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ADAPTIVE CONTROL: MYTHS AND REALITIES 

In recent years, the area of adaptive control has received a great deal 
of attention by both theoreticians and practitioners. Considerable theoret- 
ical progress was made in the design of globally asymptotically stable adap- 
tive algorithms and in unifying different design philosophies under the same 
mathematical framework. In this vein, it was found that all currently 
existing globally stable adaptive algorithms have three basic properties in 
common Cl]: (1) positive realness of the error equation, (2) 
square-integrability of the parameter adjustment law and, (3) need for 
"sufficient excitation" for asymptotic parameter convergence. Of the 
three, the first property is of primary importance since it satisfies a 
sufficient condition for stability of the overall system, which is a 
baseline design objective. The second property has been instrumental in the 
proof of asymptotic error convergence to zero, while the third addresses the 
issue of parameter convergence. 

Positive-real error dynamics can be generated only if the relative 
degree (excess of poles over zeroes) of the process to be controlled is 
known exactly; this, in turn, implies "perfect modeling." This and other 
assumptions, such as absence of nonminimum phase plant zeros on which the 
mathematical arguments are based, do not necessarily reflect properties of 
real systems. As a result, it is natural to inquire what happens to the 
designs under less than ideal assumptions. In particular, this paper will 
be concerned only with the issues arising from violation of the exact 
modeling assumption which is extremely restrictive in practice and impacts 
the most important system property, stability. 
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THEME 

A variety of adaptive control algorithms which reflect different philo- 
sophical approaches to control system design have been suggested in the 
literature. 

Such algorithms as a rule tend to improve control system performance 
due to enhanced information obtained while the system is in operation. In 
addition, in the late 1970's, certain classes of adaptive algorithms repre- 
senting the majority of those available (among which the self-tuning regula- 
tors, model reference adaptive controllers, and the so-called dead-beat 
algorithms) were proven theoretically to be globally asymptotically stable. 
In practice, however, such algorithms would almost surely result in unstable 
physical control systems, as recent research has indicated. 

l MYTH 

WE HAVE A VARIETY OF ADAPTIVE CONTROL ALGORITHMS THAT 

(1) IMPROVE CONTROL SYSTEMS PERFORMANCE 

(2) ARE PROVEN TO BE GLOBALLY STABLE 

l REALITY 

ABOVE ADAPTIVE ALGORITHMS ALMOST SURELY WOULD RESULT IN 

UNSTABLE PHYSICAL CONTROL SYSTEMS 
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BASIC PROBLEM 

The basic problem behind the apparent inconsistency between theory and 
practice can be attributed to the fact that existing adaptive control algo- 
rithms have been focused almost exclusively upon performance improvement, 
without due consideration for system robustness as required in the presence 
of unmodeled dynamics and/or other unstructured modeling errors. In fact, 
fundamental system concepts, such as operating system bandwidths, have been 
ignored in the design of adaptive algorithms that tend to invariably adjust 
the parameters in response to output errors, regardless of their origin. As 
a result, although at first sight performance seems to be greatly improved, 
the system bandwidth grows without bound, and eventually the hard con- 
straints imposed by the presence of high-frequency unmodeled dynamics are 
violated. The final result is violent instability of the controlled system 
that makes apparent at the same time the nonlinear nature of the overall 
feedback adaptive loop. 

' MODELS HAVE LIMITATIONS; STUPIDITY DOES NOT 

' EXISTING ADAPTIVE CONTROL ALGORITHMS HAVE FOCUSED UPON PERFORMANCE IMPROVEMENT 

. STABILITY/ROBUSTNESS ISSUE WAS NEGLECTED 

- HIGH-FREQUENCY UNMODELED DYNAMICS IMPOSE HARD LIMIT 
UPON CONTROL SYSTEM BANDWIDTH 

l ADAPTIVE CONTROL SYSTEM BANDWIDTH CAN GROW WITHOUT BOUND 

- PERFORMANCE LOOKS GREAT 

- SYSTEM EVENTUALLY BREAKS INTO VIOLENT INSTABILITY. 
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ADAPTIVE ALGORITHMS CONSIDERED 

The algorithms considered in the present study can be classified into 
one of the following three categories: (1) model reference adaptive control 
algorithms, otherwise known as direct adaptive control [2-71; (2) self- 
tuning regulators, otherwise known as minimum variance controllers 18-101; 
(3) dead-beat algorithms designed for discrete-time systems, otherwise 
referred to as projection or least-squares algorithms 1111. 

