
VECTORIZED MULTIGRID POISSON SOLVER
FOR THE CDC CYBER 205

DAVID BARKAI
AND

MAYNARD A. BRANDT

CONTROL DATA CORPORATION
INSTITUTE FOR COMPUTATIONAL STUDIES

AT COLORADO STATE UNIVERSITY

FORT COLLINS, COLORADO

VECTORIZED MULTIGRID POISSON SOLVER
FOR THE CDC CYBER 205*

D. BarkaiM, A. Bra&t***
*Control Data Corporation, Institute for Computational Studies at Colorado
State University, PO Box 1852, Fort Collins, Colorado 80522; l **Weiztaann
Institute, Department of Applied Mathematics, Rehovot, Israel 76100.

ABSTRACT

The full multigrid (PMG) method is applied to the two
dimensional Poisson equation with Dirichlet boundary
conditions. This has been chosen as a relatively simple
test case for examining the efficiency of fully vectorizing
of the multigrid method. Data structure and programing
considerations and techniques are discussed, accompanied by
performance details.

April 1983

1. INTRODUCTION

The multigrid (NG) method has been shown to be a very efficient solver
for discretlted PDE boundary-valve problems on serial (scalar) computers.
However, it was not clear how well can the MG approach be adapted to
execute effectively and efficiently on a vector processor, such as the CDC
CYBER 205, where considerations other than operations-count may play an
important role. The purpose of this paper is to. report our experience in
implementing-an MG code on the CDC CYBEB 205. More specifically, the
test-case considered is the two-dimensional Poisson equation with Dirlchlet
boundary conditions. It will be assumed here that the reader has some
familiarity with the philosophy, the motivation and the basic computational
processes of MC as a fast solver. These processes are described in detail
in a number of papers in these proceedings and [l] and 121 and references
therein. The algorithm described in this paper is basically the same as
the one given in the appendix of [3], whose description is detailed in
sections 8.1 and 6.4 of [3]. Therefore, no full description of the MC
algorithm is given here, but the relevant details are included in the
appropriate context. The main emphasis of this paper is the vectoritation
of these processes. Thus, we will not assume an in-depth knowledge or
experience in applying HG solvers on a vector-processor type of a computer
system.

+ Presented at the International Multigrid Conference, Copper Mountain,
Colorado, April 6-8, 1983.

299

Consequently, Section 2 contains a brief summary of architectural and
conceptual features of a vector processor (specific to the CDC CYBER 205),
which are relevant to this application, as veil as software tools available
for a tight correlation between the hardvare and the computational process.
Sections 3, 4 aad 5 are devoted to the description of the techniques used
for vectorizing the procedures for the relaxation, the residual transfer
calculatioa and the iaterpolatioa, respectively. The total full multigrid
(EXG) process and various parameters and constraints are described in
Section 6 interleaved with convergence and timings (performance) details.
Finally, Section 7 contains some concluding remarks and comments regarding
future plans.

2, VECTOR PROCESSING

The most significant difference between a traditional, serial computer
and a vector processor is the ability of the latter to produce a whole
array ("vector") of results upon issuing a single hardware instruction.
The input to such a vector-instruction may be one or two vectors, one or
two elements ("scalarsn), or a combination of the above. The instructions
fall into two main categories- those that perform floating-point arithmetic
(including square root, sum, dot-product, etc., as well as the basic
operations), and those which may be collectively called "data-motion"
instructions. These may be used, for example, to "gather" elements from
one array into another using an arbitrary "index-list"; to "compress" or
"expand" an array; to "merge" two arrays into one (with arbitrary
Wiaterleaving" patterns), etc.

The need for vector data-motion instructions becomes apparent when one
considers the definition of a vector on a CDC CYBER 205. A vector is a set
(array) of elements occupying consecutive locations in memory. It means,
by the way, that a vector may be represented in FORT&W by a multi-
dimensional array; i.e;, a two- or three-dimensional array may be used in
computations as a single vector. The reason for this vector definition is
that vhen performing vector operations on the CDC CYRER 205 the input
elements are streamed directly from memory to the vector pipes and the
output is streamed directly back into memory without any intermediate
registers.

