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ABSTRACT 

The full multigrid (PMG) method is applied to the two 
dimensional Poisson equation with Dirichlet boundary 
conditions. This has been chosen as a relatively simple 
test case for examining the efficiency of fully vectorizing 
of the multigrid method. Data structure and programing 
considerations and techniques are discussed, accompanied by 
performance details. 

April 1983 

1. INTRODUCTION 

The multigrid (NG) method has been shown to be a very efficient solver 
for discretlted PDE boundary-valve problems on serial (scalar) computers. 
However, it was not clear how well can the MG approach be adapted to 
execute effectively and efficiently on a vector processor, such as the CDC 
CYBER 205, where considerations other than operations-count may play an 
important role. The purpose of this paper is to. report our experience in 
implementing-an MG code on the CDC CYBEB 205. More specifically, the 
test-case considered is the two-dimensional Poisson equation with Dirlchlet 
boundary conditions. It will be assumed here that the reader has some 
familiarity with the philosophy, the motivation and the basic computational 
processes of MC as a fast solver. These processes are described in detail 
in a number of papers in these proceedings and [l] and 121 and references 
therein. The algorithm described in this paper is basically the same as 
the one given in the appendix of [3], whose description is detailed in 
sections 8.1 and 6.4 of [3]. Therefore, no full description of the MC 
algorithm is given here, but the relevant details are included in the 
appropriate context. The main emphasis of this paper is the vectoritation 
of these processes. Thus, we will not assume an in-depth knowledge or 
experience in applying HG solvers on a vector-processor type of a computer 
system. 

+ Presented at the International Multigrid Conference, Copper Mountain, 
Colorado, April 6-8, 1983. 
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Consequently, Section 2 contains a brief summary of architectural and 
conceptual features of a vector processor (specific to the CDC CYBER 205), 
which are relevant to this application, as veil as software tools available 
for a tight correlation between the hardvare and the computational process. 
Sections 3, 4 aad 5 are devoted to the description of the techniques used 
for vectorizing the procedures for the relaxation, the residual transfer 
calculatioa and the iaterpolatioa, respectively. The total full multigrid 
(EXG) process and various parameters and constraints are described in 
Section 6 interleaved with convergence and timings (performance) details. 
Finally, Section 7 contains some concluding remarks and comments regarding 
future plans. 

2, VECTOR PROCESSING 

The most significant difference between a traditional, serial computer 
and a vector processor is the ability of the latter to produce a whole 
array ("vector") of results upon issuing a single hardware instruction. 
The input to such a vector-instruction may be one or two vectors, one or 
two elements ("scalarsn), or a combination of the above. The instructions 
fall into two main categories- those that perform floating-point arithmetic 
(including square root, sum, dot-product, etc., as well as the basic 
operations), and those which may be collectively called "data-motion" 
instructions. These may be used, for example, to "gather" elements from 
one array into another using an arbitrary "index-list"; to "compress" or 
"expand" an array; to "merge" two arrays into one (with arbitrary 
Wiaterleaving" patterns), etc. 

The need for vector data-motion instructions becomes apparent when one 
considers the definition of a vector on a CDC CYBER 205. A vector is a set 
(array) of elements occupying consecutive locations in memory. It means, 
by the way, that a vector may be represented in FORT&W by a multi- 
dimensional array; i.e;, a two- or three-dimensional array may be used in 
computations as a single vector. The reason for this vector definition is 
that vhen performing vector operations on the CDC CYRER 205 the input 
elements are streamed directly from memory to the vector pipes and the 
output is streamed directly back into memory without any intermediate 
registers. 

