
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

-MA

M.

ir

f!
401IMEERING LASGRATIRY SEVIES

I

db	 4b	 -A
r- 1 313 5

t.	 E	 Au	 A

CSCL 098
IJ nc Id E

C,3/#- 1	 19073

6

SOF7,9VARIF E
"BORATORY fiERMS

SEL-82-105

^r

Two"

'No
Goddard S i)ac(, Floqht .ante

OCTOBER 1983

44Y
*,r C

Ir

A.

04^

SOFTWARE ENGINEERING LABORATORY SERIES	 SEL-82-105

GLOSSARY OF
SOFTWARE ENGINEERING

LABORATORY TERMS

OCTOBER 1983

6oaaara Space Flight Center

I

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space

Administration/Goddard Space Flight Center (NASA/GSFC) and

created for the purpose of investigating the effectiveness

of software engineering technologies when applied to the

development of applications software. The SEL was created

in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software

development process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of re-

ports that includes this document. A version of this docu-

ment was also issued as Computer Sciences Corporation

document CSC/TM-83/6168.

The contributors to this document include

Thomas Babst	 (Computer Sciences Corporation)
Michael Rohleder	 (Computer Sciences Corporation)
Frank McGarry	 (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 582.1
NASA/GSFC
Greenbelt, Md. 20771

9024

yr. -+!	 ^.r• ,r y .y^• .. i.« ^	 -, 4 . ,	
^+

V

i i i

9024

4

A

G

ABSTRACT

This document is a glossary of terms used in the Software

Engineering Laboratory (SEL). The terms are defined within

the context of the software development environment for

flight dynamics at Goddard Space Flight Center. The pur-

poses of this document are to provide a concise reference

for clarifying the language employed in SEL documents and

data collection forms, establish standard definitions for

use by SEL Fersonel, and explain basic software engineering

concepts.
C

+Y

TABLE OF CONTENTS

Section 1 - Introduction	 1-1

Section 2 - Software Engineering Terms. ,2-1

Section 3 - Acronyms	 3-1

Bibliography of SEL Literature

iv

9024
m

J

j

F.Ej

SECTION 1 - INTRODUCTI.ON

t

The glossary of Software Engineering Laboratory (SEL) 	 terms A,

. presents a comprehensive collection of frequently used soft-
M

r: ware engineering terms and expressions.	 Its objectives are
1

P,

to
a

•	 Provide a reference for clarifying the language of

SEL documents and data collection forms

•	 Establish standard definitions for use by SEL per-

sonnel

•	 Explain basic software engineering concepts

The definitions provided in this document are consistent

id
with the Institute of Electrical and Electronics Engineers

r? (IEEE) publication Standard Glossary of Software Engineering

j Terminology	 (1983).	 However,	 some variations were neEC?-._d to

' accommodate local (SEL)	 usages.	 Definitions were compiled 4

from many sources:	 SEL personnel, data collection forms,

and documents.	 The Data and Analysis Center for Software

1

(DACS)	 document Glossary of Terms	 (1981) was also examineu.

C { t

s i

f

• .t

r
"T

1

1-1 .

9024

t	 ._Y

a ,a

SECTION 2 - SOFTWARE ENGINEERING TERMS

M

i

acceptance testing Independent testing conducted to
verify that all functional require-
ments of a system have been satis-
fied.	 The ,results,determine the
acceptance or rejection of the soft-
ware.

adaptability A measure of the ease with which a
program can be altered to fit differ-
ing user and system constraints.

adjusted lines of See lines of code.
code i

algorithm A prescribed set of well.-defined rules
or processes for the solution of a
problem.

analyzer Computer software used as a tool that
is applied to a program to provide
analytical information; it breaks the
program into identifiable segments and
reports statistical information.	 This
information can include execution fre-
quency statistics, program path
analysis, and/or source code syntax
analysis.

archive Process involving the transfer of data
or information from one source or vol-
ume to another to provide a backup or
alternate copy of the information for
future use,

argument Variable or expression passed to an
operation or function as input or out-
put. i

array An ordered group or collection of j
variables,	 terms, or expressions.	 An
array is usually dimensioned or in-
dexed.

assemble To translate a program written in as-
sembly language into machine lan-
guage.	 The assembly language
operation codes are substituted with
machine language operation codes, and
symbolic addresses are substituted
with absolute, immediate, relocatable,
or virtual addresses.

2-1

yu24

AL

r

!V

assignment An expression or instruction used to
statement assign values to specified variables

or symbols.	 Includes all statements
that change the value of a variable as
their main purpose; for example, READ
statements.	 However, the assignment
of the iteration counter in a DO
statement is not included.

attribute list A compiler-generated list of identi-
fiers used by a program. 	 The list
includes type characteristics of iden-
tifiers, source statements that define
or use the identifiers, and the rela-
tive storage location of the variables
used in the program.

baseline A tree chart or hierarchical graph of
a software design containing all
components in the system.	 A connec-
tion from a higher component to a
lower one indicates that the higher
component calls the lower one.

batch Mode of operation of a computer in
which the entire job is read into the
machine before processing begins and
in which there is no provision for
interaction with the submitter during
execution of the job.

block diagram A diagram of a system or computer in
which the principal parts are repre-
sented by geometrical figures that
show both the basic functions and the
functional relationships among the
parts.

bug See defect.

build A functional subset of a more complex
software development product. 	 The
"builds" approach to software develop-

`+ merit consists of developing a series
of increasingly complete functional

-- systems.

-- calibration error An error in the gauge or tolerance of
specifications.

certification test A formal demonstration to the customer
showing that requirements have been
met.

G	 r

2-2
P
le	 9024

b

b 9024

4.,
	 .h.

A modification to requirements, de-
sign, code, or documentation made to
correct an error, improve system per-
formance, add capability, improve ap-
pearance, or implement a requirements
change.