The timing formula for completing a vector instruction contains two
components. Oae is fixed, i.e., independent of the number of elements to
be computed, and is called "start-up" time. In fact, it amounts to
start-up and shut-down; it involves fetching the pointers to the input and
output streams, aligning the arrays so as to eliminate bask conflicts and
getting the first pair of operands to the functional unit (the pipe-line)
and the last one back to memory. Typical time for the "start-up" component
is 1 microsecond, or about 50 cycles (clock periods). The other component
of the timing formula is the l'stream-time" which is proporatioaal to the
number of elements in the vector. The result rate for a Z-pipe CDC CYRER
205 for an add or multiply is 2 results per cycle. It is apparent now that
in order to offset the "wasted" cycles of start- times it is beneficial
to work with longer vectors. The system is better utilized if a single
operation is performed on a long vector, rather thaa several operations to
compute the same number of results. Given a vector length, N, one can
evaluate the efficiency of the computation as the ratio between the number
of cycles used to compute results and the total number of cycles the
instruction has taken; i.e., (N/2)/(N/Z + 50). The maximum vector length

300

the CDC CYBER 205 hardware allows is 65,535 elements. The start-up time
becomes quite negligible long before that.

The vector "argumeats" for vector instructions are inserted through a
coastruct called Descriptor. It is a quantity occupying 64 bits which
fully describes a vector through two integer values: one is the virtual
address of the starting location of the vector, the other is the number of
elements, or the length, of the vector. An element may be a bit, a byte, a
hslfrord (32-bits) or a word (64-bits) depending on the intructioa and the
argument within the instruction. The CDC CYBER 205 FORTRAN provides the
ability to declare variables of "type" Descriptor and Bit, as well as,
extensions for assigning Descriptors to arrays and syntax for coding vector
instructions without such an explicit associatioa. Bit arrays occupy
exactly one bit per element, since the CDC OIBER 205 is bit-addressable.
Bit vectors are used for creating a "mapping" between an array containing
numerical values and a subset of it. A Bit vector may be used to control a
vector floating-point operation (hence the term "control-vector" vhich is
commonly used for a Bit vector) as follows: Take, for example, an add
operation. All the elements of the two input arrays are added up, but only
those result elements vkre the corresponding element of the control-vector
is 1 v-ill be stored into the results vector. The other elements will not
be modified. Alternatively, one may specify storing on zeros in the
control-vector, and discarding results corresponding to a 1.

Another cormnon use of bit vectors IS associated with some of the data-
motioa instructions. T'wo examples will be given here: The "compress"
instruction is tied to create a vector which is a subset of another vector.
This operation has two input descriptors- one points to a numeric vector,
the other to a bit vector. Whenever a 1 is encountered in the bit-vector
the corresponding numeric element is moved to the next location of the
output vector, i.e., the input array is "compressed" (the reverse process
may be accomplished with an "expand" instruction). A single bit-vector may
also be used to "merge" tvo numeric vectors into one. The bit-vector is
scanned and vhen a 1 is encountered the next element of the first input
vector is put into the next location of the output vector, vhen a iero is
found in the bit-vector the aext element of the second input vector is
moved into the next location of the output vector. The timing for both
these instructions is dictated by the total length of the bit-vector. The
result-rate is the same as that of vector arithmetic, i.e., on a two-pipe
CYBER 205 it is two elemets per cycle (whether they are moved or not). It
will be noted here that there are vector instructions for creating repeated
bit patterns at a rate of 16 bits per cycle.

Before concluding this section let us briefly mention the existence of
aa "average" inStNCtion, which computes an average of two vectors, or
adjacent means of a single vector, at the rate of a single floating-point
operation. Oae can also "link", for example, an add and a multiply opera-
tion, provided at least one of the three inputs is a "scalar,,, and perform
the two operations as if it were only one. AU the instructions mentioned
above are directly available through Fortran in-line function calls.

