
EFFICIENT SPARSE MATRIX MULTIPLICATION 
SCHEME FOR THE CYBER 203 

JULES J. LAMBIOTTE, JR. 

NASA/LANGLEY RESEARCH CENTER 

HAMPTON, VIRGINIA 



Efficient Sparse Matrix Multiplication Scheme 
for the CYBER-203 

Jules J. Lambiotte, Jr. 
NASA/Langley Research Center 

Hampton, Virginia 

Abstract 

Many important algorithms for solving problema in linear algebra require 

the repeated computation of the matrix-vector product b = Ax where A is 

symmetric and sparse. Examples are the conjugate gradient and Lanczos 

methods. 

This work has been directed toward the development of an efficient 

algorithm for performing this computation on the CYBER-203. The desire to 

provide software which gives the user the choice between the often conflicting 

goals of minimizing central processing (CPU) time or storage requirements has 

led to a diagonal-baaed algorithm in which one of three types of storage is 

selected for each diagonal. For each storage type, an initialization sub- 

routine estimates the CPU and storage requirements based upon results from 

previously performed numerical experimentation. These requirementa are 
adjusted by weights provided by the user which reflect the relative importance 

the user places on the two resources. 

The three storage types anployed were chosen to be efficient on the 

CYBER-203 for diagonals which are sparse, moderately sparse, or dense: 

however, for many densities, no diagonal type is most efficient with respect 

to both resource requirements. The user-supplied weights dictate the choice. 

Introduction 

Many of the important numerical techniques used today to solve linear 

equations require repeated computation of a symmetric matrix times a vector. 

Examples are the conjugate gradient method, with all its variants, for solving 

243 



simultaneous linear equations (refs. 1 and 2) and the Lanczos algorithm for 

eigenvalue and eigenvector extraction (ref. 3). These methods are 

particularly attractive when the matrix is sparse since, unlike direct 

methods, they do not require storage of the entire matrix. The matrix is only 

used to multiply a vector and to do this one only needs to know the nonzero 

elements and their position within the matrix. 

The primary objective of this work has heen to develop software for the 

CYBER-203 that provides an efficient means for computing b = Ax when A is 

an n x n, symmetric, sparse matrix. 

Because use of vector hardware instructions on a vector processor has 

very definite implications about the storage, a user's desire to minimize both 

the required central processing unit (CPW) time and the total storage needed 

to represent A are often conflicting goals. Thus, a more specific objective 

of the work has been to design the software so that it provides alternative 

storage/computational procedures for the matrix A and automatically selects 

the procedure which best reflects the users relative concerns about minimizing 

the two resources. 

These objectives have led to the development of a diagonal-based storage 

and computation scheme in which a preprocessing subroutine, OlPACT, chooses 

one of three storage methods for each diagonal using CPU and storage estimates 

and user-provided resource weighting information. The subroutine, CMXV, can 

be called repeatedly to compute Ax using the compact form of matrix A. 

Subsequent sections of the paper will describe the relevant CYBER-203 

instructions used, the diagonal-based algorithm with the tradeoffs between the 

methods, a description of the implementation used, and results for several 

sparse matrices. 

244 



CYBER-203 Characteristics 

The CYBER-203 at Langley Research Center is a vector processing computer 

capable of producing 50 million floating point results (64 bit) for a vector 

addition and 25 million for a vector multiplication. It has one million words 

of bit addressable central memory in a virtual memory architecture. 

The high CPU rates are achieved by operations on long vectors whose 

components, by definition, are consecutively stored in memory. However, if 

vector lengths are short (say, 50 or less), the fast scalar capability makes 

serial computation superior. 

In addition to the usual arithmetic operations (+, -, l , and +I, several 

nontypical hardware instructions exist which proved useful in this work. 

These were the vector compare, compress, expand, and bit count. Figure 1 

demonstrates their use. 

245 



3 2 0 014 0 2 

.NE. 

o*o 0 0 ojo'o 

,-> 11 11 10 10 11 10 Ill- B 

i 
Bit Count (B) = 4 

*broadcast 0 actually used 

(a) Compare vector not equal to 0; result to bit vector, B; count "on" bits 

in B. 