An error made in the process of copy-
ing an item from one format to another
or from one medium to another, which
involves no interpretation or semantic
translation.

A symbolic representation of a func-
tion composed of computer program
statements.

See implementation.

Inspection of the souroe code by per-
sons other than the creator of the
code in an attempt to detect errors or
to recommend coding improvements.

See walk-through.

Representing a function in a form that
is meaningful to a computer system.

See module strength.

A class of software including programs
used to generate satellite commands
from the control center,

An error made by including an incor-
rect item that results in software
containing a defect.

To translate a computer program
written in a high-lravel procedural
language into a machine-language
version.

A measure of the difficulty of imple-
menting or understanding a component,
independent of the mplementor's ex-
perience; for example, the degree of
interactions and number of dependen-
cies among elements of a computer pro-
gram.

A named piece of a system; for ex-
ample, a separately compilable func-
tion, a functional subsystem, or a
shared section of data such as a
COMMON block.

+a

change

clerical error

code

code and unit test

code reading

code walk-through

coding

cohesion

command/control

commission error

compile

complexity

component

e

i
F

2-3

^r

t
f,.

^

i
r

computational Any error in which a ,value is computed
errr*r by an incorrect mathematical expres-

sion.
computer The relationships between the parts of
architecture a computer Pystem; the structural and

functional ;definition of a computer as
viewed in terms of its machine in-
struction set and input/output cap-
abilities.

confidence level The probability that a given statement
is correct;	 100 percent means that the
statement is invariably true.

configuration A methodology for controlling the con-
control tents of a software system; a way of

monitoring the status of system com-
ponents, preserving the integrity of
released and developing versions of a
software system, and controlling the
effects of changes throughout the sys-
tem.

configuration item A group or collection of computer
hardware or software elements that are	 F
treated as a unit for the purpose of
configuration management.	 Configura-
tion items may vary widely in com-
plexity and size.

control error See logic error.

configuration X11 activities related to controlling
management the contents of a software system:

monitoring the status of system com-
ponents, preserving the integrity of
released and developing versions of a
system, and controlling the effects of
changes throughout the system.

control statement A statement that potentially alters	 i

the sequence of executed instructions;
for example, GOTO, IF, RETURN, DO.

control structure A recurrent pattern of control state-
ments; for example, sequence, 	 itera-
tion,	 selection.

convention An agreed-upon method, 	 notation, or
form of presentation.

correction A change made to correct an error.

^a

2-4

`	 9024

IF 9024

data collection

A change in the source program made to
improve clarity that has Little effect
on the performance of the program; for
example, comment correction, movement
of code that does not alter the imple-
mented algorithm, or changing the dame
of a local variable.

Prediction made before and ^turing a
project's life cycle of the amount of
labor necessary to complete a task,
the amount and potential costs of com-
puter time required, etc.

A method for determining the cost of
developing a system or any particular
part of a system.

See module coupling.

A measure of the degree of dependence
of the whole on a part of a :system.

A series or collection of measurements.

(1) A set of data files that are
logically related.

(2) An organized system of storing
data.

The methods, forrns, procedures, per-
sonnel, and activity used in measure-
ment.

cosmetic change

cost estimation

costing technique

coupling

criticality

data

data base

I

s

data definition A special-purpose language used to de-
language fine data items in a data base and to

create a data dictionary.

data dictionary A file that describes the format of
fields, values,	 and records in a data
base.

data error Any error in the use of a variable or
data structure.

data set A named collection of logically re-
lated data items, arranged in a prede-
scribed manner residing in a physical
storage location, usually magnetic
tape or disk.

data structure The logical relationship among the
units of data in a data base.

data type A set of attributes used to define a
data item.

data validation The process of verifying the complete-
ness and accuracy of data.

2-5

data base management A software system for managing a data
system	 base, usually consisting of a data

definition language and a data access
language.

debugging	 The process of locating and correcting
software errors.

defect	 An error in the design or 'mplementa-
tion of a program. one or more soft-
ware defects exist in a system if a
software change is required to meet
specified or implied system perform-
ance requirements. A defect may also
be called a fault or bug.

'	 design	 (1) The process of defining how a
system is to be constructed, its
components, interfaces among those
components, and interfaces with
the external environment to
satisfy specified requirements.

(2) The results of the design process.
design language	 A formal language for representing the

Logic, control, and data flow of a
software system, usually input to an
analyzer program.

design phase	 The life cycle phase in which the
structure of a system is planned and
recorded.

preliminary	 The specification of major functional
subsystems, input/output interfaces,
processing modes, and implementation
strategy. The software system archi-
tecture is defined, based on the re-
quirements given in the functional
specification and requirements docu-
ment, and translated into software
requirements in the requirements anal-

,	 ysis summary report.

detailed	 The extension of the system architec-
ture defined in the preliminary design

g	 phase to the subroutine level. The
preliminary design is elaborated by
successive refinement techniques to
produce a "code-to" specification for
the system.

C
	

2-6

1.

r

i

i

9024

J^^

design ,review

design specification

design verification

design walk-through

development
methodology

develo" ,^"t phase
deyelo ,,ô Nines of

cede
discrepancy

4

'	 t

1

F

r

f
f

design reading	 Inspection of the design by persons
other than the creator of the design
for the purpose of detecting defects,
development standard violations and
other problems.

documentation

driver

dynamic allocation

A formal meeting between customer and
developer to determine that a proposed
software configuration will satisfy
performance specifications.

A document describing the approved de-
sign for a program.

The :formal examination or inspection
of a software specification for the
purpose of finding design errors and
ambiguities.

See walk—through.

A systematic approach to the creation
of software that specifies the activi-
ties, products, verification, and com-
pletion criteria for each phase of
development.

