
THE VECTORIZATION OF A RAY TRACING 
PROGRAM FOR IMAGE GENERATION 

DAVID J. PLUNKETT, 
JOSEPH M. CYCHOSZ 

AND 
MICHAEL J. BAILEY 

PURDUE UNIVERSITY CADLAB 

WEST LAFAYETTE, INDIANA 





TEE VECTORIZATION OF A RAY TRACING PROGRAM 
FOR IMAGE GENERATION 

David J. Plunkett’ 

Joseph M. Cychosz 

Michael J. Bailey 

Purdue University CADLAB 

ABSTRACT 

Ray tracing is a widely used method for producing realistic computer-generated images. 
Ray tracing involves firing an imaginary ray from a view point, through a point on an image 
plane, into a three dimensional scene. The intersection of the ray with the objects in the scene 
determines what is visible at that point on the image plane. This process must be repeated 
many times, once for each point (commonly called a pixel) in the image plane. A typical image 
contains more than a million pixels making this process computationally expensive. A tradi- 
tional ray tracing program processes one ray at a time. In such a serial approach, as much as 
ninety percent of the execution time is spent computing the intersection of a ray with the sur- 
faces in the scene. With the CYBER 205, many rays can be intersected with all the bodies in 
the scene with a single series of vector operations. Vectorization of this intersection process 
results in large decremes in computation time. 

The CADLAB’s interest in ray tracing stems from the need to produce realistic images of 
mechanical parts. A high quality image of a part during the design process can increase the 
productivity of the designer by helping him visualize the results of his work. To be useful in 
the design process, these images must be produced in a reasonable amount of time. This discus- 
sion will explain how the ray tracing process was vectorized and gives examples of the images 
obtained. 

1. Authors’ Address: 
CADLkB. Potter Engineering Center 
Purdue University 
West Lafayette, IN 47907 
(317) 4944944 

315 



GEOMETRIC MODELING AND MECHANICAL DESIGN 

In mechanical design, there are two broad reasons for using the computer: (1) predict 

behavior, and (2) visualize. Behavior that needs to be predicted includes every test that one 

would normally perform if given a physical prototype of the design: weight, center of gravity, 

strength, movement, dearaaces, etc. This is why a computer model of a part is often referred 

to as a “virtual prototype.” Visualization is, in effect, another form of behavior prediction. In 

this case, knowing the actual appearance of a proposed design is a valuable aid in conceptualiz- 

ing. 

In order to feed information into visualization and analysis routines, a gcomefric model of the 

design must 6rst be created. In the early days of computer aided engineering, a wireframe data- 

base wa5 used to model the part shape. This w= deemed inadequate, because the wireframe 

could only model a part’s edges, not its rolid voltme. 

One of the methods by which we model part shapes in the CADLAB is with a newer tech- 

nique called Solid Modeling. A solid modeling database has suflicient geometric information to 

completely and unambiguously de& the shape of a three dimensional object. One method of 

buihiing a solid model database is with a technique called Constructive Solid Geometry, or CSG. 

A CSG geometric creation sequence is characterized by applying booiean operators (union, 

diflerence, intersection) to groups of primitive shapes (boxes, cylinders, cones, etc). Complex 

designs may be created in this manner, with the results being sufIicient to drive visualization 

and other analyses. The remainder of this report will discuss the use of the CYBER 205 to pro- 

duce image information in order to view an object constructed using CSG operations. 

316 



INTERSECTIONS OF RAYS WITH A PRIMITIVE 

One nice side effect of using a CSG representation is that the resulting object can easily be 

displayed using ray tracing. Ray tracing involves firing an imaginary ray from a view point, 

through a point on an image plane, into a three dimensional scene. It is not mathematically 

feasible to determine the visible surface of an entire CSG object in a single computation. How- 

ever, it is fairly easy to determine the intersection of a ray with each of the individual primitives 

which make up a CSG object. Then, a little more calculation produces the point along that ray 

which is visible. If one ray is fIred through every pixel in the image plane, an image of the 

object is obtained (see Figure 1). 

c Y 

view 
point 

-X 

J 2 
Figure 1. The Image Environment. 

317 



The typical (serial) ray tracing program must: 

l Intersect all primitives in the scene with one ray. 

l Traverse the CSG database to determine which primitive intersection is the visible surface 

for that ray. 

l Determine the surface intensity using the surface relationship between the surface normal, 

the eye position, and the position(s) of the light source(s). 

This is the visible surface algorithm. It is repeated at every picture element (pixel) in the image 

plane. 

The intersection of the ray with the primitives is by far the most time consuming part of the 

visible surface algorithm. However, it is also the easiest part of the algorithm to vectorize. 

Instead of just finding the intersection of one ray with a primitive, a queue of rays is built (seri- 

ally as in a traditional ray tracing program). Then the intersections of each primitive with 

every ray in the queue is found in a series of vector operations. Table I gives computation 

times for 100,000 rays intersecting a sphere and a cylinder primitive. For the vector results in 

this table, a queue length of 2000 rays was used. 