3r BXLUXTION

Nov ve are ready to examine the vays in which to utilize the tools and
the vector processing concepts discussed in the previous section for
vectorlzing the Hultigrid application. The success of such an exercise

301

hinges, to a large exteat, upon the efficieacy vith which the relaxatioa
process may k accomplished.

Discrctitatioa of the two-dimensational Poisson equation is achieved
via the S-points differeaciag scheme. Thus' assuming geometric iattrpreta-
&ion of the indices for the momeat, the set of the simultaneous equatioas
to be solved may be written as

ui,j-1 + “1-l,j + ui+i,j + ui,j+~ - 4 * ui,j - h2Fi,j

vhcre u is the uaknova function, h Fs the InterPal betveen two grid points
(in either directioa) and F is the right-hand side function. 1 varies from
2 to HI-1 and j from 2 to N2-1, where Nl and N2 are the number of
grid points along the two directions.

One may vant to coasider the usual (lexicographic) Gauss-Seidel relaxa-
tion procedure. This, however, vi11 be fn conflict vith vectorizatioa, as
may be easily deduced. The Gauss-Seidel relaxation is characterized by the
use of updated values as sooa as they become available. Vectorization means
processing many such values in parallel, i.e., not waiting for the previous
element to be updated. The obvious alternative is the red-black or
checker-board ordering, vhere all the four neighbors of each point belong
to the other "color". The convention used here is that the “color” of the
grid points at the corners of the rectangle is red. The grid may accord-
ingly be divided into tvo vectors and the relaxation performed in two
stages : first, the values at red points are updated using “old” values,
then the values at black points are updated using the “new” red values.
Throughout the code the tvo vectors of the unknown functioa (and of the RHS
functioa) are stored consecutively following each other, vhere inside each
vector the values are stored column-vise an shown in Figure 1. This
storage applies, of course, to all the grids used.

Figure 1. Mapping of the Lexicographic into the “Red-Black,’ Ordering. The
dotted une indicates the separationa of the grid polnts.intO two vectors.

302

The reader vi11 uotict that cht vectors thus created art not confined
to one column, but txttnd over cht entire grid. It waa done in order to
achieve longer vectors in lint with the desire expressed in Section 2.
This, however, introduces cht hazard of ovtrvriting values residing on the
boundary of the grid. To avoid this a bit control-vector was created for
each grid, in a set-up routine, which concains zeros where boundary points
exist and ones for interior points. We uat this "boundary control vector"
to assure storing new values only inro the interior of ehe grid.

The computation requires the sum of cha 4 neighbors for tach grid
point. One can easily verify chat, using vtceor add operations this can be
done with tvo opcracions only. One to add a vector into itself, with some
offset (e.g.. Starr with tltmtnm 2 and 5 in Figure 1) and the second to
add the rtsultane vector into itself (vith some other appropriate offset).
The remaining calculation involves subtracting the result from the RHS
values and multiply by a constant (being -0.25), vhich is accomplished aa a
linked-triad operation; the result is ehta stored into place under the
control of the boundary bit-vtccor. Thus, each of the two stages (two
"colors") rtquiru thrtt floating-point optraciona using vector length of,
approximarely, (N1 l N2)/2 elements long. In fact, some more savings
in the compucaeions occur in the first relaxation sweep afttr moving to a
coarser grid, since the sum of the "neighbors" need not bt computed for the
first “color,” being known to bc zero. This is because we art btginning to
compute a correction-function vhost first approximation is zero. The
vector-operations count for this relaxation s~ttp Is thus reduced from 6 to
4. Also, vhtn transferring a solution-function (noC "correction") to a
finer grid, as part of the FMC process, an interpolation can be used which
viJ.I. save cht relaxation on cht first "color" (see Sec. 5).

In concLusion, the rtlaxacion process can obviously be done txtrtmtly
fast on the CYEER 205. Timing details will be given in Section 6.