See life cycle.

The total number of new lines of source
code plus 20 percent of reused code.

The difference between the intention
of a specification and its actual im-
plementation.

Written material, other than source
code wtatements, that describes a sys-
tem or any of its components.

A software component developed specif -
ically to call other components; used
in an informal testing technique dur-
ing the implementation phase.

The allocation of memory required by
an operating program during its execu -
tion phase rather than prior to execu-
tion.

4

efficiency	 The ratio of useful work performed to
the total energy expended. Code is
efficient to the extent that it ful-
fills its purpose without wasting re-
sources.

effort	 The amount of resources, including
staff and computer time, necessary to
complete a particular project.

2-7

9024

4

element A basic segment of a named piece of a
system (component) .

embedded system A dedicated computer system that is
physically incorporated into a larger
system whose primary function is not
data processing; for example, an elec-
tromechanical system.

environment The combination of hardware and soft-
ware used to develop, maintain, and/or

c execute software,	 including the com-
puter, operating system, support li-
braries,	 text editors, compiler, 	 etc.

error (1)	 An internal condition that pre-
vents a software system from suc-
cessfully performing its intended
function.

(2)	 Human action that results in soft-
ware containing a defect. 	 Also
see failure, calibration error,
clerical error, commission error,
omission error,	 initialization
error,	 logic error,	 interface
error, data error,	 and computa-
tional error.

error analysis The examination of errors with the
purpose of tracing them to their
sources and determining their effects.

error recovery The ability of a system to resume
processing rather than abort after an
error.

estimation parameter Any estimator or contributing factor
to the process of estimation.

executable statement Statement that changes the value of
data or the state of a program.

execution Performance by a computer of the in-
structions in a program.

execution time The actual central processor time used
in executing a program.

external reference A call to a function or subroutine
that is outside the calling procram
body.

failure rate The number of failures occuring within
a specified period of central process-
ing unit time.	 Also see error rate.

A

I

2-8

l_.	
5024

y _si/

A"Y

failure,	 software An unacceptable result produced during
the operation of the computer pro-
gram.	 Occurs when a fault is evoked
by some input data.	 Also see error.

fault See defect.

file A set of related records treated as a
unit.

flight dynamics Applications to support attitude deter-
software mination and control, maneuver plan-

ning, orbit adjustment, and general
mission analysis.

flow chart A graphical representation of an al-
gorithm in which symbols are used to
represent operations, data, data flow,
equipment, etc.

farm Questionnaire used to record informa-
tion about the software development
Process and/or software product.

^ 	 change report Records software change and error data
during development.

- component status Records time expended for activities.

component Records the status of system compo-
summary nents.

- data base Used to identify and initiate action
problem report on data base problems.

- maintenance Records software change and error data
change report during maintenance.

- project summary Used to classify the project and meas-
ure development progress.

- resource summary Records expended resources.

- run analysis Used to monitor activities for which
the computer is used.

formal specification A specification technique based on a
strict set of xules for describing the
specification and usually involving
the use of an unambiguously defined
notation; for example, mathematical
functions or formal program design
language.

formal testing Testing performed in accordance with
customer-approved test plans.	 Veri-
fies that the software system is op-
erating as specified in the
requirements.

2-9

9024.

if

3

r

10

J61

t

t

-u

format statement A source language statement that may
accompany an input/output statement to
specify the source or destination of
the data and the arrangement of data
items on the input or output record.

function A mathematical subprogram used to
specify an input set, an output set,
and the relationship between the two.

functional A specification of a software component
specification as a set of functions defining the

output for any input. 	 Emphasizes what
a program is to do rather than how to
do it.

Halstead measures Measures developed by M. Halstead in
his theory of "software science,"
based on basic elements of programming
languages:	 operator, operand,	 length,
volume, and lainguage level.

hardest first The development approach of designing
or implementing the most difficult
aspects of a system first.

hardware The physical and electronic components
of a computer system including input/
output devices, CPU, memory, etc.

hardware reliability A measure of the probability of a
hardware system operating without
failure, usually measured as mean time
to failure.

hierarchical input A software design technique that de-
process output fines each component in terms of a

transformation from an input data set
to an output data set, usually repre-
sented in graphic form.

hierarchy A ranked series of elements, 	 such as
tasks,	 programs, people,	 functions,
etc.

high-level language 	 A programming language that does not
reflect the structure of any one given
computer or that of any given class of
computers.

historical	 Of or pertaining to data archives on
past experience with particular proj-
ects.

identifier	 A symbol whose purpose is to identify,
indicate, name, or : ate a data '
structure or procedu,. -ntry point.

2-10

9024

V

4V

a

implementation Life cycle phase in which code is de-
veloped or modified to meet design
specifications.	 Each module	 (or unit)
is integrated into the system and
tested to ensure that the newly added
capabilities function correctly.

i

informal testing Testing involving no formal, written
test plan.

initialization Any error resulting from an incorrectly
error initialized variable or failure to

initialize a variable.

input/output Usually refers to data or hardware
processes involving the transfer of
information to or from computer main

` memory.

instruction See executable statement.

integration The combination of subunits into an
overall unit or system by means of
interfacing.

integration test A test of several modules to check
that the interfaces are implemented
correctly.

interactive A mode of computer operation in which
each line of input is immediately
processed; allows communication with
the program during its execution.

interface ^'he set of data and control informa-
tion passed between two or more pro-
grams or segments of programs and the
assumptions made by each program about
how the others operate.

interface error Any error of data exchange within a
system	 (internal); any error of data
exchange between some module and an
entity outside the system	 (external).

interface testing Validation that a module or set of
modules operates within agreed inter-
face specifications to ensure proper

4
data and logical communications.

f interpret To translate and execute a high-level
language program by translating each
statement to a corresponding sequence
of machine operations and executing
them before proceeding to the next
statement.

