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The object of our project is to calculate the masses of the 
"elementary particles". This ambitious goal apparently is not 
possible using analytic methods or known approximation methods. 
However, it is probable that the power of a modern super computer 
will make at least part of the low lying mass spectrum accessible 
through direct numerical computation. Initial attempts by 
several groups at calculating this spectrum on small lattices of 
space time points have been very promising. Using new methods and 
super computers we have made considerable progress towards 
evaluating the mass spectrum on comparatively large lattices. 
Even so, we are examining regions of space just barely large 
enough to contain the particles being examined. Only more time 
and faster machines with increased storage will allow 
calculations of systems with guaranteed minimal boundary effects. 
In what follows we outline the ideas that currently go into this 
calculation 

While a long time ago it was believed that there were only a 
relatively small number of such objects (for example, protons, 
neutrons,electrons, photons and so on) it is now known that there 
is a virtual alphabet soup of so called elementary particles. A 
partial listing of these in terms of standardized short hand 
description is: T? @ b" DO 
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but a fraction of the particles 
observed to date. fortunately, the properties of these particles 
suggest a pattern consistent with them in turn being made out of 
a "small' number of more elementary objects called quarks. To 
date, despite many attempts, there are no reliable reports of an 
isolated quark actually being observed. 
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Clearly, a theory is needed that explains the rich particle 
spectrum in terms of quarks and yet is compatible with quarks 
being unobservable if isolated from other matter. Further, from 
past experience with mathematical formulations, it is natural to 
insist that this description be reasonably simple and elegant. 
There is exactly one existing candidate for such a description. 
It is called Quantum Chromodynamics or Q.C.O. It is based on the 
very successful quantized description of the electromagnetic 
field interacting with electrons or P.E.O. Q.C.D. is more 
complicated than Q.E.D. because the several species of quarks 
needed to explain the group structure of the observed particles 
as well as the confinement of single quarks allows for a very 
rich mathematical structure. This structure is carried in a 
partition function like object which is the exponential of an 
action made of qlue fields (designated by the symbol A and quark 
fields designated by the symbolY/ . Here we have suppressed the 
space time dependence of these fields as well as the fact that 
each symbol is actually a vector with at least 12 components. The 
interaction described by the action is highly non-linear but any 
term contains either zero or two quark fields which somewhat 
simplifies the formulation. The primary content of the 
assumption that system examined be a quantum field theory is that 
at any given time every point in space has assigned to it 
independent quantized degrees of freedom associated with the qlue 
and quark fields. It is thus very natural to describe space time 
mathematically as a discrete lattice of points with separation a 
that approaches zero. 

The object UCi,j) defined as ~ 
2 -\ 

U(i,j) q 

p 3: A*.( i -4) 

plays a prJmary role in this theory. It has the property that 
UCi,j! = U(j,il. Further the U(i,j) are members of the qroup of 
unitary unimodular matrices SU(3). For these fields alone we have 
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the (effective1 partition function 

Here 

where the sum is taken over all independent square plaquettes and 

s& =’ 

We could stop with this form for the partition function and have 
more work to do than current available machine power will allow. 
However, to calculate the elementary particle spectrum (except 
for glueballs 1 we must include the quark fields in our action, 
The form used because of various symmetry and guage principles is 

Here K is a numerical parameter. The matrix B depends explicitly 
on the glue field A (of course leaving out gravity and weak 
interactionsisis then taken to be 

Physics is obtained by calculating the correlation functions or 
vacuum expectations of polynomials of the field (quark and glue) 
of the partition function formed from this action. The general 
problem that must be confronted is the evaluation using the 
appropriate group measure of the following type of integral. 

This has many variables . Since each U(i,jl is an SU(3) matrix it 
is specified by 12 numbers. If we study a hypercubic lattice with 
N points in each space-time direction we are dealing with the 
order of N**4*12*4 numbers just associated with the glue fields. 
The quark fields are characterized by (for our discussion) 12 
complex numbers at each lattice point. However, this is just the 
beginning. The quanJ-itiy,are.in fact not numbers! 
property that 
is 

cy’i j~fd=-@l !ihJ . 
They have the 

This anticommutivity property 
essential in order that the quarks describe objects with 

intrinsic half integral spin. Because the action S is quadratic 
only in quark fields it is possible (using very natural 
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definitions) to explicitly perform the integration over quark 
fields and leave the problem of evaluation of correlation 
functions expressible entirely in terms of integrals over glue 
fields. For example, if we examine the correlation function of 
four quark fields we have 