4. FIMZ TU COAESE BESIDUALTBBNSFEB

Rtsiduals have to be computed at those fine-grid points which also
belong to the coarser grid. These residuals art directly transferred to
the corresponding coarse-grid poines weighted by l/2 ("half injtcclon"; the
factor of l/2 is motivated by the fact that eht fine-grid residual is zero
at black fine-grid points, htnct the ocher residuals should be multiplied
by l/2 to rcprtstne the correct average). Set Figure 2.

The computation involves four floating-point operations (tvo of thtm
art linktd triads) for evaluating the residuals of the red points on the
fine-rid and multiplying them by l/2. This, however, does not conclude
the procedure. At this stage ve need to apply the "comprtsa" operation
three times aa follow: using a prt-dtfintd bit-vector ve extract the
rtaidual values corresponding to coarse-grid points, i.t, belonging to
oddaumbtrtd columns of the red scctioa of-the finer grid. (Note that ve
have throwa away b&f the calculattd rtsidnala. This procedure is both
simpler and a little faattr than having to perform all the comprasa
operationa needed for computing only the required rtsidurls.) Now, as is
evident from Figure 2, we have all the dtrirtd values for the coarser grid
rtortd ia ltxlcographic order. To separate them into “red” and "black"
sections the I'compreas" instruction is applied Mce (once for each color)
using a prc-dtfintd “picket fence" bit-tcfor. The procedure as described
here products opeimum performance even though somt redundant operation8 are

303

performed. The alternatives are to perform different (more "costly") data
motions or to operate on much shorter vectors. Finally, another vtccor
operation is txtcuttd to zero out the unknown functioa of the coarser grid
in preparation for evaluating the correction function. In total the proca-
dure rtquirts 8 vector "start-ups" associated uith 5 operations of approxl-
mate length of (Nl * N2)/2, and 3 operations of length (Nl l N2)/4, vhtre
Nl and N2 are the dimcnsioas of the finer grid.

. I .

Figure 2. Transfer tu a Coarser Grid: The residual calculation. Each
'90xB' contains the fine grid points involved in the computation .for the
corresponding coarse grid point.

5. INEBPOLATION

Interpolation, in the context of this paper, is the process by which we
transfer from a given grid to a finer one. Two types of inttrpolacions are
employtd here: Type I interpolation is used vhtn a correcrioa is 'interpo-
laced from the coarser grfd and added to the finer grid. The Type II inter-
polation is used to compute a first approximatiou on the finer grid, based
on existing values on the coarser grid. The use of the red-black ordering,
combined with the fact that a relaxation always follows an interpolation,
impliu that only one color of the finer-grid points need to be interpolated
(the other color vlll be computed by a rtlaxacioo pass on that color).

Type I interpolation is bilintar employing points at shown in Figure 3.
Only interior black points oa the finer grid need to bt evaluated. Due to
the rtquirtd averaging of the coarse grid values it is coavtnitnt to first
merge ehe red and black points of this grid wing the "picker-fence" bit
vector to produce the ltxicographic ordering. Next, tvo averages art

304

computed. The average over the coarse grid, vhere the two input vectors
are offset by a column, viU produce the quantities to be added into black
points OP evenumbered columos on the fine grid. A second average, vhere
the offset between the tvo vectors is one elemnt, is executed for fine
grid black points corresponding to odd numbered columns. This last opera-
tion produces redundant values (at the end of each coarse grid column)
vhich are throwa away using the "compreso"
wedefined bit vector.

operation with an appropriate
The two resultant coarse grid "average-vectors"

are then interleaved, using a “merge” instruction, under the control of the
bit vector vhere the "l‘s" and "0's" correspond to odd and even columns,
respectively. Pixklly, the urged values are added to “black" points of
the finer grid under the control of the “boundarf bit-vector which inhibits
storing values into the boundary of the grid. The whole procedure amounts
to 3 floating-point operationa, 2 "merges" and 1 "compresu." The 6 vector
operations may also be divided into 4 operations of length (N1 l N2)/4
and 2 operations of length (Nl l N2)/2, approatelp.
are the dimensions of the finer grid.)