3200402 

1 
Compress by --> [q-q-p-j 

11 0 0101 

(b) Compress vector by bit vector. 

3 2 4 2 T 
Expand by 3200402 

11 0 010 1 

(cl Expand compressed vector by bit vector. 

Figure 1. CYBER-203 nontypical vector instructions. 

246 



Diagonal-Based Matrix Multiplication 

It is possible to describe the multiplication process b - Ax for a 

matrix A in terms of elements of each diagonal. Let A(A) denote the 

P superdiagonal (also the Qth subdiagonal since A is symmetric) and let 

A+) be the k* component. That is, &k(g) = ak,k+E = ak+ll,k' The procedure 

for computing, b = Ax for the nxn matrix A is 

bk f qtCo1 5 k = 1,2,...,n. 

For 11 = 1,2,...,n-1. 

bk f bk + qtca) xk+lc for k - 1,2,...,n-L (11 

bk+L + bk+E + %('I "k for k - 1,2,...,n-L (21 

End F 

Note that if A is banded, 11 need only go from 1 to the bandwidth B 

and that if any diagonals are identically zero, they can tm easily identified 

and all computation for 'them in (1) and (21 can be omitted, 

The diagonal-based scheme has been selected as the foundation for this 

work for several reasons: 

a. Nonzero structure of real problems - Many matrices arising from finite 

difference or finite element formulations naturally lead to a sparsity 

pattern in which most of the nonzeros lie along a few of the diagonals. 

The 5 diagonal matrix arising from central differencing of Poisson's 

equation is an extreme example. Of course, there the pattern is so pre- 

dictable that special storage techniques are not needed; but for irregular 

grids, or more complex equations with more complicated differencing, the 

sparsity is not so easily specified. This is especially true in finite 

element formulations where one of the strengths of the method is the 

ability to use nonuniform elements. 

247 



.._. --. . 

b. Vectorization - The n - 11 multiplications and additions in equations (1) 

and (2) can be carried out by vector operations of length n - 11. 

C. Symmetry of diagonals - 'Ihe a th subdiagonal is also the P super- 

diagonal. Since equations (1) and (2) are identical in form, the storage 

and computation most appropriate for the subdiagonal is also most appro- 

priate for ,the superdiagonal. 

Storage Tradeoffs 

The vector computations implied in equations (1) and (2) assume A(111 is 

available as a vector of length n - 11. However, if the diagonal is rela- 

tively sparse, one might not want to store the entire diagonal with all its 

zeros. In fact, if the diagonal is very sparse, neither vector storage nor 

vector computation is likely to be very efficient. 

Described below are three types of diagonal storage and their associated 

computation to execute equations (1) and (2). 

Full Vector (Type 1) - Here the entire diagonal is stored including any 

zeros. Vectors of length n - h are used. This mode will be most 

efficient when A(111 is very dense. 

Compressed Vector Plus Bit Pattern (Type 2) - Here only the nonzeros are 

stored along with a bit vector to give positional information within the 

diagonal. he computation is identical to that with type 1 diagonals 

after an expand is performed to generate the full diagonal A(t). The 

extra expand makes type 2 CPU requirements always exceed type 1, but the 

storage can be considerably less. 

Compressed Vector Plus Row Pointers (Type 3) - Here the assumption iS that 

A(a) is so sparse that it will be inefficient to expand the compressed 

vector. Equations (1) and (2) are executed serially making use of the row 

indices stored for positional information. 

248 



Figures (2) and (3) show the CPU and storage requirements for a diagonal 

of length 1000 as a function of density. A comparison of the two figures 

shows that, unfortunately, one cannot identify intervals of density where a 

particular diagonal type is most efficient with respect to both resources. 

For instance type 3 CPU is least for d C 0.11 but has a greater storage 

requirement than type 2 for d > 0.02. Even in those regions where one 

diagonal type is most efficient for both resources (typp 1 for very dense and 

type 3 for very sparse), the boundaries of these regions vary with the length 

of the diagonal. 