2-11

E^ 9024

^. ..ter.. .+. ♦ 	 ^.	 !'

4

t

I& A,

1	 '

ky

interrupt Any stopping of a process by an ex-
ternal event in such a way that it can
be resumed.

iteration Repetition of a sequence of instruc-
tions until a specified set of condi-
tions is satisfied.

iterative The design or implementation of suc-
enhancement cessive versions, each producing a

usable subset of the final product,
until the entire system is fully de-

y veloped.

independent A software quality assurance technique
verification and in which an independent team reviews
validation and tests the software while it is

under development.

job A unit of computer work consisting of
one or more steps such as compilation,
assembly, or utility runs.

job control language A program language controlling the use
of computer system resources.

librarian Programming support person whose re-
sponsibilities include processing
source statements but not writing them
(for example, maintaining libraries,
updating code, and producing tape
backups) .

life cycle Sequence of phases during which the
software product is developed from
concept through delivery and opera-
tion.	 Also see individual phases:

w pretask planning, requirements
analysis, preliminary design, detailed
design,	 implementation, system test-
ing, acceptance testing, and mainte-
nance.

lines of code Eighty-byte records that can be proc-
essed by a compiler or assembler.

- adjusted An estimate of the number of execut-
able lines of code developed.	 The sum
of all new code plus 20 percent of the
reused code, minus 50 percent of that

ST total (estimated as the amount of com-
a ment lines), minus 10 percent of that

1 result (estimated as the amount of
a nonexecutable statements).

^-A

1 r
1

^„	 r 2-12

9024

_	
n

5

IY

tl - delivered Total number of lines of source code
generated as a deliverable item for a
project.	 Includes all executable,
nonexecutable, and comment statements

Y whether newly coded or taken from
existing programs and library routines.

- developed Total number of new lines of source
code plus 20 percent of reused code.

- executable Code that changes the value or state
of a program or data.

- modified Previously developed code that has
been changed for reuse in a new system.

- new Total number of lines of source code
written by programmers for a given
task.	 Does not include any code that
was taken from previously existing
programs, but does include comments,
executable, and none;gecutab e state-

r ments.

- old Total number of lines of source code
taken from previously existing pro
grams and reused without change.a

- reused See old lines of code.

load module An executable program produced by
translating and linking source code.

logic error Any error resulting from an incorrectly
formulated decision or transfer.

machine language A system of numeric operation codes,
values, and addresses, a se-Juence of
which can be directly executed by a
computer.

macro A single instruction in a source lan-
guage that represents a defined se-
quence of source instructions in the
same language.	 A macro is replaced by
the sequence it represents before pro-
gram translation.

main program A program unit containing at least one
executable statement and having a
starting address for-program execu-
tion; normally, the set of instruc-
tions that determines the basic
sequence of control.

2-13r

h	 9024

4
R

r Y
0

The process of modifying existing op-
erational software to correct errors
or enhance capabilities while leaving
its primary function intact.

All the technical and management ac-
tivities, decisions, and controls di-
rectly required to purchase, develop,
or maintain software throughout its
life cycle.

Planning, organization, motivation
(direction) , and control of a tech-
nical project and technical personnel.

See staff-level and staff-unit.

A count or numerical rating of the
occurrence of some property. Examples
include lines of code, number of com-
puter runs, person-hours expended, and
degree of use of top-down design
methodology.

A prescribed set of principles and
procedures for the development proc-
ess. These principles may pertain to
requirements, design, code, testing,
or management. Examples include
structured analysis, top-down design,
information hiding, structured pro-
gramming, formal test plans, and con-
figuration management.

See measure.

A class of computer based on a
microprocessor.

A single integrated circuit (micro-
processing unit) that performs the
functions of a central processing unit.

The date that the system must be oper-
ational, usually 2 months before
launch.

Equation relating two or more quanti-
tative factors. A resource utiliza-
tion model may provide an estimate of
the cost of a project; a reliability
model may indicate when sufficient
testing has been done.

The process of altering a program and
its specification to perform either a
new task or a different but similar
task.

f

ik 	 G

	

.R
	 maintenance

f

$i

management, software

management,
technical

	

`a
	 manpower

measure
k

methodology

Jf

kt

metric

microcomputer

microprocessor

mission date

model

1

	

I
	

modification

t

2-14

9024

r

modified code See lines of code.

module A named subroutine unit that is inde-
m pendently compilable.

module coupling A Measure of the strength of the con-r nections between two modules in a com-
puter program.	 Module independence is
a desirable software quality.	 The
levels of module coupling from lowest
(best)	 to highest	 (worst)	 are data,
stamp, control, external, common, and
content.

module strength A measure of the unity of rpurpose or
cooperation among the internal elements
of a module.	 Module cohesion is a de-	 k

sirabl.e software quality. 	 The levels
of mod.!le strength from highest 	 (best)
to lowest	 (worst)	 are functional,	 in-
formational, communicational, proce-
dural, classical,	 logical,	 and

p
coincidental.

module test See	 testing,	 unit.	 !^

new lines of code See lines of code.

object module A computer program expressed in machine
language, usually the result of trans-
lating a source program by an assembler 	 c'
or compiler.

omission error An error made by leaving out an item'
that results in software containing a
defect.

online processing Interactive processing, between humans

3 and the computer.

operand A symbol denoting a data item, 	 indi-
cator, or target of the action of an
operator.	 Also see Halstead measures. 	 i

t
operator

+
A symbol denoting an operation, func-
tion, or action.	 Also see Halstead
measures.

operating system An integrated set of routines and
services that monitor and manage sys-
tem resources and the execution of
application programs.

operation A function that transforms data ob-
jects from input domain(s)	 into data
objects in the operation's output do-
main(s).