They all differ in the parameterization of the controller and, hence, 
the form of the resulting error equations, in the way they synthesize the 
control input and in the specific realization of the parameter adjustment 
laws. The common features of the above seemingly fundamentally different 
algorithms include the assumption of minimum phase plant zeros, the basic 
signal correlation of the learning mechanism, and the exact knowledge of the 
plant relative degree. The latter has proven crucial in obtaining global 
asymptotic stability proofs for all the above-mentioned algorithms. 

l COMMON THEME: GLOBAL STABILITY PROOFS AVAILABLE 

. MODEL REFERENCE ADAPTIVE CONTROL 

MONOPOLI ET AL NARENDRA ET AL MORSE ET AL LANDAU ET AL - -' - --' - -' -- 

. SELF-TUNING CONTROLLERS 

ASTROM ET AL EGARDT, LANDAU AND SILVIERA --' 

. DEAD-BEAT ADAPTIVE CONTROL 

GOODWIN, RAMADGE, AND CAINES 
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STRUCTLJRE OF ADAPTIVE CONTROL 

The general structure of an adaptive control system is shown in the 
first figure below. The term g(s) represents the nominal (low-frequency) 
plant transfer function, whose parameters are considered unknown. The term 
K(s) represents the compensator whose parameters are adjusted on-line on the 
basis of information generated by the adaptive logic block; its basic compo- 
nent is the "learning mechanism" that adjusts the compensator gains either 
directly or by identifying them first on the basis of the error e(t) and the 
signals r(t), u(t), and y(t), along with their associated auxiliary state 
variables. The term a(s) represents a multiplicative high-frequency model- 
ing error whose frequency profile is shown in the second figure below. The 
term J,(s) has been implicitly assumed to be identically zero at all frequen- 
cies in all the algorithms that have been proven to be globally asymptoti- 
cally stable. 

g(s): LOW-FREQUENCY MODEL OF PLANT 

l(s) : HIGH-FREQUENCY MODELING ERROR 

K(s) : COMPENSATOR WITH ADJUSTABLE PARh4ETERS 
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INSTABILITY MECHANISMS 

When the ideal assumption of exact modeling is violated, at high 
frequencies, i.e., E(s) # 0, two mechanisms of instability were identified 
in the algorithms studied [12]. The first is the so-called "phase instabil- 
ity" that arises as a result of high-frequency inputs to the plant. For 
sufficiently high frequencies, the unmodeled dynamics contribute enough lag 
so that the total phase shift of the overall loop reaches 180", at which 
point the feedback becomes positive and instability occurs. The second 
mechanism is referred to as "gain instability" and is due to persistent 
unmeasurable output disturbances and/or nonzero steady-state errors. In 
this case, the adaptive control system feedback gains keep drifting to 
increasingly larger values with a resulting increase in bandwidth; as a 
result, the high-frequency dynamics get excited, and the closed-loop system 
becomes unstable. 

' INSTABILITY DUE TO HIGH-FREQUENCY INPUTS 

- HIGH-FREQUENCY DYNAMICS YIELD +180° PHASE SHIFT - 

. INSTABILITY DUE TO PERSISTENT UNMEASURABLE OUTPUT DISTURBANCES 

- ADAPTIVE CONTROL SYSTEM FEEDBACK GAINS DRIFT AND GET LARGE 

- CONTROL SYSTEM BANDWIDTH INCREASES 

- HIGH-FREQUENCY DYNAMICS GET EXCITED 

- CLOSED-LOOP SYSTEM BECOMES UNSTABLE 
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ESSENCE OF PROOFS 

The previously discussed error mechanisms can be better visualized in 
the figure below which is a generic representation of the error system 
complete with adjustment mechanism in the feedback path. Here C[y(t), u(t) 1 
and D[y(t>, u(t)] are linear operators that generate auxiliary state 
variables through stable filters , F(s) can represent a shaping filter, and 4 
represents a matrix of constants. 