(Nl and N2

Figure 3. Type I Interpolation. It shovs vhere averages of coarse grid
values are added into "Black" points cm the fine grid.

Type II interpolatioa la a 4th order one, described, for example, in
secrion 6.4 of [31. It produces nev red unknowa-function values on a finer
grid using rotated difference operators. The values at the black points
are produced by half a relaxation sweep, i.e., a relaxation paas over the
fine-grid black points. (This pass may be regarded aa part of the interpo-
lation process. In the timing tables below, however, the time spent in
this pess is counted as relaxation time.) The process is described picto-
rially in Figure 4. All the interior coarse grid values are moved to occupy

305

the corresponding fine-grid points. The relaxation operator is applied to
these vslues in order to compute interior red points of the even-n-bared
colomns on the fine grid. The only difference between the relaxation here
spd the one described in Section 3 is that the operator is the “rotated”
S-point Lap&clan and the interval ktween each point and its neighbors is
changed from h to @h. The EES function values rsquircd for this relaxa-
tion are avsilable from the fine grid RJlS array (a "compress" operation is
performad to retrieve even-nwsbersd calm values). The whole procedure,
thus, requires 2 "merges" (one for merging red-black valuss of the coarse
grid, the other for merging the "trsnsferred" and “relaxed” values of the

red fine grid points); 3 floating-point operations for the relaxation; 2
“C~l3!88” operations (one for throwing away redundant, incorrect averages
and one for collecting REfS values); and, finally, one vector-move operation
under the control of the boundary bit-vector for storing the aefy red fine
grid values into place. Five out of the 8 vector operations have length of
about (N1 * N2)/4, the other 3 are associated with a length of (Nl l N2)/2;
Nl and N2 being the dimensions of the finer grid.

I

0

x

0

*

0

x

0

*

0

x

0

X.

I’ x 6L*
Figure 4. Type II Iatcrpolation. Coarse grid values are transferred to
odd numbered columns on the fine grid. These values are wed to compute,
via ths relaxation operator, the even aumbered column values.

6. PEEFOBllANcE AND COHYEBCENCE

The bssic computational procedures, studied in the previous three
set eons, can now bs linked together to form the FXG process. Figure 5 is
a scksmatic description of the sequence of events vhich leads to an
approximate solution of the difference equations. The finest grid (where a
solution is sought) is assigned the highest level number. The example

306

depicted in Figure 5 descrfbes ap Fnc tith 5 levels vhere the process
stats at level mmber 2. This may not be aecessary, as vill bs argued
Mow, and onm may visurLite the FMG starting at a higher level sfmply by
deleting the left-hand-side of the figure. This starting level is a
parameter controlled by the user. The F?fG shown la Figure 5 la composed of
vhrt is knowll as ‘7” cycles. In each "P' cycle one performs relaxation-
rsslduel calculation-relaxation . ..uutil reaching the coarsest grid, then a
aquasme of interpolation7e3.axatiou is uscuted. The transfer from one
‘YP cycle to tha next la achieved da Typm II interpolation. More
sFecifi&y, thr FMC m Fnplemated my be chamctrrfzed as
F?fG (H,L,Xl,X2,&3,B4), vhsre n is the nuder of’levels and L is the
sturting level; El and B2 indiute the number of rslpr,tions before svinz
to a coarser grid and before moping to a finer grid, respectively.
R4 have the ssme maning and apply to the last V' cycle only. All these
parmeters are provided by the user* The use rsay also specify the rlza of
thr coarsest grid to be rued. It mast heve an even number of internals in
ssch directioa. (In our experiments the coarsest grid had 3 by 3 points;
1.8. * 2 by 2 InterPals.) The user also specifies the mesh size h (assumed
to be the same in both directions) on the finest grfd.

