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A brief description of the Model of the World Economy 
implemented at the Institute for Economic Analysis is 
presented, together with our experience in converting the 
software to vector code. 

For each time period, the model is reduced to a linear 
system of over 2000 variables. The matrix of coefficients 
has a bordered block diagonal structure, and we show how some? 
of the matrix operations can be carried out on all diagonal 
blocks at once. 

We present some other details of the algorithms and 
report running times. 
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1. Description of the Model 

The first input-output model of the world economy was 

originally developed for the United Nations by Leontief, Carter 

and Petri [1977] as a tool for evaluating alternative long-term 

economic policies. The most recent version that has been 

implemented spans the period 1970-2030 in lo-year intervals. 

The model is dynamic in the sense that the solution for each 

lo-year period requires information obtained from the solution 

for the previous period. In this paper we focus on the solution 

of a single time period. 

In the current version of the model, the world is divided 

into 16 regions (r=16) and for each of the regions the detailed 

economic activities are described by a set of linear algebraic 

equations of the form 

AiLi + Six = 0 (i = l,...,r). (1) 

The components of the vectors Yi correspond to levels of 

domestic production, imports, and exports of goods and ser- 

vices, and so on, for each region, and w is the vector of _ 

total world exports. In addition there are global constraints 

described by the equation 

i 
i=l 

Giyi = 0 , (2) 

which imposes the consistency among regional trade relations. 

A more detailed description of the model can be found in 

Leontief, Carter and Petri [19771, Duchin and Szyld [1979], and 

Szyld [19811. 
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All the matrices involved are very sparse. For example 

Ai could be 200 x 250 with 2500 nonzeros. 

Si could be 200 x 50 with 50 nonzeros. 

Gi could be 50 x 250 with 100 nonzeros. 

Each matrix Ai has more columns than rows and therefore some 

components of Yi have to be prescribed. 

If Xi are the vectors of unknown components of Yi and Mi 

and Ei are the corresponding submatrices of Ai and Gir the whole 

model for a single time period can be regarded as a linear 

system of equations of over 3000 variables with a nonsymmetric 

bordered block diagonal matrix of coefficients of the form: 

Ml 81 Xl 
M2 s2 x2 

. . . 
. . . 

. : . 
Mr sr Xr 

ElE2...E, 0 w 

where the blank blocks in the matrix are zero blocks. 

bl 
b2 
. 

= . 

ir 
0 - 

(3) 

When the model was first implemented, the program for 

the solution of (3) inverted the matrices Mi and stored the 

inverses. The approximate computer time to perform this task 

was 4 hours on a PDP-11. The (dense) inverses were saved for 

subsequent runs during which they were updated depending on 

the components of xi p rescribed and on changes in the.matrices 

Ai. Each of these subsequent runs required 110 seconds on an 

IBM 370 for each time period. 

The set of prescribed components of Yi and the matrices 

are used to determine a scenario, i.e., a set of economic 

assumptions. Studies carried out with the World Model compare 
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results of different scenarios, i.e., the implications of the 

different assumptions. The consequences of the introduction 

of new technologies, different development strategies, or 

shifts in trade patterns are among the numerous scenarios that 

can be analyzed. Thus, the World Model is a flexible tool to 

analyze alternative policies. Several large scale empirical 

studies have been carried out with this model. The most recent 

ones are reported in Leontief and Duchin [19831, Leontief and 

Sohn [19821, Leontief, Koo, Nasar and Sohn [19831 and Leontief, 

Mariscal and Sohn [19821. 

To make this tool much more flexible we needed to greatly 

reduce the computational resources required to run a scenario. 

A first step in that direction was the application of sparse 

matrix techniques for the solution of (3). In the present 

implementation the matrices Ai are stored using a sparse 

scheme, i.e., only the nonzero elements are stored, together 

with some integer arrays indicating their locations. A single 

array of approximate length 3200 contains all vectors Xi, i=l,...r. 

Other such arrays contain the vectors bi, the nonzero values 

of the matrices Si and Gi, or other data objects. Similarly, 

objects like the nonzeros of the matrices Mi appear in single 

arrays of length close to 5000. 