The essence of global stability proofs is captured in the figure shown, 
with a positive-real transfer function in the forward path and a (passive) 
adaptation mechanism in the feedback [l]. All globally stable adaptive 
algorithms construct a positive-real function based upon the nominal plant 
model, which governs the error dynamics [l]. However, the positive-real 
condition is always violated in real applications due to unmodeled dynamics. 

l REF: VALAVANI, PROC. JACC, 1980 ( REF. 1) 

l ALL GLOBAL STABILITY PROOFS AND ASSOCIATED ALGORITHMS CONSTRUCT A POSITIVE-REAL 

FUNCTION BASED UPON NOMINAL PLANT MODEL 

NOMINALLY CONTROLLED d(t) 

PLANT 

. PITFALL: 

POSITIVE-REAL CONDITION ALWAYS VIOLATED IN REAL APPLICATIONS 

- CAUSE: IJNMODELED HIGH-FREQUENCY DYNAMICS 
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SIMPLEST MODEL REFERENCE ADAPTIVE CONTROL STRUCTURE 

For the sake of example, the simplest model reference adaptive control 
structure is depicted below [3]. The model and plant transfer functions are 
given respectively by 

1 Stable filters - generate from u(t) and g(t) auxiliary state 
P(s) 

variable vectors s(t) and xy(t), 
b(t) and ky(t), as shown. 

which multiply feedback gain vectors 
These gains, along with k,(t), are adjus- 

ted according to the equation in the square. The overall scheme looks 
indeed very simple for real-time implementation! 

' STUDIED BY NARENDRA AND VALAVANI 

Model 

' ADAPTIVE CONTROL GAIN ADJUSTMENT 

/-zy- 
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NUMERICAL EXAMPLE 

The simple structure outlined on the previous page was employed for the 
adaptive control of a nominally first-order plant with a pair of complex 
poles. The reference model, the nominal plant complete with unmodeled 
dynamics, and the adjustment laws were as described below. The digital 
simulation results for a number of different reference input and disturbance 
combinations corroborate the foregoing discussion. 

i,(t) = Ylr(t)e(t) ky(t) = y,y(t)e(t) 
l UNMODELED DYNAMICS 

- 9,(s) = a,(s) = 229 
s2+30s+229 

POLES AT: s=-15+j - 

100 - k(s) = I1*(s) = 2 
s +85+100 

POLES AT: ~-438.33 
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INSTABILITY DUE TO HIGH-FREQUENCY INPUT 

The figures below show the plant output and adaptive gain evolution, 
respectively, when the reference input was chosen to have a d.c. and a 
sinusoidal component as shown below, in the absence of any output disturb- 
ance. The input frequency was precisely the frequency at which the 
"nominally controlled plant," with unmodeled dynamics Q(s), has 180" 
phase shift. The output displays an exponential-type oscillatory growth, 
while the parameters keep drifting and finally diverge. 

. DATA: k(s) = ys) 

r(t)=0.3 + 1.85 sin 16.lt; d(t)=0 

‘7 
1 

ADAPTIVE GAINS 
; 

k 
Y 
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INSTABILITY DUE TO SINUSOIDAL DISTURBANCE 

With the same reference model, plant, and unmodeled dynamics, the 
reference input was now chosen to be a simple d.c. input of amplitude 2 
(units); an output disturbance was added to the experiment. The frequency 
of the disturbance was lower than that which would cause a 180' phase lag. 
The figure below shows the plant output and parameter evolution, respec- 
tively. For a very extended period of time, it looks as if the plant output 
has converged to within a satisfactory deviation from the desired output; 
however, the parameters keep drifting. Finally, both plant and parameters 
break into abrupt instability. This is the gain instability mechanism that 
is indicative of the nonlinear nature of the overall adaptive loop. 

l DATA: a(s) = a,(s) 

r(t)=2.0 d(t)=O.S sin8t 
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I! 

INSTABILITY DUE TO SINUSOIDAL DISTURBANCE (CONCLUDED) 

In the present experiment, the only difference from the preceding 
example is that the magnitude of the disturbance is' smaller (by a factor of 
5). Again, the same trends are observed, although now the plant output 
deviates much less from the reference model output and the parameter evolu- 
tion is different in shape and magnitude. However, the final instability 
comes about in an almost identical manner. 

l DATA: k(s) = a,(s) 

l r(t)=2.0 d(t)=O.l sin8t 

3 
L.c c OUTPUT 

is TIHF: 
Q.ClO flO.lJO 160.00 ‘2.lD .OO 320.00 100 .oo rfl0.00 :i 

w3 
I 
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INSTABILITY DUE TO CONSTANT DISTURBANCE 

This is a regulator-type experiment for the same setup as before. 
There is a zero reference input and a d.c. disturbance of amplitude 3 
(units). Notice that the output behaves almost ideally for an infinitely 
long period of time compared to the system time constants. However, after 
about 1000 seconds some arrhythmia-type behavior is observed, after which 
point violent instability occurs in both plant output and parameter values. 
We remark that the parameters have continued to drift while the output was 
displaying a satisfactory behavior. The fact that the gain instability has 
taken such a long time to develop may have been a reason why the phenomenon 
was not discussed in the literature earlier. However, it was indeed 
observed in some applications to chemical processes 1131. 