4

3

2

1

l

Figure 5. The Full MuLtigrid (FMG) Process:, FMG (5, 2, U, B2, 83, B4).
The circles indicate the number of relaxations performed at a given level.
Douuwards orTow signifies residu calculation bemean rsJ.alations, upwards
arrow fmplies fnterpolatlon. (Uhen a level is encountered for the first
time the interpolation is of Type II, indicated by a double line above,
otherwise it is of Type I.) When level 1 contafns only one lntarior point
only one relsxation sweep is perfowd thereon , regardlass of the values
given to El and 83.

The process described above is deterministic, ia the sense that the
user defines the steps to be tShSI, bawd on prior knowledge of the
characteristics aad smoothness of the functioa to k solved. It in also
kaoue that if L-2 the FUG guarantees a solutioa error smaller than the
tmmation emor (introduced by the differencing scheme), for L2 sons.
for etnmple. !& have &lowed, however, as a usemption, the evsluation of

307

the Ll, L2 and L,noms of the residual at var%cms points. Testing was
done for problems vhich have solution of the Saxa:

c * cos (k (x + 23))

with and without the addition of a 6th degree polyaomial which vanishes on
the boundary. In all these uses the FHG process vith L=2 indeed produced
a solution with an algebraic error (error in solving the difference
equations) much smsller than the truncation ermr, in the L1, L2 and L,
aorms .

Ooly "V(2,l)" cycles were used for the results and tinrings to be quoted
here. This turns out to bs the optima cmshimtion for the Poisson
equation. More relaxstions at esch stage do wt improve the final result
l oough to justify the additional vork, less tiurtions may cause deteri-
oration in the accuracy. (If full weighting were used instead of half
injection, the optimal cycle would be "V(l,l)". This would, however, be
less efficient than the present procedure since full weighting is substan-
tially more costly than a relaxation sweep.) In the performance details
vhich follow, ve vill give results for various Prlues of L since, in many
cases, in particular vhen a reasonable initial guess is available, high
values of L, even L-H, may provide sufficient accuracy. This is, in
particular, the situatioo when the PO~SSOII solver is used within some
external iterative process, or at each time step of an evolution problem.

&fore dig-sing the timings ve should briefly mention SOW set-up
procedures. A routine is provided for re-orderiag the initial array (from
l&cographic to red-black) if it is aot so structured yet. This is done
through two "picket-fence compress" operations and amounts to 0.185 msecs.
for a 65 by 65 grid, for example. Putting ths solution back into lexico-
graphic order is done with a single "merge" instruction and takes half as
long. Next, there ig a routine vhich defines vsrious pointers and lengths
for all the grids used, as well as the bit-vectors discussed earlier. For
many applications, vhere the solver is used mny times vith the S+W? grid
definition, this v-ill be done only once. It will aot, therefore, be
included in the total times quoted below (it takes 0.29 msecs. for a 65 by
65 grid with 6 levels). The last set-up routine is included in the timings
fnfonnation. this routine defines the boundary velues and the EHS for all
the levels bet-en L and M-1. It also sets the initial guess on the level
L grid.

The code ves mn with grid sizes of 33 by 33, 65 by 65 and 129 by 129
(H = 5, 6 and 7, respectively) with L-2,...,& Total execution times are
given in Table 1. It shows, for example, that a 65 by 65 grid may be
solved in as little as 1 msec., and, at most, in 2 msecs. By examining the
procssalng time per grid-point one can see the effect of vector-instructions
start-up times or the dependence of the perfonnrnce upon vector lengths.
On a serial processor the time per element wuld have been, approximately,
a constant across each line in Table 1. We obseme, however, that the
processing of the 129 by 129 grid is roughly twice as efficient as that of
the 33 by 33 grid. This is due to the fact that even though the aumber of
vector “start’~ps” remains nearly the same (across a given line), the
number of elements solved for has increased by a factor of 16. Hence, more
time is spent doing useful arithmetic in the vector pipelines.

