresponds to the rate 

term in Eq. (3). Weight all averages by M. Continue loop (2). 

After all members of the ensemble have reached the target time, the 

current block is finished. Use <EL> to update ET. Store <EL> 

and the other averages. "Renormalize" the ensemble back to its 

original size NC. (This is necessary because the population grows 

or shrinks exponentially. Although we have endeavored to make the 

exponent close to zero [cf Eq. (5)], asymptotically at large time tne 

population will either vanish or overflow the allocated storage.) 

Reset all averages to zero. Continue loop (1) for the desired number 

of blocks. 

(4) Average over blocks. 
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4. CYBER 205 IMPLEMENTATION. 

The problem we chose to study is the singlet-triplet energy 

splitting of the methylene molecule, CH2. CH2 is fairly typical 

of the molecules we have been studying by QMC, in terms of the number 

of electrons and the number of nuclei. As a result, most of the 

inner loops in this application are quite short. The longest inner 

loop runs over the set of atomic basis functions. With this in mind, 

we present our results on the relative performance of the Cyber 205 

and the VAX 11/730. To compare with the CDC 7600, we note that our 

code runs almost exactly ten times 

We have imp lemented the QMC a 1 

by simply transcribing our working 

The major impediment at this stage 

faster on the 7600 than on the VAX. 

gorithrn on the Cyber 205, initially 

program from the VAX to the Cyber. 

was the lack of unformatted I/O on 

the Cyber and, even worse, its inability to handle logical records 

longer than 137 bytes. After rewriting these portions of the code, 

the program finally ran. 

!Ilith automatic vectorization ooth on and off, the Cyber ran 

approximately 16 times the speed of the VAX. Apparently, any 

speed-up from vectorization of the longer loops was lost to the 

start-up time for vectorizing the short loops. It seemed clear 

explicit vectorization was required. Thus, as our next step, a 

long inner loops of constant length were written explicitly in 

that 

11 

vector 
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syntax, while short constant-length loops were left as 00 loops. 

Most loops in the code, however, are of variable length. These were 

all recoded in the form: 

IF (length .GT. C*) THEN 

[Vector code] 

ELSE 

[Scalar code] 

END IF. 

We present in Figure 1 our performance results as a function of 

the crossover length C*. At values of C* greater than 26 the scalar 

section of code is always being executed, and thus the curve flattens 

out. For C* less tnan approximately 16, it appears that vector 

start-up time hinders performance. The optimum crossover point 

appears to be around 16. The lowest of the three curves corresponds 

to the implementation described above. Subroutine calls are quite 

costly on the Cyber 205. Thus in the middle curve we show the result 

of removing two short subroutines (both written in IF-THEN-ELSE 

form) and substituting vector code directly into the calling 
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programs. The speed-up is fairly dramatic, providing a peak speed of 

close to 20 times the VAX (up from 17). 

Interestingly, although the compliler recognizes that A**2 should 

be replaced by A*A, inside of vector code A**2 calls the float-to-an- 

integer-power routine. Needless to say, this is costly. Essentially, 

changing one line of vector code from A **2 to A*A led to the improve- 

ment shown in the top curve. Clearly the improvement is most 

pronounced for small C*, where this line of code is being executed 

more frequently. 

As mentioned earlier, the longest inner loop is over the number 

of atomic basis set functions, n. Traditional quantum chemistry 

codes scale as n4 or n . 5 Thus increasing the size of the basis 

set can be very costly. In our QMC approach, the algorithmic 

dependence on n is linear. In Fig. 2 we plot the relative run times 

as a function of basis set size on both the VAX (upper curve) and the 

Cyber 205 (lower curve). Both curves are indeed fairly linear in n. 

However, the slope for the Cyber is almost flat. This smaller slope 

is due to an increase in the vector length rather than an increase in 

the number of machine instructions being executed. The result is a 

speed enhancement of 30 over the VAX (up from 20) by n=50. 

Although a factor of 30 over the VAX (or equivalently a factor 

of 3 over the 7600) is certainly good, it is nowhere near our hoped 
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for performance. This can be explained by the fact that even loops 

of length 50 are relatively short on the Cyber 205. Possibly more 

important, however, is that the relatively long inner loops constitute 

only a fraction of the code being executed. Thus, truly high speed 

for this kind of application requires on architectural rewrite of the 

code. 

Looking over the algorithm (cf Sect. 3) it is clear that the 

entire structure is highly parallel. This is a fairly general 

characteristic of Monte Carlo codes. Thus, on a parallel processor 

the loop (1) over blocks can be eliminated, and each block can be 

computed independently on a separate processor. There is no communi- 

cation required between processors until the very end, when [step.(4)] 

the average over blocks is computed. 

For a truly efficient Cyber 205 algorithm, however, loop (1) is 

too short to vectorize, generally ranging between 10 and 100. Loop 

(2) is much more desirable to vectorize, with NC = 100-500. To do 

so, this loop must be made innermost in the new algorithm. In other 

words, the entire ensemble must be treated in parallel. Furthermore, 

the vector length is dynam ic, since at each time-step the birth and 

death process Imodifies the ensemble size. We are currently develop- 

ing this fully vector code for future implementation. This code 

appears to have great potential for fully exploiting the vector 

capabilities of the 205. 
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Finally in Table 1, we present our results on the singlet-triplet 

energy splitting of methylene, and compare these results with theory 

and experiment. 
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TABLE 1, 

The ground-state (3Bl) and first-excited state (lA1) energies of metnylene. 

Method 3 B1-energy (hartrees) 1 Al-energy (hartrees) 

Hartree-Fock -38.9348 -38.8944 

CI-SD -39.1071 -39.0956 

CI-SDQ (est.) -39.122 -39.105 

QMC -39.129*0.004 -39.108*0.004 

Experimental -39.148 --- 

IAl - 3Bl energy (kcalbnole) 

CI 9.3-11.3 

Expt 8.5-19.6 

QMC 12.3f3.4 
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RELRTIUE PERFORHANCE 
CYBER RSS VS VAX ll/SSO 
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Figure 1. F&lative speeds of the Cyber 205 and the VAX 11/780 for 
quantum Monte Carlo calculations of the ground-state energy of CH2. 
The crossover point C* is the vector length below which variable- 
length loops are run in scaler mode. !rhus , for large C* these loops 
are all run in scaler mode,whereas for very small C*, vector start- 
up time hinders performance. The three curves correspond to differ- 
ent degrees of hand-optimization of the code. See text for details. 
Note that the curves interpolating the data points are simply poly- 
nomial fits to the data. The actual curve for a particular molecule 
is a set of steps at the values of the various loop lengths that 
occur in the problem. The fits can be considered an "average" 
behavior for this type of calculation. 
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CPU TIME vs VECTOR LENGTH 

IHE (ARBITRCIRY IINITS) 

Figure 2. CPU time versus the number of atomic basis set functions, 
n. Conventional codes scale as nx with X ~44-6 while QMC scales 
simply as n. Both the VAX and Cyber show this n dependence clearly. 
However, the slope for the Cyber is almost zero. At n=16 the Cyber 
is 20 times the speed of the VAX while at n=50 the Cyber is 30 
times faster. 
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