The timing formula for completing a vector instruction contains two 
components. Oae is fixed, i.e., independent of the number of elements to 
be computed, and is called "start-up" time. In fact, it amounts to 
start-up and shut-down; it involves fetching the pointers to the input and 
output streams, aligning the arrays so as to eliminate bask conflicts and 
getting the first pair of operands to the functional unit (the pipe-line) 
and the last one back to memory. Typical time for the "start-up" component 
is 1 microsecond, or about 50 cycles (clock periods). The other component 
of the timing formula is the l'stream-time" which is proporatioaal to the 
number of elements in the vector. The result rate for a Z-pipe CDC CYRER 
205 for an add or multiply is 2 results per cycle. It is apparent now that 
in order to offset the "wasted" cycles of start- times it is beneficial 
to work with longer vectors. The system is better utilized if a single 
operation is performed on a long vector, rather thaa several operations to 
compute the same number of results. Given a vector length, N, one can 
evaluate the efficiency of the computation as the ratio between the number 
of cycles used to compute results and the total number of cycles the 
instruction has taken; i.e., (N/2)/(N/Z + 50). The maximum vector length 
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the CDC CYBER 205 hardware allows is 65,535 elements. The start-up time 
becomes quite negligible long before that. 

The vector "argumeats" for vector instructions are inserted through a 
coastruct called Descriptor. It is a quantity occupying 64 bits which 
fully describes a vector through two integer values: one is the virtual 
address of the starting location of the vector, the other is the number of 
elements, or the length, of the vector. An element may be a bit, a byte, a 
hslfrord (32-bits) or a word (64-bits) depending on the intructioa and the 
argument within the instruction. The CDC CYBER 205 FORTRAN provides the 
ability to declare variables of "type" Descriptor and Bit, as well as, 
extensions for assigning Descriptors to arrays and syntax for coding vector 
instructions without such an explicit associatioa. Bit arrays occupy 
exactly one bit per element, since the CDC OIBER 205 is bit-addressable. 
Bit vectors are used for creating a "mapping" between an array containing 
numerical values and a subset of it. A Bit vector may be used to control a 
vector floating-point operation (hence the term "control-vector" vhich is 
commonly used for a Bit vector) as follows: Take, for example, an add 
operation. All the elements of the two input arrays are added up, but only 
those result elements vkre the corresponding element of the control-vector 
is 1 v-ill be stored into the results vector. The other elements will not 
be modified. Alternatively, one may specify storing on zeros in the 
control-vector, and discarding results corresponding to a 1. 

Another cormnon use of bit vectors IS associated with some of the data- 
motioa instructions. T'wo examples will be given here: The "compress" 
instruction is tied to create a vector which is a subset of another vector. 
This operation has two input descriptors- one points to a numeric vector, 
the other to a bit vector. Whenever a 1 is encountered in the bit-vector 
the corresponding numeric element is moved to the next location of the 
output vector, i.e., the input array is "compressed" (the reverse process 
may be accomplished with an "expand" instruction). A single bit-vector may 
also be used to "merge" tvo numeric vectors into one. The bit-vector is 
scanned and vhen a 1 is encountered the next element of the first input 
vector is put into the next location of the output vector, vhen a iero is 
found in the bit-vector the aext element of the second input vector is 
moved into the next location of the output vector. The timing for both 
these instructions is dictated by the total length of the bit-vector. The 
result-rate is the same as that of vector arithmetic, i.e., on a two-pipe 
CYBER 205 it is two elemets per cycle (whether they are moved or not). It 
will be noted here that there are vector instructions for creating repeated 
bit patterns at a rate of 16 bits per cycle. 

Before concluding this section let us briefly mention the existence of 
aa "average" inStNCtion, which computes an average of two vectors, or 
adjacent means of a single vector, at the rate of a single floating-point 
operation. Oae can also "link", for example, an add and a multiply opera- 
tion, provided at least one of the three inputs is a "scalar,,, and perform 
the two operations as if it were only one. AU the instructions mentioned 
above are directly available through Fortran in-line function calls. 

3r BXLUXTION 

Nov ve are ready to examine the vays in which to utilize the tools and 
the vector processing concepts discussed in the previous section for 
vectorlzing the Hultigrid application. The success of such an exercise 
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hinges, to a large exteat, upon the efficieacy vith which the relaxatioa 
process may k accomplished. 