' DATA: k(s) = p 

r(t)=0 d(t)=3 

OUTPUT 

y, ADAPTIVE GAINS 
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RULES OF THUMB 

In general, although the time at which instability occurs may be large, 
the fact remains that it does occur. Factors that can prolong its onset are 
increased frequency separation between nominal plant model and unmodeled 
high-frequency dynamics and decreasing'disturbance amplitudes. At present, 
there is no systematic way to prevent such a phenomenon from occurring. The 
reason is because the adaptive loop is highly nonlinear and, therefore, 
rigorous mathematical analysis is not easy. However, certain cures have 
been proposed, such as the use of dither signals in the reference inputs to 
stabilize the drifting process, exponential forgetting factors, and 
dead-zones to prevent the adaptation mechanisms from causing the parameters 
to drift [14-191. None of the suggested methods, however, seems to hold 
general validity at the present time. 

l TIME AT WHICH INSTABILITY SHOWS UP CAN BE LARGE 

- BUT SYSTEM IS UNSTABLE 

' INSTABILITY TIME INCREASES 

- AS FREQUENCY SEPARATION OF LOW-FREQUENCY MODELED DYNAMICS AND HIGH-FREQUENCY 
UNMODELED DYNAMICS INCREASES 

- AS DISTURBANCE MAGNITUDE DECREASES 

l CERTAIN CURES MAY WORK 

- DITHER SIGNALS 

- EXPONENTIAL FORGETTING 

- DEAD ZONE 

NOT CLEAR OF GENERAL VALIDITI 

. ADAPTIVE LOOP HIGHLY NONLINEAR 

- ANALYSIS NOT EASY 
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FUTURE RESEARCH DIRECTIONS 

Clearly, a lot more research is needed to understand the complex 
interplay between time-domain and frequency-domain quantities in an on-line 
adaptation mechanism. Key concepts such as finite-time identification need 
to be understood and developed further; input constraints and disturbance 
constraints have to be formulated and taken into consideration as part of 
the overall design along with a more precise mathematical representation of 

modeling uncertainty, perhaps in terms of a modeling error a:(w) as 

suggested below. To summarize, maximum allowable system bandwidth should be 
reflected in any design problem either explicitly or implicitly, and the 
mathematics of any adaptive algorithm should try not to violate the hard 
constraints imposed by it. 

l EXAMINE FUNDAMENTAL ISSUES 

- INTEGRATED TIME-DOMAIN AND FREQUENCY-DOMAIN APPROACH 

l FINITE-TIME IDENTIFICATION 

PHYSICAL 

O<t<T -- 

l INPUT CONSTRAINTS: r(t)e R 

' DISTURBANCE CONSTRAINTS: d(t)e D 

NOMINAL MODEL: p",(s) 

MODEL ERROR BOUND: 

~(wl> Ig(j4-iTWl I 

NEED II E(u) TO LIMIT BANDWIDTH 
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MYTHS AND REALITIES 

In conclusion, adaptive control algorithms as they now stand are 
deceptively simple and promising; they are proven theoretically stable and 
they improve performance by overcoming the conservativeness that nonadaptive 
designs typically have to contend with. Unfortunately, however, the 
advantages that these algorithms enjoy are based on mathematical assumptions 
that are always violated in practice. Moreover, the "ideal" properties that 
they seem to possess are very nonrobust to even subtle violations of the 
underlying assumptions. Consequently, they may result in unstable systems 
when applied in real engineering problems. 

l MYTH: 

LET US RUSH TO IMPLEMENT ADAPTIVE CONTROLLERS: GOOD PERFORMANCE, PROVEN STABILITY 

l REALITY: 

THE MATHEMATICAL ASSUMPTIONS THAT LEAD TO GLOBAL STABILITY PROOFS ALWAYS VIOLATED 

IN REAL LIFE. 

WATCH OUT: INSTABILITY MAY EVENTUALLY SET IN. 
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