Since the minimization of both resources is frequently not possible, and 

since different users may attach di fferent importances to the two resources, 

it was decided to let the user influence the storage selection through 

resource weighting factors. To implement this the initialization subroutine, 

IMPACT, does the following for each diagonal: 

(1) Estimates the CPU and storage requirements for each of the three candidate 

types. 

(2) Applies a user-supplied weight to compute the weighted resource require- 

ment for each method. 

(3) Selects the storage type that minimizes the sum of the two weighted 

resource requirements. 

That is, denoting the 

diagonal type by Sj and 

predicted storage 

C. 3 respectively, 

and CPU requirements for the jth 

their'minimum by s, and cm, the 

users specified weighting by sw and cw. then the normalized and weighted 

resource, r., for the 3 jth diagonal type is computed as 

r. = 5s ,=a 
' 'min w 

++c W j = 1,2,3 
min 

Subroutine IMPACT computes rj and selects the diagonal type which yields the 

minimum value of r. 

249 



9al- TYPE 3 

TIME, 6oo _ 
u sets 

/- 
lYPE 2 

300- Y 
0 .2 .4 

DENd 
.8 1.0 

FIGURE 2, CPU TItIE FOR DIAGO,'IAL HITH L&'iGTH 1,000. 

1600, 

1200 

STORAGE 

800 

0 .2 .4 .6 .8 1.0 
DENSITY 

FIGURE 3, STORAGE REQUIREfIE!iTS FOR DIAGONAL WITH LENGTH 1,000, 

250 



For this.approach, aPACT must be able to estimate Sj and c. 3 for 

all n and d. The storage estimates are easily made in terms of a diagonal 

of length n having z nonzeros. 

s1 = n 

s2 =z+w 

s3 = 22 

where w is the least number of 64-bit words needed to hold n bits. 

The CPU estimates were obtained by timing the computation for a range 

of n and density d. For:type 1 and 3 diagonals, single formulas were 

obtained, but the complexity of the expand used in type 2 diagonal computation 

required a table of values. The time in.microseconds to perform the computa- 

tions implied in equations (1) and (2) for a single diagonal can be estimated 

by 

c1 = 29 + 0.122 n 

C2 = See Table I 

C 3 = 7 + 1.74 2 

Since these values are used only in a selection process, their accuracy 

to a percent or two is sufficient. 

Table I.- Type 2 diagonal CPU times (microseconds) as a function 

T 
n I- 

100 

500 

5000 

of diaqonal length n and density d. 

0. 

53 

123 

901 

d 

.l .2 .4 .6 .a 1.0 

53 53 57 60 63 68 

123 124 141 160 176 197 

901 918 997 1134 1280 1429 

251 



Implementation 

The matrix is received in subroutine 03PAC!C in its expanded form as an 

N by IB array. Each of the IB diagonals is treated individually as the 

compact representation, array C, is formed. C is a linear array in which 

the pertinent data for the Lth diagonal is stored behind that for the L - lst 

diagonal. As illustrated in figure 4, this can be, for types 1, 2, or 3 

respectively, either the entire diagonal, the nonzero bit pattern for the 

diagonal followed by the nonzeros, or the nonzeros and index data. A vector 

compare with broadcast zero generates the bit pattern and provides the number 

of nonzeros and density. If the weighting procedure determines that the 

diagonal should be type 2 or 3, a compress is performed. In addition, two 

integers for each diagonal are stored in a separate array. The first identi- 

fies the diagonal type and the second the number of nonzeros in the diagonal. 

The subroutine returns to the user the CPU and storage estimates for the 

user provided weights. In addition the estimates for combinations sw = 1, 

cw =O and ~~-0, s = 1 are retwrned to aid the user to adjust his weights 

in subsequent computations. 