Discrctitatioa of the two-dimensational Poisson equation is achieved 
via the S-points differeaciag scheme. Thus' assuming geometric iattrpreta- 
&ion of the indices for the momeat, the set of the simultaneous equatioas 
to be solved may be written as 

ui,j-1 + “1-l,j + ui+i,j + ui,j+~ - 4 * ui,j - h2Fi,j 

vhcre u is the uaknova function, h Fs the InterPal betveen two grid points 
(in either directioa) and F is the right-hand side function. 1 varies from 
2 to HI-1 and j from 2 to N2-1, where Nl and N2 are the number of 
grid points along the two directions. 

One may vant to coasider the usual (lexicographic) Gauss-Seidel relaxa- 
tion procedure. This, however, vi11 be fn conflict vith vectorizatioa, as 
may be easily deduced. The Gauss-Seidel relaxation is characterized by the 
use of updated values as sooa as they become available. Vectorization means 
processing many such values in parallel, i.e., not waiting for the previous 
element to be updated. The obvious alternative is the red-black or 
checker-board ordering, vhere all the four neighbors of each point belong 
to the other "color". The convention used here is that the “color” of the 
grid points at the corners of the rectangle is red. The grid may accord- 
ingly be divided into tvo vectors and the relaxation performed in two 
stages : first, the values at red points are updated using “old” values, 
then the values at black points are updated using the “new” red values. 
Throughout the code the tvo vectors of the unknown functioa (and of the RHS 
functioa) are stored consecutively following each other, vhere inside each 
vector the values are stored column-vise an shown in Figure 1. This 
storage applies, of course, to all the grids used. 

Figure 1. Mapping of the Lexicographic into the “Red-Black,’ Ordering. The 
dotted une indicates the separationa of the grid polnts.intO two vectors. 
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The reader vi11 uotict that cht vectors thus created art not confined 
to one column, but txttnd over cht entire grid. It waa done in order to 
achieve longer vectors in lint with the desire expressed in Section 2. 
This, however, introduces cht hazard of ovtrvriting values residing on the 
boundary of the grid. To avoid this a bit control-vector was created for 
each grid, in a set-up routine, which concains zeros where boundary points 
exist and ones for interior points. We uat this "boundary control vector" 
to assure storing new values only inro the interior of ehe grid. 

The computation requires the sum of cha 4 neighbors for tach grid 
point. One can easily verify chat, using vtceor add operations this can be 
done with tvo opcracions only. One to add a vector into itself, with some 
offset (e.g.. Starr with tltmtnm 2 and 5 in Figure 1) and the second to 
add the rtsultane vector into itself (vith some other appropriate offset). 
The remaining calculation involves subtracting the result from the RHS 
values and multiply by a constant (being -0.25), vhich is accomplished aa a 
linked-triad operation; the result is ehta stored into place under the 
control of the boundary bit-vtccor. Thus, each of the two stages (two 
"colors") rtquiru thrtt floating-point optraciona using vector length of, 
approximarely, (N1 l N2)/2 elements long. In fact, some more savings 
in the compucaeions occur in the first relaxation sweep afttr moving to a 
coarser grid, since the sum of the "neighbors" need not bt computed for the 
first “color,” being known to bc zero. This is because we art btginning to 
compute a correction-function vhost first approximation is zero. The 
vector-operations count for this relaxation s~ttp Is thus reduced from 6 to 
4. Also, vhtn transferring a solution-function (noC "correction") to a 
finer grid, as part of the FMC process, an interpolation can be used which 
viJ.I. save cht relaxation on cht first "color" (see Sec. 5). 

In concLusion, the rtlaxacion process can obviously be done txtrtmtly 
fast on the CYEER 205. Timing details will be given in Section 6. 