< F(4) yq/j\ ?'c) fJld)',= 

Note that l-K6 is a (N**4*12)**2 complex matrix. Det(l-KBI is 
more or less unspeakable for any reasonable size of N. Evaluation 
of the correlation function above is essential for determining 
meson masses (such as the pion) in this theory. Calculation of 
correlations of expectations of six quark fields is needed to 
evaluate properties of baryon fields (such as the proton). As a 
practical matter, numerical evaluation of six quark correlations 
is not much more difficult than four quark correlations. Clearly 
as N gets larger the problem gets more complicated. However, we 
are really only interested in the limit when N is very large 
since this corresponds to the infinite physical world. Indeed, we 
want to examine the limit were N becomes infinite and the lattice 
spacing a approaches zero. Under some circumstances it can be 
argued that neglecting the determinant should not make dramatic 
changes is the nature of the physical answers we obtain. For this 
discussion (and the particular project it is outlining) we chose 
to set the determinant to unity. We are then left with a class of 
integrals to evaluate which can be handled using Monte Carlo 
importance sampling methods in conceivable amounts of time for 
reasonably big lattices. Such systems have been studied 
extensively using Vax (780) computers on lattices with 6**3*14 
points. Using the C.S.U. Cyber 205 it is possible to examine far 
larger systems. Indeed we are in the process of examining (on 
several class 6 computers 1 systems with 10**3*24, 12**3*32 and 
20**3*50 lattice sites. 

After neglecting the determinant we are left with the basic 

We evaluate this numerically in two steps. First, we define a 
probability 
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Using Monte Carlo (Metropolis) methods we generate a sequence of 
lue configurations which are are distributed according to 

db )1 ’ iN t is important that these distributions be thermalized and ’ 
statistically independent’. By careful tuning of the way the 
Monte Carlo hits are made taking into consideration the nature of 
the group measure we can enormously speed up the decorrelation of 
consecutive lattice configurations. Indeed for most cases, it is 
not difficult to obtain a factor of four increase in speed of 
lattice generation over conventional methods through careful 
tuning. Even careful tuning of the physics of this problem does 
not give reasonable run times for large lattices unless full 
advantage is taken of the possibility of vectorizing the code. To 
do this efficiently we use red black methods of sweeping through 
lattice configurations. In addition, the memory requirements for 
large lattices rapidly become excessive so we use time slicing to 
control our memory allocations. We must do this since the demand 
paging algorithm on the 205 does not work efficiently with the 
codes which are naturally written for this problem. 

After a collection of independent lattices are generated we 
continue to evaluate the basic integral for the problem by 
evaluating the inverse of 1-KB for the guage configurations of 
each lattice. This is somewhat simplified since this inverse need 
be evaluated for only one base site-that is a fixed row of the 
matrix. However, it turns out that this inversion must be carried 
out for three or four different values of the parameter K. The 
method that has been most commonly used to invert the matrix 
employs a Gauss Seidel method. This is slow, taking almost an 
order of magnitude more time than the lattice generation. We have 
other methods under study which for the particular sys terns 
involved promise to be much faster. The Gauss Seidel method is 
used in a form first applied to this problem by Weingarten. We 
need to evaluate the form 

Here h is at a fixed lattice point but can vary through the 12 
values associated with the indices of the quark field at that 
point. This equation is now re-written in the form 

J is a parameter which can be tuned in order to obtain the 
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fastest convergence in the solution of this equation by iteration 
in f. In practice we code this procedure using red black ordering 
and time slicing to obtain vectorization and efficient memory 
management. 

After the matrix inversion is performed and the correlations 
are evaluated through weighting over the available lattices we 
must extract physical information from the output functions. The 
easiest information obtained is the masses of the particles 
described by this formalism. It is ,for example, a general 
property of the theory that we are dealing with that if we look 
at correlation functions depending on only two space time points 
and then sum over all spatial directions that the resulting time 
dependent functions depend only on sums of exponentials with the 
exponent linear in the masses of the appropriate particles and 
the time separations. It is an easy matter to fit to exponentials 
and extract numerical values for the masses. However to do this 
we must tune the parameters of the theory to match the physical 
mass spectrum at some value of the mass. In effect we have a two 
parameter fit for the entire mass spectrum. It is found however 
that the Gauss Seidel method fails to converge for the physical 
value of the pion mass and hence the need to do the extrapolation 
in K mentioned earlier. After this is done, it has been found 
that on smaller lattices a fairly accurate fit can be obtained to 
the relatively light particles. We expect to find much better 
fits for a large lattices where edge effects should ha ve a 
smaller effect on the calculated results. 
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