2-15

9024

3n —a1 ^ ^ iw." i r r.. ire t	 ^ 4 ..
	 __s_"'____r._^___ __^r: ,,^i

L^

optimization A change in the source code to improve
program performance, for example, to
make it run faster or use 'Less space.
Optimization changes are not error
corrections;	 however,	 if the change isa
made to conform to a specified re-

r quirement,	 the term "error" applies.

overlay k hierarchical structure of program
components that allows the program to
be executed while only part of it re-
sides in main memory at any given time.

parameter A variable or measure that can take on
more than one value, but only one at a

`tlf time. 	
4

parse To decompose a sequence of symbols
(block,	 line,	 phrase)	 into a set of
elementary subunits	 (words, commands,
characters) .

phase See life cycle.

precompiler A computer program used to add special-
purpose capabilities to a language
system.	 A precompiler translates

W special features implemented as macros
into regular instruction sequences in

.` a programming language.

; _^ preliminary des i g ndesi np	 Y	 g See design phase.9	 P

pretask planning Planning efforts prior to the start of
requirements analysis; generation of
software development plans and esti-
mates.

preventive Maintenance specifically intended to
maintenance prevent faults from occurring.

procedure (1)	 A sequence of steps that accom-
plishes some task. 	 j

(2)	 A named subroutine.

procedural A specification of a software component
specification in an algorithmic manner, stating how

the program is to work.P
process design See program design language.
language

productivity A measure of the rate of production
per unit of effort expended.
Typically, lines of code produced per
staff hour.

2-16

9024

Y

program A sequence of instructions that di-
rects the computer to perform a task.

program complexity A measure of the number of execution 	 +'
paths in the program and the diffi-
culty of determining the path for an

x arbitrary set of input data.	 Also see
complexity.

program design A language, often called pseudocode,
language used in the design and coding phases

of a project, that contains a fixed
set of control statements and a formal
or informal way of defining and oper-
ating on data structures.

program listing The sequence of instructions making up
a computer program, usually in the

F' form of a printout.

program validation All techniques used to ensure correct
programs,	 including system, and sub-► g system, and system integration testing.

programming language A set of statements and instructions
with a formal syntax and lexical rules;
used ir, composing computer programs
that require translation prior to
machine execution.

project A software development effort with set
goals and defined objectives that uses
the technical and managerial capabili-
ties of personnel, has a life cycle
with fixed endpoints, and produces a
specified product.

proof technique A method for formally demonstrating
that a piece of software performs ac-
cording to its specifications.	 Proof
techniques usually use some form of
mathematical notation to describe the
result of executing a program.

prototype A system developed with the intention
of serving as a pattern for a future
development effort.

quality The degree to which software conforms
to certain desirable characteristics.
These may include, but are not limited
to,	 correctness,	 reliability,	 usabil-
ity,	 validity, effici?ncy,	 flexibil-
ity,	 and maintainability.

2-17

9024

D,I	
..

ALI	
.

4

quality assurance A planned and systematic procedure for
ensuring that the product conforms to
established technical requirements and
quality standards.

read The reading by peers of code and de-
sign materials to look for errors,
invent tests,	 and so on.

real-time A program that receives input from a
process or activity and reacts in time
to affect that process or activity.

reliability The probability that software will
function without failure under stated
conditions for a stated period of time.

requirement A system specification written by the
user to define a system to a devel-
oper.	 The developer uses this speci-
fication in designing,	 implementing,
and testing the system.

requirements An analysis of the contents of the
analysis functional specification and require-

tents document from a software system
viewpoint,	 to recast the requirements
in terms suitable for software design.
The completeness and feasibility of
the requirements are assessed; missing
or to-be-determined requirements are
identified;	 all external interfaces
are specified;	 and the initial deter-
mination and allocation of resources
are made.

requirements The execution of a software product
testing under controlled conditions to demon-

strate that all stated or implied re-
quirements and performance criteria
have been mete

resource Any person,	 equipment,	 or facility
that may be allocated to the accom-
plishment of a task.

resource estimation A model that attempts to relate meas-
model ures of staff and/or computer time to

measures of the software problem,
product, process, and environment.
Models may range from simple,	 single
variable equations to complex interac-
tive software packages.

reused code See lines of code.

}

a

2.-18

9024

9
	 V

R

r
i

AVY

^	

M

review A formal meeting of several individ-
uals for the purpose of axamini.ng de-
sign,	 requirements,	 or code.	 r,

routine A program or subprogram.

scheduling The allocation of time and resources
necessary to complete a given task or
project.

segment A contiguous piece of code that is
unnamed and, hence, cannot be referred
to as a single entity in a program
statement.	 Could be one or several,
lines of a routine,	 subroutine, part

jy of a data area, or an arbitrary con-
tiguous section of memory.

shared items Data and programs accessible by sev-
eral components, such as COMMON
blocks, external files, and library
subroutines.

simulated constructs Statements used to stmtlate structured
control structures when the language
to be used does not contain these
structures.

software Computer program code and its associ-
ated data, documentation, and opera-
tional procedures.

software class The functional type of a software
item.	 The principal types are scien-
tific, data processing,	 and control,

software develop- See life cycle.
r; ment life cycle

software engi- A scientific approach to software de-
neering velopment integrating proven cost-

effective methodologies, 	 tools,	 and
techniques into a comprehensive 	 i

procedure. f
software reliability See reliability.

software testing The process of exercising software in
an attempt to detect errors that exist
in the code.	 Also see formal testing.

source statements All statements input to a compiler.
Includes executable statements 	 (as-
signment,	 Ip	 and GO TO);	 nonexecut-
able statements	 (DIMENSION, REAL, and
END);	 and comments.