2. Method of Solution 

The algorithmic details of the solution of (3) are given 

Duchin and Szyld [1979], Szyld [19811, and Furlong and Szyld 

[1982]. Here we enumerate the operations for the solution 

of (3) very schematically. 
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loop 1. For i=l,...,r 

1.1. Bead Ai,Gi,Sir and the prescribed elements of xi 

1.2. Produce MirEi and bi 

1.3. Obtain factorization of Mi 

loop 2. For i=l,...,r 

2.1. Prepare different right hand sides with columns of Si 

2.2. Solve systems with matrix Mi 

loop 3. Obtain 2 

loop 4. For i=l,...,r 

4.1. Compute &i - Six 

4.2. Solve Mizi = ki - Six 

The factorization of the matrices Mi (in step 1.3) and the 

solution of several linear systems with them (in steps 2.2 and 

4.2) are performed with routines from the MA28 set developed 

by Duff [19771. 

We report the running times for a single time period with 

this method of solution without any vector code in Table 1. 

Table 1. 

System/compiler options CPU sec. 

IBM 370/168 -38 

IBM 3033 -20 

Cyber 205, no options 11.46 

Cyber 205, vectorization by the compiler 1 9.04 
. 

283 



Architectural features combined with the sparse matrix 

techniques resulted in running times three to ten times faster 

than the 110 seconds that subsequent runs required after compu- 

tation of the inverses in the first implementation of the 

World Model. The goal is now to obtain vector code for the 

Cyber 205 that will further reduce the overall running time. 

3. Code vectorization 

The redesign of the World Model software for its efficient 

use on the Cyber 205 was conceived in three phases: 

I. Elementary operations over all regions 

II. The MA28 package inner loops 

III. New concepts for MA28 

Phase I consists essentially of the vectorization of all 

operations except those associated with the factoring of the 

matrices Mi and solutions of-the corresponding linear systems. 

Those operations correspond &o steps 1.2, 2.1, and 4.1. Each 

of these steps has a different structure but they all are 

loops operating on vectors of length about 200, inside another 

loop of length 16. The basic idea was to split the outer loop 

and perform simultaneously the operations on all vectors of the 

different regions, i.e., on vectors of length of about 3200. 

Cyber 205 FORTRAN commands such as scatter, gather and bit 

operations were used throughout. 

We illustrate the vectorization of step 4.1. The length 

of w is about 50. Si is a rectangular matrix of about 200 rows, 

with only one nonzero entry per column. It is stored as a 

vector with an accompanying integer array indicating in which 
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row each nonzero entry lies. The following FORTRAN statements 

are part of sequential code for step 4.1. 

DO 100 II=l,NREG 
IBEG=(II-l)*NTRADE 
IBEGB=IPNTB(II)-1 
DO 50 I=l,NTRADE 

INDEX=KTRDBG(IBEG+IJ+IBEGB 
B(INDEX)=B(INDEX)-EXPSH(I+IBEG)*W(I) 

50 CONTINUE 
100 CONTINUE 

The running time for these loops was 1008 usec. Different vec- 

torization options were analyzed. One of them consisted of 

scattering the vectors that contain the nonzero values of Si 

and w to vectors of length of about 3200 and then performing 

the triad operation. This required 9514 clock cycles, or about 

190 vsec. The version adopted performs the multiplication of 

the vectors containing the nonzeros of Si and w first, a 

vector operation of length about 800, scatters that vector and 

performs the final subtraction in 7250 clock cycles or 145 psec, 

a gain of a factor of 7 from-the sequential code. 

Similar gains have been achieved in the other portions of 

the code vectorized in phase I. Unfortunately only a small 

portion of the total running time of the World Model is spent 

in the code vectorized in phase I. Thus the overall gain was 

relatively small. 

About 30% of the total running time of the World Model is 

spent on routines of the MA28 package in which the matrices Mi 

are factored (step 1.31, and solutions with many right hand 

sides computed (steps 2.2 and 4.2). At the present time we 

have completed only part of phase II, the vectorization of 

some of the inner loops in the MA28 set. 
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Due to the startup time in any vector operation, it is 

common practice to look into the length of the vectors involved 

in the operation to decide if the vectorization is really worth- 

while. In codes for sparse matrices, the vector length for an 

operation is usually the number of nonzero elements in a particular 

row or column, and thus varies within the code. The technique 

used in this case is to assess if the vector length is above 

a particular value and branch the process of that particular row 

or column to vector or sequential code. The running time of the 

code incorporating these features is 7.33 CPU seconds, cf. 

Table 1. 

Phase III, not yet implemented, consists of reconceptualizing 

the MA28 set. We will investigate the possibility of solving 

several right hand sides simultaneously, as well as other features 

like special treatment of right hand sides with few nonzero 

elements. 
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