4. FIMZ TU COAESE BESIDUALTBBNSFEB 

Rtsiduals have to be computed at those fine-grid points which also 
belong to the coarser grid. These residuals art directly transferred to 
the corresponding coarse-grid poines weighted by l/2 ("half injtcclon"; the 
factor of l/2 is motivated by the fact that eht fine-grid residual is zero 
at black fine-grid points, htnct the ocher residuals should be multiplied 
by l/2 to rcprtstne the correct average). Set Figure 2. 

The computation involves four floating-point operations (tvo of thtm 
art linktd triads) for evaluating the residuals of the red points on the 
fine-rid and multiplying them by l/2. This, however, does not conclude 
the procedure. At this stage ve need to apply the "comprtsa" operation 
three times aa follow: using a prt-dtfintd bit-vector ve extract the 
rtaidual values corresponding to coarse-grid points, i.t, belonging to 
oddaumbtrtd columns of the red scctioa of-the finer grid. (Note that ve 
have throwa away b&f the calculattd rtsidnala. This procedure is both 
simpler and a little faattr than having to perform all the comprasa 
operationa needed for computing only the required rtsidurls.) Now, as is 
evident from Figure 2, we have all the dtrirtd values for the coarser grid 
rtortd ia ltxlcographic order. To separate them into “red” and "black" 
sections the I'compreas" instruction is applied Mce (once for each color) 
using a prc-dtfintd “picket fence" bit-tcfor. The procedure as described 
here products opeimum performance even though somt redundant operation8 are 
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performed. The alternatives are to perform different (more "costly") data 
motions or to operate on much shorter vectors. Finally, another vtccor 
operation is txtcuttd to zero out the unknown functioa of the coarser grid 
in preparation for evaluating the correction function. In total the proca- 
dure rtquirts 8 vector "start-ups" associated uith 5 operations of approxl- 
mate length of (Nl * N2)/2, and 3 operations of length (Nl l N2)/4, vhtre 
Nl and N2 are the dimcnsioas of the finer grid. 

. I . 

Figure 2. Transfer tu a Coarser Grid: The residual calculation. Each 
'90xB' contains the fine grid points involved in the computation .for the 
corresponding coarse grid point. 

5. INEBPOLATION 

Interpolation, in the context of this paper, is the process by which we 
transfer from a given grid to a finer one. Two types of inttrpolacions are 
employtd here: Type I interpolation is used vhtn a correcrioa is 'interpo- 
laced from the coarser grfd and added to the finer grid. The Type II inter- 
polation is used to compute a first approximatiou on the finer grid, based 
on existing values on the coarser grid. The use of the red-black ordering, 
combined with the fact that a relaxation always follows an interpolation, 
impliu that only one color of the finer-grid points need to be interpolated 
(the other color vlll be computed by a rtlaxacioo pass on that color). 

Type I interpolation is bilintar employing points at shown in Figure 3. 
Only interior black points oa the finer grid need to bt evaluated. Due to 
the rtquirtd averaging of the coarse grid values it is coavtnitnt to first 
merge ehe red and black points of this grid wing the "picker-fence" bit 
vector to produce the ltxicographic ordering. Next, tvo averages art 
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computed. The average over the coarse grid, vhere the two input vectors 
are offset by a column, viU produce the quantities to be added into black 
points OP evenumbered columos on the fine grid. A second average, vhere 
the offset between the tvo vectors is one elemnt, is executed for fine 
grid black points corresponding to odd numbered columns. This last opera- 
tion produces redundant values (at the end of each coarse grid column) 
vhich are throwa away using the "compreso" 
wedefined bit vector. 

operation with an appropriate 
The two resultant coarse grid "average-vectors" 

are then interleaved, using a “merge” instruction, under the control of the 
bit vector vhere the "l‘s" and "0's" correspond to odd and even columns, 
respectively. Pixklly, the urged values are added to “black" points of 
the finer grid under the control of the “boundarf bit-vector which inhibits 
storing values into the boundary of the grid. The whole procedure amounts 
to 3 floating-point operationa, 2 "merges" and 1 "compresu." The 6 vector 
operations may also be divided into 4 operations of length (N1 l N2)/4 
and 2 operations of length (Nl l N2)/2, approatelp. 
are the dimensions of the finer grid.) 