A

2-19
x

9024

specification A description of the input, output,
4 and essential function(s) 	 to be per-

formed by a component of the system.
Produced by the organization that is
to develop the system; that is, 	 it can
be thought of as the contractor's in-
terpretation of the requi rements.

specification- Uses the specifications of the program
driven to determine test data;	 for example,

generating test data by examining the
input/output requirements and specifi-
cations.

staff-units Units of measurement for human effoi:t
expended over time.	 Examples include
staff-years,	 staff-months,	 and staff-
hours.

standard Any specification that refers to the
method of development of the source
program itself, and not to the problem
to be implemented; for example, using
structured code,	 limiting subroutines
to 100 lines, or prefixing all module
names with the subsystem name.

string processing operations performed on lists of char-
acters.

structure-driven Uses the structure of the program to
determine test data; for example,
generating data to ensure that each
branch of a program is executed at
least once.

structured code Code that uses only a basic set of
control structures:	 DO WHILE	 (itera-
tion),	 IF-THEN-ELSE	 (selection),	 and
BEGIN-END	 (sequence)	 or their deri l a-
Lives	 (CASE,	 REPEAT UNTIL,	 etc.).

structured design A set of techniques for reducing the
complexity of large new programs by
dividing them into independent mod-
ules.	 It produces a modular,	 hier-
archical design consistent with
structured coding practices.

structured A set of techniques used to design,
programming organize, and code programs that re-

duces cc,, ,nplexity,	 improves clarity,
facilit:^ ,,Is debugging, 	 and simplifies
modification.	 The techniques include
top-down development and structured
coding.

2-20

9024

I& Y

a	 '

i

stub A "dummy" software element used in
place of an expected functional ele-
ment until that element becomes
available.

subprogram See subroutine.

subroutine (1)	 A module that is separately com-
pilable but not independently
executable.

(2)	 A collection of program elements
that provides a function that is
relatively independent of the
whole program.

sobFaystem A collection of subprograms that pro-
vides a major function and is indepen-
dent of any otEaer subsystem.

support software All programs used in the development
and maintenance of the delivered oper-
ational programs.

systems software Software 'that is shared among appli-
cation programs and facilitates or	 }
extends the use of system resources by
the application programs.

system A set or arrangement of software and/
or hardware that together performs a
common function.

system description A document providing system base-
lines, data flows, and processing de-
scriptions.

system integration The process of combining system com-
ponents to produce the total, system.

system size (l)	 The number of lines of code making
up the software of a system.

x (2)	 The amount of memory, 	 including
instructions and data required to
execute the system without
overlays or paging.

system test The process of trying to find discrep-
ancies between the performance of a
system and its original objectives.

table handler A component that is specifically de-
signed to generate or interpret infor-
mation stored in a table format.

2-21

9024	 r''

X

e

task

technical management

telemetry

test

Ij

test plan

test plan document

testing

- functional

- structural

- unit

timesharing

tool0

t
t

top-down development

t	 -op down testing

9024

A set of defined objectives. Multiple
tasks are initiated to complete a
project. Also see project.

See management.

Data transmitted at regular intervals
from sensors.

A procedure designed to verify some;
aspect of the performance o2 a sof ,^,.-
ware system.

A description of test conditions that
includes inputs, expected outputs,
parameter values, etc.

A management document that describes
how and when specified test objectives
will. be met for the formal test plan.
Software development activity in which
a software system is subjected to
specific conditions to show that it
meets the intended design. Also see
acceptance testing and system testing.

Testing designed to demonstrate a
specific functional capability of a
Program or software system.

Testing designed to ensure that every
path through the software is executed.

Test of a set of program statements
treated logically as a whole. A unit
is usually a component, subroutine, or
module.

A mode of operation that provides for
the interleaving of two or more inde-
pendent processes on one functional
unit.

A software aid used to facilitate the
work of development team members; for
example, text editors, precompilers,
code auditors, and test generators.

The design and implementation of the
system by starting with the highest
level component and developing the
components on each successive level in
turn.

Testing of modules in the top-down
order in which they were produced.

2-22

{

i

tree chart An acyclic connected graph, often rep-
resenting a hierarchy in which the
edges are directed to denote a subor-
dinating relationship between the
joined nodes.

uncertainty The probability of error, or the
probable magnitude of error.

unit A set of computer program statements
treated logically as a whole; usually
a module or subroutine.	 Also see com-
ponent,	 subroutine, and module.

unit test See testing,	 unit.

user The individual at the man/machine in-
terface who is applying the software
to the solution of a problem.

user-defined A parameter determined by the user as
input during program execution.

user's guide A document designed to assist the user
a in operating the software product.

utility Any component that is generated to	 ;I
satisfy some general support function
required by other applications soft-
ware.

validation The process of determining whether a
software product satifies • its intended
function regardless of whether or not
it meets its requirements and speci-
fications.

verification The process of determining whether a
software product meets its formal re-
quirements and specifications.

walk-through A formal meeting for the review of
source code and/or design by project
members for the purpose of error de-
tection,	 not correction.