308

TABLE 1. Execution times for various paramcccrs of the FMG. The entries
on the left are total times in milliseconds. The entries enclosed in
parenthesis are the execution times in microseconds per grid-point (only
interior points are taken into account).

I H-L+1 I 33by33 I
(HG 5)

65 by 65 1
(X ; 6)

129 by 129 1
1 (.No. of "V"'s) 1 I (H ; 7) I
I 1 1 0.360 (0.37) I 1.006 (0.25) I 3.293 (0.20) I
I 2 1 0.604 (0.63) I 1.552 (0.39) 1 4.910 (0.30) i
I 3 1 0.729 (0.76) ' 1.810 (0.46) I 5.440 (0.34) I
I 4 1 0.801 (0.83) 1 1.947 (0.49) I 5.687 (0.35) I
I 5 I I 2.009 (0.51) 1 5.807 (0.36) 1
I 6 5.875 I I 1 (0.36) 1

Tables 2 and 3 present a more detailed analysis of timings for a single
example, namely for solving a 129 by 129 grid with 7 levels and starting at
level 2. The entries in Table 2 show timings in msecs. by level and by
procedure. One notices that the total time spent performing relaxations is
less than 50X of the total time. This is to be compared against the go-902
of total time used for relaxations on a serial processor. This is, of
course, due to the fact chat the vectorized relaxation is extremely
efficient and does aot fnvolve any data-motion operations. The interpola-
tion and the residual calculations, though fully vectorired. involve some
data-notion operatioas, and, therefore, consume a relatively higher propor-
tion of the execution time than they would on a "scalar" computer. Another
obsemation vorth mentioning is that the contributions to all the procedures
arising from levels 2 to 4 is roughly the same, even though the amount of
vork differs by a factor of 4 bctvetn levels. This is a consequence of the
relatively short vectors vhich characterize the coarser grids. Xt also
explains the larger weight the coarse grids have in the vectorized code
compared to that of the serial process.

TABLE 2. kecution times in milliseconds for solving a 129 by 129 grid
with starting level 2. Breakdown by procedure and by level. For the
residual calculation and the interpolations the entry in the table
corresporxis to the f her grid involved.

I I Grid I I Residual l I I
I I Initiali- I Relaxa- I Calcula- I Interpolation I I

Level I
I 1 (3x3)

ration I tion I tion I Type 1 1 Type II 1 Total I
I 1 0.010 I I 1 0.010 I

I 2 (5x5) I 0.011 I 0.179 I 0.014 1 0.011 I I 0.215 I
I 3 (9x9) I 0.015 1 0.160 l 0.060 1 0.049 1 0.024 1 0.308 1
I 4 (17x17) 1 0.034 I 0.189 I 0.068 I 0.053 1 0.028 I 0.372 1
1 5 (33x33) I 0.106 I 0.320 1 0.117 1 0.095 1 0.053 1 0.691 I
1 6 (65x65) I 0.388 1 0.690 1 0.261 I 0.194 I 0.141 I 1.674 I
I 7 (129x129) I I 1.257 l 0.497 1 0.357 1 0.494 I 2.605 1
I I I I I I I I
I TOTAL I 0.554 I 2.805 1 1.017 I 0.759 I 0.740 I 5.875 1

309

In Table 3 we have measured the time in microseconds for each time a
procedure is executed for a given level, accompanied by the number of times
the procedure is performed. It should be noted here that when level 1 is
involved in any of the procedures a scalar code was used, since it has only
one interior point. Again, the effect of vector lengths is such that the
level 3 relaxation is comparable to that of level 2, for example. Only
when we get to the finest grids do we observe timing ratios which
correspond to the ratios of the number of elements processed. The reader
should be reminded that the average time of the relaxation procedure is aot
fully accurate, since some relaxations are not quite "complete" as was
explained ia Section 3 (i.e., after Type II interpolation and after
residual calculation). The residual calculatim takes longer than the
relaxation (in contrast to the scalar case), which is understandable from
the discussion in Sections 3 and 4.