(Nl and N2 

Figure 3. Type I Interpolation. It shovs vhere averages of coarse grid 
values are added into "Black" points cm the fine grid. 

Type II interpolatioa la a 4th order one, described, for example, in 
secrion 6.4 of [31. It produces nev red unknowa-function values on a finer 
grid using rotated difference operators. The values at the black points 
are produced by half a relaxation sweep, i.e., a relaxation paas over the 
fine-grid black points. (This pass may be regarded aa part of the interpo- 
lation process. In the timing tables below, however, the time spent in 
this pess is counted as relaxation time.) The process is described picto- 
rially in Figure 4. All the interior coarse grid values are moved to occupy 
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the corresponding fine-grid points. The relaxation operator is applied to 
these vslues in order to compute interior red points of the even-n-bared 
colomns on the fine grid. The only difference between the relaxation here 
spd the one described in Section 3 is that the operator is the “rotated” 
S-point Lap&clan and the interval ktween each point and its neighbors is 
changed from h to @h. The EES function values rsquircd for this relaxa- 
tion are avsilable from the fine grid RJlS array (a "compress" operation is 
performad to retrieve even-nwsbersd calm values). The whole procedure, 
thus, requires 2 "merges" (one for merging red-black valuss of the coarse 
grid, the other for merging the "trsnsferred" and “relaxed” values of the 

red fine grid points); 3 floating-point operations for the relaxation; 2 
“C~l3!88” operations (one for throwing away redundant, incorrect averages 
and one for collecting REfS values); and, finally, one vector-move operation 
under the control of the boundary bit-vector for storing the aefy red fine 
grid values into place. Five out of the 8 vector operations have length of 
about (N1 * N2)/4, the other 3 are associated with a length of (Nl l N2)/2; 
Nl and N2 being the dimensions of the finer grid. 

I 

0 

x 

0 

* 

0 

x 

0 

* 

0 

x 

0 

X. 

I’ x 6L* 
Figure 4. Type II Iatcrpolation. Coarse grid values are transferred to 
odd numbered columns on the fine grid. These values are wed to compute, 
via ths relaxation operator, the even aumbered column values. 

6. PEEFOBllANcE AND COHYEBCENCE 

The bssic computational procedures, studied in the previous three 
set eons, can now bs linked together to form the FXG process. Figure 5 is 
a scksmatic description of the sequence of events vhich leads to an 
approximate solution of the difference equations. The finest grid (where a 
solution is sought) is assigned the highest level number. The example 
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depicted in Figure 5 descrfbes ap Fnc tith 5 levels vhere the process 
stats at level mmber 2. This may not be aecessary, as vill bs argued 
Mow, and onm may visurLite the FMG starting at a higher level sfmply by 
deleting the left-hand-side of the figure. This starting level is a 
parameter controlled by the user. The F?fG shown la Figure 5 la composed of 
vhrt is knowll as ‘7” cycles. In each "P' cycle one performs relaxation- 
rsslduel calculation-relaxation . ..uutil reaching the coarsest grid, then a 
aquasme of interpolation7e3.axatiou is uscuted. The transfer from one 
‘YP cycle to tha next la achieved da Typm II interpolation. More 
sFecifi&y, thr FMC m Fnplemated my be chamctrrfzed as 
F?fG (H,L,Xl,X2,&3,B4), vhsre n is the nuder of’levels and L is the 
sturting level; El and B2 indiute the number of rslpr,tions before svinz 
to a coarser grid and before moping to a finer grid, respectively. 
R4 have the ssme maning and apply to the last V' cycle only. All these 
parmeters are provided by the user* The use rsay also specify the rlza of 
thr coarsest grid to be rued. It mast heve an even number of internals in 
ssch directioa. (In our experiments the coarsest grid had 3 by 3 points; 
1.8. * 2 by 2 InterPals.) The user also specifies the mesh size h (assumed 
to be the same in both directions) on the finest grfd. 