F	

work-around The process or result of counteracting
the effects of an error in a program 	 F

' when the cause of the error and, con-
sequently,,	 the location of the state-
ments containing the error is not
known or is inaccessible;	 for example,
a compiler error.

i	 2-23

9024

work unit	 A measure of software size for which
the effort required is known or can be
approximated. A project is broken
down into work units to facilitate	 A
cost estimation. Some common work
units include the number of require-
ments, programs, subsystems, modules,
pages of documentation, and lines of
code.

i

i

2-24

9024

!4	 SECTION 3 - ACRONYMS
t

'J

ACC Accounting Information File

ALC Assembly Language Code
r ATR Assistant Technical Representative
t

° BMDP Biomedical Programs, P Series

CAREM Cost and Reliability Estimating Models

i

CAT Configuration Analysis Tool

f CDR Critical Design Review

q CIF Component Information File

CMT Comment File

COCOMO Constructive Cost Model

q CRF Change Report Form

CSC Computer Sciences Corporation
s

CSF Component Summary Form

CSR Component Status Report
a

DAIO Direct Access Input/Output Program

DARES Data Base Retrieval System

DBA Data Base Administrator

DBAM Data Base Maintenance System

DLOC Developed Lines of Code

FTIO FORTRAN Input/Output Program

GESS Graphic Executive Support System
k GSFC Goddard Space Flight Center

HDR Project Header File
Y',	

? HIPO Hierarchical Input Processing Output
r

HIS Growth History File;r
IV&V Independent Verification and Validation

JCL Job Control Language

LOC Lines of Code

MPP Modern Programming Practices
j

MTTF Mean Time to Failure
r:> ORR Operational Readiness Reviewp

PANVALET Computer Program Analysis and Security System

3-1

9024

a
.r. -a.♦ ^	 ate•. a- r, .:.. »	 .:, a ..

u.

PDL Program/Process Design Language
1(

PDR Preliminary Design Review

PRICE-S Programmed Review of information for Costing

j and Evaluation Software Model
u

RAF Run Analysis Form

^C
RSF Resource Summary Form

SAP FORTRAN Static Source Code Analyzer Program

SAS Statistical Analysis System

SEF Subjective Evaluations File

i^
SEL Software Engineering Laboratory

SFORT Structured FORTRAN Preprocessor

SLIM Software Life-Cycle Management Estimating Model

S RR System Requirements Review

STL Systems Technology Laboratory

TBD To Be Determined

TSO, ILM Timesharing Option

UM University of Maryland

b

3-2

9024

I

i

f
a

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi•-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-Originated Documents

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Wor shop, August 1976

SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

s

SEL-77-002, Proceedings From the Second Summer Software En-
gineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. O'Neill,
S. R. Waligora, and C. E. Goorevich, February 1978

SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

i
w	 SEL-78-102, FORTRAN Static Source Code Analyzer Program

(SAP) User's Guide (Revision 1), W. J. decker and
W. A. Taylor, September 1982

i
SEL-78-003, Evaluation of Draper NAVPAK Software Design,

-	 K. Tasaki and F. E. McGarry, June 1978

This document superseded by revised document..j ,	 ,

r-Y

I

B-1

µ	
9024

y	 ^^

i[LA
.
	0

SEL-78-004, Structured FORTRAN Preprocessor 	 (SFORT)
° t P DP-11/70 User's Guide, D. S. Wilson and B,, Chu, September

1978	 -

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
kt Environment, T. E. Mapp, December 1978

SEL-79-001 1, SIMPL-D Data Base Reference Manual,
M. V.	 Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory:	 Relation-
ship Equations,	 K. Freburger and V. R. 	 Basili, may 119

R

SEL-79-003, Common Software Module Repository (CSMR) 	 System

f`(
Description and User's Guide, C. E. Goorevich, A.	 L. Green,
and S. R. Waligora, August 1979

r4 SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
gram Design Language (PDL)	 in the Goddard Space Flight Cen-
ter	 (GSFC)	 Code 580 Software Design Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Con^ration Analysis Tool (CAT), F. K. Banks,

F A. L. Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Deckerp
and C. E. Goorevich, May 1980

e SEL-80-003, Multimission Modular Spacecraft Ground Support
R Software System (MMS GSSS) State-of-the-Art Computer Systems/

` Compatibility Study, T. Welden, M. McClellan, and
.^' P.	 Liebertz, May 1980

r
tSEL-80-004, System Description and User's Guide for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G, Garrahan, et al., October 1980

4 tThis document superseded by revised document.

B-2
^a

9024

.g

I

r

I
9

.V

F^'

ryryry...'{ R

iĵ1}t[i

SEL-80-104, Configuration Anal sib Tool (CAT) 	 System De-
scription and User's Guide	 (Revs i.on 1), W. Decker and

d W. Taylor, December 1982
Y:

SEL-80-005, A Study of the musa Reliability Model_,
J A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engi_
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F	 E. McGarry, December 1980

t SEL-81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., 	 September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D.	 N. Card, F. E.	 McGarry, et al., August 1982

t SEL-81-002, Software Engineering Laboratory (SEL) 	 Data
Base Or aq nization and User's Guide, D. C. Wyckoff, G.	 Page,
and F. E. McGarry, September 1981

0! tSEL-81-102, Software Engineering Laboratory (SEL) Data
t} Base Organization and User's Guide Revision 1, P. Lo and

D.W ckoff, March 1983y	 ,	 (superseded by July 1983 version of
SEL-81-102)

&;F

tSEL-81-003, Data Base Maintenance System (DBAM) 	 User's
Hi Guide and System Description, D. N. Card, D. C. Wyckoff, and
`I G. Page, September 1981

if *FSEL-81-103, Software Engineering Laboratory (SEL)	 Data
Base Maintenance System (DBAM) User's Guide and System De-
scri tion, P. Lo and D. Card, April 1983 	 (superseded by July
1983 version of SEL-81-103)

t SEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E.	 McGarry, G.	 Page,	 et al..,	 September 1981

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G.	 Page,	 et al., February 1982

t SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G.	 Page, et al., September 1981

SEL-81-105, Recommended Approach to Software Development,
S. Eslinger, F. E. McGarry, and G.	 Page, May 1982

i'This document superseded by revised document.