FINDING A RAY’S VISIBLE SURFACE 

The above timings are only for the lowest level in the visible surface algorithm. After all the 

intersections are found, the CSG database must. still be traversed to determine which primitive 

intersection is the visible surface for that ray. This constrains the length of the ray queue, since 

it implies that ail the ray intersection information must be stored (after the intersection calcula- 

tion) and then retrieved (for the visible surface calculation). If the ray queue is too long, the 

time spent page faulting will be enormous. For this reason, the ray queue in our application is 

318 



TABLE 1. 

CPU Timas* 

Primitive Cyber 205 
I 

Cyber 205 Cyber 720 
Scalar Vector 

sphere .944 .0279 13.1 

cylinder 2.729 .1614 51.48 

Steiner 11.157 1.047 210.0 

Speedup’ 

Primitive SE zzi 
20s rector 

s72, 

sphere 33.81 409 

cylinder 16.91 318 

Steiner 10.67 206 

2 CPU times are in seconds 

CPU time P2 
3 spetdup = Sag = cpU time p 

1 

319 



approximately 2000 rays. The visible surface algorithm has not yet been vectorized. However, 

it is apparent that at least parts of this process are vectorizable. 

One of the reMsons ray tracing has been so widely accepted is that it can show very realistic 

image synthesis effects. Shadows are perhaps the easiest extension to the algorithms described 

above. To determine if a visible surface is in a shadow, one ray must be 6red toward each light 

source from the visible surface. If this ray hits a solid object before it encounters the light 

source, the visible surface is in a shadow. Reflection can be shown by spawning another ray 

from each surface such that the angle of reflection equals the angle of incidence. Transparency 

and refraction can be modeled if a refraction ray is spawned after a hit on a solid, transparent 

object. What should be clear from these special effects is that the extra rays to be &ed do not 

come in a predictable, vectorizabie progression. However, after a serial section of code has 

determined that another ray must be tied, this ray can be placed in the queue and intersected 

using vector code when the queue is full. 

SURFACE PATCHES 

Surface patches are used in computer aided design to sculpt the surface of a part that would 

be difficult or impossible to mode! using conventional primitives such as cylinders and boxes. 

Hence, surface patches play an important role in the design process of parts such as air foils and 

car bodies. At the CADLAB we are currently investigating the uses of Steiner surfaces a3 a 

sculpting device. Ray tracing is then used to visualize the resulting sculpted surface. 

A Steiner surface is a bi-quadratic surface. This means that computing the intersection of a 

ray with a Steiner surface requires the solving of a quartic equation. Approximately 65 precent 

320 



of the computation time for this intersection calculation involve3 the solving of the quartic equa- 

tion while the rest is attributed to the determination of the coefficients for the quartic equation. 

The determination of the polynomia! coefficients is a straight forward process and is easiiy vec- 

torized. Vectorixing the process by which a queue of rays may be intersected with a Steiner sur- 

face requires the vectorization of the root solver used for solving the quartic. For our applica- 

tion we are only interested in the 6rst positive real root closest to zero. Table 1 shows the 

results of vectorizing the Steiner intersection process. 

To determine the roots of the quartic polynomial the slope and curvature function3 (i.e. the 

Erst and second derivatives) are examined to determine the intervals over which a possible solu- 

tion exists. Modified Regu!a Falsi is then used to determine the roots within these intervals. 

Once a root is found it is evaluated to see if the root is acceptable. 

The vector&d version of the root solver Ends the roots of a series of quartic polynomials, 

each polynomial corresponding to a ray in the ray queue. The roots for all the polynomials 

must be found before the process can complete. Unlike the scalar version, it is most likely that 

all four root3 will have to be determined and evaluated a.3 it is likely that at least one ray will 

not intersect the surface. This process is sped up by ensuring that a sign change does not occur 

before using the Fa!si method to determine subsequent roots once an acceptable root has been 

found for a particular polynomial. Gather-scatters are then used to compress the vector3 used 

during these iterative processes. Convergence occurs when al! of the root3 being found converge 

within the specified tolerance. 

The quartic root solver can be used for a variety of applications. One extension to the ray 

tracing program will be the inclusion of tori and other elliptical surface3 ;LS primitives. These 

primitives will also require solving a fourth order equation to determine the intersection of a ray 

with their surface. 

321 



OTHER APPLICATIONS 

Another application of ray tracing at Purdue is radiant heat transfer analysis of 6nned 

Tubes (MAXW831.4 Rays are fired to determine the radiation shape factor of one or more Enned 

tubes. Unlike the visualization of a CSG object, maximum length vector operations may be 

used since it is only of interest knowing that the ray strikes the tube and not where on the 

tube. The computational requirements of this application have been reduced from 6UO seconds 

on a CDC 6600 down to 3 seconds on the CYBER 205. 

CONCLUSION 

Ray tracing is, in genera!, a parallel algorithm. This paper examined how the parallel algorithm 

can be modified for use on a vector computer. In design work, the speed with which results are 

available is often critical. Vectorication of ray tracing programs promises shorter execution 

times. This will benefit not only visualization, but also such diverse areaS as heat transfer, mass 

properties analysis, and nuclear engineering. 

4 w83] Maxwell, CM., “Mathematical Modclling of a Gas Fired Swimming Pool Water Heater”, Ph.D. 
Thesis, Purdue University, in preparation. 

322 