4 

3 

2 

1 

l 

Figure 5. The Full MuLtigrid (FMG) Process:, FMG (5, 2, U, B2, 83, B4). 
The circles indicate the number of relaxations performed at a given level. 
Douuwards orTow signifies residu calculation bemean rsJ.alations, upwards 
arrow fmplies fnterpolatlon. (Uhen a level is encountered for the first 
time the interpolation is of Type II, indicated by a double line above, 
otherwise it is of Type I.) When level 1 contafns only one lntarior point 
only one relsxation sweep is perfowd thereon , regardlass of the values 
given to El and 83. 

The process described above is deterministic, ia the sense that the 
user defines the steps to be tShSI, bawd on prior knowledge of the 
characteristics aad smoothness of the functioa to k solved. It in also 
kaoue that if L-2 the FUG guarantees a solutioa error smaller than the 
tmmation emor (introduced by the differencing scheme), for L2 sons. 
for etnmple. !& have &lowed, however, as a usemption, the evsluation of 
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the Ll, L2 and L,noms of the residual at var%cms points. Testing was 
done for problems vhich have solution of the Saxa: 

c * cos (k (x + 23)) 

with and without the addition of a 6th degree polyaomial which vanishes on 
the boundary. In all these uses the FHG process vith L=2 indeed produced 
a solution with an algebraic error (error in solving the difference 
equations) much smsller than the truncation ermr, in the L1, L2 and L, 
aorms . 

Ooly "V(2,l)" cycles were used for the results and tinrings to be quoted 
here. This turns out to bs the optima cmshimtion for the Poisson 
equation. More relaxstions at esch stage do wt improve the final result 
l oough to justify the additional vork, less tiurtions may cause deteri- 
oration in the accuracy. (If full weighting were used instead of half 
injection, the optimal cycle would be "V(l,l)". This would, however, be 
less efficient than the present procedure since full weighting is substan- 
tially more costly than a relaxation sweep.) In the performance details 
vhich follow, ve vill give results for various Prlues of L since, in many 
cases, in particular vhen a reasonable initial guess is available, high 
values of L, even L-H, may provide sufficient accuracy. This is, in 
particular, the situatioo when the PO~SSOII solver is used within some 
external iterative process, or at each time step of an evolution problem. 

&fore dig-sing the timings ve should briefly mention SOW set-up 
procedures. A routine is provided for re-orderiag the initial array (from 
l&cographic to red-black) if it is aot so structured yet. This is done 
through two "picket-fence compress" operations and amounts to 0.185 msecs. 
for a 65 by 65 grid, for example. Putting ths solution back into lexico- 
graphic order is done with a single "merge" instruction and takes half as 
long. Next, there ig a routine vhich defines vsrious pointers and lengths 
for all the grids used, as well as the bit-vectors discussed earlier. For 
many applications, vhere the solver is used mny times vith the S+W? grid 
definition, this v-ill be done only once. It will aot, therefore, be 
included in the total times quoted below (it takes 0.29 msecs. for a 65 by 
65 grid with 6 levels). The last set-up routine is included in the timings 
fnfonnation. this routine defines the boundary velues and the EHS for all 
the levels bet-en L and M-1. It also sets the initial guess on the level 
L grid. 

The code ves mn with grid sizes of 33 by 33, 65 by 65 and 129 by 129 
(H = 5, 6 and 7, respectively) with L-2,...,& Total execution times are 
given in Table 1. It shows, for example, that a 65 by 65 grid may be 
solved in as little as 1 msec., and, at most, in 2 msecs. By examining the 
procssalng time per grid-point one can see the effect of vector-instructions 
start-up times or the dependence of the perfonnrnce upon vector lengths. 
On a serial processor the time per element wuld have been, approximately, 
a constant across each line in Table 1. We obseme, however, that the 
processing of the 129 by 129 grid is roughly twice as efficient as that of 
the 33 by 33 grid. This is due to the fact that even though the aumber of 
vector “start’~ps” remains nearly the same (across a given line), the 
number of elements solved for has increased by a factor of 16. Hence, more 
time is spent doing useful arithmetic in the vector pipelines. 
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TABLE 1. Execution times for various paramcccrs of the FMG. The entries 
on the left are total times in milliseconds. The entries enclosed in 
parenthesis are the execution times in microseconds per grid-point (only 
interior points are taken into account). 