TABLE 3. Procedure-calls count sad average times ia microseconds per
call. Breakdowa by levels for the 129 by 129 problem with starting level 2.

Note: Some of the relaxations are not "complete." (See Section 3)

I I I I Interpolation I
I l.Belaxation I Residual 1 Type I Type II: I
I LeVd 1 No. I Time I No. I Time I No. I Time NO-!- Time I
I 1 (3x3) I 6 I 1.7 I
I 2 (5x5) I 18 I 9.9 I 6

1
2.3

;
6

1 I I I
1.8 1 I I

I 3 (9x9) I 15 I 10.7 l 5 l 12.0 I 5 l 9.8 1 1 I 24.0 1
1 4 (17x17) I 12 I 15.8 I 4 I 17.0 l 4 l 13.3 l 1 I 28.0 1
1 5 (33x33) I9 I 35.6 'I 3 I 39.0 I 3 I 31.7 l 1 l 53.0 l
1 6 (65x65) I 6 1 115.0 1 2 1 130.5 1 2 I 97.0 1 1 I 141.0 1
1 7 (129x129) 1 3 1 419.0 1 1 1 497.0 I 1 I 357.0 l 1 1 494.0 1

To conclude the performance discussion we vill meation that the vector-
ired code executes about 15 times faster than the scalar version on the CDC
CXBEB 205, and roughly 500 times faster than the CDC CYBEB 720.

The lesson from what was said above is that relaxations are relatively
"cheap" in terms of execution times , and computations on the coarser grids
are realtively "costly" (compared with the ratios found on scalar
processors).

7. CONCLUXNG 9EMARKS

One important le'ssoa, knowa very well to those involved ia vector
processing, is that it demands careful data structuring and analysis of the
"mapping" between the data and the operations to be performed, if the
vector capabilities of the processor are to be efficiently utilized. We
have also demonstrated that the traditional operations-count as a measure
of processing time is not sufficient. On a vector processor one has to
take into account the number of vector operations (or the lengths of the
vectors) and the data-motion operations (which occur on a serial processor,
too, but are often ignored when algorithms are evaluated). The result of
the above is that one may have to re-examine the various parameters of the
algori4hm vhen migrating the Multigrid application from a serial to a
vector processor. This aspect requires further investigation.

310

Ve feel that the experiment with the model-case studied in this paper
was successful and the performance achieved very pleasing. It certainly
varrants continuation uork. Some obvious areas we intend to engage in are
the following: Extending the application to three-dimensional Poisson
cqua tioas ; code a similar application to cater for the, more general,
Diffusion equation; and implement "full-weighting" residual calculation and
cubic interpolation. In addition one may, of course, generalize this uopk
Ln many directions. t¶ore general boundary conditions (Nemarm, etc.) can
be implemented. The solucioa of non-linear problem8 (using PA8 multigrid
version) and systems of equations can also be vectorlted in a similar
fashion. Yore difficult, but potentially important, is the exteneioo to
general drnnains, which vfll require a lot of thought about data structures
and data motion. As a last comment, it vlll k noted that all the timings
quoted here were achieved using 64-bit arithmetic. On the CDC CYBER 205
one can we 32-bit arithmetic as veil, and, thus, double the result rate
for vector operations Mile halving the memory requirements. For the
purpose of obtaining albebraic errors smeller than truncation errors in
solving second order equations, the 32-bit arithmetic is indeed enough. We
intend to examdne this option.

[I.1 A. Baadt, 'Wa.lti-level adaptive solutions to boundarp-p8lue
problems", Math. Camp. 31, (1977), 333-390.

12.1 V. Heckbusch and U. Trottcnberg, cd., “Multigrid Methoda",
Proceedings of a Conference (Koln-Porz, Nov. 1981), SpringerVerlag,
1982.

13.1 K. Stuben, K. Trottenberg, "Multigrid Methods: Fundamental
algoritbme, model problem aa~lyris and applications".
I-176.

In [21 pp.

311