252 



11 - 1st 
diagonal 

lIth diagonal 

A(111 = [a 3 0 0 

I 

11- lst 
diagonal 

B t-64 bits B-e 
8 
3 
1 

~ 

lath diagonal 

2 

21 

B= [1100110...01 

C 

64 bits 

Figure 4 - Storage for A(111 (n - a = 6). 

Results 

Results from two test matrices are presented here to demonstrate the 

effect and control the user has on the matrix storage and computational 

requirements by giving the statistics for different combinations of sw and 

CW= 
Refer to Tables II and III. 

Case 1 - This is a randomly generated matrix with 400 equations and a 

bandwidth of 21. The densities are approximately uniformly distributed 

between 0. and 1. The average density is 55.7%. The storage selection that 

minimizes the CPU time (1.57 msec; mostly type 1) yields the largest storage 

requirement. The selection to minimize storage (4713 words; mostly type 2) 

yields the largest computation time. 

253 



Case 2 - This is a sparse matrix resulting from a finite element formula- 

tion with triangular elements and 3 degrees of freedom at each node. The 

matrix has 1086 equations, a bandwidth of 81, and an average density of 7.8%. 

Most of the diagonals are sparse. Of the 81 diagonals, 57 are less than 5% 

dense and approximately half of the nonzeros are on the four diagonals closest 

to the main diagonal. Because of the relatively few dense diagonals, most of 

the diagonals are type 2 (to minimize storage) or type 3 (to minimize CPU). 

Both examples demonstrate the conflicting goals of minimizing both 

resources. They also show that use of the weighting factors can give the user 

a rather wide range of resource distributions. For instance, in the second 

example a weighting of 1 for cw leads to a CPU time that is minimum but a 

storage requirement which is 1.73 times that if one set sw = 1. However, 

setting sw = 1 yields a CPU time which is 2.6 times the minimum. A reason- 

able middle ground occurs when sw = cw = 0.5. In this case, the CPU is 1.09 

times the minimum and the storage is 1.2 times the minimum. 

254 



Table II.- Case 1; 21 jc 400 random matrix. 

Weights Resources Diagonal Selection 

--__ 
-I-----’ 

I 
C” SW 

Storage 2 3 
CPU 

(Sets) 

.00271 

5481 

6053 

Table III,- Case 2; 81 x 1086 finite element matrix. 

Weights Resources Diagonal Selection 

cW 

0 

.3 

.5 

-7 

1 

sW 

1 

.7 

.5 

.3 

0 

CPU 
(Sets) 

.01680 

CPU 
(Sets) 

.01680 

.00800 

.00703 

.00682 

.00646 

.00800 

.00703 

.00682 

I .00646 

Storage 

8032 

9200 

9622 

9820 

13883 

2 

72 8 

17 61 

8 

4 

0 

70 

74 

73 

3 

255 



This paper has described a computational and storage algorithm for sparse 

matrix multiplication on the CYBER-203. The multiplication is performed using 

diagonals of the matrix as the candidate vectors since this is where nonzero 

patterns predominate in many scientific applications. Three types of diagonal 

sparsity patterns are identified (roughly speaking, either dense, moderately 

sparse, or sparse) and storage and computational procedures developed for 

each. 

Since, for most densities, no single diagonal type minimizes both storage 

and CPU requirements, an initialization subroutine selects the most 

"efficient" type for the diagonal based on estimated resource requirements and 

user-provided weights which indicate the relative importance the user attaches 

to each resource. 

Etxamples are given which illustrate that, for a given matrix, the weights 

can be used to achieve minimal CPU time (at the expense of storage) or minimal 

storage (at the expense of CPU time) or some compromise between the two. 

References 

1. Hestenes, M. R. and Steifel, G., "Methods of Conjugate Gradients for 
Solving Linear systems", NBS Journal of Research, 49, 1952. 

2. Kershaw, D. S., "The ICCG Method for the Iterative Solution of Systems of 
Linear Equations", J. Computational Physics, 26 (19781, pp. 43-65. 

3. Wilkinson, J. H., The Algebraic Eigenvalue Problem, p. 388, Oxford 
University Press (Clarendon), London and New York, 1965. 

256 