I H-L+1 I 33by33 I 
(HG 5) 

65 by 65 1 
(X ; 6) 

129 by 129 1 
1 (.No. of "V"'s) 1 I (H ; 7) I 
I 1 1 0.360 (0.37) I 1.006 (0.25) I 3.293 (0.20) I 
I 2 1 0.604 (0.63) I 1.552 (0.39) 1 4.910 (0.30) i 
I 3 1 0.729 (0.76) ' 1.810 (0.46) I 5.440 (0.34) I 
I 4 1 0.801 (0.83) 1 1.947 (0.49) I 5.687 (0.35) I 
I 5 I I 2.009 (0.51) 1 5.807 (0.36) 1 
I 6 5.875 I I 1 (0.36) 1 

Tables 2 and 3 present a more detailed analysis of timings for a single 
example, namely for solving a 129 by 129 grid with 7 levels and starting at 
level 2. The entries in Table 2 show timings in msecs. by level and by 
procedure. One notices that the total time spent performing relaxations is 
less than 50X of the total time. This is to be compared against the go-902 
of total time used for relaxations on a serial processor. This is, of 
course, due to the fact chat the vectorized relaxation is extremely 
efficient and does aot fnvolve any data-motion operations. The interpola- 
tion and the residual calculations, though fully vectorired. involve some 
data-notion operatioas, and, therefore, consume a relatively higher propor- 
tion of the execution time than they would on a "scalar" computer. Another 
obsemation vorth mentioning is that the contributions to all the procedures 
arising from levels 2 to 4 is roughly the same, even though the amount of 
vork differs by a factor of 4 bctvetn levels. This is a consequence of the 
relatively short vectors vhich characterize the coarser grids. Xt also 
explains the larger weight the coarse grids have in the vectorized code 
compared to that of the serial process. 

TABLE 2. kecution times in milliseconds for solving a 129 by 129 grid 
with starting level 2. Breakdown by procedure and by level. For the 
residual calculation and the interpolations the entry in the table 
corresporxis to the f her grid involved. 

I I Grid I I Residual l I I 
I I Initiali- I Relaxa- I Calcula- I Interpolation I I 

Level I 
I 1 (3x3) 

ration I tion I tion I Type 1 1 Type II 1 Total I 
I 1 0.010 I I 1 0.010 I 

I 2 (5x5) I 0.011 I 0.179 I 0.014 1 0.011 I I 0.215 I 
I 3 (9x9) I 0.015 1 0.160 l 0.060 1 0.049 1 0.024 1 0.308 1 
I 4 (17x17) 1 0.034 I 0.189 I 0.068 I 0.053 1 0.028 I 0.372 1 
1 5 (33x33) I 0.106 I 0.320 1 0.117 1 0.095 1 0.053 1 0.691 I 
1 6 (65x65) I 0.388 1 0.690 1 0.261 I 0.194 I 0.141 I 1.674 I 
I 7 (129x129) I I 1.257 l 0.497 1 0.357 1 0.494 I 2.605 1 
I I I I I I I I 
I TOTAL I 0.554 I 2.805 1 1.017 I 0.759 I 0.740 I 5.875 1 
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In Table 3 we have measured the time in microseconds for each time a 
procedure is executed for a given level, accompanied by the number of times 
the procedure is performed. It should be noted here that when level 1 is 
involved in any of the procedures a scalar code was used, since it has only 
one interior point. Again, the effect of vector lengths is such that the 
level 3 relaxation is comparable to that of level 2, for example. Only 
when we get to the finest grids do we observe timing ratios which 
correspond to the ratios of the number of elements processed. The reader 
should be reminded that the average time of the relaxation procedure is aot 
fully accurate, since some relaxations are not quite "complete" as was 
explained ia Section 3 (i.e., after Type II interpolation and after 
residual calculation). The residual calculatim takes longer than the 
relaxation (in contrast to the scalar case), which is understandable from 
the discussion in Sections 3 and 4. 

TABLE 3. Procedure-calls count sad average times ia microseconds per 
call. Breakdowa by levels for the 129 by 129 problem with starting level 2. 

Note: Some of the relaxations are not "complete." (See Section 3) 

I I I I Interpolation I 
I l.Belaxation I Residual 1 Type I Type II: I 
I LeVd 1 No. I Time I No. I Time I No. I Time NO-!- Time I 
I 1 (3x3) I 6 I 1.7 I 
I 2 (5x5) I 18 I 9.9 I 6 

1 
2.3 

; 
6 

1 I I I 
1.8 1 I I 

I 3 (9x9) I 15 I 10.7 l 5 l 12.0 I 5 l 9.8 1 1 I 24.0 1 
1 4 (17x17) I 12 I 15.8 I 4 I 17.0 l 4 l 13.3 l 1 I 28.0 1 
1 5 (33x33) I9 I 35.6 'I 3 I 39.0 I 3 I 31.7 l 1 l 53.0 l 
1 6 (65x65) I 6 1 115.0 1 2 1 130.5 1 2 I 97.0 1 1 I 141.0 1 
1 7 (129x129) 1 3 1 419.0 1 1 1 497.0 I 1 I 357.0 l 1 1 494.0 1 

To conclude the performance discussion we vill meation that the vector- 
ired code executes about 15 times faster than the scalar version on the CDC 
CXBEB 205, and roughly 500 times faster than the CDC CYBEB 720. 

The lesson from what was said above is that relaxations are relatively 
"cheap" in terms of execution times , and computations on the coarser grids 
are realtively "costly" (compared with the ratios found on scalar 
processors). 

7. CONCLUXNG 9EMARKS 

One important le'ssoa, knowa very well to those involved ia vector 
processing, is that it demands careful data structuring and analysis of the 
"mapping" between the data and the operations to be performed, if the 
vector capabilities of the processor are to be efficiently utilized. We 
have also demonstrated that the traditional operations-count as a measure 
of processing time is not sufficient. On a vector processor one has to 
take into account the number of vector operations (or the lengths of the 
vectors) and the data-motion operations (which occur on a serial processor, 
too, but are often ignored when algorithms are evaluated). The result of 
the above is that one may have to re-examine the various parameters of the 
algori4hm vhen migrating the Multigrid application from a serial to a 
vector processor. This aspect requires further investigation. 
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Ve feel that the experiment with the model-case studied in this paper 
was successful and the performance achieved very pleasing. It certainly 
varrants continuation uork. Some obvious areas we intend to engage in are 
the following: Extending the application to three-dimensional Poisson 
cqua tioas ; code a similar application to cater for the, more general, 
Diffusion equation; and implement "full-weighting" residual calculation and 
cubic interpolation. In addition one may, of course, generalize this uopk 
Ln many directions. t¶ore general boundary conditions (Nemarm, etc.) can 
be implemented. The solucioa of non-linear problem8 (using PA8 multigrid 
version) and systems of equations can also be vectorlted in a similar 
fashion. Yore difficult, but potentially important, is the exteneioo to 
general drnnains, which vfll require a lot of thought about data structures 
and data motion. As a last comment, it vlll k noted that all the timings 
quoted here were achieved using 64-bit arithmetic. On the CDC CYBER 205 
one can we 32-bit arithmetic as veil, and, thus, double the result rate 
for vector operations Mile halving the memory requirements. For the 
purpose of obtaining albebraic errors smeller than truncation errors in 
solving second order equations, the 32-bit arithmetic is indeed enough. We 
intend to examdne this option. 
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