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EFFECT OF LIQUID DROPLETS ON TURBULENCE
STROCTURE IN A ROUND GASEOUS JET

y)
AM. Mostafa and S.E. Elghobashi

Mechanical! Engineering Department
University of California, Irvine

Accurate prediction of spray combustion is extremely difficult due to the
complex physical! and chemica! phenomena encountered in this two-phase process. The
interaction between droplets and the turbulent fluid, turbulence effects on chemical
reaction and heat transfer (and hence on droplet vaporization) are just a few
examples of the complexity. 1In order to understand the nature of these
interactions, coordinated experimental! and theoretical studies need to be performed
in a stepwise manner thus isolating the phenomenon to be investigated. A turbulent
non-reacting gaseous jet laden with solid particles or evaporating droplets is a
flow which allows the study of the interactions between the two-phases.

The recent experiment of Modarress, et al. (1982, 1983), which was performed
in parallel with the present work, provided a much needed data to help understand
the behavior of two-phase turbulent jets and validate the theoretical models,
Elghobashi and Abou~Arab (1983) reviewed existing turbulence models for two-phase
flows and indicated that these models are based on ad hoc modifications of single-
phase turbulence mode!s, They developed a two-equation turbulence model for
incompressible dilute two-phase flows which undergo no phase changes.

In order to validate the proposed model, a turbulent axisymmetric gaseous jet
laden with spherical! uniform-size solid particles is studied by Elghobashi, et al.
(1984). The predictions of the mean flow properties of the two-phases and the
turbulence kinetic energy and shear stress of the carrier phase show good agreement

with the experimental data,
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Mostafa and Elghobashi (1983) extended the proposed mode! for steady
incompressible two-phase flow including phase change. This model is tested for the
flow of a turbulent axisymmetric gaseous jet laden with multisize evaporating liquid
droplets by Mostafa and Elghobashi (1983). To avoid the problem of density
fluctuations of the carrier phase at this stage, only isothermal flow is considered
and vaporization is assumed to be due to the vapor concentration gradient. The
droplets are classified into finite size-groups. Each group is considered as a
continuous phase interpenetrating and interacting with the carrier phase. Predicted
results include distributions of the mean velocity, volume fractions of the
different phases concentration of the evaporated material in the carrier phase,
turbulence intensity and shear stress of the carrier phase, droplet diameter
distribution and the jet spreading rate. The results are analyzed based on a
qualitative comparison with the corresponding single phase jet flow.

More validation testing of the mode! is needed via well-~defined experiments.
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To predict the flow of a turbulent gaseous Jjet
Taden with multisize 1iquid drople¢s undergoing

vaporization.

To compare the effects, on the flow field, of
vaporizing droplets with those of single phase
Jet.,

ASSUMPTIONS

Oroplets in a given size-range constitute a
dispersed phase - thus for k sizes there will be

{k + 1) phases in the flow.

Each phase behaves as a continuum

(macroscopically).

No collisions between droplets (dilute spray).

Droplets remain spherical as they decrease in

size.

Velocity of vapoer leaving droplet surface is

equal to that of the droplet,

Concentration gradient is the only driving force

for evaporation.

Drag relations of a solid sphere apply to liquid
droplets (internal circulation effects on
friction drag are counterbalanced by evaporatien

effects on pressure drag).
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THE FLOW CONSIDERD
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SUNMARY

The proposed turbulence model (validated
experimentally for solid particles) is applied to
predict the turbulent round jet laden with

multisixe vaporizing dropliets.

Predicted changes in the flow field (mean and
turbulent quantities) are significant and should
be considered in liquid spray combustion

calculations.

Experiment to validate the proposed model will be

performea when funds become available.
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