B-3
9024

J

I

I
r
i

SEL-81-205 1 Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-81-006, Software Engineering Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

t SEL-81-007, Software. Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al., February 1981

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,

I

February 1982
,

J SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-
bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

I

SEL-81-010, Performance and Evaluation of an Independent
Software Verification and Integration Process, G. Page and
F. E. McGarry, May 1981

SEL-81-011, Evaluatin	 Software Development by Analysis of
Change Data, D. M. Weiss, November 1 	 1

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-
bution Over the Life of Medium Scale Software Systems, G. 0.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory 	 (SEL),	 "I

f A. L. Green, W. J. Decker, and F. E. McGarry, September 1981
: 	̂

y

SEL-82-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,

' September 1982, vols.	 1 and 2

SEL-82-002, FORTRAN Static Source Code Analyzer Program
(SAP)	 System Description, W. A. Taylor and W. J. Decker,
August 1982

t This document superseded by revised document.

B-4

9024

{	 LL 4

1

SEL-82-0031 Software Engineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers: Vol-
ume 1, July 1982

SEL-82-005, Glossary of Software Engineering Laborator y
Terms, M. G. Rohle er, December 1982

SEL-82-006, Annotated Bibliography of Software Engineering
Laboratory (SEL) Literature, D. N. Card, November 1982

SEL-82-007, Proceedings From the Seventh Annual Software
[Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
'	 Changes: The Data From the Software Engineering Laboratory,

V. R. Basili and D. M. Weiss, December 1982

SEL-Related Literature

.f f
Bailey; J. Wi t and V= R. Bas; li ; "A Meta-Mode, for Soft-

ware Development Resource Expenditures," Proceedings of
the Fifth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

tt Lasili V. R. "Models and Metrics for Software Mana ement,	 9
and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical Mem-
orandum, October 1979{	 j

Basili, V. R., Tutorial on Models and Metrics for Software 	 r

Management and Engineering. New York: Computer Societies 	 4^
Press, 1980 (also designated SEL-80-008)

tt This article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1,, July 1982.

B-5

9024
0

a

0
t

^r

ttBasili, V. R., and J. Beane, "Can the Parr Curve Help With
Manpower Distribution and Resource Estimation Problems?",
JoUtnal of Systems and Software, February 1981, vol. 2,
no. T-^

ttBasili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2,
no. 1

Basili, V. R., and B. T. Perricone, Software Errors and Com-
plexity: An Empirical Investigation, University o
Maryland, Technical Report TR-1195, August 1982

ttBasili, V. R., and T. Phillips, "Evaluating and Com-
paring Software Metrics in the Software Engineering Labora-
tory," Proceedings of the ACM SIGMETRICS Symposium/Workshop:
Quality Metrics, March 198

Basili, V. R., R. W. Selby, and T. Phillips, Metric Analysis
and Data Validation Across FORTRAN Pro'ects, Uni^ityot
Maryland, Technical Report, November

Basili, V. R., and R. Reiter, "Evaluating
ures for Software Development," Proceedir
on Quantitative Software Models for Ref a
an Cost, October 1979

Automatable Meas-
is of the Workshop
1 .^ tv,—Complexity

;Basili, V.R., and D. M. Weiss, A Methodology for Collecting
Valid Software Engineering Data, University of Maryland,
Technical Report TR-1235, December 1982

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

ttBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

Y	 ttBasili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"
Computers and Structures, August 1978, vol. 10

n

ttThis article also appears in SEL-82-004, Collectea Software
Engineering Papers: Volume 1, July 1982.

B-6'

9024

J4

Basili, V. R., and M. V. Zelkowitz, "Analyzing medium Scale
Software Development," Proceedings of the Third interna-
tional Conference on Software Engineering. New York: Com-
puter Societies Press, 1978

ttBasili, V. R., and M. V. Zelkowitz, "The Software
Engineering Laboratory: objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
Aunust 1.977

Card, D. N., "Early Estimation of Resource Expenditures and
Program Size," Computer Sciences Corporation, Technical Mem-
orandum, June 1982

Card, D. N., "Comparison of Regression Modeling Techniques
for Resource Estimation," Computer Sciences Corporation,
Technical memorandum, November 1982

Card, D. N., and M. G. Rohleder, "Report of Data Expansion
Efforts," Computer Sciences Corporation, Technical Memoran-
dum, September 1982

Card, D. N., and V. E. Church, "Analysis Software
Requirements for the Data Retrieval System", Computer
Sciences Corporation Technical Memorandum, March 1983

Card, D. N. and V. E. Church, "A Plan of Analysis for
Software Engineering Laboratory Data", Computer Sciences
Corporation Technical Memorandum, March 1983

ttChen, E., and M. V. Zelkowitz, "Use of Cluster Analy-
sis To Evaluate Software Engineering Methodologies," Pro-
ceedings of the Fifth International Conference on Software
Engineering. New York: Computer Societies Press, 1981

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, K. Hamilton and S. Zeldin, September 1977 (also
Uesignated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

tt This article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1, July 1982.

B-7

9024
k

Vol

ii ^	 ti

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

McGarry, F. E.r G. Pager and R. Werking, Software Develop-
ment History of the Dynamics Explorer (DE-)Attitu ' de Ground
Su22ort Seem, M&DO Development Report June 1553

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), Mar-ch
1980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Part, F., and D. Weiss,	 "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum f May 1978

Reiter, R. W.,	 "The Nature, Organization, Measurement, and
Mai.agement of Software Complexity"	 (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C.	 E. Velez,	 11 GSFC NAVPAK Design Higher
Order Languages Stud!(,,	 Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Pub1'1'---
Z-a-El"on, April 1981

Weiss, D. M.,	 "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, 1. M.,	 "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

ttThis article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1, July 1982.

B-8

9024

tt Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects ,' ► Proceedings of the Twelfth Conference on
the Interface of statistics and Com uter Science. New York:
Computer Societies Press,

2elkowitz, M. V., "Data Collection and Evaluation for Exper-
imental Computer Science Research," Empirical Foundations
ffow rrCComputer and information Science (proceedings), November

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

tt This article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1, July 1982.

B-9

9024

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf

