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ABSTRACT

MAGSAT scalar magnetic anomaly data reduced to vertical polarization

and long-wavelength-pass filtered free-air gravity anomaly data of South

America and the Caribbean are compared to major crustal features. Many

interesting relationships are observed. The continental shields generally

are more magnetic than adjacent basins, oceans and erogenic belts. In

contrast, the major aulacogens are characterized by negative anomalies.

Spherical-earth magnetic modeling of the Amazon River and Takatu aulacogens
*

in northeastern South America indicates a less magnetic crust associated

with the aulacogens which is compatible with previous studies over the

Mississippi River aulacogen and the Rio Grande rift in North America.

Spherical-earth modeling of both positive gravity and negative magnetic

anomalies observed over the Mississippi Embayment indicate the presence

of a non-magnetic zone of high density material within the lower crust

associated with the aulacogen.

MAGSAT scalar magnetic anomaly data and available free-air gravity

anomalies over Euro-Africa indicate several similar relationships and

some important differences. Rift zones and aulacogens tend to be magnetically

negative. The Precambrian shields of Africa and Europe exhibit varied

magnetic signatures. The reduced to vertical polarization magnetic

anomaly map shows a marked tendency for northeasterly striking anomalies

in the eastern south Atlantic and adjacent Africa, which are coincident

to the tracks of several hotspots for the past 100 million years. Comparison

of the radially polarized anomalies of Africa and Europe with similar

satellite magnetic anomaly maps of the Western Hemisphere show correlative

anomalies across the (closed) Atlantic Ocean adding support to the Mesozoic

reconstruction of the continents.



INTRODUCTION

This report summarizes research activities performed on MAGSAT

scalar data over South America, Central America and adjacent marine

areas under grants provided to Purdue University and the University

of Texas at El Paso. Research at Purdue University was conducted by

L.W. Braile, W.J. Hinze and R.R.B. von Frese and their students. In

the later stages of the project, they were joined by R. Olivier of the

Institute of Geophysics of the University of Lausanne, Switzerland.

Master of Science theses at Purdue University were prepared by Mark

B. Longacre and Jeffrey R. Ridgway. Research at the University of Texas

at El Paso was conducted by G.R. Keller working with E.G. Lidiak of

the University of Pittsburgh. Master of Science theses were written

by D.W. Yuan and K. Scott Remberger respectively at the University of

Pittsburgh and the University of Texas at El Paso. A no-cost extension -

to the original contracts was provided to January 1, 1984 to expand

our studies into the Euro-African region.

As of this date, research involved with these grants has resulted

in the publication of three papers (Hinze ert a\_.3 1982; Longacre et

al_., 1982; von Frese ^t aj_._, 1982), three expanded abstracts (Olivier

et al_^, 1982; von Frese, 1982; Yuan ̂ t <*!_._, 1982) and eight published

abstracts (Longacre et al., 1981; von Frese et al., 1981; von Frese

and Hinze, 1982; von Frese, 1983; Hinze et aj_̂ , 1983; Lidiak et al.,

1983; Olivier et a.l_._, 1983; von Frese et al_._, 1983). In addition, several

presentations regarding the research results were presented at MAGSAT

investigator meetings and academic seminars. Master of Science theses

were prepared with the support of these grants by D.W. Yuan, "Relation

of MAGSAT and Gravity Anomalies to the Main Tectonic Provinces of South

America", at the University of Pittsburgh under the supervision of Prof.



E.G. Lidiak, by K. Scott Remberger, "A Crustal Structure Study of South

America", at the University of Texas at El Paso under the supervision

of Prof. G.R. Keller, by Mark B. Longacre, "Satellite Magnetic Investigation

of South America" at Purdue University under the supervision of Prof.

W.J. Hinze, and a M.S. thesis is currently in the final stages of preparation

by Jeffrey R. Ridgway, "The MAGSAT Scalar Magnetic Anomaly Map of South

America", under the supervision of Prof. W.J. Hinze at Purdue University.

DISCUSSION OF RESULTS
«

Detailed discussions of the research results are presented in the

three published papers, three expanded abstracts., and eight abstracts

which are provided in Appendix A. Additional information is provided

in four graduate theses and new research results will be presented in

publications which are currently being prepared.

South America, Central. America and adjacent marine areas include

some of the most geologically significant regions of the Earth. A primary

objective of this research program was to demonstrate the geologic utility

of magnetic satellite anomalies by focusing on the spherical-earth inter-

pretation of scalar MAGSAT data, in combination with ancillary geological

and geophysical (free-air gravity, seismic, etc.) data, to obtain litho-

spheric models for these regions related to their contemporary crustal

dynamic processes, geologic history, current volcanism and seismicity,

and natural resources. Purdue University (L.W. Braile, W.J. Hinze and

R.R.B. von Frese) was responsible for processing of the MAGSAT data

and preparation of the magnetic and gravity anomaly maps, the University

of Texas at El Paso (G.R. Keller) provided the data on seismic investigations

of the crust, and the University of Pittsburgh (E.G. Lidiak) assembled

the data and prepared the tectonic/geologic maps of South America. All

these data were used by the investigators in an integrated interpretation.



As the investigator tapes were made available nearly a year later

than originally scheduled, a substantial amount of effort performed

under the auspices of this research program was based on an analysis

of the preliminary <2°> MAGSAT anomaly data.

Tectonic, gravity anomaly and crustal structure data have been

gathered, synthesized, and interpreted for comparison to magnetic anomalies

mapped by the MAGSAT satellite over South America. The correlation

of reduced-to-pole magnetic and gravity anomalies (Longacre et al.,

1981; Hinze et al_̂ , 1982) at 350 km elevation with tectonic provinces

are shown in Figures 1 and 2 respectively. A map of crustal thickness
\

(Remberger, 1983) is shown as Figure 3. This map represents a compilation

of previous results as well as a major effort analyzing Rayleigh wave

dispersion data. The non-satellite data have numerous limitations because

of the sparse data available in the many remote areas of the continent.

The magnetic anomalies mapped as part of the MAGSAT project provide

more uniform coverage of the South American continent, but these data

are also of an averaged nature. Furthermore, magnetic and gravitational

field measurements are sensitive to lithological variations in the crust

(and upper mantle) which are not necessarily related to either the crustal

thickness or the tectonic features of South America. Nevertheless,

numerous interesting relationships exist between the variations in crustal

thickness and average crustal shear velocity., the magnetic and free-

air gravity anomalies, and the major tectonic features of South America.

The South American Platform (Yuan et £]_.,, 1982) is the oldest tectonic

province and contains the only known Archean rocks of the continent.

The basement of the platform is exposed in three major shields-Guyana,

Central Brazilian, and Atlantic. All of these shields contain thick

Precambrian metamorphic sequences and a wide variety of volcanic and



intrusive rocks and are characterized by positive magnetic (Figure 1)

and free-air gravity anomalies (Figure 2). Exceptions are the eastern

part of the Guyana Shield which corresponds to a negative free-air gravity

anomaly and the central Atlantic Shield which corresponds to a negative

magnetic anomaly.

The sedimentary cover and associated volcanics of the platform,

which are of Silurian or younger age, are well developed in four great

synclines - Amazon, Parnaiba, Parana, and Chaco basins. These basins

are.filled with a thick sequence of non-magnetic and Bouguer gravity

anomalies. An exception is the Parana basin in which positive magnetic

anomalies occur which are associated with a thick sequence of Parana

basalts. In general, grabens or aulacogens, underlying the large basins

.(Amazon and the southern part of Chaco basins) or in the shield (Takatu

rift valley), are characterized by magnetic minima and gravity maxima

(Figures 1 and 2).

The central and southern portion of the South American platform

is undistinguished by any notable variations in crustal thickness. The

average thickness of the crust throughout this region is approximately

42 km, which is typical of stable platform and shield areas; the crust

may thicken slightly to the north. (The crust beneath the Chaco basin

and surrounding areas has not been sampled adequately, however.) The

average regional crustal shear wave velocity falls within a range of

3.65 to 3.70 km7s. The pattern of filtered free-air gravity anomalies

across the central and southern platform indicate that the entire region

is broadly in isostatic equilibrium, as would be expected in a large

area of uniformly thick crust. Strongly positive magnetic anomalies

occur over the Central Brazilian shield and over the northern and southern

Atlantic shield; an intense negative magnetic anomaly occurs over the



Central Atlantic shield. The southern portion of the platform is char-

acterized by an irregular pattern of slightly negative magnetic anomalies.

The pattern of magnetic anomalies over the southern and central South

American platform does not seem to be associated with variations in

crustal thickness, but appears to be related to lithological variations

within the crust of the platform. The intense magnetic anomaly over

the central Atlantic shield may, for instance, be attributable to thermo-

tectonic reactivation of the crust prior to or during the rifting of

South America from Africa.

Two major trends in crustal thickness dominate the crustal structure

of the northern South American platform (Figure 3). An east-west trending

zone of thickened crust (slightly thicker than 50 km) exists beneath

nearly all of northern Brazil. This crustal zone is characterized by

average crustal shear wave velocities of at least 3.81 to 3.95 km/s,

which implies that in addition to being thick, the crust is more dense

than average. The northwestern lobe of the South American platform

is underlain by a hook-shaped zone of thinned crust (slightly thinner

than 35 km) that roughly parallels the curve of the Andean Cordillera.

The average crustal shear wave velocity in this region is poorly defined,

but probably falls within the range of 3.70 to 3.77 km/s. The pattern

of filtered free-air gravity anomalies over the northeastern platform

is very similar to that of the central and southern platform. However,

unlike the other intracratonic basins of the South American platform,

the Amazon basin is not characterized by a distinct free-air low, although

it correlates with a negative Bouguer anomaly where data are available.

The slight negative anomaly which lies over the eastern lobe of the

Guyana shield is also unusual. A distinctive pair of interconnected

magnetic lows covers part of the northeastern platform. One of these



anomalies is centered over the eastern Amazon basin and extends out

into the Atlantic Ocean; the other is centered over the intersection

of the trend of the Takatu aulacogen with the central Amazon basin and

cuts across much of the southern Guyana shield (particularly the eastern

lobe). The area covered by these negative magnetic anomalies corresponds

with the zone of thickened crust beneath northern Brazil, suggesting

that a relationship exists between the two features. Perhaps the zone

of thickened crust (and low elevation) represents a subsided rift cushion.

. A ridge-like free-air gravity high (greater than 40 mGals) covers

much of the low-lying, sedimentary rock-covered transition zone between

the Andean Cordillera and the Amazon basin and Guyana shield, over the

northwestern South American platform. The western lobe of the Guyana

shield is also characterized by a slight free-air gravity high. These

anomalies could be a reflection of the zone of thinned crust mapped

beneath the area. A distinctive negative magnetic anomaly lies over

the central part of the transition zone, at the intersection of the

trend of the Amazon basin with the Andean Cordillera. The relationship

of this anomaly to the zone of thinned crust is not clear. The magnetic

anomaly could be due to the extensive sedimentary cover of the region,

to a fundamental lithological difference in the crust, or to remnant

thermal activity.

The Andean Cordillera constitutes the entire western margin of

South America with rocks dating from the Precambrian to recent time.

It is a region of strong seismicity and volcanism. A relatively narrow

belt of thick crust is present beneath the trend of the Andean Cordillera

along the western coast of South America. This belt thins gradually

southward beneath the Central Andes, and rather abruptly northward beneath

the Northern Andes. The crust thickens dramatically beneath the bend in



the mid-Central Andes at latitude 18° South, reaching thicknesses greater

than 70 km. The crust also thickens beneath the Northern Andes of western

Colombia. Positive free-air gravity anomalies are related to the Andean

Cordillera. The most intense of these anomalies is correlative with

the sharp bend in the Central Andes. The relationship of the MAGSAT

scalar anomalies to the Andes is much less definitive, but a major magnetic

minimum is associated with the above mentioned positive anomaly. This

is the portion of the Andes with the maximum regional uplift of the

surface, the greatest Moho depths and steepest dip of the Benioff zone

associated with subduction of the Nazca plate. It also coincides with

the location of major recent volcanism. The smaller free-air gravity

high over the mid-Northern Andes does not seem to be related either

to the elevation of the cordillera or the presence of a crustal root.

The anomaly may, howevers be caused by the zone of dense3 shallow oceanic

crust that lies between the Central Cordillera and the Pacific coast

of Colombia.

Longacre et aT._ (1981) and Hinze £t jil_._ (1982) show statistically

that the magnetic data over the continental areas of South and Central

America are more magnetic and magnetically more variable than the adjacent

marine areas. The former observation is compatible with evidence that

suggests that the seismic Moho is a magnetic boundary and that the upper

mantle is only weakly magnetic. The more variable magnetization of

the continents reflects their long and complex geologic history which

has led to strong horizontal magnetic polarization variations in the crust.

The Caribbean Sea and the Gulf of Mexico are underlain by prominent

magnetic minima (Lidiak £t al_̂ , 1983). Within these oceanic areas,

linear magnetic highs correlate with topographic ridges which separate

the Gulf of Mexico, the Colombian Basin, and the Venezuelan basin. The



8

boundaries of the Caribbean plate occur along magnetic gradients. The

gradients are particularly sharp along the northern and western margins

of the plate, but are gradational along the southern margin where they

merge with anomalies associated with the Andean Cordillera.

To obtain further insight concerning the relationships between

regional South American tectonic features and geopotential field satellite

anomalies, the Euro-African MAGSAT data were investigated. Specifically,

satellite (MAGSAT) scalar magnetic anomaly data were compiled and dif-

ferentially reduced to radial polarization (Figure 4) for comparison

with tectonic data of Africa, Europe and adjacent marine areas (Olivier

et al_., 1982 and 1983; Hinze e^al^, 1983; von Frese et aK.> 1983).

These studies demonstrated a number of associations to constrain analyses

of the tectonic features and geologic history of the region. Rift zones

and aulacogens, for example, tend to be magnetically negative. The

most intense positive anomaly of the region is the Bangui anomaly which

has been interpreted as due to a deep crustal positive magnetization

source. There are no near-surface sources which will explain this anomaly.

By contrast, the next most intense positive anomaly is over the Kursk

region in the Russian Ukraine. This anomaly extends 450 km in a northeasterly

direction and is roughly 150 km wide, and is caused according to aero-

magnetic anomaly interpretations by near-surface, intensely magnetic

ferruginous quartzites. Apparently, there is sufficient long-wavelength

energy in the superimposed near-surface anomalies for them to be observed

at satellite elevations. The Precambrian shields of Africa and Europe

exhibit varied magnetic signatures. All shields are not magnetic highs

and, in fact, the Baltic shield is a marked minimum. The reduced to

the pole magnetic map shows a marked tendency for northeasterly striking

anomalies in the eastern Atlantic and adjacent Africa, which is coincident



to the track of several hot spots for the past 100 million years. However,

there is little consistency in the sign of the magnetic anomalies and

the track of the hot spots. Comparison of the radially polarized anomalies

of Africa and Europe with other reduced to the pole magnetic satellite

anomaly maps of the Western Hemisphere (Figure 5) support the reconstruction

of the continents prior to the origin of the present-day Atlantic Ocean

in the Mesozoic Era.

To illustrate the utility of satellite magnetic data in characterizing

the properties and structure of the lithosphere, magnetic modeling of

the Amazon River and Takatu aulacogens in northeastern South America

(Longacre et £!_._, 1982) and the Mississippi Embayment (von Frese, 1982

and 1983) were undertaken. For the Amazon River and Takatu aulacogens,

reduction of MAGSAT scalar magnetic anomaly data to an equivalent condition

of vertical polarization shows these tectonic features generally correlated

with magnetic anomaly minima. Surface gravity data demonstrate a correlative

positive anomaly. Spherical earth modeling of the magnetic data indicates

a less magnetic crust associated with the aulacogens which is compatible

with previous studies over the Mississippi River aulacogen and Rio Grande

rift in North America.

For the Mississippi River aulacogen, spherical earth inversion

analysis of free-air gravity, U.S. Naval Oceanographic Office aeromagnetic,

and satellite (POGO, MAGSAT) magnetometer data show the Embayment to

be characterized by regionally positive gravity and negative magnetic

anomalies. Incorporating constraints developed from seismic refraction

and surface-wave dispersion studies of the region with Gauss-Legendre

quadrature potential field modeling suggests that the regional gravity

and magnetic anomalies may be related to a rift zone along the axis

of the Embayment which defines a non-magnetic block of high density
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material within the lower crust. The decreased magnetization of this

component may be due to reversed magnetic remanence, an intra-lithologic

variation, or an upwarp of the Curie isotherm.

To assess the crustal component in satellite data, POGO and preliminary

MAGSAT magnetometer data were compared with the scalar aeromagnetic

data obtained by the U.S. Naval Oceanographic Office (NOO)—Vector Magnetic

Survey of the conterminous U.S.A. (von Frese ejt afl_., 1982; von Frese

and Hinze, 1982). POGO and preliminary MAGSAT data demonstrate remarkable

consistency, but the NOO data spherically upward continued by equivalent

point source inversion are dominated by long-wavelength (s 1000-3000 km)

anomalies which are not present in the satellite anomaly data. However,

upon removal of these long-wavelength anomalies from the upward continued

NOO data, a close comparison observed between the anomalies verifies

that satellite magnetic anomalies do portray the crustal component within

a range of wavelengths from roughly 1000 km down to the resolution limit

of the observations.

Finally, to avoid potential problems and smoothing of the MAGSAT

scalar anomaly data by using the 2° ̂ averaged data, a scalar anomaly

data set of South America has been prepared directly from the investigator

tapes. The procedure used which was developed with resources independent

of this contract involved selecting orbital profiles observed when K

values were 3 or less. In addition, the magnetic effect of the equatorial

electrojet was minimized by screening profiles for a large "y" component

and using only dawn profil-es. Furthermore, the NASA ring current correction

was applied to the data. Finally, all data were wavenumber filtered

between 0.25 deg and 0.02 deg~ with a Butterworth filter. Analyses

of 25 sets of 3 essentially coincident profiles showed that maximum

correlation of coincident, redundant, profiles was obtained using a
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minimum low-cutoff of 0.02 deg~ . The resulting data set minimizes

geologic anomalies which have dimensions exceeding roughly 2900 km,

but it also has minimum disturbance from temporal variations in the

geomagnetic field. The data set has been processed by equivalent point

source inversion (Longacre et al., 1981; Hinze et al._, 1982) taking

into account the variable elevation of the data points. The resultant

map is shown in Figure 6. This map will be used in subsequent analysis

of MAGSAT scalar magnetic anomalies over South America, Central America

and associated marine areas.
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Figure 1. Reduced-to-pole MAGSAT scalar magnetic anomalies at 350 km
over South America with major tectonic features. Contour interval
is 2 nT.
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Figure 2. Free-air gravity anomaly at 350 km over South America with
major tectonic features. Contour interval is 20 mGal.
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Figure 3. Depth to Moho from published data and surface-wave analysis.
Contour interval is 5 and 10 km.
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Figure 4. Reduced-to-pole MAGSAT scalar magnetic anomalies at 400 km
elevation over Euro-Africa. Contour interval is 2 nT.
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Figure 5. Partial reconstruction of the continents using reduced-to-
pole satell i te scalar magnetic anomalies.
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Figure 6. Bandpassed filtered (4° < \ < 50°) MAGSAT scalar magnetic
anomalies at 350 km over South America. Contour interval is 2 nT.
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Reprints of published articles,
expanded abstracts and abstracts.



REGIONAL MAGNETIC AND GRAVITY ANOMALIES OF SOUTH AMERICA

W.J. Hlnre, R.R.B. von Fresc, M.B. Longacre , and L.W. Braile

Department of Geosciences, Purdue University, West Lafayette. IN 47907

E.G. Lldlak

Department of Eiirtli and Planetary Sciences, University of Pittsburgh, Pittsburgh, PA 15260

G.R. Keller

Department of Geological Sciences, University of Texas at El Pasoj El Paso, TX 79968

Abstract. Preliminary satellite scalar mag-
netic anomaly data (MAGSAT) reduced to vertical
polarization and long-wavelength-pass filtered
free-air gravity anomaly data of South and Central
America are compared to major tectonic features.
A number.of correlations are observed, but these
must be generalized because of the preliminary
nature of the geophysical data and the inherent
petrophysical variations within tectonic features.
Statistical analysis of the magnetic data reveals
that South and Central America are more magnetic
and magnetically more variable than adjacent
marine areas. More obvious correlations exist
between magnetic anomalies and tectonic elements
of the continents than in the case of oceanic
areas. No obvious correlations occur between
the tectonic features of the Atlantic Ocean,
Including the Mid-Atlantic Ridge, and magnetic
anomalies. The continental shields generally
are more magnetic than adjacent basins, oceans
and erogenic belts. In contrast, the major
aul.icogcns arc characterized by negative mag-
netic anomalies. Positive free-air gravity
anomalies are related to the Andean Foldbelt,
but the relationship of this feature to magnetic
anomalies is much less obvious. However, along
the west coast of South America, the magnetic
anomalies of the Pacific Ocean are separated
from those of the eastern platforms by north
to northwest trending anomalies. South of the
equator along the Foldbelt. gravity maxima are
related to magnetic minima, a relationship '
analogous to the situation observed In the Rocky
Mountain Cordillera. North of the equator in
Columbia, gravity and magnetic maxima roughly
correlate along the Foldbelt.

Introduction

A wide variety of significant geologic pro-
blems are represented by the complex geological-
geophysical setting of South and Central America
and adjacent marine areas. This region includes
tectonically active areas, a number of litho-
spherlc plates, advancing and trailing plate mar-
gins, hotspots, aulacogens, strong contemporary
seismicity and volcanism, well-delineated metal-

U)Now at Sohlo Petroleum Company, 100 Pine
St., San Francisco, CA 94111

Copyright 1982 by the American Geophysical Union.

Paper number 2L0344.
0094-8276/82/002L-0344$3.00

logenic zones in the Cordillera, and a complex
mineral-rich Precambrian shield.

Long-wavelength magnetic and gravity anomalies
and their correlations provide the opportunity to
investigate the regional relations of these fea-
tures. For the South America region, potential '
field anomaly compilations are especially impor-
tant to megatectonic investigations because of
access problems which linlt surface geologic and
geophysical mapping.

Accordingly, preliminary 2"-averaged satel-
lite magnetic anomaly values derived from the
recent MAGSAT mission are compiled for South
America. These data are differentially reduced
to the pole (vertical magnetic polarization)
for comparison with tectonic data and surface
free-air gravity anomalies upward continued to
satellite elevations. Finally, visual spatial
correlations between the regional magnetic and
gravity anomalies and tectonic 'data are con-,
sidered in the context of their potential geo-
logical significance.

Data Sources and Preprocessing

The satellite magnetic anomalies used in this
investigation are compiled from a preliminary
scalar MAGSAT data set from observations made
during "quiet day" periods of low temporal mag-
netic variations. The data set is based upon the
average areal value of data taken below 400 km
with an average elevation of approximately 350 km.
An average of 12 data points with a range from 3
to 32 points per 2° area were used to calculate
the average values. The preliminary geomagnetic
reference field model KC680982 developed by NASA-
GSFC was used to remove the geomagnetic core field
component of the data. Comparison of this pre-
liminary MAGSAT data set with POGO magnetic anom-
alies [Langel, 1979] shows excellent consistency
over South America. A subset of these preliminary
global MAGSAT data was compiled for the region
(99°W-21'W), (45'S-33*N) and differentially re-
duced to the pole by least squares matrix inver-
sion (von Frese et al., 1981aJ on a spherical
earth using the ICS-75 field updated to 1980 and
an inducing field of 6O.OOO nT (Fig. 1).

Surface I'-grldded free-air gravity anomalies
for the South America region were compiled from
measured and predicted continental data, satel-
lite derived oceanic values, shipbome measure-
ments and interpolated values. Continental values
were obtained from the free-air gravity map of
South America provided by the Defense Mapping
Agency Aerospace Center which includes observed
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Fig. 1. Equivalent point source field approxi-
mation of 2e-averaged scalar HAGSAT magnetic
anomaly data differentially reduced to radial
polarization at 350 km elevation. The normalized
amplitude for the polarizing Induction field is
60,000 nT. Contour interval is 2 nT.

values, as veil as some predicted values [Woollard
and Strange, 1966] largely based on geologic and
topographic considerations. Oceanic free-air
gravity values were derived principally from
CEOS-3 geodetic satellite altimetry data converted
to gravity values (Rapp. 1979].

To enhance the longer wavelength components
of the l*~gridded free-air gravity anomalies,
as well as to facilitate subsequent Inversion
processing, the data set was long-wavelength-
pass filtered for wavelengths greater than roughly
6* (Fig. 2). For comparison with the satellite
magnetic anomalies, the filtered gravity data set
vas upward continued to 350 km elevation (Fig. 3)
by equivalent point source inversion.

To facilitate comparisons between potential
field anomalies and tectonic features, a regional
tectonic map of Latin America is presented in
Figure A which emphasizes features with wave-
lengths of the order of 200 km or greater
[Longacre. 1981]. The South American Platform,
the largest and geologically oldest of the major
tectonic subdivisions, Includes continental ter-
rain east of the Andean Foldbelt and north of
about 35°S latitude. It consists of Precambrian
basement rocks which in places are overlain un-
conformably with sedimentary and volcanic rocks
of Silurian and younger age. The Patagonian
Platform with basement rocks of Middle Paleozoic
age includes the continental region of South
America south of roughly 35*S and ciist of the
Andes. These basement rocks are largely masked
by a volcanic-sedimentary rock cover thnt devel-
oped after the Carboniferous. The Andean Cor-
dillera constitute the entire western margin of

South America with the northern portion merging
into the Caribbean tectonic complexes. This
foldbelt consists of rocks dating from the Pre-
cambrian to recent time and contains areas of
strong selsmlcity and volcanlsm, as well as some
of the richest metallogenic cones in the world.

Magnetic and Gravity Anomaly -
Tectonic Observations

A number of interesting associations between
regional tectonic features and magnetic and free-
air gravity anomalies are evident by comparing
Figures 1 through 4. However, the correlations
are seldom exact and are not universal because of
the limited resolution and potential Imprecision
of the averaged and preliminary nature of the
magnetic data set, the limited gravity observation
coverage and the Inherent petrophysical variations
within the tectonic elements. In the most re-
gional sense there appears to be a relationship
between satellite magnetic anomalies and contin-
ental areas (Fig. 1). The magnetic anomalies of
the continent are observed to be more positive and
more variable than the oceanic anomalies. This is
particularly evident in Central America. In an
attempt to quantify this subjective observation,
the continental and oceanic magnetic data sets
were separated and statistically analyzed. The
frequency distribution of the oceanic and contin-
ental magnetic anomaly amplitudes (Fig. 5) reveals
the mean of the oceanic anomalies is -0.9 nT and
that of the continents, including the continental
shelf, is -K).7 nT, vith the continents having a
higher standard deviation. A variance test (F
test) and a mean test indicate that the oceanic
and continental anomalies represent two signifl-

SOS-'

2. Long-wavelength-pass (X > 8°) filtered,
surface free-air gravity anomaly map of South
America and adjacent areas. Contour interval is
20 mgals.
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cuntly different populations .-it tin- 'J9Z .-mil 99.9?
level of significance respectively. Thus, these
preliminary results suggest that the continents
are core magnetic and variable in their magneti-
zation than the oceans. The former is compatible
with the conclusions reached by Wasilewski et al.
[1979] that the seismic Mohn can be a magnetic
boundary and the upper mantle only weakly magnetic.
The more variable magnetization of the continents
presumably reflects their long and complex geo-
logic history which has led to strong horizontal
magnetic polarization variations in the crust.

The strikes of the smoothed surface free-air
gravity anomalies (Fig. 2) generally are consis-
tent with tectonic trends. However, at 350 km
elevation the gravity data (Fig. 3) have a de-
cidedly north to northwest trend which reflects
the dominating effects of the Andean Foldbelt and
the features of the eastern margin of the Carib-
bean Plate at the longer wavelengths. The satel-
lite magnetic data (Fig. 1) by contrast exhibit
prorinent east-west trends which, although con-
sistent with tectonic features, may also be re-
lated to processing noise derived from data reduc-
tion efforts to correct for external magnetic
field effects, especially in equatorial latitudes
[Regan et al.. 1981]. In both geophysical data
sets, the leading edge of the South American
Plate marks an effective boundary between Pacific
anomalies of the Nazca Plate and continental anom-
alies of South America. The trailing edge, by
contrast, is characterized by gravity and magnetic
anomalies which commonly extend across the eastern
.continental margin of South America into the
Atlantic Ocean.

The major shield areas of South America -
Guiana. Central Brazilian, Sao Luiz Craton, Sao

• -MM

JO*-
-SON

90S •MS

Fig. 3. Free-air gravity anomaly map of South
America (Fig. 2) upward continued to 350 km
elevation by equivalent point source inversion.
Contour interval is 5 meals.

Fig. 4. Generalized tectonic divisions of South
America and adjacent areas. Si - Guiana Shield,
S2 - Central Brazilian Shield, S3 - Sao Luiz
Craton. Si, - Sao Francisco Craton, Ss - Patagonian
Platform, BI - Amazon River Basin, Bj - Parnaiba
Basin, Bj - Parana Basin, and B* - Chaco Basin.

Fransicso Craton and the Patagonian Platform (Fig.
4) - are associated with positive magnetic anom-
alies and no definitive gravity anomalies. In
contrast, many of the intra-cratonic basins -
Amazon River, Parana, Parnaiba and Chaco (Fig.
4) - are related to negative magnetic anomalies.
The Takatu, Amazon River, and Sao Luiz aulacogens
also are associated with negative magnetic anom-
alies that correlate with local positive gravity
anomalies. This inverse correlation of anomalies
also is observed for the Mississippi Embayment
aulacogen where the source of these anomalies has
been attributed to either an intra-layer lltho-
logic variation or upwarp of the Curie isotherm
In the lower crust [von Frese et al., 1981b].
The major tectonic break between the Chaco Basin
and the Patagonian Platform to the south appears
as a linear magnetic high which extends into the
Andean Foldbelt.

The Andean Foldbelt is dominated by positive
gravity anomalies (Figs. 2 and 3). The correla-
tion of magnetic anomalies (Fig. 1) with this tec-
tonic zone is much less obvious and more variable.
However, in a general way the magnetic anomalies
of the eastern Pacific Ocean are separated from
those of the eastern platforms by north to north-
west anomaly trends. South of the equator an in-
verse relationship exists between' positive gravity
and negative magnetic anomalies. This relation-
ship is consistent with observations by von Frese
et al. [1982] for the North American Cordillera.
where this inverse correlation may result from re-
gionally higher temperature associated with geo-
dynamic processes which produce thinned crust,
mantle intrusives and an inflated elevation that
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Fig. 5. Frequency distributions for oceanic and
continental radially polarized MAGSAT magnetic
anomaly data at 350 km elevation for South America
and" adjacent areas.

may not be isostatically compensated. A parallel
zone of negative gravity and positive magnetic
anomalies occurs along the eastern flank of the
Andean Foldbelt. Similar inverse relationships,
observed for continental regions east of the North
American Cordillera are shown by seismic evidence
to be characterized by thickened crust [von Frese
et al., 1982]. This zone is bordered farther
eastward by a less obvious linear trend of posi-
tive gravity and negative magnetic anomalies
that includes the western flank of the Central ,
Brazilian Shield.

Potential field anomalies along the Andean
Foldbelt and Central America roughly north of
the equator, in general, show direct correlation
between positive gravity and magnetic anomalies.
The large positive free-air gravity anomaly over
Columbia correlates with a linear ophiolite
(greenstone) sequence. Seismic refraction
measurements in western Colombia indicate higher
velocities and density for the rocks associated
with this gravity anomaly [Meyer et al., 1973).
Further evidence for the mafic character of these
rocks is suggested by the corresponding positive
satellite magnetic anomaly which characterizes
the region as a zone of enhanced magnetization.

The adjacent marine areas also demonstrate a
variety of associations between potential field
anomalies and tectonic features that can be useful
for understanding the geologic characteristics and
history of the area. The Pacific Ocean region,
for example, generally exhibits a pattern of in-
verse correlations between the potential field
anomalies with ridges and rises occurring along
the flanks of the regional anomalies. The Gulf
of Mexico and the Caribbean Sea are gravity and
magnetic minima, although the correlation is in-
exact particularly because of a gravity ridge
which separates the Columbian and Yucatan'Basins.
Potential field anomalies over the Atlantic Ocean
adjacent to South America are inconsistent and

lack correlation to trends of tectonic features
including the Mid-Atlantic Ridge.

Although these complicated anomaly patterns
mirror a complex assortment of crustal structures
and lithological variations, they also undoubtedly
reflect the preliminary character of the data sets
used in this study. Efforts currently are under-
way to develop an improved set of MAGSAT scalar
and vector magnetic anomaly data for geologic
analysis and modeling. In consideration of the
correlations demonstrated by this preliminary in-
vestigation, these efforts are anticipated to
significantly enhance our understanding of the
structure, dynamics and geologic history of the
crust and upper mantle of South America.
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EURO-AFRICAN MAGSAT ANOMALY-TECTONIC OBSERVATIONS

W.J. Hinze - Purdue University; R. Olivier - University of Lausanne;
and R.R.B. von Frese - Ohio State University

Preliminary satellite (MAGSAT) scalar magnetic anomaly data are

compiled and differentially reduced to radial polarization by equivalent

point source inversion for comparison with tectonic data of Africa, Europe

and adjacent marine areas. A number of associations are evident to constrain

analyses of the tectonic features and history of the region. Rift zones
«

and aulacogens, for example, tend to be magnetically negative. The most

intense positive anomaly of the region is the Bangui anomaly which has

been interpreted as due to a deep crustal positive magnetization source.

There are no near-surface sources which will explain this anomaly. By

contrast, the next most intense positive anomaly is over the Kursk region

in the Russian Ukraine. This anomaly extends 450 km in a northeasterly

direction and is roughly 150 km wide, and is caused according to aero-

magnetic anomaly interpretations by near-surface, intensely magnetic

ferruginous quartzites. Apparently there is sufficient long-wavelength

energy in these near-surface anomalies for them to be observed at satellite

elevations. The Precambrian shields of Africa and Europe exhibit varied

magnetic signatures. All shields are not magnetic highs and, in fact,

the Baltic shield is a marked minimum. The reduced to the pole magnetic

map shows a marked tendency for northeasterly striking anomalies in the

eastern Atlantic and adjacent Africa, which is coincident to the track

of several hot spots for the past 100 million years. However, there

is little consistency in the sign of the magnetic anomalies and the track

of the hot spots. Comparison of the radially polarized anomalies of
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Africa and Europe with other reduced to the pole magnetic satellite anomaly

maps of the western Hemisphere support the reconstruction of the continents

prior to the origin of the present-day Atlantic Ocean in the Mesozoic

Era.

Presented at the XVIII IUGG General Assembly, Hamburg, Germany, 1983.



27

CORRELATION OF TECTONIC PROVINCES OF SOUTH AMERICA
AND THE CARIBBEAN REGION WITH MAGSAT ANOMALIES

E.G. Lidiak, D.W. Yuan - University of Pittsburgh; W.J. Hinze,
M.B. Longacre - Purdue University; and G.R. Keller - University of Texas
at El Paso

Intensities of satellite scalar magnetic anomaly data (MAGSAT) correlate

with the main tectonic provinces of South America and the Caribbean region.

Magnetic anomalies of the continents generally have higher amplitudes

than oceanic anomalies. This is particularly evident in Central America
*

and in the shield areas of South America. The Caribbean Sea and Gulf

of Mexico are underlain by prominent magnetic minima. Within these oceanic

areas, linear magnetic highs correlate with topographic ridges which

separate the Gulf of Mexico, the Colombian Basin, and the Venezuelan

Basin.

South America is divisible into a broad craton of Precambrian shields

and platforms separated by Phanerozoic basins, grabens and aulacogens

to the east, the Phanerozoic Patagonian platform to the south, and the

Mesozoic to Cenozoic Andean foldbelt and Caribbean Mountain system to

the west and north. The continental shields are mainly more magnetic

than continental basins and erogenic belts. This is particularly true

of the Guyana shield, the Central Brazilian shield, and parts of the

Atlantic shield, all of which are coincident with magnetic highs. The

Amazon basin (aulacogen) in contrast is associated with large magnetic

lows. Other basins coincide either with magnetic lows or magnetic gradients.

Platforms, mainly covered by younger sedimentary rocks, are generally

associated with magnetic gradients. Most of the anomalies associated

with the Patagonian platform are positive and the gradients have higher

amplitudes east of the Andean foldbelt. The northern Andes are
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coincident with positive magnetic anomalies, whereas the central and

southern Andes are associated mainly with negative anomalies.

The boundaries of the Caribbean plate occur along magnetic gradients.

The gradients are particularly sharp along the northern and western margins

of the plate, but are gradational along the southern margin where they

merge with anomalies associated with the Andean Cordillera. The anomalies

along the western margin of the South American plate are also distinct

and appear to be separate from those of the adjacent ocean basin. In

contrast, eastern South America is characterized by magnetic anomalies

which commonly extend into the Atlantic Ocean.

Presented at the 10th Caribbean Geological Conference, Cartagena, Colombia,
August, 1983.
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A SATELLITE MAGNETIC MODEL OF NORTHEASTERN SOUTH AMERICAN AULACOGENS

M.B. Longacre^ ', W.J. Hinze-and R.R.B. von Frese

Department of Gcosciences, Purdue University, Vest Lafayette, IN 47907

Abstract. Magnetic modeling of the Amazon
River and Takatu Aulacogens in northeastern South
America illustrate the utility of satellite mag-
netic data in characterising the properties and
structure of the lithosphere. Specifically,
reduction of preliminary MACSAT scalar magnetic
ancnaly data to an equivalent condition of verti-
cal polarization shows a general correlation
between magnetic anomaly minima and the Amazon
River and T.ikatu Aulacogens. Surface gravity
data demonstrate a correlative positive anomaly.
Spherical earth modeling of the magnetic data
indicates a less magnetic crust associated with
the aulacogens which is compatible with previous
studies,over the Mississippi River Aulacogen and
Rio Grande Rift in North America.

Introduction

South America is particularly significant to
regional geophysical investigations because it
affords opportunities for integrated analysis of
a broad range of geologically interesting tectonic
features. However, surface acquisition of the
necessary data for these .studies frequently is
inhibited due to the vast areas involved and pro-
blems of access. Hence, satellite geophysical
data, such as the magnetic anomaly values obtained
from MACSAT, are especially useful in providing
information for developing lithospheric models
of aajor South American tectonic features.

A preliminary set of scalar MACSAT data is
utilized to investigate the magnetic structure
and properties of the Takatu and Amazon River
Aulacogens in northeastern South America pre-
viously recognized by Burke (1978]. The magnetic
data are derived from preliminary 2"-averaged
scal.ir yjVGSAT magnetic anomaly values which Hinze
et al. 11982] have reduced to the pole (equiva-
lent vertical polarization) by equivalent point
source inversion [von Frese et al., 1981a]. This
radially polarized form of the anomaly data elimi-
nates uncertainties in Interpretation caused by
the inclination and intensity of the earth's mag-
netic field which induces magnetization in the
1 iihosphcrc at depths shallower tli.in the Curie
point isotherm of magnetic minerals. This
procedure assumes the anomalous magnetic field is
caused only by magnetization in the direction of
the earth's magnetic field nnd the inducing field
strength is 60,000 nT.

Kinze et al. [1982] present a description of
the reduced to radial polarization MAGSAT scalar
magnetic anomaly map and its qualitative correla-
tion with regional gravity anomalies and tectonic

(l)Now at Sohio Petroleum Company, 100 Pine
St., San Francisco, CA 94111

Copyright 1982 by the American Geophysical Union.

l':ipcr nualuT 21.0343.
009i-32/6/?2/002L-0343$3.00

features. A number of interesting correlations
are observed, but they are generalized due to the
preliminary nature of the geophysical data and
the inherent variations of the petrophysical pro-
perties of the tectonic features. One of the more
interesting correlations is the approximate spa-
tial coincidence between the Amazon River and
Takatu Aulacogens and magnetic anomaly minima
shown in Figure 1. In the original 2°-averaged
MAGSAT data set, prior to reduction to radial
polarization, these correlative anomalies were
positive and complicated by their location near
the magnetic equator and the spatially rapidly
varying magnetic field.

Relationship of Aulacogens to Geophysical Pata

The aulacogens (failed-rifts), which originated
in late Permian-early Jurassic time during the
breakup of the continent of Pangea, are char-
acterized by deep sedimentary troughs with near
vertical faulting and associated basaltic intru-
sions. The troughs occur roughly perpendicular
to the South American platform margin. They are
associated with relative positive Bouguer gravity
anomalies (Fig. 2) presumably related to the
basaltic intrusions.

. A similar anomaly relationship Is observed
over the younger, still active. Rio Grande Rift.
Mayhew and Majer [1980] have discussed the satel-
lite magnetic anomaly minimum associated with this
rift. They suggest that the rift, which has a
correlative free-air gravity positive anomaly
over the southern extent of its length, is re-
lated to a decrease in the relative thickness of
the magnetic crust caused by an upwarped Curie
isotherm. However, this origin for the magnetic
minima in northeast South America seems unlikely
because of the great length of time since the
formation of the aulacogens.

A similar inverse relationship between the mag-
netic anomaly minimum observed at satellite eleva-
tions by the Polar Orbiting Geophysical Observa-
tory (POGO) and positive surface free-air gravity
data has been observed over the Mississippi Embay-
ment by von Frese ct al. [1981a]. The embayment
is a broad, spoon-shaped basin of Mesozoic and
Cenozoic sedimentary rocks which extends into the
North American craton from the Gulf Coast. Ervin
and McGinnis 11975] suggest on the basis of gra-
vity, crustal seismic, and geologic data that the
embayment is the site of a late Precambrian aula-
cogen which was reactivated in late Cretaceous
time by tensional forces initiated during the
formation of the present Atlantic Ocean, von
Frese et al. [1981b; 1931c) present a quantitative
crustal model which duplicates the observed mag-
netic and gravity anomalies. Several origins
are postulated [von Frese et al., 1981c] for sat-
isfying the negative magnetic anomaly including:
1) Strong reversed magnetization of intrusives
Into the lower crust which were emplaced during
the rifting process, 2) petrologlc variations be-

318



30

60W SOW

I OS

Fig. 1. Radially polarized magnetic anomaly nap
of northeastern South America derived from MAGSAT
scalar data at an average elevation of 350 km.
An inducing field of 60,000 nT is assumed. Con-
tour interval is 2 nT. The locations of the
Amazon River (A) and Takatu (T) Aulacogens are
generalized from Burke [1978], de Almeida [1975]
and Potter [1978].

tveen the normal lower crustal rock, which is
generally highly magnetic, and the Intrusions
into the crust from the mantle, and 3) increased
temperatures in the embayment region which raises
the Curie point isotherm from a normal position
near the base of the crust to within the crust,
thereby decreasing the overall magnetization of
the crust.

In general, little evidence currently is avail-
able to support or discriminate between these
hypotheses for the crustal structure of the embay-
ment. Furthermore, other studies by Mayhew ct al.
11980] in Australia and globally by Frey [1979]
indicate the rifts and aulacogens are not univer-
sally represented by negative satellite magnetic
anomalies. Hence, it appears that aulacogens and
rifts are manifested in a variety of ways within
the magnetic crust, where their variable geophysi-
cal signatures may provide clues for understanding
their origin and subsequent geologic evolution.

Spherical-Earth Modeling of Aulacogens

A three-dimensional, spherical earth model of
the aulacogens was developed using a Gauss-
Legend re quadrature integration technique (von
Frese et al., 1981b] and radially polarized scalar

magnetic anomaly data. The magnetic model (Fig.
3) consists of simplified spherical prisms which
produce an anomaly comparable to the observed
data at 350 km elevation.

The three positive anomalies. A, D, and E. of
Figure 3 represent the Guiana and Central Brazil-
ian Shields by the prisms illustrated which have
a relative anomalous magnetization of 2 A/m be-
tween depths of 10 to 50 km. These model para-
meters are consistent with the arguments of
Wasilewski et al. [1979] that suggest sources of
long-wavelength magnetic anomalies are concen-
trated in the lower crust which, in general. Is
substantially more magnetic than the upper crust.
Typical estimates of deep crustal magnetization
are on the order of 5 A/n [e.g.. Hall, 1974; Shuey
et al., 1973).

The magnetic anomaly minima associated with
the aulacogens are modeled approximately by prisms
B and C which respectively have relative anomalous
magnetizations of -4 A/m from 20 to 40 ka and
-3 A/m from 25 to 40 km'. However, the resolution
of sources by modeling is limited, thus anomalous
magnetization may be decreased with an increased
prism thickness and vice versa. The same limita-

IOS

Fig. 2. Bouguer gravity anomaly map of north-
eastern South America [Wilcox, 1981]. Contour
interval is 10 mgal, where shading indicates
anomaly values > -10 mgals. The locations of
the Amazon River (A) and Takatu (T) Aulacogens
are generalized from Burke [1978], de Almeida
[1978] and Potter [1978J.
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Fig. 3. Comparison at 350 km elevation of radially polarized magnetic anomalies derived from
scalar MAGSAT data over northeastern South America (A) and modeled magnetic anomalies (B) which
Includes location and characteristics of anomaly source models. Contour interval is 2 nT.

tion is present in considering the prism sources
of the positive magnetic anomalies. The sources
of the anomaly minima have been modeled with
prisms which approximate deficiencies in magneti-
zation in the lower crust associated with the
aulacogens similar to the model developed by von
Frese et al. [1981c] for the Mississippi Embayment
Aulacogen. The prism associated with the Takatu
Aulacogen does not have the linear character of
the aulacogen as delineated by Burke [1978] and
the Amazon River Aulacogen model includes a low
oagnetizatlon arm extending to the south from
the Amazon River. No correlative gravity anomaly
(Fig. 2) is observed with this south striking arm,
suggesting that its source is probably not re-
lated to the aulacogen.

Conclusions

Modeling procedures are used with MAGSAT anom-
alies to investigate the Takatu and Amazon River
Aulacogens o£ South America. Positive gravity and
negative magnetic anomalies characterize these
features analogous to the regional inverse cor-
relations observed for the Mississippi River and
Rio Grande Rift. Indeed, a synthesis of the pre-
liminary 2"-averaged MAGSAT data and deep crustal
magnetization information leads to a model that
compares favorably with Mississippi Embayment
Aulacogen model characteristics derived from POGO
anomaly considerations by von Frese et al. [1981b;
1981c].

In general, the models presented here are con-

sistent with the aulacogen hypothesis for the tec-
tonic origins of the anomalies. These results
suggest that an aulacogen may be characterized at
satellite elevations by observable negative mag-
netic anomalies related to the rift component that
defines a nonmagnetic block of material within the
lower crust. It should be emphasized, however,
that these models lead to a variety of interpreta-
tions which can only be discriminated on the basis
of auxiliary geological and geophysical informa-
tion.

Finally, although the preliminary character of
the 2*-averaged MACSAT data set used in this study
obviously limits the geological implications of
the models, these results clearly do indicate that
the MAGSAT data provide geologically reasonable
constraints for investigating the structure and
properties of regional lithospheric features.
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SATELLITE ELEVATION MAGNETIC AND GRAVITY
MODELS OF MAJOR SOUTH AMERICAN PLATE TECTONIC FEATURES

M.B. Longacre - Sohio Petroleum Company; R.R.B. von Frese - Ohio
State University; W.J. Hinze, L.W. Braile - Purdue University; E.G.
Lidiak - University of Pittsburgh; and G.R. Keller - University of Texas,
El Paso

Magsat scalar and vector magnetic anomaly data together with regional

gravity anomaly data are being used to investigate the regional tectonic

features of the South American Plate. An initial step in this analysis

is three-dimensional modeling of magnetic and gravity anomalies of major

structures such as the Andean subduction zone and the Amazon River Aulacogen

at satellite elevations over an appropriate range of physical properties

using Gauss-Legendre quadrature integration method. In addition, one

degree average free-air gravity anomalies of South America and adjacent

marine areas are projected to satellite elevations assuming a spherical

earth and available Magsat data are processed to obtain compatible data

sets for correlation. Correlation of these data sets is enhanced by

reduction of the Magsat data to radial polarization because of the profound

effect of the variation of the magnetic inclination over South America.

The results of the modeling and correlation of magnetic and gravity

anomalies are used with other regional geophysical data and geologic

information to illustrate the utility of satellite magnetic data in

characterizing the properties and structure of the South American Plate.

Presented at the 4th IAGA Scientific Assembly, Edinburgh, August 3-15, 1981
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REDUCED TO POLE LONG-WAVELENGTH
MAGNETIC ANOMALIES OF AFRICA AND EUROPE

R. Olivier - University of Lausanne; W.J. Hinze - Purdue University;
and R.R.B. von Frese - Ohio State University

To facilitate analysis of the tectonic framework for Africa, Europe
,a

and adjacent marine areas, magnetic satellite (MAGSAT) scalar anomaly

data are differentially reduced to the pole and compared to regional

geologic information and geophysical data including surface free-air

gravity anomaly data upward continued to satellite elevation (350 km)

on a spherical earth. Comparative analysis shows magnetic anomalies

correspond with both ancient as well as more recent Cenozoic structural

features. Anomalies associated with ancient structures are primarily

caused by intra-crustal lithologic variations such as the crustal disturb-

ance associated with the Bangui anomaly in west-central Africa. In

contrast, anomalies correlative with Cenozoic tectonic elements appear

to be related to Curie isotherm perturbations. A possible example of the

latter is the well-defined trend of magnetic minima that characterize

the Alpine erogenic belt from the Atlas mountains to Eurasia. In contrast,

a well-defined magnetic satellite minimum extends across the stable craton

from Finland to the Ural mountains. Prominent magnetic maxima characterize

the Arabian plate, Iceland, the Kursk region of the central Russian uplift,

and generally the Precambrian shields of Africa.

Presented at the American Geophysical Union Annual Meeting, Baltimore,
Maryland, 1983.
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SATELLITE MAGNETIC ANOMALIES OF AFRICA AND EUROPE

R. Olivier - University of Lausanne; W.J. Hinze - Purdue University;
and R.R.B. von Frese - Ohio State University

Preliminary satellite (MAGSAT) scalar magnetic anomaly data of Africa,

Europe, and adjacent marine areas have been reduced to the pole assuming

a.constant inducing earth's magnetic field of 60,000 nT. This process

leads to a consistent anomaly data set free from marked variations in

directional and intensity effects of the earth's magnetic field over
*

this extensive region. 'The resulting data are correlated with long wave-

length-pass filtered free-air gravity anomalies; regional heat flow,

and tectonic data to investigate megatectonic elements and the region's

geologic history. Magnetic anomalies are related to both ancient as

well as more recent Cenozoic structural features. The anomalies associated

with ancient structure primarily are caused by intracrustal lithologic

variations such as the crustal disturbance associated with the Bangui

anomaly in west-central Africa. In contrast, anomalies correlative with

Cenozoic tectonic elements appear to be primarily related to Curie isotherm

perturbations. A possible example of the latter is the well defined

trend of magnetic minima that characterize the Alpine erogenic belt from

the Atlas Mountains to Eurasia. Western Europe particularly is dominated

by the Alpine (?) magnetic minimum. Prominent magnetic maxima characterize

the Arabian plate, Scandinavia, Iceland, and the Kursk region of the

central Russian uplift. A well-defined satellite magnetic minima extends

from Finland across Russia to the Ural Mountains which correlates with

a heat flow minimum and increased crustal thickness.

Processed preliminary satellite (MAGSAT) scalar magnetic anomaly

data are useful in studying and providing constraints for the investigation

of the megatectonic features and geologic history of Africa, Europe, and
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adjacent marine areas. These studies are facilitated by the integration
/

of long wavelength-pass filtered free-air gravity anomalies, regional

heat flow, and tectonic data with the magnetic anomalies. The scalar

magnetic anomaly map shown in Figure 1 was derived from satellite observa-

tions acquired during "quiet day" periods of low temporal magnetic variations.

This data set, which was provided by NASA-GSFC, is based on average 2° x

2° areal measurements obtained at an average elevation of about 400 km.

The anomalous component was calculated by removing from the observed

data the core field magnetic effect., as defined by the preliminary reference

field model MG680982 developed by NASA-GSFC.

•XT to-

FKJ. 1. Total magnetic intensity anomaly map of Africa and Eu-
rope derived from Magsat satellite 2°-mean values at an average
elevation of about 400 km. Contour interval is 2 nT.

-zo*

FIG. 2. Equivalent point source field approximation of 2°-averaged
scalar Magsat magnetic anomaly data differentially reduced to
radial polarization at 400 km elevation. The normalized amplitude
for I he polarizing field is 60.000 nT. Contour interval is 2 nT.
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The region under investigation extends from mid-southern to high

northern latitudes and thus shows a wide range of geomagnetic field strength,

inclination, and declination. Hence, magnetic anomalies caused by induction

in the earth's magnetic field will have signatures considerably different

from the same source characteristics. To remove the effect of the highly

variable magnetic field, the data used to prepare Figure 1 were differentially

reduced to vertical (radial) polarization by equivalent point source

inversion.

•Least-squares matrix inversion was used to determine the magnetizations

of a spherically orthogonal array of dipoles, oriented in the magnetic

field defined by the updated IGS 1975 geomagnetic field model, that will

duplicate the observed scalar magnetic anomalies. The dipoles were located

on a 4 degree grid over the entire study region. To process this large

array and make the problem more tractable, the inversion was performed

on two independent sets of equivalent point sources. The process, which

may be termed boot-strap inversion, was initiated with inversion of point

sources over the southern half of the study area. The residual magnetic

field obtained by subtracting the model field from the anomaly field

was then inverted over a distribution of point dipoles in the remaining

half of the data set. This procedure yielded 744 point dipole sources

that model the anomalies of Figure 1 with negligible error. To achieve

a least squares estimate of Figure 1 reduced to the poles fields of the

point dipoles were recomputed at 400 km elevation assuming an inducing

field of 60,000 nT and radial inclination at all sources and observation

points (Figure 2).

Comparison of Figures 1 and 2 shows a progressive shift of anomalies

toward the poles in Figure 2 relative to Figure 1, with decreasing magnetic

inclination and an inversion of the anomaly polarities near the magnetic

equator.



Accordingly, assuming magnetizations directed along the current

earth's magnetic field, the anomalies of Figure 2 may be used in analysis

and modeling, as well as for spatial comparison with other geophysical and

tectonic data. A number of interesting correlations are observed. The

most prominent anomaly in Africa is the Bangui anomaly of west-central

Africa. The magnetic anomaly maxima which correlates with regional heat

flow and gravity anomaly minima was interpreted by Regan and Marsh (1982)

as originating from a major ancient intracrustal lithologic feature.

No profound magnetic anomaly appears to characterize the Tertiary East

African rift zone. The Alpine erogenic belt from the Atlas Mountains

in northwestern Africa through the Alps of south-central Europe to the

orogenic elements of Eurasia is associated with a trend of magnetic minima

and heat flow maxima that is especially pronounced in the European Alps.

This Alpine trend of magnetic minima appears to ring the northern margin

of a positive anomaly centered over the toe of the Italian peninsula.
\

Pronounced magnetic positive anomalies also are located over the northern

Arabian Plate, Scandinavia, and Iceland and its associated oceanic plateaus.

In contrast, central Europe is dominated by the Alpine (?) magnetic minimum.

The most intense maximum of the satellite magnetic data of Europe is

found over the Kursk region of the central Russian highland and its well-

known high-amplitude positive aeromagnetic anomalies. Finally, a prominent

magnetic trend of minima projects westward from the Rifean Timan uplift

near the north-central Ural Mountains to the Gulf of Finalnd. The large

western minimum is associated with a well-defined heat flow minimum and

zone of enhanced crustal thickness.

Reference

Regan, R.D. and March, B.D., 1982, The Bangui magnetic anomaly: Its
geological origin, J. Geophys. Res., 87, p. 1107-1120.

Presented at the 52 Annual International Meeting and Exposition of the
Society of Exploration Geophysicists, Dallas, TX, 1982.
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REGIONAL ANOMALIES OF THE MISSISSIPPI RIVER AULACOGEN

R.R.B. von Frese - Ohio State University

Knowlege of Mississippi embayment crustal structure is particularly

important because it is one of the more generally recognized and better

known aulacogens and is related to a zone of intense seismicity in a

highly urbanized portion of the midcontinent. The embayment is characterized

by regionally positive gravity and negative magnetic anomalies that are

observable in surface, aerosurvey, and satellite data. Regional, spherical

earth modeling using Gauss-Legendre quadrature integration indicates

that the long-wavelength gravity and magnetic anomalies of the embayment

may be related to a rift zone along the axis of the embayment that defines

a nonmagnetic block of high density material within the lower crust.

The decreased magnetization of this component may be related to reversed

magnetic remanence, or an intralithologic variation, or an upwarp of

the Curie isotherm.

The Mississippi embayment is a structural trough of Mesozoic and

Cenozoic sedimentary rocks that projects into the North American craton

from the Gulf Coast province. The axis of this feature lies along the

Mississippi River, tapering northward into the tectonically active New

Madrid seismic zone (Figure Ic). A popular tectonic model for the origin

of the embayment is that it represents a late Precambrian aulacogen which

was reactivated most recently in the late Cretaceous by forces related

to the formation of the present Atlantic Ocean basin.

Surface, 1 degree-averaged free-air gravity anomaly data low-pass

filtered for wavelengths greater than about 8 degrees characterize the

embayment by a regional anomaly of nearly 10 mgal in amplitude (Figure

la). These data were upward continued on a spherical earth to 450 km
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Fn. 1. Regional gravity anomalies and gravity modeling of Mississippi embaymcnt crustal structure.

elevation by equivalent point source inversion (Figure Ib) to enhance

the long-wavelength anomaly characteristics, as well as to facilitate

comparison with satellite magnetic data and, hence, demonstrate the utility

of satellite elevation potential field data for regional modeling applications.

A geologic density contrast model for the crustal structure of the

erabayment was generalized from published regional Bouguer gravity anomaly,

seismic refraction, and surface wave dispersion studies. The configuration

of this three-dimensional model is given in Figure Ic and the cross-

section along profile G is shown in Figure Id, where shading represents

the projections of the northern ends of the model into the profile. The

gravity effect of this spherical model was computed by integrating the

effects of Gauss-Legendre quadrature distributed point masses within

the model. The modeled positive gravity anomaly (Figure le) compares
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favorably with the upward continued gravity data (Figure Ib) suggesting

the generalized model is representative of the crustal structure of the

embayment.

The regional magnetic minimum of the embayment was first observed

in POGO satellite magnetometer data (Figure 2a), and subsequently confirmed

by the NOO aeromagnetic survey of the conterminous U.S.A. To facilitate

modeling, the data of Figure 2a were differentially reduced to the pole

(Figure 2b) by equivalent point source inversion using a normalized polarizing

field of 60,000 nT and high-pass filtered wavelengths smaller than about
«

10 degrees (Figure 2d).

POGO MAGNETIC ANOMALIES
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FIG. 2. Regional magnetic anomalies and magnetic modeling of Mississippi embayment crustal structure.
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The filtered data (Figure 2d) roughly reveal a -3 nT anomaly for

the embayment that can be modeled using results derived from gravity

modeling considerations. Analysis of the inverse gravity and magnetic

anomaly correlation using Poisson's theorem, and other published arguments

favoring deep crustal magnetization variations as the origin of long-

wavelength magnetic anomalies, focus on the body located at the base

2
of the crust with density contrast 0.20 Mg/m (Figure Id) as a primary

candidate for the source of the embayment*s magnetic minimum. The cor-

relation analysis indicates a magnetization contrast of -2.2 A/m for

this body that compares favorably with typcial estimates of deep crustal

magnetization. Previous studies have suggested that this body is a mani-

festation of a mantle upward beneath the embayment consisting of a mixture

of crust and intruded upper mantle material that subsequently cooled

to form a high density block.

Accordingly, a 3-D, spherical earth model was developed for the

radially polarized magnetic data (Figure 2d) using Gauss-Legendre quadrature

integration of simplified spherical prismatic bodies (Figure 2e). The

modeled anomalies A, B, C, and D are represented by the deep crustal

prisms shaded in Figure 2e which all range between depths of 25 to 40

km. The magnetic anomaly minima are approximately modeled by prisms

A and D which have magnetizations of -3.9 and -2.7 A/m, respectively,

whereas the positive anomalies are modeled by prisms B and C with respective

magnetizations 2.7 and 1.2 A/m. These magnetic maxima also correspond

inversely to regional free-air gravity minima that may be related to

regions of enhanced crustal thickness.

Several origins may be postulated for satisfying the regional magnetic

minimum (Figure 2c), which in general can only be discriminated on the

basis of auxiliary geologic and geophysical information. These include:
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(1) reversed magnetization of intrusives into the lower crust which were

emplaced during the rifting process, (2) petrologic variations between

the normal lower crustal rocks which are generally highly magnetic and

mantle intrusives, and (3) high temperatures in the embavyment that raise

the Curie point isotherm from a normal position near the base of the

crust to within the crust, thereby effectively removing magnetization

of the lower crust beneath the position of the isotherm.

Presented at the 52nd Annual International Meeting and Exposition of
the Society of Exploration Geophysicists, Dallas, XX, 1982.
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REGIONAL GEOPHYSICAL ANALYSIS OF
MISSISSIPPI EMBAYMENT CRUSTAL STRUCTURE

R.R.B. von Frese - Ohio State University

Information concerning the crustal structure of the Mississippi

Embayment is important for deciphering the mineralization and. seismicity

of a highly urbanized portion of the midcontinent. Spherical earth inver-

sion analysis of free-air gravity, U.S. Naval Oceanographic Office aero-

magnetic, and satellite magnetometer data show the embayment to be char-

acterized by regionally positive gravity and negative magnetic anomalies.

Incorporating constraints developed from seismic refraction and surface-

wave dispersion studies of the region with Gauss-Legendre quadrature

potential field modeling suggests that the regional gravity and magnetic

anomalies may be related to a rift zone along the axis of the embayment

which defines a non-magnetic block of high density material within the

lower crust. The decreased magnetization of this component may be due

to reversed magnetic remanence, or an intra-lithologic variation, or

an upwarp of the Curie isotherm.

Presented at the 112th Annual Meeting of the Society of Mining Engineers
of the American Institute of Mining Engineers (SME-AIME)
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DO SATELLITE MAGNETIC ANOMALY DATA
ACCURATELY PORTRAY THE CRUSTAL COMPONENT?

R.R.B. von Frese - Ohio State University; and W.J. Hinze - Purdue
University

Scalar aeromagnetic data obtained during the U.S. Naval Oceanographic

Office (NOO)-Vector Magnetic Survey of the conterminous United States

have been upward continued by equivalent point source inversion and com-

pared with POGO satellite magnetic anomaly and preliminary scalar MAGSAT

data* Initial comparisons indicate that the upward continued NOO data

is dominated by long wavelength (= 1000-3000 km) anomalies which are

not present in the satellite anomaly data. Thus, the comparison of the

data sets is poor. Several possible sources for these differences are

present in the data analysis chain. However, upon removal of these long

wavelengths from the upward continued NOO dataa a close comparison observed

between the anomalies verifies that satellite magnetic anomaly data do

portray the crustal component within a range of wavelengths from roughly

1000 km down to the resolution limit of the observations..

Presented at the Geomagnetic Conference, Denver, Colorado, 1982.
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LONG-WAVELENGTH MAGNETIC AND GRAVITY ANOMALY
CORRELATIONS OF AFRICA AND EUROPE

R.R.B. von Frese - Ohio State University; R. Olivier - University
of Lausanne; and W.J. Hinze - Purdue University

Regional geopotential anomalies and their correlations provide important

constraints for investigating the megatectonic framework of Africa and

Europe. Accordingly, preliminary satellite (MAGSAT) scalar magnetic

anomaly data are compiled for comparison with long-wavelength-pass filtered

free-air gravity anomalies and regional heat-flow and tectonic data.

To facilitate the correlation analysis at satellite elevations over a

spherical-earth, equivalent point source inversion is used to differentially

reduce the magnetic satellite anomalies to the radial pole at 350 km

elevation, and to upward continue the first radial derivative of the

free-air gravity anomalies. Correlation patterns between these regional

geopotential anomaly fields are quantitatively established by moving-

window linear regression based on Poisson's theorem. Prominent correla-

tions include direct correspondences for the Baltic Shield, where both

anomalies are negative, and the central Mediterranean and Zaire Basin
I

where both anomalies are positive. Inverse relationships are generally

common over the Precambrian Shield in northwest Africa., the Basins and

Shields in southern Africa, and the Alpine Orogenic Belt. Inverse cor-

relations also presist over the North Sea Rifts, the Benue Rift, and

more generally over the East African Rifts. The results of this quantita-

tive correlation analysis support the general inverse relationships of

gravity and magnetic anomalies observed for North American continental

terrane which may be broadly related to magnetic crustal thickness variations,

Presented at the XVII IUGG General Assembly, Hamburg, Germany, 1983.
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VERIFICATION OF THE CRUSTAL COMPOKENT IN SATELLITE MAGNETIC DATA

R.R.B". von Frese, W.J. Hinze, J.L. Sexton and L.W. Braile

Department of Geosciences, Purdue University, West Lafayette, IN 47907

Abstract. To investigate the utility of
satellites for napping crustal magnetic anom-
alies, POGO (Polar Orbiting Geophysical Observ-
atory) and preliminary MAGSAT magnetometer data
are cospared. with scalar aeromagnetic data
obtained by the U.S. Naval Oceanographic Office
(NOO)-Vector Magnetic Survey of the conterminous
U.S.A. POGO and available MAGSAT data demon-
strate remarkable consistency over the study
region. The NOO aeromagnetic data are low-pass
filtered for wavelengths larger than about 4*
and spherically upward continued to 450 km ele-
vation by equivalent point source inversion for
direct comparison with POGO satellite magneto-
meter* pbservations. The upward continued NOO
data show that most of the energy is in the long
wavelength (• 1000-3000 km) anomalies. Removal
of these wavelengths by suitable filtering re-
veals a residual anomaly field that corresponds
well with the satellite anomalies, thus demon-
strating that the satellite data are useful for
capping crustal magnetic anqmalles. A number
of correlations between the NOO, POGO and pre-
liminary MAGSAT data are evident at satellite
elevations, including a prominent transcon-
tinental magnetic high which extends from -the
Anadarko Basin of the eastern Texas panhandle
to the Cincinnati Arch. The transcontinental
magnetic high is breached by negative anomalies
located over the Rio Grande Rift and Mississippi
River Aulacogen.

Introduction

Satellite magnetometer observations permit
the characterization of magnetic signatures for .
lithospheric regions measured'in hundreds or

. even thousands of kilometers which are not
readily obtained from conventional aeromagnetic
surveys. These regions, identified and char-
acterized on a global basis, provide useful
information for deciphering earth history in-
"cluding paleo .and contemporary geodynamlcs,
delineation of segments of the lithosphere Into
resource provinces, and for numerical modeling
of lithospheric processes.

Although highly precise satellite magnetic
vector and scalar measurements are becoming in-
creasingly available for lithospheric analysis,
few studies have attempted to verify the satel-
lite data directly by comparison with aeromagnetic
anomalies. In general, this reflects problems
related to measuring and compiling regional-
scale aeromagnetic anomaly data sets, as well
as difficulties in processing lithospheric poten-
tial field anomalies in the spherical domain.
A notable exception is the investigation by
Langel et al. 11980) in which aeromagnetic and
TOGO satellite magnetic anomalies over western
Canada were compared at satellite elevations.
The good spatial and amplitude agreement observed

Copyright 1982 by the American Geophysical Union.

between the data sets provides strong evidence
for the utilization of the POGO satellite mag-
netic anomalies in lithospheric studies.

To further investigate the use of satellites
for mapping crustal magnetic anomalies, the
present study compares POGO and MAGSAT magneto-
meter data with scalar aeromagnetic data obtained
by the U.S. Naval Oceanographic Office - Vector
Magnetic Survey of the conterminous U.S.A.

Data Sets and Processing

The NOO scalar aeromagnetic data, which are
available from the National Geophysical and
Solar-Terrestrial Data Center at 0.1 km inter-
vals along 1* meridians, were screened for
periods of intense diurnal magnetic activity
and reduced to anomaly form using the IGS-7S
geomagnetic field model updated to the nearest
tenth of the survey year (1976.8). The resultant
aeromagnetic anomaly profiles were low-pass
filtered utilizing a 502 cutoff at 200 km wave-
length and contoured [Sexton et al., 1982].

To facilitate inversion processing for com-
parison with satellite magnetometer observa-
tions, the contoured NOO data were gridded at
1" intervals, the mean value (-176 nT) removed,
and then high-cut filtered for wavelengths less
than about 4*. These data (Figure 1) were
spherically upward continued to 450 km elevation
(Figure 2) by equivalent point source inversion
[von Frese et al., 1981] using the updated IGS-
75 geomagnetic field model for direct comparison
with POGO satellite magnetic anomalies.

POGO satellite magnetometer observations,
obtained during 1968, were processed according
to procedures described by Mayhew [1979] to yield
the magnetic anomaly map for the study area (Fig-
ure 3) at an elevation of 450 km. Briefly, data
processing consisted of removal of the POGO 13th
degree -geomagnetic field from the original orbital
profiled data. Next, data profiles were selected
in the elevation range (240-700 km) and a least

Fig. 1. Low-pass (X > 4°) filtered NOO aero-
magnetic anomaly data for the conterminous U.S.
A mean value equal to -176 nT was removed from
the data prior to filtering. Contour interval
is 50 nT.
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Fig. 2. NOO aeromagnetic anomaly map of the
conterminous U.S. (Fig. 1) upvard continued to
450 Va elevation by equivalent point source
inversion. Contour interval is 2 nT.

Fig. 4. 2'-averaged MAGSAT magnetic anomaly
nap for the conterminous U.S. at an average
elevation of about 3SO km. Contour interval
is 2 nT.

squares quadratic function was fitted to the
profiles and removed to account for Dst varia-
tion arising from ring current flow in the mag-
netosphere during storm time. An inversion then
was performed on a spherical surface grid of
prismatic dipolar moments which were oriented
in the local direction of the IGRF-1965 updated
to 1968. The field of these dipolar moments
vas recomputed at 450 km elevation in the local
direction of the IGRF-1965 updated to 1968 to
obtain the total magnetic Intensity anomaly map
for the U.S. (Figure 3).

Preliminary MAGSAT data for the study area,
obtained from NASA's Goddard Space Flight Center,
are presented in Figure 4. This map was pre-
pared by averaging quiet-time MAGSAT orbital
profile data over 2* x 2* areas for orbits with
elevations of 400 kn or less. The anomaly reduc-
tion was achieved using the preliminary geo-
magnetic reference field model MG680982 derived
froa early orbits of the MAGSAT satellite. In
Figure 4, the mean number of observations per
2* x 2* area is 12 and the average elevation
of the observations is 347 km.

Correlation Analysis and Results

Consideration of POGO data (Figure 3) and
. MAGSAT data (Figure 4) show that the satellite
magnetic anomaly fields are remarkably consis-
tent, in spite of the preliminary nature of the
processing used to develop the MAGSAT magnetic
anomaly map. However, correlations between the
upvard continued NOO magnetic anomaly (Figure

2) and satellite magnetic anomaly data are not
immediately obvious.

Comparison of Figures 2 and 3 reveals a long
wavelength anomaly component in the NOO data
that is clearly not evident in the satellite
magnetic anomaly data. This feature is char-
acterized in Figure 2 by a long wavelength anomaly
with a maximum of about 21 nT over the western
third of the U.S. which decreases to a broad
minimum of about -21 nT over the eastern half
of the U.S. Although this long wavelength feature
may be a vestige of the updated IGS-75 reference
field used to derive the NOO aeromagnetic
anomalies, a crustal origin for this feature
cannot, at present be excluded. Should the latter
alternative hold, then the POGO satellite data
would appear to be limited to wavelengths shorter
than about 1000 km due, possibly, to errors in
the updated 1GRF-65 reference field and/or
elimination of long wavelength crustal anomaly •
components by removal of quadratic functions
from the orbital profile data prior to the
inversion processing. " '

In any event, this result suggests that the
longer wavelength components of Figures 2 and

POGO SATELLITE MAGNETIC ANffNOO AEROMAGNETIC
ANOMALY MAP CORRELATION COEFFICIENTS

2 = 450 km
- 0.3

0.2

u
fc

0.1

ao

to -0.1
0 -0.149

Fig. 3. POGO satellite magnetic anomaly map
for the conterminous U.S. at 450 ka elevation.
Contour interval is 2 nT.

4' 6 1 8 * 10* I2s\i4*
HIPASS CUT OFF A

Fig. 5. Distribution of coefficients of linear
correlation computed between POGO satellite mag-
netic and MOO aeromagnetic anomalies high-pass
filtered for a number of cutoff wavelengths, X,
at 450 km elevation. The dashed line marks the
value of the correlation coefficient between
the unfiltered data sets (Figs. 2 and 3).
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TOGO SATELLITE MAGNETC AND NOO AEROMAGNETC
ANOMALY CORRELATIONS :

ASS (IT. 7.5*> Z

Fig. 6. POGO satellite magnetic (heavy contours)
and NOO aeromagnetic (thin contours) anomaly
correlations for the conterminous U.S. at 450 km
elevation. Both data sets are normalized to a
zero mean and high-pass (X < 7.5") filtered.
Contour values for both data sets are given in
multiples of 10~1 nT where the contour interval
is 0.5 nT.

3 should be removed to facilitate the correla-
tion analysis. Accordingly, these data sets
vere high-pass filtered for a number of cutoff
wavelengths and the correlation coefficient was
computed between the filtered maps to assess
the anomaly wavelengths most consistently repre-
sented in the POGO satellite magnetic anomaly
(Figure 3) and upward continued NOO aeromagnetic
anonaly (Figure 2) data. The results are shown
in Figure 5 where a well defined maximum correla-
tion is observed between the data sets high-
pass filtered for anomaly wavelengths smaller
than about 800-1000 km (s 7.5°). The resultant
upward continued NOO and POGO satellite data
sets, high-pass filtered for wavelengths smaller
than about 7.5*, are plotted together in Figure
6 to facilitate the correlation analysis.

Consideration of Figure 6 shows excellent
correspondence between anomalies In the high-
passed POGO and upward continued MOO data. Pro-
minent correlations include, for example, a
nearly peak-for-peak correspondence related to
the transcontinental magnetic high that extends
from Kentucky westward to Arizona and then turns
northward along California to Oregon. A well
defined trend of negative magnetic anomalies
are observed in both data sets along the northern
nargi'n of the'transcontinental magnetic high.

Negative anomalies over the Rio Grande Rift
breach the transcontinental magnetic high in
both data sets. An additional breach of this
anomaly is observed over the northern extension
of the Mississippi River Aulacogen, although
here the correspondence between the two data
sets is perhaps less clear than observed for
the Rio Grande Rift. This is because the NOO
data in the vicinity of the Mississippi Embay-
nent are strongly Influenced by the large mag-
netic low over Indiana which is poorly defined
due to limited NOO magnetic anomaly data in this
region [Sexton et al., 1982). Prominent anomaly
caxlna over the Michigan Basin centered in

Michigan and the Colorado Plateau in Arizona
are quite comparable in both data sets as are
intense negative anomalies over southern Georgia
and the Central Rocky Mountains in Colorado.

Taken together, the results of this analysis
indicate that the filtered NOO and POGO data
sets correlate remarkably well with respect to
the spatial location, sign and general amplitude
of their relative anomalies at 450 km elevation.
Dissimilarities, in general, are associated with
anomalies located near the boundaries of the
data sets where edge effects related to the data
processing are difficult to avoid.

Conclusions

Upward continued NOO aerooagnetlc and POGO
satellite magnetic anomaly data for the conter-
minous U.S. show good correlations for wave-
lengths shorter than about 7.5* at 450 km ele-
vation. For longer wavelengths the correspondence
between the two data sets deteriorates and be-
comes slightly Inverse, due probably to anomaly
reduction errors related to inconsistent updated
geomagnetic reference field models and/or the
removal of quadratic functions from the satellite
data that also contain significant long wave-
length crustal anomaly components. However,
the good overall correspondence between the data
sets for anomaly wavelengths smaller than about
800-1000 km (s 7.5*) provides strong evidence
for the utility of satellites to map crustal
magnetic anomalies. Accordingly, MAGSAT data
offer considerable promise for studying crustal
magnetic anomalies, because of the close
morphological similarity observed between POGO
and available MAGSAT magnetic anomalies.
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U.S. AEROMAGNETIC AND SATELLITE MAGNETIC ANOMALY COMPARISONS

R.R.B. von Frese - Ohio State University; W.J. Hinze - Purdue
University, J.L. Sexton - ARCO; and L.W. Braile - Purdue University

To investigate the utility of satellites for mapping crustal magnetic

anomalies, POGO and preliminary MAGSAT magnetometer data are compared

with scalar aeromagnetic data obtained by the U.S. Naval Oceanographic

Office - Vector Magnetic Survey of the conterminous U.S. The NOO aero-

magnetic data, which are available at 0.1 km intervals along 1° meridians,

were screened for periods of intense diurnal magnetic activity and reduced

to anomaly form using the updated IGS-75 geomagnetic field model. The

resultant aeromagnetic anomaly profiles were high-cut filtered utilizing

a cutoff at 200 km wavelength, and contoured and gridded at 1° intervals.

F,or comparison with satellite magnetometer observations, these data

were low-pass filtered for wavelengths larger than about 4° and spherically

upward continued to satellite elevations by equivalent source inversion.

The upward continued NOO data show that most of the energy is in the

long-wavelength (= 1000-3000 km) anomalies. Removal of these wavelengths

by suitable filtering reveals a residual anomaly field that compares

well with the morphology of the satellite measured anomalies, thus,

demonstrating that the satellite data are useful for mapping crustal

magnetic anomalies. A number of correlations between the NOO, POGO

and preliminary MAGSAT data are evident at satellite elevations, including

a prominent transcontinental magnetic high which.extends from the Anadarko

Basin to the Cincinnati Arch. The transcontinental magnetic high is

breached by negative anomalies located over the Rio Grande Rift and

Mississippi River Aulacogen. Differentially reduced-to-pole NOO and
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POGO magnetic anomaly data show that the transcontinental magnetic high

corresponds to a well-defined regional trend of negative free-air gravity

and enhanced crustal thickness anomalies.

Presented at the 4th IAGA Scientific Assembly, Edinburgh, August 3-15, 1981
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RELATION OF MAGSAT ANOMALIES TO THE
MAIN TECTONIC PROVINCES OF

SOUTH AMERICA

by

1 1 2D.W. Yuan , E.G. Lidiak , M.B. Longacre ,
and G.R. Keller3

Comparison of satellite scalar magnetic anomaly data (MAGSAT) to the
main tectonic provinces and boundaries of South America reveals a number
of geologic correlations. South America is divisible into a broad plat-
form of Precambrian shields and cratons separated by Phanerozoic basins,
grabens and aulacogens to the east, the Phanerozoic Patagonian Platform
to the south, and the Mesozbic to Cenozoic Andean Fold Belt and Caribbean
Mountain System to the west and north. The continental shields are mainly
more magnetic than continental basins and erogenic belts. This is particu-
larly true of the Guyana Shield, the Central Brazilian Shield, and parts
of the Atlantic Shield, all of which are coincident with magnetic highs.
In contrast, the. prominent Amazon Basin (aulacogen) is associated with large
^magnetic lows. Other basins coincide either with magnetic lows or magnetic
gradients. Cratons, mainly covered by younger sedimentary rocks, are generally
associated with magnetic gradients. Most of the anomalies associated with
the Patagonian Platform are positive and have higher amplitudes eastward
away from the Andean Fold Belt. The northern Andes are coincident with
positive magnetic anomalies, whereas the central and southern Andes are
associated mainly with negative anomalies. The trend of the Andean anomalies
generally does not follow the trend of the fold belt, but instead has a
general east-west trend which is probably related to noise derived from
data processing. The anomalies of western South America along the margin
of the South American Plate appear to be distinct from those of the adjacent
ocean basin. In contrast, eastern South America is characterized by mag-
netic anomalies which commonly extend into the Atlantic Ocean.

DETAILED DISCUSSION

More detailed assessment of the relation of the magnetic anomalies (Fig. 1)
to the main tectonic provinces of South America (Fig. 2) can be made by con-
sideration of the individual provinces and subprovinces. Three extensive
provinces can be recognized based on origin, age, and structural development:

South American Platform (Region A, Fig. 2)

Shields and Cratons

This is the oldest province and includes most of 'eastern South America.
The basement of this old platform consolidated between the end of the Pre-
cambrian and the Cambrian and contains the only known Archean rocks of the
continent. Although partly covered by Phanerozoic rocks, the basement of the
South American Platform is well exposed in three major shields and forms the
basement of three major cratons:
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1. Guyana Shield (Ala, Fie. 2) This entire region is underlain by
Precambrian rocks. A magnetic high overlies this region, and the general
east-northeast trend of the anomalies coincides with Precambrian structural
trends.

2. Central-Brazilian Shield (Alb, Fig. 2) This old cratonic region
consolidated prior to 1,800 m.y., and was partially remobilized in the
Trans Amazonian-orogenic cycle (1,800-2,200 m.y.). Magnetic anomalies are
very high in most areas, especially in the eastern region.

3. Atlantic Shield (A4, Fig. 2) This shield lies along the coastal
margin of Brazil and Uruguay. A large magnetic anomaly high occurs in the
area of the Caririan-Propria Fold Belt (AAa) and is apparently associated
with metamorphic and volcanic intrusive rocks of that old belt. The positive
anomaly appears to extend eastward into the ocean basin. The Riberira Fold
Belt to the south (A4b) is associated with a magnetic low having an east-west
trend along the northern part of the belt and with a magnetic high having a
north-south trend in the southern part of the belt.

A. Sao Luiz Craton (AS, Fig. 2) The Sao Luiz Craton is a narrow feature
along the northeast Atlantic coast. As the main part of the craton is covered
by Paleozoic or younger sedimentary rocks, the older crystalline rocks are
very poorly known. The magnetic anomaly pattern shows a broad gradient over
this area which decreases from south to north. This gradient continues north-
eastward into the adjacent Atlantic Ocean Basin.

5. Sao Francisco Craton (A2, Fig. 2) The Sao Francisco Craton acted as
the foreland to the Brazilian Fold Belt which developed along its borders.
The basement of the craton is made up of Lower Precambrian sialic rocks which
are partially covered by Mesozoic sedimentary rocks and Cenozoic volcanics. 'A
large magnetic anomaly low occurs along the southern border of the craton and
a positive magnetic anomaly occurs at the northern part of the craton. The
magnetic low appears to be part of a larger anomaly that extends eastward into
the adjacent ocean basin.

6. Rio de La Plata Craton (A6, Fig. 2) This craton is mostly covered by
Phanerozoic sediments. The basement of this ancient area consolidated in
the Upper Precambrian and probably represents the southernmost extent of
Precambrian rocks in the Atlantic coastal region of South America. The craton
lies along a strong magnetic gradient between negative magnetic anomalies in
the continental areas of eastern Argentina and positive anomalies in coastal
Uruguay and southern Brazil. These positive anomalies are part of a larger
series of north-to-northeast-trending magnetic highs that occur along the
southeastern continental shelf of South America and extend into the Atlantic
Ocean Basin.

Basins

The Guyana, Central Brazilian, and Atlantic Shields are separated from
one another by large basins which probably are underlain in part by major
synclines or grabens. The sedimentary and associated volcanic rocks which
occur in these basins are of Silurian or younger age.



54

1. Amazon Basin (Ale, Fig. 2) The Amazon Basin is the most prominent
and the largest basin in South America. It is widely regarded as being an
intercratonic basin, and has been variously interpreted as an autogeosyncline,
an extensive and complex graben system, a rift basin, and most recently as an
aulacogen. The basin contains a thick sequence of Paleozoic, Mesozoic, and
Cenozoic sediments and lesser basaltic volcanic rocks. Prominent magnetic
lows occur in most of the basin, especially in the eastern part and to the
west in the area of the Upper Amazon.

2. Parnaiba Basin (A3, Fig. 2) The Parnaiba Basin is also an inter-
cratonic basin and contains Paleozoic and Mesozoic sedimentary and volcanic
rocks. It is separated from the small coastal basins on the north by the
Ferrer Arch and from the old craton by younger Precambrian metamorphic and
sedimentary rocks. The magnetic signature in this basin is not definitive
and appears to occur along an irregular gradient that increases from north
to south.

3. Parana Basin (A6b. Fig. 2) Cretaceous basalt (Parana Basalt), cover-
ing an area of 1,200,-000 km2, and associated sediments of mainly Mesozoic age
fill most of the Parana Basin. Much of the basin is underlain by a magnetic
low and a magnetic gradient which is high in the southeast and low in the
northwest.

A. ghaco Basin (A6a, Fig. 2) Cenozoic sedimentary and minor volcanic
rocks cover most of the Chaco Basin. The magnetic anomaly values are negative
in the most of the area, but most anomalies are broad and the negative values
are small. .

Patagonian Platform (Region B, Fig. 2)

The Patagonian Platform occupies the broad southeast continental margin
of South America. It is a young platform with a basement that stabilized from
the Middle Paleozoic onwards, developing a volcano-sedimentary cover after
the Carboniferous; this cover almost completely masks the platform basement.

The magnetic anomaly pattern in this platform is elongate in shape with a
north-south trend that essentially parallels the coast line. The anomalies
are positive in most areas and become higher from west to east away from the
Andean Fold Belt. A northwest-trending arm of the positive anomalies extends
into the Andean Fold Belt. .

Andean Fold Belt and Caribbean Mountain System (Region C and Cl, Fig. 2)

The Andean Fold Belt, which forms the western margin of South America is
part of the Circum-Pacific Mountain System of great seismic and volcanic
activity. The enormous quantity and size of the intrusive bodies (Andean
batholithic rocks) have contributed to the Andes being referred to as a
"magmatic mountain range". The Andes are widely regarded as a classic example
of a mountain system formed at a convergent plate margin.

A large magnetic anomaly high occurs along the Cordillera of Colombia,
and positive anomalies occupy most areas of the northern part of the Andes
(north of lat 16°S). In contrast, a large magnetic anomaly low occurs in
the central part of the Andes, and negative anomalies occupy most regions of
the central and southern Andes. The trend of these anomalies does not, in
general, parallel the north-south structural trend of the fold belt, but in-



55

stead has a general east-west pattern. This pattern, which is common over
most of the MAGSAT map is probably related to processing noise derived from
data reduction procedures to correct for external magnetic field effects.
However, the pattern over the Andes is sufficiently distinct from the generally
north-trending magnetic anomalies occurring in the adjacent Pacific Ocean to
reflect the boundary between the leading edge of the South America Plate and
the oceanic Nazca Plate.

The Caribbean Mountain System, which extends along the northern boundary
of the South American Platform, is part of an island arc complex of the
eastern Caribbean. The basement of this region consists of Paleozoic rocks
with metamorphosed igneous complexes. Sedimentary rocks of Lower Cretaceous
or possibly Upper Jurassic age overlie these older rocks. Negative magnetic
anomalies appear throughout the system, and they are clearly different from
the positive anomaly pattern that occurs along the northern Andes and the
Guyana Shield. .

1. Department of Geology and Planetary Science, University of Pittsburgh,
Pittsburgh, PA 15260

2. Department of Geosciences, Purdue University, West Lafayette, IN 47907
3. Department of Geological Sciences, University'of Texas at El Paso,

El Paso, TX 79968

Presented at the 52nd Annual International Meeting and Exposition of the
Society of Exploration Geophysicists, Dallas, TX, 1982 •
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Figure 1. Equivalent point source field approximation of 2°-averaged
scalar MAGSAT magnetic anomaly data differentially reduced to
radial polarization at 350 km elevation. The normalized
amplitude for the polarizing induction field is 60,000 nT.
Contour interval is 2 nT.
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Figure 2. Tectonic Provinces of South America

Patagonlan P la t fo rm

The Andean Folded Bel

C1 The Caribbean
.Mountain Sys tem

The Transi t ional Zone

between the P la t fo rm
and Ihe Folded Belt

South-Ameripan Platform
At . .Amazon .Craton - -
A1a. Guyana shield
A1b. Central Brazil shield
Ale. Amazon Basin

A2. Sao Franc!6co Craton
A3. Parnaiba Basin

A4. Atlantic shield
A4a Carlr lan-Propr la

Folded Belt
A4b Ribeira Folded Belt

A5. Sao Lulz Craton

A6. RJo de La Plata Cra ton
A6a Chaco~Bas tn
A6b Parana Basin



In addition to the proceeding Summary, the University of
Texas at El Paso - University of Pittsburg portion of the study
concentrated on tectonic and crustal structure studies and
resulted in two theses which are included as appendices.

Yuan, Ding-Wen, 1983, Relation of MAGSAT and gravity anomalies to
the main tectonic provinces of South America: M.S. Thesis,
University of Pittsburgh, 168 p.

Renbarger, K. S., 1984, A crustal structure study of South
America: M.S. Thesis, University of Texas at El Paso, 243 p.





APPENDIX A

Relation of Magsat and Gravity Anomalies to
the Main Tectonic Provinces of South America



RELATION OF

MAGSAT AND GRAVITY ANOMALIES

TO THE MAIN TECTONIC PROVINCES OF

SOUTH AMERICA

By
Ding-Wen Yuan

B.S., National Taiwan University, 1978

Submitted to the Graduate Faculty of

Art and Sciences in partial fulfillment

01 ihe requirement tor the degree of

Master of Science

University of Pittsburgh

1983



ABSTRACT

Comparison of satellite scalar magnetic anomaly data (MAGSAT) to the main

tectonic provinces of South America reveals a number of geologic correlations. The

magnetic anomalies of the South American continent are generally more positive and

variable than the oceanic anomalies. Furthermore, there is better correlation between

the magnetic anomalies and the major tectonic elements of the continents than between

the anomalies and the main tectonic elements of the adjacent oceanic areas. The

oceanic areas generally show no direct correlation to the magnetic anomalies.

The Precambrian continental shields are mainly more magnetic than continental

basins and erogenic belts. The shields differ markedly from major aulacogens which

are generally charactarized by negative magnetic anomalies and positive gravity

anomalies. The Andean erogenic belt shows rather poor correlation with the magnetic

anomalies. The magnetic data exhibit instead prominent east-west trends, which

although consistent with some tectonic features, may be related to processing noise

derived from data reduction procedures to correct for external magnetic field effects.

However, the pattern over the Andes is sufficiently distinct from the generally north-

trending magnetic anomalies occurring in the adjacent Pacific Ocean to separate

effectively the leading edge of the South American Plate from the Nazca Plate. In

contrast, eastern South America is characterized by magnetic anomalies which commonly

extend across the continental margin into the Atlantic Ocean.
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CHARIER 1

INTRODUCTION

The continent of South America is characterized by a variety of diverse and

significant geological features, which includes (1) complex mineral-rich Precambrian

shields, (2) contemporary seismicity and volcanism, (3) Piecambrian and Phanerozoic

erogenic belts, and technically active areas, (4) well-delineated Phanerozoic metallogenic

zone, (5) subduction zones, (6) hot spots, and (7) grabens and aulacogens. These

features, some of which are among the best developed on earth, have in general not

been studied in detail.

The purpose of this investigation is to summarize and interpret the previously

published geological and geophysical data on South America and to characterize its main

tectonic elements. These elements will then be correlated with satellite scalar magnetic

(MAGSAT) data and Bouguer and Free-Air gravity anomaly data for the purpose of

gaining new insight on the major tectonic features of South America.

The satellite scalar magnetic data used in this investigation are compiled from

project MAGSAT; a National Aeronautics and Space Administration-Goddard Space

Flight Center (NASA-GSFC) and a U.S. Geological Survey (USGS) magnetic satellite

program. MAGSAT measured the near-earth geomagnetic field from October 1979' to

June 1980 in a nearly polar orbit at an average elevation of approximately 400 km. A

preliminary global data set prepared by NASA-GAFC is based upon an average of 12

data points per 2° area with a range of 3 to 32 points at an average elevation of

approximately 350 km. In order to eliminate the problems caused by strong spatial



gradients and low inclinations of the field, the preliminary data set was reduced to the

radial polarization by Longacre (1981). The radially polarized map (Fig. 9) was then

produced by computing the anomaly field from the equivalent dipoles on a spherical

earth assuming radial polarization in a total intensity field of 60,000 nT (Longacre,

1981).

Both the Bouguer and Free-Air gravity anomaly data of the South American

continent were provided by the Defense Mapping Agency Aerospace Center (DMAAC)

and both of the maps (Fig. 10 and 11) have a contour interval of 10 and 50 mgals.

Predicted values (Woollard, 1969) were used in preparing the DMAAC map because

many areas of South America, particularly the jungle and mountainous areas, have no

gravity control.

It is very difficult to filter auroral external fields from the MAGSAT data and to

isolate the crustal magnetic anomaly field because both field-aligned currents at high

latitudes and magnetospheric ring-currents in equatorial regions contaminate the

MAGSAT data (Ritzwoller and Bentley, 1982). In addition, because of the preliminary

nature of the data and the numerous lithologic variations within provinces, correlation

between geological characteristics and geophysical characteristics and geophysical data can

only be generalized.



CHAPTER 2

GENERAL OUTLINE OF THE GEOTECTONICS

OF SOUTH AMERICA

Based on different origins, ages and structural development, three extensive tectonic

provinces can be recognized in South America (Fig. 1). The South American Platform

(region A, Fig. 1) is the oldest and includes the entire eastern part of South America,

between the Orinoco River, in Venezuela, and Baia Blanca, in Argentina. It entirely

encompasses the territories of Brazil, Paraguay, Uruguay, Guyana, French Guyana,

Surinam, as well as the center and south of Venezuela, and the eastern part of

Colombia, Ecuador, Peru and Bolivia, together with the north of Argentina. The

basement of this old platform consolidated between the end of the Precambrian and the

Cambrian, and contains the only known Archean rocks of the continent The boundary

between the western limit of the platform and the Andean orogenic belt is covered by

extensive Cenozoic sediments. The South American Platform is bounded on the south

by the Patagonian Platform, in Argentina, and the boundary probably corresponds with

the valley of the Rio Colorado.

The Patagonian Platform (region B, fig. 1) encompasses the remaining southeastern

part of the continent and is located entirely in Argentinian territory; it also extends

over the broad southeast continental margin. It is a young platform, the basement of

which stabilized from the Middle Paleozoic onwards, developing a volcano-sedimentary

cover after the Carboniferous: this cover almost completely masks the basement of the

platform.



The Andean Fold Belt (region C, fig. 1), which lies along the western margin of

these two platforms (South American and Patagonian Platforms), is part of the Circum-

Pacific mountain system. The enormous quantity and size of the intrusive bodies

(Andean batholith or Andean plutonic rock) has contributed to the Andes being referred

to as a "magmatic mountain range", and this magmatic activity is an integral part of

the Andean subduction zone model. The relation between the magmatic and structural

development are discussed in more detail in a later section.

The Caribbean Mountain System (region Cl, fig. 1), which extends along the

northern boundary of the South American Platform, is pan of an island arc of the

eastern Caribbean. The basement of this region contains Paleozoic rocks.

Sedimentation started in the lower Cretaceous, or possibly in the upper Jurassic.

The South American Platform is limited to the north by the Caribbean Mountain

System and to the west by the Central and Northern Andes. These boundaries are not

as yet precisely defined. The great subrAndean foredeep (region D, fig. 1) between

Ecuador and the north of Argentina, constitutes a transitional zone between the

platform and the fold belt.

2.1. The South American Platform

Although partly covered by Phanerozoic sedimentary formations, the basement of

the South American Platform is exposed in three major shields and in smaller massifs

isolated by Phanerozoic cover. The Guyana Shield (region Ala, fig. 2) includes the

entire region of Precambrian rocks lying north of the Amazon River. The Central-

Brazilian Shield (region Alb, fig. 2) lies in the interior of Brazil, south of the Amazon

River, and continues into eastern Bolivia. The Atlantic Shield (A4, fig. 2) lies along the

coastal margin in . Brazil and Uruguay. These three shields are separated from each

other by large synclines (or grabens). The sedimentary rocks and associated volcanics

that fill the depressions accumulated from Silurian onwards, and are particularly



extensive in the following four great synclines (or grabens): Amazon (Ale, fig. 2),

Parnaiba,(A3, fig. 2), Parana (A6b, fig. 2), and Chaco (A6a, fig.2).

According to radiometric data two principal age intervals can be recognized

(Almeida, 1970). The older ages are between 1800 and 2200 m.y. (Early Proterozoic),

and the younger between 450 and 700 m.y. (Late Proterozoic to Early Paleozoic).

These ages are thought to represent events related, respectively, to the Trans-Amazonian

and Brazilian erogenic cycles, which are the most important for the Precambrian of

South America. Rocks 2700 m.y. or older occur sporadically as highly deformed

granulitic gneisses and probably represent the Archean sialic basement on which the

rocks of the two main younger cycles developed. Events of intermediate age, 900-1300

m.y. (Middle Proterozoic), can also be recognized in restricted areas, and may be

related to the Minas Orogeny, which is well defined in the region of the "Quadrilatero

Ferrifero" (Minas Gerais). Table 1 gives the summary of the main Precambrian

erogenic cycles, and the principal geotectonic units which are associated with them in

the South American Platform (see fig. 3 also).

Four old cratonic regions are defined for South America: (1) Amazon Craton (Al,

fig. 2), which includes the Guyana Shield, the Guapore Craton (the Central-Brazilian

Shield) and the Apa and Missiones massifs; (2) the Sao Luiz cratonic area (AS.fig. 2), a

narrow feature near the northern coast between Belem and Sao Luiz; (3) the Sao

Francisco Craton (A2, fig. 2), located southeast of the Parnaiba basin, and reaching the

Atlantic coast in the state of Bahia; and (4) the Rio de La Plata Craton (A6, fig. 2), a

possible extension of the Amazon Craton, which includes the southeast of Uruguay and

the province of Buenos Aires. Fig. 2 shows the approximate boundaries of these

geotectonic units.

The idea that the Guyana and Guapore (Central-Brazil) cratonic areas have been a

single stable unit during late Precambrian time cannot be definitely proven, as the



basement of the Amazon basin is very poorly known. However, the few radiometric

ages thus far obtained in this area, support this thesis (Amaral, 1970). Consolidation of

the Amazon craton post-data the 2000-m.y.-old Trans-Amazonian cycle. The Amazon

Craton underwent a period of tectonic instability and abundant magmatic activity about

1800 to 1000 m.y. ago. This was followed by a much quieter period which continued

until the Phanerozoic, during which time the craton was separated into two shields

(Guyana and Guapore Craton) by the development of the Amazon Syncline. The

western limits of the craton are hidden and probably do not coincide with those of the

South American Platform; the eastern limit constitutes one of the major structural lines

of the continent This eastern boundary is delineated by a series major structures such

as deep faults associated with basic and ultrabasic igneous rocks and marginal

sedimentary basins. Furthermore, the boundary corresponds to a major fold belt at the

end of the Precambrian.

The best-known structures of the Trans-Amazonian Cycle in South America occur

along the northern edge of the Guyana Shield between the central and southern regions

of Venezuela and Amapa in Brazil. Their rocks vary in lithology and in degree of

metamorphism from greenschist to amphibolite facies and include many volcanic rocks

and granites formed during and since the main period of tectonism.

The Guapore (Central Brazilian) and Sao Francisco Cratons (Alb, A2, fig. 2) are

separated by a large region affected by a major tectonic and magmatic event, the 450-

700 m.y. Brazilian erogenic cycle. Numerous basic and ultra-basic intrusions of alpine

character are also present, and some of these rocks were dated with results close to

1000 m.y. (Hasui and Almeida, 1970). The Brazilian orogeny also affected the western

and southeastern margins of the Sao Francisco Craton (fig. 2 and 3) where reactivation

of the craton and development of younger folds occurred. Along the southeastern

border of the craton, northwest of the Riberian Fold Belt (fig. 2), an older

metamorphic belt of 1100-1400 m.y. age occurs. These ages may be related to the

orogeny of the Minas Group near Belo Horizonte.



The Sao Luiz Craton (A5,fig. 2) is very poorly known as the main part is covered

by Paleozoic or younger sedimentary rocks. This area is usually considered as a single

unit The Ferrer arch separates the craton from the adjacent Parnaiba Basin. The Sao

Luiz Craton extends eastward to the mouth of the Parnaiba River, where structures

related to the Brazilian erogenic cycle occur.

The Rio de La Plata Craton is mainly covered by Phanerozoic sediments, which

make it difficult to establish its limit and its relation to the Guapore Craton to the

northwest. This ancient cratonic area consolidated in the late Precambrian. The

basement, where exposed, consists of a gneissic complex, associated with amphibolites,

'mica schists, phyllites, and quartzites. They probably represent the southern-most,

occurrence of Precambrian rocks in the Atlantic coastal region as the basement rocks of

northern Patagonia previously considered to be Precambrian are mainly Paleozoic

accordingly to recent geochronologic studies (Stipanicic et al., 1968; Halpern, 1968).

This indicates that the South American Platform does not continue -beyond the Colorado

River in Argentina.

In summary, most of the South American Platform was consolidated about 1800

m.y. ago, after the Trans-Amazonian erogenic cycle. Ages of 2700 m.y. or older are

encountered in granite-gneiss complexes and in migmatites, which are commonly

metamorphosed to the granulite facies. Mafic and ultra-mafic intrusions occur

sporadically in the rocks. Widespread regions of the South American Platform were re-

worked during Late Proterozoic time, less than 1000 m.y. ago, and show a complicated

structure. Rocks affected by events of the Minas and Uruacuano cycles, between 900

and 1300 m.y. are restricted in area, but are locally of importance. Systems of folding

which were developed in sediments deposited during the Brazilian Cycle (450-700 m.y.)

are observed together with more-or-less extensively re-worked pre-Brazilian basement,

and some median massifs which are also generally affected by this cycle. Older

structures in this basement are well represented in the interior of the state of Goias as
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well as in the north-east and south-east of Brazil. Finally, areas remobilized or

rejuvenated during the events of the Brazilian erogenic cycle are widespread and cover

nearly 40% of the shields, especially in eastern Brazil where they may be confused with

older formations, or with Brazilian formations that have been more intensively modified

by metamorphism and magmatization.

2.2. Patagonian Platform

The Patagonian Platform is contiguous with the South American Platform, but the

limits are hidden by Cenozoic cover. The western boundary is poorly-defined but

appears to be transitional with the Andean chain (fig. 1).

The Patagonian Platform is a young platform with a basement that stabilized from

the Middle Paleozoic onwards, developing a volcano-sedimentary cover after the

Carboniferous; this cover almost completely masks the platform basement. Minor

outcrops of the basement occur mainly in the Somun Cura Massif in the north of the

platform. Rocks with low to medium degrees of metamorphism and granitoid igneous

rocks have been noted in this basement Elsewhere, in the Malvinas Islands, the

basement crops but locally, at Cape Meredith,as rnetamorphic and eruptive rocks of the

Late Proterozoic.

Rocks of Carboniferous to Triassic age are poorly exposed on the Patagonian

Platform. However, granitoid intrusive rocks of Carboniferous and Permian age are

exposed. These intrusive rocks represent an important period in the evolution of the

platform as they may comprise a major part of the basement.
0

From the Sinemurian (Lower Jurassic) to the Bajocian (Middle Jurassic), marine

transgressions flooded the larger part of the Patagonian Platform. Withdrawal of the

sea was followed by intense acid volcanism during the Bathonian (Middle Jurassic, above

the Bajocian) which is well represented throughout the platform south of latitude 40° S



(Tectonic map of South America, 1978). Important tectonic movements during the

Upper Jurassic correspond to the movements (araucanan Phase) of the Andean region.

The formation of the dense network of large faults led to the creation of many basins,

which are nearly contemporaneous with those along the margins of the South American

Platform (Tectonic map of South America, 1978). These basins underwent maximum

subsidence during the Cretaceous (fig. 4).

Two main evolutionary stages of geologic development in the Patagonian Platform

can be recognized (Harrington, 1970; Zambrano and Urien, 1970):

Stage (1) Pre-Upper Jurassic evolution—this stage refers to the evolution of the

basement. Harrington (1970) indicates that a strong Paleozoic deformation (the Southern

Hills "aulacogen") with a NW-SE-trending fold belt can be recognized in the hills to

the north of Buenos Aires. Elsewhere the pre-Cretaceous trends are predominantly E-

W with local deflections. The true Precambrian basement has been found as far south

as the Northern Hills of Buenos Aires (lat, 38° S in fig. 5). In other words, no -early

or middle Precambrian metamorphics have been found in the Patagonian Platform. The

schists and phyllites exposed in the Rio Negro and Chubut provinces (San Jorge basin)

(fig. 4 and 5) are now considered to be late Precambrian or early Paleozoic in age.

The folded low-grade metamorphics cropping out in southern and western Santa Cruz

are probably middle Paleozoic, and there is a tendency to ascribe them to the

Devonian. The gentle folding and the subhorizontal position of the rock units observed

in the basement throughout the Patagonian Platform indicate a predominantly cratonic

or neocratonic type of structural deformation, up to Late Jurassic or Early Cretaceous

times. An extensive cover of silicic and mesosilicic extrusives spread over northern

Patagonia during Triassic times, and over central and southern Patagonia in Jurassic

times, and has to a great extent obscured this pre-Mesozoic tectonic feature.

Stage (2) Post-Early Cretaceous evolution- This stage is closely related to the
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creation of the basins. The post-Cretaceous tectonic pattern of the Salado, Colorado,

Valdes and San Jorge basins (fig. 4) is very similar. Several tectonic episodes are

recorded in rocks of the basins (Lesta, 1968). These episodes, which correlate with the

Andean movements are mainly due to vertical movements of a predominantly negative

type (subsidence). The basins were formed as a result of normal faulting, generally

along ESE-WNW or ENE-WSW directions. The inception of faulting probably occurred

between middle and younger Jurassic time. The faults were intermittently reactivated

throughout Cretaceous time. Basins created by this tectonic reactivation underwent

maximum subsidence during the Cretaceous, and are nearly contemporaneous with those

of the South American Platform. From Upper-most Cretaceous (Maestrichtian) times

onwards, only a few faults have fractured the Tertiary cover. However, subsidence

continued during Cenozoic time.

A different tectonic style characterizes the Magallanes and Malvinas basins (fig. 4

and 5). The eastern part of the former and the northern part of the latter show a

fault pattern similar to the one described above. However, the western part of the

Magallanes basin and the southern part of the Malvinas make up a folded erogenic belt

that is a true geosyncline. These regions contain a great thickness of sediments along a

belt parallel to the Andean axis, along with ophiolites, and metamorphosed Cretaceous

units. A thrust fault parallel to the eastern margin of the Andes in southern Patagonia,

which is deflected towards the east in Tierra del Fuego and probably continuing along

the Burdwood bank, and the Scotia Arc, is the southern and western boundary of both

these basins (Urien and Zambrano, 1973) (fig. 5).

Thus, in summary, three broad areas can be distinguished in the Patagonian

Platform:

(1) The eastern part: mostly submerged under the continental shelf. Basins

created by the post-Early Cretaceous tectono-magmatic evolution are mainly due to
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fracturing. The tectonic features of the Atlantic basins are controlled by vertical

movements of the basement blocks along normal faults; major transcurrent faults may

also occur here, with a predominant E-W trend, which represent the interaction

between a metamorphic and/or igneous basement and oceanic crust,

(2) The central area: including southern part of the Pampean Ranges Massif

together with eastern and central Patagonia, with a basement block pattern and E-W,

ESE-WNW, or ENE-WSW tensional faults. Towards the west the basement blocks tend

to crop out and the fault pattern becomes predominantly N-S; these faults are of

compressional type with E-W-trending tensional faults.

(3) The pre-Andean area: the basement blocks become elongate. The basins

within the continent become longer and narrower and the axes tend to follow a N-S

direction (Nirihuau, the western part of the Magallanes basin fig. 5). The Cretaceous-

Cenozoic cover is gently folded along an axis running parallel to the basement blocks.

The basins closer to the Andes proper are bounded to the west by thrust fault with a

N-S direction.

2.3. Andes Cordillera and the Caribbean Mountain System

2.3.1. The Andes

The Andes, (region c, fig. 1), which form the Pacific boundary of South America,

extend for about 7500 km and represent the backbone of the continent As part of the

Circum pacific mountain system, the Andes are a region of great seismic and volcanic

activity. From the Mesozoic to the present, most sections of Andes are either

characterized by violent volcanism or by widespread plutonism.

Examination of a general geological map of the Andes immediately gives an

impression of the enormous quantity and size of the intrusive bodies. Andean plutonic
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rocks extend over a distance or more than 4000 km from southern Chile to northern

Peru, and have contributed to the Andes being referred to as a magmatic mountain

range.

The Andes are situated on the boundary between large and small lithospheric

plates. According to the plate tectonic model, orogeny should form at those regions

where oceanic crust is subducted beneath continental margins. The Andes are regarded

as a typical example of this type of continental/oceanic interface. Cenozoic volcanism

is thus probably associated with the subduction of lithosphere plates. It is also possible

that frictional heat or the production of radio-active heat are factors determining the

formation and rise of these magmas.

The tectonic structure of the Andes is characterized in particular by significant

normal faulting (recent extension processes); there are fewer near-surface overthrusts or

deformations caused by folding, especially in the overlying rocks (Zeil, 1979). However,

the majority of the deep-focus earthquakes and most of the recent volcanic activity are

apparently associated with large subduction zones that dip eastward beneath the

continent. The normal faults occur as large graben structures that apparently extend

deep into the crust. These grabens parallel the strike of the Andes and coincide with

the main volcanic regions (fig. 6). The grabens may thus have served in part as

conduits for the volcanoes. The age of the inner-Andean tectonic grabens can be

approximately determined on the basis of the material with which they are filled: more

than 10,000 m of sediments. They are certainly recent and their main development

took place in the Cenozoic times. The enormous thickness indicates considerable

vertical fracture tectonics during the Tertiary.

Central and Southern Andes

This region is regarded by many geoscientists as a typical model of the subduction

of an oceanic plate under a continental plate and of corresponding obduction. The
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regional distribution of earthquake hypocentres in Peru and Chile is on the whole

clearly patterned in such a way that shallow-focus earthquakes occur in the Pacific

coastal zone, most intermediate-focus earthquakes are recorded in the region of

minimum gravity values below the Andes, and the majority of deep-focus quakes occur

in the boundary zone between the orogen and the eastern foreland. It is thus possible

to reconstruct a definite east-dipping Benioff zone. This reconstruction also indicates

that the Benioff zone clearly shows lower dip-angles and shallower subduction in

northern and central Peru (average 10° to 15 from west to east) than in southern Peru

and Chile (average 30°). Hanus and Vanek (1978) suggest that the variation of dip-

angles of the Benioff zone implies a non-uniform rate of subduction in the Peru-Chile

trench.

Another remarkable characteristic of the Benioff zone is the existence of an

aseismic gap at variable depths between 100 and 200 km (depending on the different

Benioff dip-angle). The aseismic gap exactly corresponds, in its normal projection

toward the surface, with recent volcanic activity. Hanus and Vanek (1978) suggest that

this gap would be a partially melted zone, which is supposed to be the source of

primary magma for active andesite volcanoes. It is interesting to note that the only

Andean zone with a shoshonitic magmatic belt corresponds exactly to the altiplanic zone

(region 1, fig. 7) of thickest crust in the central Andes, in which the deepest Benioff

zone has developed (Frutos, 1980).

Northern Andes

Thick tholeiitic volcanics dating from the Late Mesozoic, which are associated with

equally thick pelitic, in part slightly metamorpnic, sediments, occur in the Western

Cordillera of Colombia and Ecuador (8A in fig. 7). This "Basic Igneous Complex" was

interpreted by various authors (Case, Duran, 1971, Barnes, Paris, 1973, Goossens and

Rose, 1973) as a .Late Mesozoic island arc or as an oceanic element that became welded

to the overall orogen during the Tertiary. In contrast, the Central and Eastern
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Cordilleras (1A and 2A in fig. 7) are regarded as sections of continental crust The

boundary between these two units is indistinct (approximately at the Cauca and the

Romeral faults). The geophysical data indicate that the crustal and mantle structure in

the northern Andes are quite different from that in the south. As the regional

distribution and intensity of earthquakes in Colombia follow a statistically confusing

pattern, it has not so far been possible to distinguish a uniform Benioff zone, although

such a zone is typical in Peru and Chile. Furthermore, deep-focus earthquakes are

almost completely lacking in Colombia. This too contrasts with the situation in the

central section of the Andes.

Stauder (1975), using geophysical data, proposes separate tongues and various

subduction epochs. He justifies this by pointing to the differing spatial locations, the

non-uniform dip and the lack of intermediate quakes in southern Peru. Thus, they are

no longer based on the subduction of a uniform oceanic plate but instead require that

several subduction episodes occur with varying intensity in time and space.

2.3.2. The Caribbean Mountain System

The Caribbean Mountain System (region Cl, fig. 1) is part of an island arc of the

eastern Caribbean. It formed in a gecsynclinal environment to the north of Venezuela.

The basement of this area contains Paleozoic rocks with metamorphosed igneous

complexes of Paleozoic age. Three main stages of sedimentation can be recognized.

The first starts with the upper Jurassic to lower Cretaceous (Caracas Group) and shows

characteristic platform features. The second stage occurred from lower to middle

Cretaceous. It was followed by the Paleocene-to-lower Eocene stage which was

synorogenic and was accompanied by severe submarine ophiolitic volcanism (Tectonic

map of South America, 1978). The upper Cretaceous was a period of metamorphism in

greenschist to epidote amphibolite facies which increases in intensity northwards and

eastwards. Faulting and gravitational sliding toward the south occurred from the upper
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Cretaceous onwards and make it difficult to interpret the tectonic development of the

chain.

Paleocene and Eocene sedimentation was flysch and wild flysch in the southern

and the western part of the fold belt Subsequent to this uplift and sliding,

compression oriented NNW-SSE took place at the end of the Eocene and was followed

by Miocene and Pliocene molasse deposition in intra-montane basins. Mesozoic

rnagmatic activity, synchronous with the evolution of the fold belt, is shown mainly by

granite plutons and basic and ultrabasic, sometimes submarine, volcanism which included

serpentinized peridotites (Tectonic map of South America, 1978).
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CHAPTER 3

GEOLOGY OF THE SOUTH AMERICAN PLATFORM

AND ITS RELATION TO

MAGNETIC AND GRAVITY ANOMALIES

3.1. Amazon Craton

The Amazon Craton (region Al in fig. 2), includes the Guyana Shield (Ala in fig.

2), the western past of the Central Brazilian Shield (Alb in fig. 2), and the Apa and

Missioned massifs (northern part of A6a in fig. 2). The craton comprises an extensive

region consolidated since the end of the Trans-Amazonian Cycle (1800-2200 m.y.

Middle Precambrian, see Table 1) and evolved subsequently as a cratonic area with

unusual characteristics. Its western margin is not defined because of a large transitional

zone (region D in fig. 2). The Chaco basin (A6a in fig. 2) overlies the craton along its

southern margin. The eastern margin of the Amazon Craton constitutes one of the

major structural lines of the continent. This structural line widely exposed in central

Brazil and continues from there, under cover, northwards into the area of the mouth of

the Amazon. To the south, it extends at least as far as eastern Paraguay, probably

continuing beneath the Parana Basin (region A6b in fig. 2), and re-appearing in the

south of Uruguay, near the Rio de la Plata (region A6 in fig. 2). This boundary is

delineated by a series of major structures including deep faults filled with basic and

ultrabasic igneous rocks, marginal sedimentary basins (including a foredeep), and

volcanism; furthermore, it corresponds to a major fold belt at the end of the

Precambrian (Brazilian Orogenic Cycle, 550-600 rn.y.) (D in fig. 3).
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The Amazon Craton is characterized by tectonic instability and abundant magmatic

activity during the Upper Precambrian (about 1800 to 1000 m.y.). This was followed by

a much quieter period which continued until the beginning of the Phanerozoic, during

which the craton was separated into two shields (Guyana and Central Brazilian Shields)

bordering the Amazon Syncline.

A succession of tectono-magmatic events affected different parts of the craton at

different times during upper Precambrian time. All are characterized by large-scale

faulting and the formation of tectonic basins in which continental or marine sediments

were deposited, some being of molasse type. These events were accompanied by

widespread acid-to-intermediate, locally basic, volcanism and by intrusion of granites

(including some of rapakivi type), granodiorites, diorites, gabbros, syenites and nepheline

syenites. These tectono-magmatic sequences have received various local names. The

oldest, which includes the metasedimentary rocks of the Uatuma Group (see Amazon

Basin) lies on both sides of the Amazon Syncline. in Brazil, and developed between

1.730 and 1,450 m.y. The metasediments of the Roraima Group also formed at about

this time on the Guyana Shield (see Guyana Shield and fig. 8). A third sequence, the

Beneficente Group, appeared at about 1,700 m.y. in the south-central part of the

craton.

About 1.200*100 m.y. ago the Guyana Shield was the site of another intense

tectono-thermal event with major faulting and metamorphism. Granites and alkaline

syenites are related to these events in Brazil. Magmatic activity continued. until about

1,000 m.y. in Rondonia where abundant granites (many of which show ring structures)

and associated volcanism occurs. An important tin mineralization is associated with this

magmatic activity!
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3.1.1. The Guyana Shield

3.1.1.1. Geology

The Guyana Shield (region Ala, fig. 2) is a famous old cratonic area which

encompassed the entire region of French Guyana, Surinam, Guyana, southern part of

Venezuela, eastern part of Colombia, and northern part of Brazil (region 21, fig. 7).

The whole area consists of Precambrian rocks lying to the north of the Amazon

Syncline. The basement of the shield underwent an erogenic cycle, the Trans-

Amazonian orogeny (Table 1), around 2,000 m.y.-l,800 m.y. age.

Stratigraphy

The distribution of rock formations of the Guyana Shield are shown on fig. 8.

The individual units are described in the following paragraphs.

(1) The Imataca Complex (1 in fig. 8)

The oldest rocks found so far in South America occur in the Imataca complex.

This high-grade metamorphic sequence consists of quartz-feldspar gneisses, amphibolite,

amphibole-pyroxene gneisses, iron formation, and migmatite. The granulite facies is

common. The age range as indicated by whole-rock Rb-Sr isochron plots is 2,700-3,400

m.y. (Hurley, 1970). No name has been given as yet to the thermo-tectonic events that

antedate 2,700 m.y., but in keeping with the type locality the term Imataca has been

suggested (Hurley and Rand, 1973). - In addition, this east-northeast-striking belt as

described by Bellizzia (1956), Short and Steenken (1962), and Kalliokoski (1965) also

includes younger granitic rocks dated at about 2,100 m.y. (Posadas and Kalliokoski,

1967), which should be grouped with a later thermo tec tonic episode.

(2) The El Pao and Cuidad Piar-Guri fault systems (fig. 8)

These faults form the southern boundary of the Imataca complex, Short and
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Steenken (1962) designated this structural zone as the Bolivar fault system (fig. 8). This

zone forms a large shear belt that is a kilometer or more in width and contains

mylonite zones between strongly sheared gneisses. McConnell (1969) has suggested that

the extension of this fault system to the northeast extends into the line of the

presumed ancestral north Atlantic rift.

(3) Pastora-Cariachapo assemblage (Kalliokoski, 1965) (3 in fig. 8)

This assemblage is part of an extensive geosynclinal basin to the south and east of

the Imataca region and its bounding fault zone (fig. 8). This assemblage is composed

of metasediments and metavolcanics which were folded, metamorphosed, and granitized

during the Trans-Amazonian orogeny at about 2,000-1,800 m.y. in Venezuela.

(4) In Guyana, McConnell (1958) and Williams et al. (1967) described the

continuation of these geosynclinal sequences as the Barama-Mazaruni assemblage (4 in

fig. 8).

1. The underlying Barama Group consists chiefly of pelitic metasediments and
metamorphosed lavas and pyroclastics, locally containing manganiferous
phyllites.

2. The Mazaruni Group, which conformably lie over the Barama Group, contains
pebbly sandstone and conglomerates of the greywacke suite and some
volcanics.

This assemblage was metamorphosed to the greenschist facies, except in the more

northern part where granites and gneisses (Younger Granite Group) of the locally

designated Bartica assemblage contain migmatite complexes. The thermotectonic episode

responsible for the development of the granites and gneisses and metamorphism of the

Barama-Mazaruni assemblage has been described and dated in the range 1,900-1,800 m.y.

by Williams et al. (1967), Snelling (1965, 1969), and McConnell (1969).

The large Guyana-Venezuela basin of sediments, which includes the Pastora-

Carichapo assemblage of Venezuela and the Barama-Mazaruni assemblage of northern
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Guyana is part of a synclinal fades that is bordered on the south by the Takutu Rift

Valley (fig. 8). A major fault occurs along the southern edge of the Takutu Vally.

South of this fault is a range of mountains 60 km across underlain by rocks of the

Kanuku Group.

(5) The Kanuku Group (2 in fig. 8) (Barren, 1962; Singh, 1966)

It consists chiefly of banded biotite and biotite-garnet gneisses in the amphibolite

facies, and hypersthene gneisses, and charnockites of the granulite facies. A relatively

poor Rb-Sr whole-rock isochron by Spooner et al. (1971) indicates that the Kanuku

Group is at least 2,000 m.y. and distinctly older than the typical trans-Amazonian

thermotectonic event (2,000±200 m.y.) which affected most of the rocks of the Guyana

Shield. Previously, some geologists (Williams et al.. 1967, McConnell, 1969) have

assumed that the Kanuku Group was comparable in age to the Imataca, namely older

than 2,500 m.y., thus forming part of an Archean basement that rimmed the

eugeosynclinal basin of northern Guyana.

(6) The Coeroeni and Faiawatra groups (5 in fig. 8)

These gneissic and granulitic rocks of western Surinam may be an extension of the

Kanuku Group. These rocks occur along the great fault system of the Takutu Rift

Valley.

Priem et al. (1966, 1968) have dated numerous granites in Surinam at 1,900-1,800

m.y. and indicated that the thermotectonic episode is an extension of the Trans-

Amazonian event, similar to the case in Guyana. The dating at 2,200-1,800 m.y. of the

Guyana is Granites and the Caraibes Granites in French Guyana by Choubert (1964) has

tied together the rocks of Surinam and French Guyana into a possible French Guyana-

Surinam basin (fig. 8). This basin is elongate from east to west and bounded on the

west by the Coeroeni-Falawatra belt of high grade rocks. Thus, western Surinam
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appears to represent the uplifted basement on which the sediments of the Surinam-

French Guyana basin were deposited. The great fault system outlining the Takutu Rift

Valley thus represents a physical separation of the remnant geosynclinal rocks of this

eastern basin from those of the Venezuela-Guyana basin to the west (fig. 8).

The stratigraphy of this basin has been established by Choubert (1965), Barruol

(1961), and others in Surinam-French Guyana. The correlations between the Venezuela-

Guyana basin and the Surinam-French Guyana basin are listing below:

Venezuela-Guyana basin Surinam-French Guyana

Mazaruni Group

Bararaa Grouo

Imataca Complex

Serie de L'Orapu

Serie de Bonidoro

Serie de pararoaca

Coeroeni-Falawatra (Kanuku Group)
lie de Cayenne basement

All of these geosynclinal rocks were metamorphosed and invaded by granites

during the Trans-Amazonian erogenic episode (Hurley et ah, 1967, 1968) which was the

equivalent of the Akawaian episode in Guyana, the Surinam in Surinam, and the

Caraibes episode in French Guyana. The tectonic map of South America shows two

Guyana structural stages (lower and upper) in the area of the Guyana during this cycle.

The rocks vary in lithology and in the degree of metamorphism from greenschist to

amphiboiite facies and include many volcanic rocks and granite formed during and since

the main tectonogenetic processes.

(a) The lower Guyana stage corresponds to more severely metamorphosed and

granitized rocks which yield radiometric dates generally more than 1,900 m.y. old.

(b) The upper stage contains the less metamorphosed formations and sedimentary
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rocks of molasse character along with abundant acid-to-intermediate volcanics which

occurred around 1,900-1,800 m.y.

(7) Roraima Formation

The flat-lying Roraima Formation, which consisting of quartzilic sandstones and

quartzites with some conglomerates and shales, unconformably overlies a large region of.

the Guyana Shield. The mafic dikes of the Roraima intrusive suite were dated at about

1,600 m.y. It is therefore commonly concluded that the Roraima was deposited between

1,600 and 1,700 m.y. after the uplift and erosion of the metamorphic rocks and granites

beneath it The 'absence of metamorphism and folding on the Roraima sequence

indicates that the area has been tectonically stable at least since that time.

3.1.1.2. Magnetic Anomalies

The magnetic anomaly pattern (fig. 9) in the Guyana Shield may be divided into

three different portions. One of these portions is in the central and southern part of

the shield (Cl, fig. 9) where the magnetic anomalies are negative and have magnitudes

less than -12 nT. This magnetic low extends southeastward and connects with a large

anomaly low of the Amazon Basin. A second anomaly occurs along the north-west part

of the shield (Bl, fig. 9). A magnetic high overlies This region with a general east-

northeast trend. It appears to be part of a larger anomaly that extends southwestward

into the Andean fold belt The third anomaly is in the northeastern part of the shield

(B2, fig. 9). It is also a magnetic high with a north-northeast trend and extends

northeastward into the adjacent Atlantic ocean basin.



23

3.1.1.3. Gravity Anomalies

The Bouguer gravity anomaly pattern shows a double low in the Guyana Shield

(fig. 10). Both of these anomaly lows have a minimum magnitude around -50 to -80

mgals.. One of these peaks is in the eastern part (Al in fig. 10) and the other is in

the western part of the shield (A2 in fig. 10). They are separated by a NE-trending

saddle having a magnitude of around 0 to -20 mgals (Tl in fig. 10).

3.1.1.4. Correlation

Generally, the magnetic anomaly and Bouguer gravity anomaly pattern, correlate

fairly well with the large geologic features of the Guyana Shield.

The shape of the northwestern magnetic anomaly high (El in fig. 9) is elliptical

and approximately coincides with the Venezuela-Guyana basin. The long axis of the

ellipse has an ENE direction which is the same direction as the Precambrian structural

trends (fig. 8). Similarly, the northeastern magnetic high (B2 in fig. 9) is located along

the Surinam-French Guyana basin. Its magnetic trend extends northeastward to the

Atlantic Ocean basin. The areas between these two magnetic highs show negative

values. The large magnetic anomaly low (minimum value less than -12 nT) occurs near

the southern center of the shield (Cl nn fig. 9) where it is very close to the Takutu

rift valley. The Takutu Formation, believed to be of Jurassic-Cretaceous age, along

with other non-Precambrian sedimentary rocks in this area, may correlate with this

magnetic anomaly low. Therefore, there is reason to suggest that the non-

metamorphosed Phanerozoic sediment of the rift valley contributes to the magnetic low.

On the Bouguer gravity anomaly map, the double-peaked gravity anomaly lows are

separated by a NE-trending saddle. This saddle coincides approximately with the

Takutu rift valley and may reflect that structure. Presumably dense rocks are associated

with the rift structure.
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In general, Precambrian terranes are associated with lower gravity anomalies (less

than -30 mgals) than areas that contain non-Precambrian sediments (between 0 to -20

mgals). It is also apparent that the distribution of volcanic rocks on the Guyana Shield

(fig. 18) shows a relation to the magnetic and gravity anomalies. Areas that contain

volcanic rocks generally have positive magnetic anomalies and lower magnitude (-50 to

-90 mgals) Bouguer gravity anomalies. In contrast, areas where volcanic rocks are not

present are areas of negative magnetic anomalies and higher Bouguer gravity anomalies

(0 to -30 mgals). The only exception occurs in the southeastern part of the shield

where cratonic granitoids, both acid and intermediate effusive and sub-volcanic rocks

(1,000 to 1,800 m.y.). are underlain by negative magnetic anomalies (-4 to -12 nT) and

higher Bouguer gravity anomalies (-20 to -50 mgals). Thus, the distribution of volcanic

rocks in the Guyana Shield is apparently an important element that influences the

magnetic anomaly and Bouguer gravity anomaly patterns.

Finally, there is an apparent correlation based on the thickness of the crust. The

western part and the eastern part of the shield with positive magnetic highs and relative

Bouguer gravity anomaly lows probably reflect a relative thicker crust than the southern

center (Takutu rift valley). The Takutu rift valley with magnetic lows and relative

higher Bouguer gravity anomalies are underlain by a relatively thinner crust which may

extend northeastward to the coastline or even to the Atlantic ocean

3.1.2, Central Brazilian Shield

3.1.2.1. Geology

The Central Brazilian Shield (region Alb in fig. 2), which is also called the

Guapore Craton, is one of the old cratonic regions of the South-American Platform.

The eastern border of this region can be observed along the Itacaiunas River, where

iron formations were recently discovered. To the north, the Central Brazilian Shield is

separated from the Guyana Shield by the Amazon basin. To the southeast, the Central



25

Brazilian Shield is separated from the Sao Francisco Craton by a large region affected

by a major upper Precambrian tectono-magmatic event, in which numerous basic and

ultrabasic intrusions of alpine character occur. Some of these rocks were dated with

results close to 1,000 m.y. (Hasui and Almeida, 1970).

Geotectonic and Structural Pattern

The oldest known rocks in the Central Brazilian Shield are dated at 2,700±200 m.y.

(the Jequie thermo tec tonic events) and are part of an extensive granite-gneiss terrain

(Haralyi and Hasui, 1982). Both the Central Brazilian and Guyana Shields were

consolidated prior to 1,800 m.y.. and both were partially remobilized in. the Trans-

Amazonian orogenic cycle (Table 1, 1,800-2,200 m.y.) as defined by Hurley et al.

(1967). Several radiometric ages, obtained by K-Ar and Rb-Sr methods (Alraaraz, 1967;

Hurley et al., 1967), also indicate that the area of the Central Brazilian Shield was

affected by the events of the Trans-Amazonian Orogenic Cycle. The thick iron

formations of the Serra dos Carajas (Table 2) probably belong to this geotectonic cycle.

Neither the Guyana and Central Brazilian Shields were affected by the events of the

late Precambrian to early Paleozoic Brazilian orogenic cycle (Table 1). The only

younger tectonic events in this region are apparently an intense N-S fracturing, and

some Paleozoic-Mesozoic diabase dike intrusions. Remnants of a sedimentary platform

cover with associated volcanic rocks of upper Precambrian age are found in several

places, overlying this old cratonic area.

Stratigraphy (Table 2)

The stratigraphy still remains obscure, and gneisses, migmatites, amphibolites,

schists, quartzites, phyllites, and itabirites (iron formation) have been described from

this region.
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3.1.2.2. Magnetic Anomalies

The Central Brazilian Shield is characterized by large magnetic anomaly highs (fig.

9). A large high occurs in the eastern region (Al in fig. 9) near the area of Rio

Araguaia and Rio Itacaiunas. The maximum value of this anomaly is more than +12 nT

and covers a very large area. A magnetic anomaly high occurs in the western region

of the shield (B3 in fig. 9). It is of relatively low magnitude {maximum value is less

than +8 nT). Another magnetic high occurs along the northeastern boundary between

the Central Brazilian Shield and the Amazon Basin (A5 in fig. 9) but it covers a

relatively small area. All these anomalies may be connected and extend east-

northeastward through the area of the Caririan-Propria Fold Belt into the Atlantic

ocean basin.

3.1.2.3. Gravity Anomalies

The Bouguer gravity anomalies of the Central Brazilian Shield are moderately low

(fig. 10). The variations range from -50 mgals to -10 mgals. The Free-Air gravity

anomalies of this area show a very smooth pattern, and the variations range between

+10 mgals and -10 mgals (fig. 11).

Two linear gravity lows occur in the southern part of the shield on both the

Bouguer and Free-Air anomaly maps (A3 and A4 in fig. 10, 11) and have a north-to-

northwest-trend. The values range on Bouguer anomaly map is from -90 mgals to -50

mgals and on Free-Air anomaly map is between -40 mgals and -10 mgals. These two

linear anomalies are part of a larger series of gravity lows that occur along the

northeastern part of South-American Platform (A in fig. 10 and fig. 11).
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3.1.2.4. Correlation

As mentioned previously, Precambrian gneisses, migmatites, amphibolites, and

itabirites are widespread in the Centra] Brazilian Shield. The wide distribution of these

thick magmatic and magnetic rocks suggest that they are important contributors to the

positive magnetic anomalies of the Central Brazilian Shield.

In the eastern area of the shield, thick iron formations were recently discovered

along the Itacaiunas River, and a large region was affected by a major upper

Precambrian tectono-magmatic event, in which numerous basic and ultra-basic intrusions

were emplaced. These rocks may contribute to the magnetic, high (Al in fig. 9) which

occurs in the area. Similarly, the presence of a large volume of intrusive rocks in the

northwestern part of the shield could contribute to the magnetic high along the

northwestern boundary (A5 in fig. 9) between the Central Brazilian Shield and the

Amazon basin.

Both the Bouguer and Free-Air gravity anomaly patterns match well with the

distribution of rocks of different age in Central Brazilian Shield (Tectonic map of

South America). The areas which contain Precambrian rocks show relatively higher

gravity anomalies than areas which contain Mesozoic and Cenozoic sedimentary rocks.

One reason for this match is that the magmatic and metamorphic rocks of Precambrian

age have higher density than the sedimentary rocks of Mesozoic and Cenozoic age.

Another reason may be the thickness of the crust. Areas underlain by Precambrian

rocks may have a thinner crust than areas Underlain by Mesozoic and Cenozoic rocks.

However, it should be emphasized that there is no appreciable difference in elevation

between the Precambrian and the Phanerozoic area (fig. 12).
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3.1.3. The Amazon Basin

3.1.3.1. Geology

The Amazon Basin (region Ale, fig. 2) is one of the major basins in the South-

American Platform. The basin lies between the Central Brazilian Shield and the

Guyana Shield and occupies an area of about l,250,000sq. km. The basin is elongated

in shape (about 3,000 km long and 300 km wide in the eastern part and 600-800 km

wide in the western region), trending in an almost east-northeast direction from the

Peruvian and Colombian borders to the mouth of the Amazon River. The basin

contains a thick sequence of Paleozoic, Mesozoic and Cenozoic sediments.

Geotectonic and Structural Pattern

The Amazon basin, regarded as an intercratonic basin by most geologists, has been

variously considered to be an autogeosyncline (Morales, I960), an extensive and complex

graben (De Loczy, 1966), a rift basin (De Boer, 1966) and an aulacogen (Burke and

Wilson, 1976). According to Harrington (1962) the substable, undeformed nature of the

Amazon basin is characteristic of intercratonic basins. The adjacent extensive cratonic

areas of the Guyana and Central Brazilian Shields represent stable, positive areas. The

last compressional orogenic event to affect the Amazon basin area is indicated by the

locally slightly metamorphosed and folded pre-Silurian Uatuma Formation (Precambrian,

Table 3). This sequence overlies the crystalline Precambrian basement with an angular

unconformity. The entire region can be considered to be the site of major

sedimentation, extensional tectonism, basaltic volcanism, fault reactivation, and

epeirogenic uplift since Silurian time.

The Amazon basin may be divided into four subunits or subbasins as a result of

transverse structures or arches (fig. 3). These subbasins and arches are as follows:

(1) Marajo Subbasin. The Marajo subbasin lies to the east of the Gurupa horst



29

(region 1, fig. 3) and is basically a graben bounded by a system of normal faults of

Cretaceous and early Tertiary age (Bouman et al., 1960). A great thickness of

continental Cretaceous deposits and both continental and marine Tertiary sediments

occur in the Marajo basin. Paleozoic sediments are preserved in the graben under a

cover of these Cretaceous and/or Tertiary sediments (De Boer, 1964).

(2) Gurupa HorsL The Gurupa Horst is bounded by high-angle normal faults on

the western side and a steplike fault system on the eastern side. The faults are

oriented N-S. Displacement is greater on the eastern than on the western side of the

structure. The horst block is narrow and slightly convex westward.

(3) Middle Amazon Subbasin (regions, fig. 3). This area extends from the Purus

arch to the Gurupa horst (fig. 3). The axis of the basin is oriented approximately

WSW-ENE and the subbasin is slightly asymmetric with southern flanks somewhat

steeper than the northern. Within this subbasin is the most complete succession of

Paleozoic sediments in the whole of the Amazon area. Outcrops of Paleozoic sediments

occur in two narrow bands along the northern and southern edges of the basin.

(4) Ccari and Purus Arches (region 4, fig. 3). During the Devonian, the Upper

and Middle Amazon Subbasin was separated by the Coari arch. This arch was eroded

during lower Carboniferous (De Boer, 1964) and migrated eastward into the present

position of the Purus arch. The Purus arch was active in the middle and upper

Carboniferous.

(5) Upper Amazon Subbasin (region 5, fig. 3). This subbasin is located between

the Iquitos and Purus arches or, more precisely, between the Iquitos and Coari arches.

It contains a Silurian to Carboniferous sequence considered to have been deposited in

an embayment of the Andean basin, which extended eastward into the lower Amazon

area in Devonian and upper Carboniferous time (Harrington, 1962; De Boer, 1964). The



30

basin has an E-W orientation and is also slightly asymmetric. The Paleozoic sediments

do not crop out; around the edges of the basin Tertiary sediments lie directly on the

basement

(6) Iquitos Arch (region 6, fig. 3). The Iquitos Arch is a wide structure that

separates the Acre pericratonic basin from the Upper Amazon basin. It probably

originated during Devonian time and reached its maximum development in the Permian

(Morales, 1960).

(7) Arce Subbasin (region 7, fig. 3). Within this subbasin, the folded and faulted

sequences of Carboniferous and Cretaceous sediments are overlain by Tertiary deposits.

Folds and overthrust faults are related to compressional forces associated with the

orogenic cycles of the Andean belt which developed during Cretaceous and Tertiary

times. The Acre subbasin was probably formed during Carboniferous times.

Stratigraphy (see Table 3)

Upper Paleozoic strata are well represented in- the Amazon basin as are rocks of

Cretaceous age. Triassic and Jurassic strata are apparently absent The upper Paleozoic

rocks crop out along both flanks of the middle-lower Amazon basin forming two belts,

each about 30-50 km wide and oriented in an east-west direction. The belts are

roughly parallel to both the Amazon River and the axis of the basin (fig. 12). The

sequences apparently are thick in the middle Amazon basin (up to 7,000 m), while in

the upper Amazon basin the total succession is only about 3,000 m (Melo, 1960). They

range in age from the Silurian (Trombetas Formation) to the Permian (Sucurundi

Formation) (Table 3). The two most important sequences are the Silurian-Devonian and

the upper Carboniferous. The oldest Paleozoic rocks (Silurian Trombetas Formation) are

separated by an angular unconformity from the underlying Precambrian basement.

Traditionally the Uatuma Formation which underlies the Trombetas Formation in
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the upper Amazon was regarded as Cambro-Ordovician. However, recent

geochronological work has established that it is Precambrian with an age of 1,100±100

m.y. It must have been deposited before the Amazon intercratonic basin was

established. It is therefore comparable with the Jaibara Formation of the Ceara Group

(Kegel 1956) in the Parnaiba basin (Table 8). Both are relatively unmetamorphosed

sequences, and both are separated by angular unconformities from older and much more

highly metamorphosed Precambrian rocks.

An erosional unconformity separates the Silurian Trombetas Formation from the

Devonian Maecuru Formation in the Amazon basin. In the central part of the Middle

Amazon basin there is no important break in the sedimentary pattern between the

Devonian Curua Formation and the Monte Alegre Formation of upper Carboniferous

age, however, towards the margins of the basin unconformable relations indicate one or

more periods of erosion or nondeposition.

The surface on which these Paleozoic rocks rest in the Amazon is a well-defined

erosional surface interpreted by most authors as a peneplane or pediplane (Bigareila,

1964; et al. 1965). In other words, after Permian time there is a big gap in the

Amazon succession until Cretaceous beds form. Then, the upper part of the Paleozoic

and Mesozoic (Cretaceous only) sequences are truncated by an extensive erosional

surface on which rest Cenozoic beds.

Volcanism

Three large South American sedimentary basins (Amazon, Parnaiba, and Parana

basins) were subjected to one of the largest volcanic events in the earth's history during

Mesozoic-late Paleozoic time. In terms of distribution, the area of the Amazon basin

affected by the intrusion and extrusion of basic magma is far larger than that covered

by the sedimentary rocks themselves (fig. 13). The Paleozoic and Mesozoic sequences

are intruded by diabase which formed dikes and sills, and the number of dikes increase

with depth (Rezende, 1966).
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In the Amazon basin, the number of dikes cutting the crystalline basement and

Silurian-Devonian sequence is greater than those penetrating the Carboniferous Monte

Alegre Formation (Rezende, 1966).

The orientation of the diabase dikes are N25°-35°E, N10°-30°W, N55°-65°W, and

N75°-85°E (Bischoff, 1963) and follow faults and tensional fractures. The mean total

thickness of the intrusions in the prevolcanic sediments is about 260 m and in some

places may exceed 600 m. The individual intrusions range from a few meters to several

hundred meters in thickness (Vollbrecht, 1964). In the middle Amazon basin are two

zones of sill intrusion corresponding to two distinct periods of magmatic activity—one

period is of Carboniferous age and the other is of lower Jurassic age (Rezende, 1966),

whereas in the upper Amazon basin there is only one age group of sills.

Four basaltic core samples from the Amazon basin were dated by K-Ar methods.

The age dates obtained range from 170 to 293 m.y. old. The oldest pre-Mesozoic lava

flows occur in an-area where 14 flows with a total thickness of 265 m occur (Rezende,

1966). A K-Ar age .of 293 m.y. was obtained on this sample. This age is considerably

older than that of the extrusive basaltic rocks of the Parnaiba and Parana basins (120-

130 m.y.). The remaining three samples from a depth of about 600 m have an average

age of about 181 m.y. (upper Triassic or iower Jurassic) (Bigarella, 1973). In a general

way, samples from below about 1,000 m are assumed to be Late Carboniferous or Early

Permian, while samples above this depth are regarded as upper Triassic or lower Triassic

age. No extrusive basaltic rocks are known from the younger period of intrusion.

One earlier period of volcanism is suggested by the occurrence of tuffites in the

lower Devonian sequence in the Amazon basin (Ludwig, 1964, p.31). However, no other

information is available.

Geologic Development of the Amazon Basin
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Two main periods of tectonic activity, represented by epeirogenic disturbances, are

recognized in the Amazon basin (Petrobras, internal reports, Bigarella, 1973).

(1) Silurian-Devonian time. Subsidence occurred generally everywhere within the

Amazon basin during Silurian-Devonian time. Field evidence indicates that the sea

transgressed from two directions and retreated in those same directions during this time

interval (De Boer, 1964). In the middle Amazon basin, the thickness of the Silurian-

Devonian sequence increases eastwards, reaching a maximum of 5,000 m (De Boer, 1964).

In this basin the marine incursion came from the east (Melo, 1960) and transgressed as

far west as the Coari arch (West of Purus Arch, fig. 3). In contrast, in the upper

Amazon basin the marine incursion was from the west (De Boer, 1964).

(2) Carboniferous time. The pattern of epeirogenic movement during the

Carboniferous followed the same pattern as in the Silurian and Devonian. Local uplift

occurred while continuous subsidence took place in the middle Amazon basin. It

appears that some of the areas which were uplifted and eroded subsequently sank

considerably. The thickest Carboniferous sequence (De Boer, 1964, 1966) is in the

central part of the middle Amazon basin. In addition, the central part of this subbasin

shows continuous sedimentation during the Paleozoic, while in the marginal areas

interruption of deposition (unconformities) indicate tectonic movement or, more

correctly, deep-seated folding. In general, the rate of subsidence seems to have been

greater in Silurian-Devonian times than during the Carboniferous and the Permian.

Moreover, the subsidence of the central and eastern part of the basin increased

eastwards in the direction of transgression during the Devonian. This situation persisted

until the deposition of the Monte Alegre Formation (lower-upper Carboniferous, Table

3). Then, the pattern of subsidence changed and possibly reversed with the Amazon

basin being isolated from the sea. The Purus arch and the northern and southern edges

of the Middle Amazon subbasin was uplifted after the Devonian regression. Much of

the Silurian and Devonian sediment were then eroded.
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The information on the tectonic history of the Amazon basin is still elementary.

A careful revision of surface and sub-surface data is therefore necessary. Two main

periods of faulting are known - one prior to and the other postdating the Mesozoic

phase of diabase intrusion. Large-scale faulting of Cretaceous to Tertiary age is

restricted to the coastal basins. The faulting predated the Mesozoic intrusive phase and

consisted mainly of adjustments resulting from epeirogenic movement. The Gurupa

horst (region 2, fig. 3), where Paleozoic sediments to the west are brought against

Cretaceous and/or Tertiary rocks, was formed in this way. The maximum intensity of

faulting seems to be directly related to the igneous activity, and the large faults follow

the same trends as the dykes. These trends are controlled by Precambrian basement

structures. Thus many features of the lower and. middle Amazon basin, rivers,

waterfalls, and rapids (Sternberg, 1950; Bischoff, 1963; Leinz, 1949), are controlled by a

Mesozoic NE-SW or N-S fault pattern which in turn reflects a reactivation of

Precambrian structural trends. In the upper Amazon the principal fault roughly parallel

•the axis of the axis of the basin.

3.1.3.2. Magnetic Anomalies

• Magnetic anomaly lows occur in most areas of the Amazon Basin (fig. 9). The

magnitude of two magnetic minima, one at the east of the middle subbasin (C2 in fig.

9) and the other at the west of the upper subbasin (C3 in fig. 9), is less than -12 nT.

Anomaly C2 may go through the mouth of the Amazon river and extend east-to-

northeastward into the adjacent Atlantic ocean basin where another large magnetic low

occurs. Positive magnetic anomalies occur only in a small area between the middle

subbasin and the upper subbasin (northern part of A5 in fig. 9), around the southern

border of the Amazon Basin.
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3.1.3.3. Gravity Anomalies

In the upper subbasin of the Amazon river and the western region of this basin

(the transitional zone between the Platform and the Fold Belt), a large gravity high (B

in fig. 10, 11) occurs on both the Bouguer and Free-Air gravity anomaly maps. The

maximum value of this gravity high is larger than +40 mgals for the Bouguer and larger

than +60 mgals for the Free-Air. Both of these gravity maxima (Bouguer and Free-

Air) are located at the central part of the transitional zone.

In the middle subbasin (Bl in fig. 10, 11) and the Marajo subbasin (B2 in fig. 10,

11), i.e. the middle and the lower course of the Amazon river, positive gravity

anomalies also occur along with the more local negative anomalies.

3.1.3.4. Correlation

The Amazon Basin contains a thick sequence of Cenozoic, Mesozoic (including

numerous diabase dikes and sills), and Paleozoic sediments.No extrusive basaltic rocks

are known in the basin. Sedimentary rocks, including sandstone, shale and siltstone, are

the main rock type of the Amazon basin. A thick sequence of Permo-Carboniferous

evaporites is also present. All of these sedimentary rocks would be expected to have

low magnetic susceptibility and thus cause the negative magnetic anomalies. The

positive magnetic anomalies in the small area between the upper and the middle

subbasin (northern portion of A5 in fig. 9) probably is influenced by the adjacent

central Brazilian Shield or could be caused by high heat flow.

Negative gravity anomalies occur locally in the middle and lower course of the

Amazon river, perhaps reflecting the thick infilling of low density sedimentary material.

Positive gravity highs, however, cover most areas of the Amazon basin and the

transitional zone. Compared to the surrounding areas (the Guyana Shield, the Central

Brazilian Shield and the Andes), the Amazon Basin and the transitional zone are located

along gravity maxima. This suggests that the thickness of the crust underlying the
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Amazon basin and the transitional zone is relatively thinner than in the surrounding

areas.

The large gravity high that occurs in the transitional zone (B in fig. 10, 11)

between the platform and the fold belt is poorly understood. The maximum value of

this Bouguer gravity high is the highest in all of South America (even higher than the

one associated with the Argentina aulacogen, C in fig. 10, see Sec. 3.6). It may

indicate that the thinnest continental crust of South America underlies the area of the

transitional zone between the platform and the fold belt

3.2. Sao Francisco Craton

3.2.1. General Geology

The Sao Francisco Craton (fig. 14 and region A2 in fig. 2), covers about 650,000

km1. It is located southeast of the Parnaiba basin and is separated from it by the Sao

Francisco Arch (fig. 3). On the eastern and southeastern border of the Sao Francisco

craton, a metamorphic belt of 1,100-1,400 m.y. age is recognized. These age may be

related to the orogeny of the Minas Group, near Belo Horizonte (fig. 14). To the

northwest, the Sao Francisco nuclei and the ancient Central Brazil Shield are separated

by a large region affected by a major upper Precambrian tectono-magmatic event, in

which numerous basic and. ultrabasic intrusions of alpine character occur. Some of

these rocks were dated with results close to 1,000 m.y. (Hasui and Almeida, 1970). To

the southwest, the Brazilian Fold Belt developed along the borders of the Sao Francisco

Craton which acted as a foreland to the belt

In general, the basement of Sao Francisco Craton is comprised of Lower

Precambrian formations (Jequie and older) which are radiometrically well-dated (2,700

m.y. or older) although locally re-worked during the Trans-Amazonian Cycle. During

the first half of the upper Precambrian, thick detrital sediments covered the craton,
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forming the Nova Lima Group and its equivalents. Later on, a more extensive cover

was formed on the craton during the Brazilian Cycle (Bambui group 600 m.y.).

Stratigraphy (detail lithology shown on Tables 4. 5 and 6)

(1) The basement of northern part of the Sao Francisco (location 1 in fig. 14) is

composed of three metasedimentary units, older than upper Precambrian (1,800 m.y.), all

of which have trends oriented close to north-south (Table 4). The Caraiba Group

(Barbosa, 1966) is the oldest (minimum age close to 2,000 m.y.). It underwent strong

metamorphism that reached the granulite facies. The Uaua Group was affected by a

tectonomagmatic event which may have been the Trans-Amazonian orogenic cycle.

Migmatites are rare in this unit The third unit, the Jacobina Group, of great thickness

(possibly more than 8,000 m) is composed of epizonal to mesozonal metamorphic rocks

(Table 4). Locally, the Jacobina Group is intruded by granites.

The basement of the Sao Francisco craton is covered by sedimentary sequences

named the Lavras and Bambui groups (Table 4). Both groups are weakly deformed with

faulting and folding typical of platform cover. In some places the general tectonic

transition from the unfolded Bambui cover to the fold belts of the Brazilian cycle are

presented.

(2) The eastern part of Sao Francisco Craton (region 2 in fig. 14) reaches the

coast, north of the Pardo River. In this area, the principal rocks of the basement are

metamorphic rocks of amphibolite grade. This complex, not yet studied in detail, is

intensely granitized and migmatized, and its structural trends are north-south to NNE-

SSW. Some radiometric ages obtained on acid granulites near Salvador (fig. 14) by

different methods, are close to 2,000 m.y., and are therefore characteristic of the

Trans-Amazonian orogenic cycle.

In the region of the Pardo and Jequitinhonha rivers (fig. 14) in southern Bahia, a
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late Precambrian basin, formed near the eastern border of the Sao Francisco Craton,

can be recognized. It contains sedimentary rocks metamorphosed to the greenschist

facies. The original sequence is shown on Table 5. The rocks are only gently folded,

but are intensely deformed by faulting. The sequence was recently named Rio Pardo

Group (Table 5) (Pedreira et al., 1969), and it shows many similarities to other deposits

along the borders of the Sao Francisco Craton.

(3) The southern border of the Sao Francisco craton near Belo Horizonte (fig. 14),

in the region known as Quadrilatero Ferrifero (region 3 in fig. 14), is the most

intensively studied of all Brazilian Precambrian areas because of the existence of large,

iron deposits. Dorr (1969) has described the regional stratigraphy and. structure of that

area (Table 6). An ancient basal complex, composed of granitized and migmatized

rocks, was intruded by a granitic body (Engenheiro Correa) with a minimum age of

about 2,800 m.y. (Herz, 1970). This complex is covered by Precambrian rocks

representing tectonic events older than Brazilian (450-700 m.y.). The older unit, named

the Rio das Velhas Series, is composed of two groups (Dorr ct al., 1957) separated by

an unconformity. The lower, Nova Lima Group, is about 4,000 m thick and composed

of fine detrited sediments (Table 6). The upper, Maquine Group, is 1,800 m thick. In

the northeastern part of the Quadriiatero Ferrifero the series is composed mainly of

gneisses (Reeves, 1966). The Rio das Velhas Series was metamorphosed to the

greenschist-amphibolite facies and extensively granitized. It was intruded by granite and

granodiorite bodies as well as basic and ultrabasic rocks now metamorphosed. A rich

gold mineralization is found associated with the series. Rb-Sr age determinations

(Aldrich et al., 1964; Herz, 1970) yield 2,760 and 2,675 m.y. for muscovites from

metamorphic rocks of the Rio das Velhas Series.

The Rio das Velhas Series is overlain unccnformably by the Minas Series (Table

6), which seems to be younger than the Trans-Amazonian cycle (1,800-2,200 m.y.) but

older than 1,300 m.y. (age of the Borrachudo granite which cuts it; herz, 1970). In the
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Quadrilatero Ferrifero, where the grade of metamorphism is lower, three groups can be

recognized: the lower, Caraca Group, is composed of detritic sediments accumulated

during transgressive events; the intermediate, Itabira Group, is composed of mainly

chemical sediments, with which are associated large iron deposits (banded ironstone

type); and the upper, Piracicaba Group, is of a detrital nature. The total thickness of

the Minas Series reaches about 6,000 m. It was intensively deformed, with large-scale

folding followed by several type of faulting. These structures indicate northwestward

tectonic transport (see Tectonic Studies in Sao Francisco Craton for detail), which

occurred in two main compressional events. In the Quadrilatero Ferrifero the

metamorphism of the Minas Series is generally that of greenschist facies, but at the

northeast corner (Reeves 1966) this series is composed mainly of gneisses and

amphibolites. Several granitic and granodioritic bodies, as well as metamorphosed basic

and ultrabasic rocks, also intrude .the Minas Series.

The Italcolomi Group (Table 6), which overlies the Minas Series with a sharp

angular unconformity, has a very restricted occurrence in the Quadrilatero Ferrifero

region. The total thickness of the Italcolomi Group exceeds 1,000 m. Its age is

unknown, but it probably represents a late episode of the event which deformed and

metamorphosed the Minas Series.

3.2.2. Tectonic Studies in Sao Francisco Craton

3.2.2.1. The Serra de Caldas Window, Goias

The Serra de Caldas is a large topographic and structural high in southern Goias

(fig. 15). The area discussed here is within the Araxa Fold Belt, which lies between the

miogeosyclinal deposits of the Paraguay-Araguria Fold Belt to the west and similar

rocks of the Brazilian Fold Belt to the east (Almeida and others, 1973) (fig. 3). This

belt is underlain by the Araxa Group (Barbosa, 1955) (Table 7), a eugeosynclinal

sequence of 900-1,300 m.y. age (Brazil DepL Nac. Producao Mineral, 1971). The
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Araxa is overlain to the east by the Canastra Group (Barbosa 1955). This group has a

flyschlike character and is considered to be 620-900 m.y. old (Brazil Dept. Nac.

Producao Mineral, 1971). These rocks pass upward (to the east again) into the molasse

and shelf deposits of the Barnbui Group of Eocambrian age.

The rocks of the Araxa Fold Belt have a strong tectonic convergence toward the

Sao Francisco Craton to the east (Ferreira, 1972). Rocks of the Araxa Group have

been thrust over both the Canastra and Bambui Group, and Canastra rocks have been

thrust over rocks of the Bambui Group, marking strong west to east tectonic transport

during the Eocambrian or earliest Paleozoic.

Stratigraphy (see Table 7 for details of lithology)

The geology of the Serra de Caldas area is known mostly from the work of Braun

(1970 b). Three rock groups can be recognized: the Araxa group, the Canastra group,

and a sequence of quartzite, siltstone, and lesser shale that can probably be correlated

with the Bambui Group.

The Araxa group in Serra Caldas was divided into three units by Braun (1970):

(1) the lowermost unit is in amphibolite facies and at several places is gneissic; (2) the

middle unit is more psammitic, bedding in this unit is transposed, and the primary

planar element is flow cleavage; and (3) the upper unit of the Araxa which surrounds

the Serra de Caldas. This third unit was metamorphosed to at least the high

greenschist facies, but at places it contains megascopic kyanite and andaiusite, suggesting

higher rank metarnorphism. This unit contains abundant small bodies of ultramafic and

related mafic rocks in the form of serpentinite, actinolite schist (probably

metapyroxenite), talc schist, and chlorite sch'ist (Braun, 1970a). This part of the Araxa,

then, can be considered an ophiolitic melange. (Gansser, 1974; Williams, 1977).

The Canastra Group (Braun 1970b), though strongly deformed, is less so than the
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Araxa and bedding can be been in many exposures. The unit is metamorphosed to the

biotite grade.

A sequence of orthoquartzite and siltstone containing interbeds of shale underlies

the Serra de Calds. These rocks were once confused with the middle unit of the Araxa

Group because of their quartzose nature and their position beneath the upper part of

the Araxa. However,these rocks, probably deposited in a transitional (continental

marine) environment, have nothing in common with the deep marine rocks of the

middle part of the Araxa. In the Brasilia area, Dyer(l970) described a sequence of

quartzite, sillstone, and "slaty phyllites" at the base of the Bambui Group. The

description of these rocks matches closely the rocks at the Serra de Caldas, which,

therefore, are tentatively correlated with the Bambui Group.

Tectonic Interpretation

The contacts between these different rock suites mentioned above are marked by a

zone of cataclastically deformed rock and a metamorphic discontinuity. These relations

show that the rocks are in fault contact and that the Serra is a large antiformal

window about 250 km in extent, trending just west of north. Transport of the thrust

sheet was probably from west to east, perhaps for a distance of as much as 200 km

(A.A. Drake Jr.). Rocks of the Araxa and Canastra Groups were metamorphosed and

deformed prior to their emplacement, as shown by the folded early foliations in these

rocks and by the low ranks of metamorphism in the Bambui Group.

The thrusting of ophiolite melange onto shelf deposits is of great importance

because such occurrences commonly are the result of the obduction of oceanic rocks

across a continental margin. The zone of thrusting described here marks the western

margin of the Sao Francisco Craton. This obduction must date from the Eocambrian to

earliest'Paleozoic.
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3.2.2.2. Quadrilatero Ferrifero, Minas Gerais

Quadrilatero Ferrifero, about 7,000 km2 in central Minas Gerais (fig. 15), is one of

the great mining areas in the world. The area is underlain by gneisses and foliated

granitoid rocks and three major series of sedimentary and subordinate volcanic rocks set

off from each other by angular unconformities (see Table 6 for detailed stratigraphy).

Rocks of the Rio das Velhas Series, considered by Dorr (1969) to be the oldest in the

Quadrilatero, is a eugeosynclinal suite that is interpreted to grade upward into a

molasse, at least locally. These rocks are overlain by the Minas Series of largely

shallow-water sediments, including great deposits of iron-formations (oxide facies). The

uppermost rocks of this sequence are thought to be flysch. The youngest series, the

Itacolomi, consists of rocks thought to represent molasse deposits. The sedimentary and

lesser volcanic rocks of these three series have been regionally metamorphosed, primarily

to the greenschist facies. although staurolite-bearing schists of the amphibolite facies are

present in some places.

All the gneisses and foliated granitoid rocks are interpreted to be intrusive into

the sedimentary-volcanic pile and to be post-Rio das Velhas in age. The rocks of the

amphibolite facies are thought to result from contact metamorphism and to be in

thermal aureoles around granitoid intrusions. The Quadrilatero has, therefore, been

interpreted as an island of metasedimentary rock floating in a sea of granite (Dorr,

1969).

The Precambrian pre-Minas rocks of the Quadrilatero Ferrifero in Minas Gerais

have been restudied and reinterpreted using a simplified plate-tectonic model by A.A

Drake and B.A. Morgan (1980). The principal elements of this interpretation are as

follows: (1) Many of the granitoid rocks and gneisses of the area are part of an

ancient cratonic massif (the Sao Francisco Craton) and are not later intrusions into

metasedimentary and metavolcanic rocks of the region. (2) The cratonic rocks are
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overthrust by a sequence of flyschoid rocks of the Nova Lima Group. The sequence

includes ultramafic and related mafic rocks that are parts of a disrupted ophiolite

assemblage. Metamorphic muscovite from the cratonic basement and from schists of

the Nova Lima Group has an age of 2.6 to 2.7 b.y.; therefore, the allochthon was in

place by that time. The Nova Lima allochthon. which includes this ophiolitic material,

is therefore a very early example of plate tectonics, and was obducted perhaps from the

southeast onto the Sao Francisco Craton during Archean time.

3.2.3. Magnetic Anomalies

Two different magnetic anomaly patterns occur in the Sao Francisco Craton (fig.

9). In the southern part of the craton, a large magnetic low occurs (C4 in fig. 9), the

minimum value of which is less than -12nT. This magnetic low appears to be part of

a larger anomaly that extends eastward into the adjacent ocean basin. To the north is

a positive magnetic anomaly that occurs at the northern part of the craton (B4 in fig.

9). The magnitude of this magnetic high is about lOnT.

3.2.4. Gravity Anomalies

A large negative Bouguer gravity anomaly occurs in the area of Sao Francisco

Craton (A in fig. 10). This low extends northward into the Parnaiba basin and

southwestward into the Parana basin. The magnitude of anomalies increases toward the

interior of the craton and reaches a minimum value of less than -130 mgals in the

central part of the craton. This minimum value is the lowest Bouguer gravity anomaly

in South-America except for the Andes.

The Free-Air gravity anomalies are also low over the Sao Francisco Craton (fig.

11), although not as low is the Bouguer gravity anomaly values. The minimum Free-Air

anomaly is about -50 mgals and it occurs in the central part of the craton.
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3.2.5. Correlation

Based on the magnetic anomaly map, the Sao Francisco Craton can be divided into

two parts.

In the northern part of the craton, the basement is composed of three

metasedimentary units (Caraiba, Uaua and Jacobina group, Table 4). Most of the units

underwent strong metamorphism, especially the Caraiba group which reached the

granulite facies. These metasediments are associated with eruptive rocks of basic and

ultrabasic composition. The positive magnetic anomalies (B4, fig. 9) may in part reflect

the presence of these rocks. Furthermore, the center of the main magnetic high occurs

on the northwestern border of the Sao Francisco Craton in which numerous basic and

ultrabasic intrusions of alpine character occur.

In the southern part of the craton, in the region known as Quadrilatero Ferrifero

(region 3 in fig. 14), is a major magnetic low (C4, fig. 9). A large iron deposit

(banded ironstone type) occurs in this area (in the Minas Series mainly). A large

magnetic high should be associated with the iron deposits. Instead the presence of a

prominent magnetic low suggests that either the direction of the magnetic field is

reversed or the anomaly is caused by other tectonic elements. The fact that the

anomaly extends eastward into the Atlantic suggests that large crustal elements are

involved.

The mean elevation map of South America indicates that the Sao Francisco Craton

(A in fig. 12) contains the highest elevation in South America except for the Andes.

Thus, the depth of compensation beneath the Sao Francisco Craton should be very deep

in view of isostatic theory. In other words, continental crust under the Sao Francisco

Craton must be very thick. The large Bouguer gravity low that occurs here (A in fig.

10) also indicates that a thick continental crust underlies the Sao Francisco Craton. The

crust underlying this craton is probably the thickest crust in South America except for

the Andes.
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Attention is called to the small region of positive Free-Air gravity anomalies that

occur at the southern border of the craton (A5 in fig. 11). Rocks of the Nova Lima

group (Table 6) occur in this region and include ultramafic and related mafic rocks that

are parts of a disrupted ophiolite assemblage. The presence of the Free-Air gravity

high and the ophiolite assemblage in this area suggests an association.

3.3. Parnaiba Basin

3.3.1. General Geology

The Parnaiba basin (region A3 in fig. 2) is separated from the Amazon basin by

the Tocantins arch (fig. 3). This basin is roughly oval in shape with an area of over

600,000 kma (Almeida, 1964) and contains Paleozoic and Mesozoic rocks. To the north

are two smaller coastal basins (Sao Luiz and the Barreirinha basins, see Sec. 3.4) which

are separated from the Parnaiba basin by the Ferrer arch (fig. 3). The eastern and

western" margins are delimited by the eastern and central Brazilian Shield, and the

southern limit is defined by the Sao Francisco arch.

3.3.2. Geotectonic and Structural Pattern

The Parnaiba basin is an intercratonic basin surrounded by cratonic areas (Sao

Luiz, Sao Francisco and Amazon Cratons, fig. 2) of different ages. This basin is

usually considered as a single unit The adjacent small coastal basins are grabens

separated from it by the Ferrer arch. It is not yet known with certainty whether

Paleozoic sequences occur within all of these coastal basin (see Sec. 3.4). The Sao Luiz

area and the Sao Francisco Craton underwent a well defined geologic event at about

2,000 m.y., the Trans-Amazonian erogenic cycle (Snelling and McConnell, 1966; Cordani

et al., 1968). These older areas are separated from each other by metamorphic belts

which underwent orogenies or were reactivated in late Proterozoic to early Paleozoic

650-450 m.y., Brazilian orogenic cycle (Table 1) (Cordani et al., 1968). Thus, the
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margins of the intercratonic basin (i.e. Parnaiba basin) are generally formed by younger

Precambrian metamorphic and sedimentary rocks. As in the Amazon area, the Parnaiba

basin and its surrounding region may be considered as tectonically undisturbed since the

Silurian, except for epeirogenic movement and the reactivation of pre-existing faulting.

The Farnaiba basin has not been subjected to compressional forces except in the

south-western part, where the strata are tilted to a maximum of about 25°(Mesner and

Wooldridge, 1964). The basin is asymmetrical towards the northwest, so that in the

eastern part the sequences dip toward the center at 0.5° -2.0°, whereas in the

northwestern part the regional dip of the margin is 4°-5°. Within the basin are

shallow anticlinal structures developed with an approximate NE-SW orientation (Kegel,

1953). Locally, more intensive folding may occur in narrow bands associated either

with diabase intrusions or faults.

3.3.3. Stratigraphy (see Table 8)

In the Parnaiba basin, the maximum sedimentary thickness is slightly in excess of

3,000 m, of which 2,500 m are of Paleozoic age and the remainer Mesczoic (Kegel,

1956; Mesner and Wooldridge, 1964). According to Almeida (1964) the total

sedimentary accumulation locally is in excess of 3,700 m. Thus, Upper Paleozoic rocks

are well represented in the Parnaiba basin, as are Mesozoic rocks despite the presence

of several unconformities. Cenozoic rocks, on the other hand, are not represented in

the Parnaiba basin. The stratigraphic units are usually very uniform and only minor

facies changes are found. It might reasonably be expected that the successions are

more complete in the central parts of the basin than in the present marginal regions.

The Silurian (or Ordovician ?) Serra Grande Formation (Table 8) is the oldest

Paleozoic unit in the Parnaiba basin, and it is separated by an angular unconformity

from the underlying Precambrian basement According to Kegel (1953), the Serra

Grande Formation rests on a surface of accentuated relief with elevation differences of
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more than 300 m. Recent field work fails to support this contention, and Bigarella et

al. (1965) have suggested that the apparent relief was the result of deep-seated folding

or warping contemporaneous with deposition and that the original surface was a

pediplane as in the Amazon basin.

Within the Devonian succession of the Parnaiba basin are no visible unconformities

other than diastems, and the continuous sedimentary cycle which began with the Serra

Grande sequence terminates only with the lower Carboniferous. From then onwards

hiatus and unconformities are more conspicuous (Table 8).

3.3.4. Geologic Development

The present day shape of the Paleozoic basins found on the South-American

Platform is not the same as at the time of deposition. The directions of sedimentary

transportation changed and were occasionally even reversed so that the previous area of

deposition within the basin became the principal source as a result of uplift (Bigarella

and Salamuni, 1967b). The major changes occurred in post-Cretaceous time and were

controlled primarily by deep-seated folding (Salamuni and Bigarella, 1967). Paleocurrent

analyses seem to indicate that all the intercratonic basins (Amazon, Parnaiba and Parana

basin etc.) of the South-American Platform were interconnected at some time during

the Devonian, forming a continuous sedimentation area (Bigarella and Salamuni, 1967).

The Parnaiba basin began to subside in Silurian time (Ordovician ?) with the

deposition of the Serra Grande Formation. According to Mesner and Wooldridge

(1964), the sea entered the Parnaiba basin from the northeast transgressing

southwestwards. However, this does not agree with paleocurrent analysis (fig. 17).

Bigarella et al. (1965) suggest that the Serra Grande Formation sediments were derived

from a northeastern and southeastern source area. It is not clear whether the Amazon

and Parnaiba basins were connected during Silurian time. But epeirogenic subsidence

continued during the Devonian, at which time the sea reached its maximum extent
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connecting all the intercratonic basins. During the lower Carboniferous a gradual uplift

of the Parnaiba basin began, and in late lower Carboniferous or early upper

Carboniferous time the uplift reached its maximum, exposing the entire basin to erosion

(Mesner and Wooldridge 1964). Early in the upper Carboniferous, subsidence occurred

and deposition of upper Carboniferous was followed by Permian sedimention.

Something in the Early Triassic the subsidence ceased, only to begin again in later

Triassic time. During the Jurassic large volumes of basaltic lavas were erupted (fig. 18),

and after the formation of the lavas, the uplift of the basin continued. At the

beginning of the Cretaceous the northern margin of the basin began to subside, and

large-scale normal faulting began along the northern edge forming the coastal basins

(Barreieinhas and Sao Luiz basin, see Sec.3.4 and fig. 19) which contain thick successions

of Cretaceous sediments. In Aption (Lower Cretaceous) time the sea submerged the

Ferrer arch (fig. 3) transgressing as far west as the Tocantin River (The western

boundary of Parnaiba basin) (Mesner and Wooldridge, 1964).

The magnetic and gravity anomalies for this area are discussed in section 3.4.

3.4. Sao Luiz Craton

The Sao Luiz Craton is located along the coastal areas of Para and Maranhao,

Brazil (fig. 19). It may be divided into two basins, Sao Luiz Basin on the west and

Barreirinha Basin on the east, by the city of Sao Luiz. The Ferrer arch separates these

small coastal basins (or grabens) from the adjacent Parnaiba Basin to the south.
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3.4.1. Geology

The Sao Luiz cratonic area is still very poorly known, as the main part is covered

by Paleozoic or younger sedimentary rocks. Gneisses, schists, and amphibolites occur,

intruded by granites, diorites, and other intrusive rocks (Moura, 1936). Age dating

yields results close to 2,000 m.y. (Hurley et al, 1967; Almaraz and Cordani, 1969). This

cratonic area extends eastwards to the mouth of the Parnaiba River, where structures

related to the Brazilian Orogenic Cycle occur.

The Sao Luiz Basin, between the city of Sao Luiz on the east and Para on the

west, contains a maximum thickness of about 4,000 m of Devonian-Mississippian (?),

Mesozoic, and Cenozoic deposits. A metamorphic belt of late Precambrian-Cambrian

age is found along the southern border of the Sao Luiz Craton. This belt, which is

largely covered by sediments, can be followed for at least 200 km, and may even

extend to 400 km, as correctable rocks occur near the bay of Sao Jose. It apparently

represents part of a fold belt which surrounds the southern borders of the Sao Luiz

Craton and which, at the end of the Precambrian, constituted its foreland. Radiometric

ages by Rb-Sr and K-Ar methods (Hurley et al., 1967; Almaraz and Cordani, 1969)

confirm the Brazilian age for these rocks. Whole-rock Rb-Sr ages close to 600 m.y.

indicate that the events are not related to simple isotopic rejuvenation of older rocks

(Almeida, et ai.). Clastic nonfolded rocks, estimated to be Cambro-Ordovician in age,

may represent the molasse of the final stage of the Brazilian cycle in this area. The

stratigraphical succession of the Sao Luiz Basin is shown in Table 9.

The Barreirinhas marginal basin, lying between the cities of Sao Luiz and Parnaiba,

has a total area of about 85,000 sq. km. The onshore portion of the basin covers

13,000 sq. km in a narrow belt about 300 km long and 2,080 km wide which is entirely

covered by Tertiary and Recent sands. As a structural unit, the Barreirinhas basin is

superimposed on the northern part of the Paleozoic Maranhao basin as a result of
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Wealdian (Lowermost Cretaceous) deformation which produced a series of horsts,

grabens, and step blocks through normal faulting. Toward the south, the Ferrer-Urbano

Santos-Parnaiba arch separates the Barreirinhas basin from the main part of the

Maranhao basin and Parnaiba Basin. To the west lies the shallow intracratonic Sao Luiz

basin which connects with the Barreirinhas basin through the narrow Ilha Nova graben

(fig. 19). Toward the north and east, the basin appears to open toward the Atlantic

Ocean. Positive structures within the basin such as the Atlantic high and the Ilha de

Santana, Sobradinho, and Parnaiba platform are relatively shallow, having a sedimentary

cover- of less than 2,000 m. In the deeper depressions and in the Piaui graben,

sedimentary thickness may exceed 12,000 m. The stratigraphical succession of the

Barreirinhas basin in shown on the Table 10.

3.4.2. Magnetic Anomalies

The magnetic anomaly pattern over the Sao Luiz Craton shows a broad gradient

which decreases from south to north (fig. 9). The anomalies in most parts of the

craton are negative. However, the magnetic signature in the Parnaiba basin is not

definitive and appears to occur along an irregular gradient that also decreases toward

the north (fig. 9). Positive anomalies occur in some areas especially in the southern

part of the Parnaiba basin. This magnetic gradient continues northeastward into the

adjacent Atlantic Ocean basin.

3.4.3. Gravity Anomalies

On the Free-Air gravity anomaly map (fig. 11), the Sao Luiz Craton and Parnaiba

basins may be considered together as a single unit which has a negative gravity anomaly

signature with a minimum value in the central part (C in fig. 11). The pattern of this

gravity low is roughly oval in shape and opens on the northern side into the Atlantic

Ocean.
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The Bouguer gravity anomalies in Sao Luiz Craton and Parnaiba basins also are

negative (fig. 10), but there are two different patterns in each of these two areas. In

the Sao Luiz Craton, the Bouguer anomaly forms an irregular gradient pattern (B3 in

fig. 10) and decreases from south to north. In the Parnaiba basin, the anomaly forms

a concentrated pattern (A5 in fig. 10). Furthermore, these negative anomalies are part

of a larger series of gravity lows that occur in the whole eastern part of the South-

American platform.

3.4.4. Correlation

The Sao Luiz Craton is a narrow feature along the northeast Atlantic coast. The

Ferrer arch separates this craton from the adjacent Parnaiba basin to the south.

Based on the Bouguer gravity anomaly map, it is suggested that thick continental

crust underlies the whole eastern part of South-American Platform as this entire region

coincides with a large gravity low (A in fig. 10). This area of thick crust includes the

Sao Francisco Craton, most of the Parana basin and even part of the Parnaiba basin.

However, crustal thickness decreases northward from the central part of the Parnaiba

basin through the Sao Luiz basin into the Atlantic ocean. The same trend of

decreasing anomalies also occur on the magnetic anomaly map. This correspondence

suggests that the variation of magnetic anomalies may be associated with the variation

of the thickness of crust in Sao Luiz Craton and Parnaiba basin. Furthermore, the Sao

Luiz Craton is covered by Paleozoic or younger sedimentary rocks in most areas.

Magmatic and magnetic rocks are rare. Thus, the Sao Luiz Craton is influenced by the

large magnetic low that occurs on the adjacent Atlantic ocean and show moderately

negative anomalies. In contrast, the Parnaiba basin contains a large amount of volcanic

rock. Large volumes of basaltic lavas were erupted during the Jurassic in the southern

center of the basin (fig. 18). Thus, the Parnaiba basin show moderately positive

anomalies in most areas.



52

Basically, Bouguer gravity anomalies are associated with the thickness of continental

crust The anomalies increase whereas the thickness of crust decreases from south to

north in the Sao Luiz Craion. A gravity minimum {A5 in fig. 10) occurs at the center

of the Parnaiba basin where the thickness of crust reach the maximum of this basin.

Both the Parnaiba basin and the Free-Air gravity anomalies are roughly oval in

shape. The thickness of the sediments in the basin increase toward the interior of the

basin (Basin 2 in fig. 4). Similarly, the Free-Air anomalies also decrease toward the

interior. This indicates that the greater the thickness of low density sediments the

more negative are the values of the anomalies.

3.5. The Atlantic Shield

3.5.1. Caririan-Propria Fold Belt

Widespread regions of the South American Platform were re-worked during the

upper Precambrian, less than 1,000 m.y. ago, and show a complicated structure. This

period of deformation is known as the Brazilian erogenic cycle (Table 1). The

Caririan-Propria Fold Belt is part of this cycle. Fold systems that are part of the

Brazilian Orogenic cycle are developed in both sediments deposited during the cycle and

in re-worked pre-Brazilian basement. Some massifs were also generally affected by this

cycle. Older structures in this basement are well represented in the interior of the

State of Goias (fig. 15) as well as in the north-and south-east of Brazil. Ages of more

than 2,600 m.y. are commonly encountered in granite-gniss complexes and in migmatites,

which are commonly metamorphosed to the granulite facies. Mafic and ultramafic

intrustions are commonly associated. Structures of the Trans-Amazonian Cycle, re-

worked by the Brazilian Cycle, are common, especially in eastern Brazil where they may

often be confused with older formations, or with Brazilian formations that have been

more intensively modified by metamorphism and migmatization.
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In general, the Atlantic coast of South America is parallel to the structure of the

Precambrian rocks. A notable exception is the Caririan-Propria Fold Belt in

northeastern Brazil (fig. 20), where the ancient structures exhibit a fanshaped pattern.

In that region the trends are normal to the coastline, and they end abruptly against the

border of the continental shelf. The continental shelf in northeast Brazil is the

narrowest of the entire Atlantic seaboard. Moreover, in this region, the continental

slope is the longest in the world, characterized by rather persistently steep slopes

(Shepard, 1963). Several sedimentary basin were formed in the coastal region and along

the continental shelf, during the Mesozoic era, as a result of tectonic activity (fig. 4).

These basins, which are grabens or semigrabens, are not controlled by the underlying

Precambrian structures, and their principal fault zones are parallel to the coast The

most important exception is the Reconcavo-Tucano basin in northern Bahia (fig. 4 and

20). It is not located along the coast, and its main fault zones are parallel to the

Precambrian structures. The faults belong probably to the same system that delimits the

continental margin in Southern Bahia.

*
3.5.1.1. Caririan Fold Belt

The Caririan orogenic area (region A in fig. 20) is exposed to the north of the

Pernambuco lineament and to the east of the Parnaiba sedimentary basin. It covers the

northeastern corner of Brazil, and probably extends below the sediments of the Parnaiba

basin, separating the Sao Luiz from the Sao Francisco Craton (fig. 2). The Caririan

orogenic area was affected by intense granitization and migmatization (fig. 18) which is

considered to have occurred during the Brazilian orogenic cycle (Almeida et al., 1968);

however, Choubert (1970) regards the plutonisin to have occurred earlier. K-Ar and

Rb-Sr age determinations on rocks of the Ceara Group (Table 11) yield values

corresponding to the Brazilian cycle (Hurley et al., 1967; Almeida et al., 1968; Ebert

and Brochini, 1968). A particularly significant 650 m.y. reference isochron was obtained

for six whole-rock samples, which represents the main metamorphic event in the

Caririan area.
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Stratigraphy (Table 11)

The older rocks exposed in the Caririan erogenic area are gneisses, migmatites,

schists, quartzites, marbles, and amphibolites with radiometric ages ranging from 500 to

2,000 m.y. (Almeida et al., 1968). Such age variation indicates an isotopic rejuvenation

process which affected a basement older than upper Precambrian. No clear

unconformities have been found at the base of the metasedimentary rocks of the Ceara

Group, which represents the Brazilian cycle in that region and overlies the basement

The Ceara Group (Table 11) is composed of a thick association of micaschists,

metaarkoses, metagraywackes, phyllites, marbles, and gneisses. Its stratigraphy is still

obscure (Meunier, 1964; Ebert, 1966, 1967, 1970). The lithology is constant over large

distances along the strike of the folds but changes noticeably normal to the strike. The

rocks of the Ceara Group generally exhibit an amphibolite facies metamorphism, but

locally pass to the greenschist facies. Fold axes strike N 10°-50°E and show evidence

of drag near the transcurrent faults, especially those trending east-west (fig. 20).

Iron hastingsite-bearing alkaline granites, syenites, and quartz syenites are the post-

kinematic rocks of the region. A large number of pegmatites, important for their

mineralization in Ta, Ba, Mb, Sn, and Li, also occur. R.adiometric ages suggest that the

final episodes of the granitization process occurred during the Cambro-Ordovician. At

that time the molasse basins marking the final stages of the Brazilian cycle were

formed. One such basin, the Taibaras, was affected by granodioritic plutonic intrusions,

with associated rhyolites, andesites, and basalts, representing the final magmatic pulse of

the Brazilian cycle. K-Ar determinations indicate a minimum age of about 440 m.y.

for this magmatic activity.
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3.5.1.2. Propria Fold Belt

The Propria Fold Belt (region B in fig. 20) is located at the northeastern border

of the Sao Francisco cratonic area. Northwestward from the Propria Fold Belt, and

apparently including the northern part of Bahia (fig. 15), is an important system of

transcurrent faults (fig. 20), The main faults form to the south the Pernambuco

lineament (Ebert, 1962) and to the north the Patos (Kegel, 1965) lineament Both strike

generally east-west and have an extension of hundreds of kilometers, probably extending

to the continental shelf. They are dextral with a net slip still unknown but presumably

on the order of several tens of kilometers. Alkaline granitic intrusions are known

along both lineament. Syenites and quartz syenites are known to occur along the Patos

lineament (Vandoros and Coutinho, 1966; Almeida et al., 1971, Santos, 1971). Santos

(1971), analyzing the mechanism of that transcurrent faulting, suggested that they

originated by NNE-SSW compressional forces accompanied by rotational deformation.

This fault system is at least as old as upper Precambrian, as indicated by age

determinations (K-Ar amphiboles) on quartz syenites of the Patos lineament (Vandoros

and Coutinho, ]966). However, at the end of the Jurassic the main faults were

reactivated by vertical movements giving rise to some Mesozoic sedimentary basin. The

Cabo cratonic alkaline granite, located along the southern coast of the state of

Pernambuco (fig. 15) and having a Cretaceous (±100 m.y.) age (Vandoros, in Almeida et

al. 1971), seems to have been intruded along the eastern part of the Pernambuco

lineament.

Stratigraphy (Table 12)

During the Brazilian Cycle (Table 1) an orthogeosyncline, designated the Propria

geosyncline by Humphrey and Allard (1968), developed along the northeastern border of

the Sao Francisco Craton. The basement of this geosyncline is exposed in the internal

zones, as indicated by radiometric ages of up to 2,530 m.y. (Hurley et al., 1967). The

miogeosynclinal zone in Bahia and Sergipe states (fig. 15) is represented by the Canudos
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and Miaba formations (Table 12), respectively. In the eugeosynclinal zone basic

volcanic products are associated with pelites, metagraywackes, in part conglomeratic,

sandstones, and limestones (Vaza Barris Group). These rocks were metamorphosed to

the greenschist facies and locally to the amphibolite facies in the internal zones of the

geosynclinal. In some places these rocks were migmatized and granitized, being

transformed into syntectonic granodiorite rock bodies (fig. 18). Relicts of red clastic

deposits are found both within the geosyncline (Jua Formation) and over the platform

(Estancia Group).

Large thrust faults occur at the contact between the geotectonic units. Intense

linear folding, inverse faulting, cleavage, and schistosity indicate tectonic transport from

the internal zones of the Propria geosyncline toward the Sao Francisco platform, which

acted as a foreland during the orogenesis.

The structures of the Propria geosyncline, more than 450 km long, are partially

covered by Mesozoic sedimentary basins. These structures trend perpendicularly to the

coastline and continue under the narrow continental shelf.

3.5.1.3. Magnetic Anomalies

A large magnetic anomaly high occurs in the area of the Caririan-Propria Fold

Belt (A2 in fig. 9). The maximum value of this high is over +12 nT and occurs in the

center of the area. No negative anomalies occur in this entire area. The magnetic

anomaly pattern has an E-W trend that extends eastward into the adjacent Atlantic

ocean basin.
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3.5.1.4. Gravity Anomalies

Bouguer gravity anomalies are very low in the Caririan-Propria Fold Belt,

especially in the center of the area (A6 in fig. 10). The minimum value of these

anomalies is less than -90 mgals and is located in the south-central part of the area.

Except along the coast where positive Bouguer anomalies occur, the fold belt is

underlain by negative gravity anomalies. The Free-Air anomaly map of the Caririan-

Propria Fold Belt (fig. 11), shows a gravity low over the south-central part of the area

(A6 in fig. 11) which has a minimum value less than -40 mgals. However, the rest of

the region shows a very smooth gravity field (between -10 mgals and -10 mgals in most

area). Positive Free-Air anomalies also occur along the coastal areas and increase from

the continent toward the ocean (from +10 mgals to over +40 mgals).

3.5.1.5. Correlation

The large magnetic anomaly high (A2 in fig. 9) of the Caririan-Propria Fold Belt

is apparently associated with metamorphic and intrusive igneous rocks of Precambrian

age (Table 11 and 12). The Ceara group (650 m.y.) is composed of a thick association

of raicaschists, metaarkoses, phyllites. marbles and gneisses (Table 11); iron hastingsite-

bearing alkaline granites is the post-kinematic rock of this region. A large number of

pegmatites with Ta, Ba, Nb, Sn and Li mineralization also occur and contribute to the

magnetic high.

Both the Bouguer and Free-Air gravity maps show an anomaly low (A6, fig. 10

and 11) in the south-central part of the Caririan-Propria Fold Belt and positive

anomalies along the coastal areas. This apparently reflects the fact that the thickness

of the continental crust underlying the central part of fold belt is thicker than the

crust underlying the coastal area. In addition, the high density oceanic crust may also

contribute to the positive anomalies of the coast area. The Reconcavo-Tucano basin (C,

fig. 20) with undivided Phanerozoic sediments is associated with the minimum gravity
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low at the southern center of the fold belt. This belt contains low density non-

metamorphosed sediments as well as Precambrian metamorphic rocks and Tertiary to

Precambrian intrusive rocks.

3.5.2. Ribeira Fold Belt

At the extreme south of Minas Gerais and extending towards Sao Paulo, Rio de

Janeiro, and Espirito Santo (fig. 21), an important fold belt of the Trans-Amazonian

Cycle developed during the middle Precambrian (1,800-2,200 m.y.). This belt probably

continues into the southernmost Brazilian states (Parana, Santa Catarina, and Rio Grande

do Sul) (fig. 21) as well as to the south of Bahia, Some geologists propose to designate

it as the "Paraiba do Sul Fold Belt". Since the former "Paraiba Fold Belt" includes

rocks belonging to two different tectonic cycles, the adoption of a new nomenclature

for both is justified: the older one, "Paraiba do Sul Fold Belt", corresponding to the

Trans-Amazonian cycle, and the younger one, the "Ribeira Fold Belt", corresponding to

the Brazilian Cycle (450-700 m.y.).

The Ribeira Fold Belt, in southern Brazil and Uruguay, displays materials of the

Brazilian cycle that accumulated in an internal zone of a geosyncline. At least two

tectonic sequences can be recognized. The lower, equivalent to the geosynclinal

subsidence phase, exhibits typical sedimentation, metamorphism, and granitic to

granodioritic magmatism. Ophiolitic magmatism occurs locally. The higher sequence,

equivalent to the molasse stage, exhibits sediments with little or no metamorphism, but

is associated with granite plutons, rhyolitic-andesitic volcanic rocks, and mineralization.

The infrastructures of the Ribeira Belt include older rocks formed during the

Trans-Amazonian cycle, or even earlier. This shows that the Ribeira Fold Belt was

formed by regeneration of a previously cratonic area, and not formed on oceanic crust.

Consequently, it is characterized by the extreme abundance of granitic plutonism, acid

volcanism, and rarity of ophiolitic magmatism and basic volcanism. Incidentally, this
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pattern is valid for all of the units cf the Brazilian cycle, a fact which indicates that

the basement for . the late Precambrian geosynclines of South America was of sialic

"continental" character.

3.5.2.1. Paraiba de Sul and.Ribeira Fold Belt near Rio de Janeiro

The Paraiba do Sul Fold Belt is represented in the state of Rio de Janeiro by the

Paraiba-Desengano Series (Ebert, 1957; Rosier, 1965) (Table 13). The Series is composed

mainly of paragneisses, metagraywackes, and metaarkoses with subordinate quartzites and

mica schists. The metamorphism reaches the amphibolite facies and commonly the

granulite facies, when typical charnockites occur (Ebert, 1968). Granitization is

widespread and occurred during two cycles. These rocks are best exposed along the

coastal region from Bahia to Sao Paulo (fig. 21). The Paraiba-Desengano Series is

intruded by several granite, granodiorite, and other rock bodies of different ages.

Ebert (1957) and Barbosa et al. (1966) assume that the age of the Paraiba-Desengano

Series is late Precambrian. Recent geochronologic studies carried out by Delhal et al.

(1969) show that the granulitic rocks of this series are 1,923±66 m.y. old, as indicated

by Rb-Sr whole-rock isochrons. U-Pb determinations on zircons from the same rocks

yield an age of 2,070 m.y., confirming the presence of the Trans-Amazonian cycle in

this belt

The Ribeira Fold Belt (Brazilian Orogenic Cycle) in the state of Rio de Janeiro is

represented by the Serra dos Orgaos Series (Table 13), whose age of 620±20 m.y. is

indicated by an Rb-Sr reference isochron (Delhal et la., 1969). It is mainly composed

by migmatites and granitic gneisses within the Paraiba do Sul Fold Belt In this region

post-tectonic granites (fig. 18) of the Brazilian cycle were dated by Ledent and Pasteels

(1968) by the Rb-Sr method and U-Pb determinations on zircons. The rocks yield ages

of about 540±60 m.y., which agree with many other results obtained to the south, from

rocks of the Ribeira Fold Belt
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The rocks of the Paraiba do Sul Belt form the escarpments of the Serra do Mar

and Mantiqueira and form the Paraiba do Sul Valley (fig. 22), which is part of a large

graben. It folds and main faults strike ENE in Sao Paulo, but to the north the trend

gradually changes to NE and NNE, parallel to the present coastline (fig. 22).

3.5.2.2. The Ribeira Fold Belt in Sao Paulo, Parana, and Santa Catarina States

In the states of Sao Paulo, Parana, and Santa Catarina (fig. 21), the Ribeira Fold

Belt is represented by sediments deposited in a late Precambrian geosyncline. These

sediments are assigned to the Sao Roque Acungui and Brusque groups (Table 14). These

sequences are composed of phyllites, schists, quartzites dolomites, and limestones with

subordinate metaconglomerates, metaarkoses, metagraywackes, and itabirites (Hasui et al,

1969; Marini et al., 1967). The rocks exhibit a greenschist metamorphic facies rising

locally to the amphibolite facies, particularly near the coast. Although transitions from

the migmatitic-gneissic complex to the epimetamorphic rocks of the Sao Roque and

Acungui groups have been described (Melif et al., 1965), it is very difficult to

distinguish in this complex the younger rocks from those that probably belong to the

trans-Amazonian cycle.

A large number of granitoid bodies are found along the Ribeira Fold Beit (fig.

18). Some are adamellitic granites or granodiorites often porphyroblastic of

synkinematic origin. Other are post-tectonic bodies with a subalkaline character as the

Serra da Graciosa granites in the state of Parana (Fuck et al., 1967), or are orthoclase-

bearing pink granites as the Itu Granite (Hasui et al., 1969). The granitization process

is associated with Pb, Ag, Au, Zn, Sn, W, Cu, mineralization.

Cordani and Bittencourt (1967), in a K-Ar geochronologic study, concluded that

the sedimentation of the Acungui Group is older than 650 m.y., the metamorphism

occurring between 650 and 600 m.y. The post-tectonic granites intruded into the group

have ages ranging from 580 to 500 m.y. These ages coincide with those obtained for

the Caririan area in northeastern Brazil (Almeida et al., 1968).
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The final events in the evolution of the Ribeira Fold Beit consisted in the

development of intermontane basins located within fault depressions which were then

filled with molassic red detritic sediments and andesitic-rhyolitic volcanic rocks. Such

basins, which characterize the transition stage of the consolidation process of the fold

belt (Almeida, 1967), are represented by the Castro Group (Trein and Fuck, 1967)

(Table 13) and the Camainha (Muratori et al., 1967) and Guaratubinha (Trein and Fuck,

1967) formations at Parana, as well by the Itajai Group and volcanic rocks from Campo

Alegre in Santa Catarina. The beds lie unconformably over the Ribeira Fold Belt and

are generally not folded, but deformed by faulting. The rocks are unmetamorphosed,

and radiometric dating indicates a Cambro-Ordovician age for the associated volcanism

at the Ribeira Belt and in other belts of the same cycle.

The metasedimentary and metavolcanic rocks of the Ribeira Belt in this region

exhibit an intense linear folding, generally northeast trending. Faulting is conspicuous,

and large transcurrent faults have been recognized (fig. 3), such as the Texaquara fault

in Sao Paulo (Hennies et al., 1967) (fig. 22). The deformation does not present a clear

polarity and the position of the foreland is not known. Some geologists assume it to

be hidden under the Paleozoic sediments of the Parana basin (region A6b in fig. 2),

whereas others believe that it was located in the region now submerged by the Atlantic

Ocean.

3.5.2.3. The Ribeira Fold Belt in State of Rio Grande do Sul

In the state of Rio Grande do Sul (fig. 21), the sediments that accumulated in the

Ribeira Belt are represented by the Porongos Group and younger volcanic and detrital

rocks. The Porongos Group (Table 15) is composed of a large variety of phyllites,

schists, quartzites, limestones, metaconglomerates, metagraywackes, metaarkoses, and

rhyolitic, andesitic or pyroclastic metavolcanics. Greenschist facies metamorphism is

common in those rocks, but locally the metamorphic grade rises to the amphibolite

facies with the formation of gneisses, amphibolites, and marbles with associated
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migmatization and granitization. These rocks constitute the Cambai Formation of the

Porongos Group (Ribeiro et al., 1966) in the eastern part of that state. Basic and

ultrabasic intrusives of ophiolitic character (Goni, 1962; Issler et al., 1967) are associated

with the metasediments of the Porongos Group. It is important to notice that

ophiolites are exceptional in the Brazilian cycle geosynclines, whereas synorcgeanic

granite and granodiorite bodies are common.

The Precambrian rocks of Rio Grande do Sul state are cut by large fault systems

(Picada. 1968). The Vigia-Roque lineament (fig. 3) with a N 40°E orientation is a

normal fault which separates the Cambai Formation to the east from other rocks of the

Porongos Group to the wesL In turn, the Porongos belt is cut by large left-lateral

transcurrent faults (approximately N-S strike), N 30°E-trending large normal faults, and

N 70° W-trending minor normal faults. Such fault systems partially determine the

location of molasse basins, subsequent volcanism, and mineralization in the region.

The Bom Jardim and Camaqua groups (Table 15) represent the molasse deposits of

the final events of the Brazilian cycle in Rio Grande do Sul State (Ribeiro et al., 1966;

Tessari and Picada, 1966). They are composed of continental detritic sediments, some

of which are polymitic conglomerate. These rocks are weakly or nonmetamorphosed

and affected only by fault deformation. Lavas and pyrociastic rocks of andesitic,

rhyolitic, and dacitic composition are associated with the sediments, which are also

intruded by later granite and granodiorite bodies, one of which is a rapakivi-type

granite (Goni, 1961). Age determinations on the eruptive rocks indicate that these

events occurred during the Cambro-Ordovician.

The basement of the Brazilian geosyncline in the state of Rio Grande do Sul is

represented by the Eucantadas Formation (Table 15) (Tessari and Picada, 1966; Ribeiro

et al., 1966). In the southeast of Uruguay this basement is probably locally exposed,

but on the basis of present information it is difficult to separate such rocks from

similar ones which originated at the end of the Precambrian.
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3.5.2.4. Magnetic Anomalies

The magnetic anomaly pattern in the Ribeira fold belt may be divided into wo

different portions (fig. 9). The northern portion which includes the state of Espirito

Santo and Rio de Janeiro (fig. 21), is associated with a magnetic anomaly low (the

southern portion of C4 in fig. 9) having a ENE-WSW trend. This trend extends east-

northeastward into the Atlantic Ocean. The southern portion, which includes the state

of Rio Grande do Sul, Santo Catarina, Parana, and southern part of state of Sao Paulo

(fig. 21), is associated with a magnetic high (A3 in fig. 9) having a NNE-SSW trend,

and this positive anomaly extends along the southeastern continental shelf of South-

America into the Atlantic Ocean basin.

3.5.2.5. Gravity Anomalies

On both the Bouguer and Free-Air gravity maps (fig. 10, 11), the Ribeira Fold

Beit is located at the southeastern boundary of a large gravity low (A in fig. 10, 1.1)

that includes the Sao Francisco Craton, Central and Northern part of Parana basin and

even extends into the southern part of Parnaiba basin.

On the Bouguer gravity map, the negative anomaly trend extends from the Propria

Fold Belt (A6 in fig. 10) along coast into the central part of the Ribeira Fold Belt

The magnitudes of anomalies decrease from the coast into the continent In contrast,

the gravity anomaly trend (Cl in fig. 10) is perpendicular to the coastal line in the

southern part of the Ribeira Fold Belt and the magnitudes of the anomalies increase

from north to south. Positive gravity anomalies appear in Uruguay.

On the Free-Air gravity map, however, most areas of the Ribeira Fold Belt show

positive gravity anomalies especially in the state of Parana (A7 in fig. 11).
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3.5.2.6. Correlation

Basically, most areas of Ribeira Fold Belt are similar to the Caririar.-Propria Fold

Belt to the north which shows high positive magnetic anomalies. These positive

anomalies are apparently associated with metamorphic and volcanic intrusive rocks (Table

13, 14, 15 and fig. 18). We may divide the Ribeira Fold Belt into three portions from

north to south:

(1) The northern portion (including the state of Rio de Janeiro and southern part

of state of Espirito Santo) (fig. 21, 22): Negative magnetic anomalies (south portion of

C4 in fig.9) and negative Bouguer gravity anomalies occur in this area.

Metasedimentary rocks and volcanic intrusives are the main formation and they are

apparently non-magnetic. The existence of magnetic lows is probably influenced by the

large anomaly low (C4 in fig. 9) that occurs at the southern par-t of Sao Francisco

Craton (Quadrilatero Ferrifero, in central Minas Gerais, fig. 15) and extends east-

northeastward into the adjacent ocean basin (more details in Sec. 3.2).

(2) The central portion (including the state of Sao Paulo, Parana and Santo

Catarina) (fig. 21): A high positive magnetic anomaly (A3 in fig. 9) and moderately

low Bouguer gravity anomalies occur in this area. Metamorphic, metasedimentary and

volcanic rocks are the main formations of the fold belt. However, a large number of

granitoid bodies (fig. 18) and itabirites (hematite ore) have been found that may be the

major contributor to the high positive anomalies. Positive Free-Air gravity anomalies

along with negative Bouguer gravity suggest a fairly thick crust with low density rocks.

(3) The southern portion (including the state of Rio Grande do Sul and

northeastern part of Uruguay) (fig. 21, 23): A high positive magnetic anomaly (A3, fig.

9) occurs along the coast line at about latitude 30°S. A NNE-trending gradient of this

anomaly extends through the central part of the fold belt This gradient matches well

the geological structural trend (fig. 23). Both Bouguer and Free-Air gravity anomalies
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have positive values in this regions. Basic and ultra-basic eruptives of ophiolitic

character (Goni, 1962; Issler et al., 1967) may be associated with these high magnetic

and gravity anomalies. The total anomalies probably reflect a larger crustal feature.

3.6. Rio de La Plata Craton

3.6.1. General Geology

The Rio de La Plata Craton (region A6, in fig. 2) is mainly covered by

Phanerozoic sediments. It includes the southeastern region of Uruguay, the La Plata

River region, the basement of the Province of Buenos Aires, northeast Argentina, and

the small areas of Sierras Tandil, Azul, and Bayas (fig. 23). The Rio de La Plata

Craton is possibly an extension of the Amazon Craton (region Al in fig. 2), but the

Phanerozoic cover makes it difficult to establish its limits and its relation to the

Central Brazilian Shield (region A16 in fig. 2) to the northwest. This craton, was

consolidated by upper Precambrian time, and probably represents the southmost

Precambrian occurrences in the Atlantic coastal -region. Basement rocks of northern

Patagonia, previously considered to be Precambrian, are mainly Paleozoic accordingly to

recent geochronologic studies (Stipanicic et al., 1968; Halperu, 1968). It indicates that

the South-America Platform (region A in fig. 1) does not continue beyond the Colorado

River in Argentina.

3.6.2. The Rio de La Plata Craton in Uruguay

The Rio de La Plata Craton in Uruguay is shown on fig. 23 (location Al). In

this area, the Lavalleja Group (Caorsi and Goni, 1958; Bossi et al., 1965) (Table 16)

seems to be equivalent, to the Porongos Group of the Ribeira Fold Belt in the state of

Rio Grande do Sul (Table 15). It is composed of phyllites, schists, quartzites, marbles,

and basic metavolcanic rocks. The metamorphism is of the greenschist facies, locally

rising to the amphibolite facies when gneisses and migmatization and granitization
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phenomena appear. This group was strongly folded and faulted with a generally north-

northeast orientation (but near Maldonado the trend changes to a north-south .direction).

In southern Uruguay the Piedras de Afilar and Sierra de Animas Formations (Table

16) seem to represent molassic deposits and subsequent volcanic rocks of a late Brazilian

cycle. The radiometric age of 500±30 m.y. (Bossi, 1966) is essentially the same as that

obtained for rocks in similar geotectonic position in Southern Brazil. This confirms the

suggestion that the late tectonomagmatic events of the Brazilian cycle occurred during

the Cambro-Ordovician interval. The Piedras de Afilar Formation lies unconformably

over the Lavalleja Group and is composed of sandstones, quartzites, and limestones

slightly deformed but unmetamorphosed (Walther, 1927: Jones, 1956). The Sierra de

Animas Formation is composed of trachytes, syenites, and rhyolites (Bossi and

Fernandes, 1963).

It is possible that the structures formed during the Brazilian cycle surround the

Rio de La Plata craton and underlie the continental shelf, emerging again at the Sierras

Pampeanas in Argentina. This suggestion is supported by a 650 m.y. age determination

(Cazeneuve, 1967) for the Pan de Azucar (Aguas Blancas) granite which forms the

basement of folded Devonian beds in the Sierra de la Ventana region in southern

Buenos Aires Province.

3.6.3. The Rio dz La Plata Craton in the Province of Buenos Aires, Argentina

The basement of the Rio de La Plata Craton in the Province of Buenos Aires

(region A2 in fig. 23) is composed of a gneisses complex of metasedimentary origin,

associated with amphibolites, mica schists, phyllites, and quartzites. It was affected by

migmatization and granitization during at least one tectonic cycle. This resulted in the

formation of several types of migmatites, granites, granodiorites, tonalites, and diorites

(Walther, 1948; Bonorino, 1950, 1954; Bossi et al., 1965; Quartino and Fabre, 1967). The

planar features of this complex generally trend ENE-ESE, in contrast to the dominantly
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NNE-ENE trending structures that are typical for the upper Precambrian of the

continent (region B in fig. 23). Thick E-W and ESE myionite and cataclastic rock belts

indicate the presence of large faults, probably transcurrent, in the Sierra Azul in

Argentina. Geochronologic studies (Cazeneuve, 1967; Hart et al., 1965; Stipanicic and

Linares, 1969; Umpierre and Halpern, 1971) yield radiometric ages of around 2,000 m.y.

indicating that the Rio de La Plata Craton consolidated at the end of the Trans-

Amazonian cycle as did the other ancient cratonic areas of the South-American

Platform.

Near Sierras Bayas the basement of the Rio de La Plata Craton is partially covered

by the La Tinta Group (Table 17). This group consists of unmetamorphosed and

weakly deformed sediments which are about 100 m thick and composed of sandstones,

quartzites, limestones, dolomites, and fine-grained detrital sediments. These rocks have

been assigned a Paleozoic age and are believed by several geologists (Amos, Almeida,

Amaral, and Cordani) possibly to represent an Eocambrian cover similar to those

occurring in Brazil and Paraguay.

3.6.4. Parana Basin and Chaco Basin

The Parana basin (A6b, fig. 2) and Chaco basin (A6a, fig. 2) are two of the great

synciines in the South American Platform. The Parana basin is an intercratonic basin

with substable, subnegative, and undeformed units interposed between the cratonic areas

and superimposed en a former Precambrian geosyncline. However, the Chaco basin is a

pericratonic basin with sub-mobile, subnegative, and sub-deformed units located along

the western border of the cratonic and intercratonic areas (Harrington, 1962).

The sedimentary cover of the South American Platform dates from the Silurian.

It is well developed in the Parana and Chaco basins, where the thickness of sediments

and associated basalts may reach 5,000 m (fig. 4). The first stage in the evolution of

the sedimentary cover started with almost exclusively marine sedimentation during the
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Silurian and Devonian, with mixed character during the Carboniferous, followed by

continental sedimentation during the Permian and Triassic. This third stage indicates

the period of greatest stability of the platform. There were enormous volcanic

outpourings of predominantly quartz-tholeiite basalt lava in Gcndwanaland during the

Jurassic and Cretaceous. The Cretaceous lavas are located along or near separated

continental margins and are well-preserved in the great Parana basin (fig. 18). The

Parana basalts of Brazil cover an area of 1,200,000 sq km. Some alkaline and alkaline-

ultrabasic volcanic rocks, dating from the end of the Jurassic to the Eocene, are known

in Brazil and in eastern Paraguay. Carbonatites and kimberlites are associated with

them (Tectonic map of South America, 1978), the latter being the source of important

diamond deposits. Sediments formed between the Jurassic and the Quaternary almost

entirely mask the western limit of the platform, therefore, very little is known. Similar

sedimentary cover also obscures the relation in the Chaco basin.

3.6.5. Magnetic Anomalies

The Rio de La Plata Craton in Uruguay and the southern part of the Parana Basin

lie along strong positive magnetic gradient (western part of A3 in fig. 9), which has a

north-to-northeast trend and increases in magnetic intensity from continental areas to

coastal regions. The area of the Parana Basin also shows positive magnetic anomalies,

but the magnitude is not as high. Another magnetic maximum (B5 in fig. 9), having an

intensity of less than 8 nT, occurs at the central part of the basin.

In contrast, the region of the. Rio de La Plata Craton in the Province of Buenos

Aires, Argentina, and the entire area of the Chaco Basin shows moderately low negative

magnetic anomalies. Two different magnetic trends occur, one having a north-to-

northeast direction in the northern part of the Chaco Basin (Dl in fig. 9); the other

having a southeast trend in the province of Buenos Aires (D2 in fig. 9). Both of these

trends extend toward the central part of the Andes where a large magnetic anomaly low

occurs (C5 in fig. 9).
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3.6.6. Gravity Anomalies

Both the Bouguer and Free-Air gravity anomaly maps show that negative gravity

anomalies occur in the central and northern part of the Parana Basin (fig. 10, 11). The

minimum Bouguer value is less than -120 mgals (A7 in fig. 10) and the minimum Free-

Air anomaly is less than -40 mgals (A8 in fig. 11). These negative anomalies are also

part of a larger series of gravity lows that occur along the whole eastern part of the

South-American Platform (A in fig. 10, 11).

Positive Bouguer (C in fig. 10) and Free-Air (D in fig. 11) gravity anomalies occur

in most areas of the Chaco basin and in Rio de La Plata Craton. This positive gravity

anomalies start at the mouth of Rio de La Plata and extend north-to-northeastward

into the northern part of the Chaco basin. The width of the anomalies becomes

narrower from southeast to northwest.

a

3.6.7. Correlation

The basement of the Rio de La Plata craton in Uruguay is composed of

metamorphic and basic metavolcanic rocks. Syntectonic granitoids, including migmatites,

and Cretaceous baslt also occur in large volume (fig. 18). These areas coincide with

strong positive magnetic anomalies. In addition, the basement group of Rio de La Plata

craton is strongly folded and faulted with a generally north-northeast orientation which

is the same trend as the positive magnetic anomaly gradient. These positive magnetic

anomalies along with the anomalies of Ribeira fold belt are part of a larger series of

north-to-northeast-trending magnetic highs (A3 in fig. 9) that occur along the

southeastern continental shelf of South America and extend into the Atlantic Ocean

Basin.

The Parana basalts of Cretaceous age (fig. 18) cover most regions of the Parana

basin (around 1,200,000 sq km) and are associated with positive magnetic anomalies.
V..
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The magnetic maximum of these anomalies (B5 in fig. 9) occur at the center of the

basin which is probably associated with the ultrabasic volcanic rocks in nearby eastern

Paraguay.

A large Bouguer gravity anomaly low (A7 in fig. 10) occurs at the'central and

northern part of Parana Basin. It indicates that a considerable thickness of continental

crust covers most of the eastern South-American Platform.

Basically, the negative magnetic anomalies and the positive gravity anomalies that

occur in the Chaco Basin and the Rio de La Plata Craton in the Province of Buenos

Aires are associated with the Argentina aulacogen, which extend from the area between

the Rio de La Plata and Rio Colorado to the central part of Chaco basin. Cenozoic

sedimentary rocks cover most regions of these areas. The big rivers of Parana and

Salado follow the trend of the aulacogen (fig. 23), as does the Amazon River in the

Amazon Basin.

Also worthy of mention is the fact that the Corumba-Cuiba basin (Basin 19 in fig.

4), is located at the magnetic minimum (Dl in fig. 9) (less than -12 nT) and Bouguer

gravity maximum (C2 in fig. 10). The Corumba-Cuiba basin contains a maximum

thickness of 500 meters of Cenozoic sediments and is surrounded by Paleozoic and

Precambrian deposits. It should be one of the areas of thinnest continental crust in

South America especially between the great thickness of the Andes and the large eastern

part of South-American Platform.
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CHAPTER 4

GEOLOGY OF THE PATAGONIAN PLATFORM

AND ITS RELATION TO

MAGNETIC AND GRAVITY ANOMALIES

4.1. General Geology (also see Sec. 2.2)

The Patagonian Platform (fig. 5 and 24) occupies the broad southeast continental

margin of South America. The eastern or Atlantic portion of the platform forms a

broad continental shelf (fig. 24) that is the largest in South America, ranging in width

from 240 km at the latitude of the Rio de La Plata (lat. 40° S) up to 500 km at the

latitude of the Malvinas Islands (Falkland Islands, lat. 50 S). The continental platform

has no marked topographic form, and the change from continental platform to

continent slope and continental rise is gradual.

The basement of the Patagonian Platform is almost entirely covered by younger

sediments and is, therefore, little known. The radiometric data within the Northern

Patagonian and Deseado massifs (Southern Patagonian, fig. 5) indicate upper Paleozoic

and lower Mesozoic ages only; no Precambrian dates have been obtained (Urien and

Zambrano, 1973). Igneous plutons, dikes, and sills (both acid and basic) of Paleozoic to

Quaternary age are present in the basement, and they may be the cause of the marked

velocity differences and seismic layering which has been observed from the so-called

technical basement (Ewing et al., 1963; Ludwig et al., 1968). The structural trend of

this "technical" basement differs from those observed in the post-late Jurassic

sedimentary fill. A striking example of this is seen in the Lago San Martin area (fig.
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5), in southwest Patagonia, near the Andes, where basement structures trend east-west,

and those observed in the Cretaceous sedimentary cover are directed north-south.

The eastern continental margin of Argentina is of Atlantic type, characterized by-

stable continental blocks (without seismic activity). It has been subjected to little or no

tectonic deformation since at least upper Paleozoic or lower Mesozoic times {Zambrano

and Urien, 1970), except for the tectonic activity and change in structural trends which

took place in Late Jurassic or Early Cretaceous times. South of latitude 35° S the

elongated marginal-type basins change from parallel to the shore line (north of basin

13, fig. 4) to a new basin type that is perpendicular to the continental margin (fig. 24);

south of basin 14, fig. 4).

From the Sinemurian (lower Jurassic) to the Bajocian (middle Jurassic), marine

transgressions flooded the larger part of the Patagonian Platform and gave rise to

sedimentary cover. The withdrawal of the sea was followed by intense acid volcanism

during the Bathonian (middle Jurassic, above Bajocian). Important tectonic. activity

during the upper Jurassic corresponds to the inter-Malm movements (Araucane Phase)

of the Andean region. The formation of a dense network of large faults led to the

creation of the basins. In other words, the basins of Patagonian Platform originated as

a result of post-Jurassic tectonic processes. Basins created by this tectono-magmatic

reactivation are nearly contemporaneous with those basins of the South American

Platform and underwent maximum subsidence during the Cretaceous.

Pre-upper Jurassic units crop out in the area, .or are present in the subsurface,

and are composed of igneous and metamorphic rocks together with indurated sediments

which, due to consolidation, have acquired the accoustic properties of true basement

rocks.

The basins developed in the continental margin of Southern Brazil and Argentina

can be divided into four main types (fig. 24):
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(1) Marginal basins which include the Santos, Pelotas basins of southern margin of

Brazil (12, 13, fig. 4). The main depositional axes trend to be parallel to the

continental margin and the basins are totally or almost totally submerged.

(2) Basins transversal to the craton (such as the Salado basin, fig. 24) or

pericratonic types (such as the Colorado basin, fig. 24). These basins are open at the

continental edge but have their western part within the continent itself. The main

depositional axes seem to be perpendicular to the continental margin.

(3) Intracratonic (such as the Canelones basin, fig. 3) or interneo-cratonic basins

(such as the Valdes and SAn Jorge basins, fig. 5, 24) together with scattered "pocket"

basins. These basins are not open at the continental edge and occur either within the

continent or lie totally within the submerged continental platform.

(4) True geosynclines (such as the Magallanes and Malvinas basin IV, V, fig. 24)

where the depositional axes parallel the Andean cordillera and its submerged

prolongation.

The basins are filled with Cretaceous, Tertiary, and Quaternary sediments. Except

in the Magallanes and probably in the Malvinas basins, the Cretaceous units are

generally nonmarine. The oldest marine sediments found up to the present time are of

Masestrichtian (Upper Cretaceous) age.

During the Cenozoic, and at a distance from the Andes, the platform tectonics

were less severe than during the Cretaceous. In the Paleocene, subsidence in many

areas of the platform enabled Atlantic waters to invade as far as the south-east border

of the Somun Cura Massif (fig. 5).

At a distance from the Andean chain, the tectonic stability of the Patagonian

Platform, from the Miocene onward, is evidenced by marine deposits covering wide
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areas and by continental deposits. Severe volcanism, mainly basaltic, took place over

the greater part of the platform from the Miocene to the Quaternary. The entire

platform is at present undergoing epeirogenic uplift as shown by terraces of Pliocene-

Quaternary age which exists along coastal areas of the Patagonian Platform.

4.2. Magnetic Anomalies

The magnetic anomaly pattern over the northern Patagonian Platform shows a

positive gradient (B6, fig. 9) which increases from the continent (west) to the coastal

area (east) away from the Andean Fold Belt In addition, a northwest-trending arm

(Tl, fig. 9) of the positive anomalies extends from the Colorado basin into the Andean

Fold Belt. No magnetic anomaly data is available in the southern part of the platform.

4.3. Gravity Anomalies

The Bouguer gravity anomaly pattern (fig. 10) in the Patagonian Platform is

elongate in shape with a north-south trend that essentially parallels the coast line and

the Andean Fold Belt. These anomalies are moderately low (between 0 and -50 mgals)

in most areas and increase the magnitude from west to east away from the Andean

Fold Belt. The positive anomalies occur locally in the eastern coastal area.

The Free-Air gravity anomalies are moderately positive and between 0 to +30

mgals (fig. 11). A large gravity maximum (E in fig. 11) with magnitude higher than

+60 mgals occurs at the northern part of the platform. Two other small gravity

maxima with magnitudes less than +40 mgals are located at the central part (El in fig.

11) and southern coastal areas (E2 in fig. 11), respectively. A negative Free-Air gravity

anomaly with a northwest trend (Tl in fig. 11) occurs at the northern border of the

Patagonian Platform and separates this platform from the South-America Platform to

the north.
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4.4. Correlation

"The Patagonian Platform includes the continental region of South America south of

roughly 40° S and east of the Andes. The elevation of this Platform (fig. 16),

influenced by the Andes on the west, is lower from west to east away from the

Andean Fold Belt According to isostasy, the thickness of the continental crust should

decrease from west to east away from the Andes. The Bouguer gravity anomalies of

the platform, which decrease westward, indicate that isostatic compensation does exist

under the Patagonian Platform, and that these anomalies are a function of crustal

thickness.

At the same time, a consideration must be made of the low positive Free-Air

anomalies that occur in the eastern part and high positive Free-Air anomalies that occur

in the western part of the platform. One possible interpretation is that the crust under

the eastern platform has better compensation than the western part. As regards the

gravity maxima, some of these anomalies which occur at the northern (E, fig. 11) and

central (El, fig. 11) part of the platform may be associated with high density volcanic

rocks of Mesozoic and Cenozoic age (fig. 18). In other words, both of the positive

anomaly maxima (E and El, fig. 11) occur in areas where thick Mesozoic and Cenozoic

volcanics deposits are present. The last of these gravity maxima (E2, fig. 11) occurs in

the southern coastal area (Tierra del Fuego, fig. 5). This positive anomaly suggests that

appreciable mafic igneous rocks may be present in the deeper parts of this area or that

a very thin continental crust may underlie this gravity maximum.

Both magnetic and Free-Air gravity maps show a second set of anomalies; these

trend northwestward (Tl, fig. 9 and 11) in the northern part of the Patagonian

Platform. The magnetic anomalies are positive (0 to +10 nT) and the Free-Air

anomalies are negative (0 to -10 mgals). This anomaly trend does not occur on the

Bouguer gravity map. It may reflect a buried geological structural trend which is

covered by younger sediments.
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Because of lack of magnetic data in the southern part of the Patagonian Platform,

correlation between the geologic features and the magnetic data is restricted.

v.
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CHAPTER 5

GEOLOGY OF THE ANDEAN FOLD BELT

AND ITS RELATION TO MAGNETIC

AND GRAVITY ANOMALIES

5.1. Geology

1. Northern Section

The northern section includes the Andes of Venezuela, Colombia and Ecuador. A

longitudinal graben-like fault (the Cauca and the Romeral faults, fig. 3 and 25) divides

the Northern Andes into two domains in Colombia and Ecuador: the Occidental

Cordillera in the west, and the Central and Oriental Cordillera in the east. The

Western Cordillera is characterized by thick tholeiitic volcanics dating from the Late

Mesozoic which are associated with equally thick pelitic, in pan slightly metamorphic,

sediments. The "Basic Igneous Complex" has been interpreted as a Late Mesozoic island

arc or as an oceanic element that welded to the overall orogeny during the Tertiary.

In contrast, the Central and Oriental Cordillera are regarded as sections of continental

crust Gabbro and serpentinite as well as greenstone, diabase and pillow-basalt of the

"Diabase Formation" occur at the boundary of these two units (the Cauca and the

Romeral faults).

The Andean metamorphic basement in Colombia crops out in the Sierra Nevada de

Santa Marta (Central Cordillera), Santander Massif (Oriental Cordillera), Guajira

peninsula, as well as in the Central and Oriental Cordillera. These amphibolite to

granulite grade metamorphic rocks, dating from 700 m.y. to 1.300 m.y., confirm the
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existence of Pre-Brazilian elements in the basement of the Andean Cordillera in this

region.

In Ecuador, the metamorphic basement of greenschist to amphiboiite facies is

migmatized and granitized. These rocks are known to occur only in the Oriental

Cordillera, where they are regarded as the southern extension of the Central Cordillera

of Colombia. According to Herbert (1977) locally highly metamorphic to

ultrametamorphic rocks are also Present in the region.

In summary, Precambrian rocks of the northern Andes are rarely present and those

that are all belong to the upper Precambrian. The main volume of metamorphic

basement rocks are probably Paleozoic in age. These rocks are generally characterized

by low-grade metamorphism which possibly occurred during the pre-Devonian

"Caledonian" orogeny. This orogeny affected the basement of the Central and Oriental

Cordilleras as well as their northern and northeastern continuation in Venezuela and the

Oriental Cordillera in Ecuador. It is uncertain whether any links exist with non-

Andean upper Precambrian shield rocks, but such links are possible. However, the

Occidental Cordillera chains do not contain any of these old substructures. As

Mesozoic and Cenozoic intrusive bodies have extensively penetrated into all of the main

structural units of the region, it is not yet possible to determine whether relict

Precambrian terranes are present or to what extent they have been modified by

metamorphism.

2. The Central and Southern Section

The northern segment of this section lies in Peru, Bolivia and northern Chile; the

Chile-Argentinian chain constitutes the southern segment. The NW structural trend of

the northern segment changes to N-S near latitude 18° S. The southern segment strike

NNE-SSW along Pliocene-Quaternary faults and transverse to the NNE-SSE paleographic

grain.
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The Andean sedimentary cycle started in the northern segment during the upper

Triassic and continued until the upper Cretaceous, filling troughs parallel to the general

trend of the chain. The sediments are mainly detrital. with no flysch, and extend into

the eastern Andean area of Peru. From the Triassic onwards, intense volcanic activity,

mainly andesitic, with subordinate rhyolitcs, dacites and basalts, were associated with the

sedimentation.

The Andes have a geosynclinal character from roughly south of latitude 40 or 42

S. They strike N-S in the Patagonian Cordillera, changing gradually to E-W in the

Magellan Cordillera and Tierra .del Fuego (fig. 21). There is little information available

on the eugeosynclinal domain, where marine sediments of upper Jurassic age are

associated with basaltic pillow lavas. The formation is particularly well developed in

Tierra del Fuego. Deformation took place in the upper Jurassic but is poorly

characterized and appears to be associated with intrusive granites. Middle to upper

Cretaceous movements are very important, especially in Tierra del Fuego, causing folds

and reverse faults. Within the miogeosynclinal domain, sedimentation started in the

Oxfordian (upper Jurassic) and includes thick flysch deposits of Aptian (lower

Cretaceous) to macesirichtian (upper Cretaceous) age. This was followed, in

stratigraphic continuity, by marine molasse deposits which extend, with minor continental

inter beds, until the Miocene.

The metamorphic basement in the Coastal and Oriental Cordilleras of the Peruvian

Andes, has been described by Steinmann (1929). They are an old group of gneisses,

mica schists and granites and a young group of phyllites and qua-tzites. The age dates

are between 679 ± 12 and 642 ± 16 m.y.

In the Bolivian Andes weakly metamorphosed rocks are mentioned from the

southern part of the Oriental Cordillera (Zeil, 1979). No ages and rock types are

available.
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In Chile the Coastal Cordillera is composed largely of metamorphic basement rocks

which have been described by Miller (1970). Gonzalez Bonorino (1970,1971), Corvalan

and Munizaga (1972) and Munizaga, Aguirre and Herve (1973). Only isolated small

amounts of the pre-Andean basement crop out in the area of the High Cordillera.

Regionally metamorphosed crystalline schist and phyllites of greenschist fades are the

main rock types of the Coastal Cordillera. The age of these rocks and of the regional

metamorphism is between 273 and 342 m.y. (Munizaga, Aguirre and Herve, 1973).

In the Argentinian portion of the Andes the metamorphic basement rock is

exposed mainly in the northern section and in the eastern chain. Whereas old

complexes are almost entirely missing from the Cordillera Principal, metamorphic series

are distributed to varying degrees in the Precordillera and the Puna (fig. 7). The

metamorphic series in Precofdillera are composed mainly of mica schists, gneisses,

marbles and amphibolites. While granite and migmatites are rare, large bodies of basic

and ultrabasic intrusive rocks occur (Caminos, 1972). As in the Puna, granodioritic

intrusions occur with a radiometric age of 530±20 m.y. (Turner, 1972). Turner (1972)

also mentions a thick Precambrian metamorphic basement rock in the Cordillera

Oriental between 22° and 25° S. This is the only definite Precambrian material in

Argentina because it is clearly overlain by Cambrian sediments. The degree of

metamorphism is in greenschist fades and no rock types are available.

5.2. Gravity Anomalies and Correlation

In general, the Bouguer gravity anomalies of the Andes form a tremendous low

that reflects the great thickness of the continental crust under the fold belt (fig. 10).

In contrast, the Free-Air gravity anomalies (fig. 11) are generally positive, forming a

very high positive pattern in the highest parts of the Andes (fig. 16). Both the

Bouguer and Free-Air gravity anomalies show a distinct trend that parallels the western

coast of South America and the Andes Fold Belt.
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In the northern Andes, a Bouguer maximum (Dl, fig. 10) is developed in the

coastal zone west of the Occidental Cordillera. This gravity high extends from Panama

to Ecuador and indicates a thin crust or a significant substructure made up of low-

silica igneous rocks. On the other hand, in the Central Cordillera negative gravity

values down to -220 mgals occur (D2 in fig. 10). This reflects a crusta! thickness of

approximately 45 km in the area along the Ecuador border (Zeil, 1979). Compared with

the 70 km-thick crust at the bend of the Andes to the south (D in fig. 10), it must be

assumed here that the substructure in the northern Andes underwent a different tectonic

development.

According to Case, Duran, Lopez and Moore (1971), Gonzalez and Vina (1973),

and Case and McDonald (1973) the northern part of Colombia down to about the

Cauca depression (fig. 3) is underlain by a relatively thin crust between 20 and 30 km

thick. Tnis apparently contributes to the positive gravity values. The thickness of the

crust increases, but not significantly, from there on towards the east in the region of

the Central Cordillera and the Oriental Cordillera. In the area of the border between

Colombia and Ecuador positive gravity values indicate that an oceanic crust probably

exists from the coast towards the east up to the western slope of the Occidental

Cordillera (150 km away from the coast). From there on, however, as far as the

region of the Central Cordillera, a continental crust up to about 45 km thick exists

(Zeil, 1979).

In the central Andes, along the bend of the fold belt at the approximate latitude

of 15°-25°S in the area of the Altiplano (fig. 25), extremely low Bouguer gravity

anomalies of down to -400 mgals exist (D in fig. 10). The continental crust in this

region is estimated to be about 70 km (Zeil, 1979). In this same central section of the

Andes hypocentres of recent earthquakes are distributed statistically on. a distinct plane

(Benioff zone) dipping eastward from the Pacific under the continent. From this bend

in the Andes, lines of high negative gravity values extend south to about latitude 35



82

S. These values correspond to a large extent to the topography of the range. A -250

mgal anomaly extends as far south as latitude 34°S (San Tiago) (D3 in fig. 10). The

thickness of the crust decreases to about 55 km farther south, and to the east at the

point where the Andes merge with their eastern foreland normal continental crustal

thickness of 30-35 km is present (Dragicevic, 1970).

5.3. Magnetic Anomalies and Correlation

A large magnetic anomaly high of over +12 nT occurs along the Cordillera of

Colombia (A4 in fig. 9), and positive anomalies occupy most areas of the northern part

of the Andes (north of latitude 16 S). The only exception occurs in the northern

portion of Peru where a low (D3, fig. 9) is present. In contrast, a large magnetic

anomaly low (C5 in fig. 9) of less than -12 nT occurs in the central part of the

Andes, and negative anomalies occupy most regions of the central and southern Andes.

The trends of these magnetic anomalies do not, in general, parallel the gravity

anomalies and follow the north-south structural trend of the fold belt, but instead have

a general east-west pattern. This pattern is common over most of the MAGSAT map

and is probably related to procession noise derived from data reduction procedures to

correct for external magnetic field effects. However, the pattern over the Andes is

sufficiently distinct from the generally north-trending magnetic anomalies occurring in

the adjacent Pacific Ocean to reflect the boundary betv/een the leading edge of the

South America Plate and the oceanic Nazca Plate.

The metamorphic basement plays a very important role in the large anomaly high

that occurs in the Cordillera of Colombia, The basement crops out mainly in the

Central and Oriental Cordilleras. Exposed are metasediments and metavolcanites of high

metamorphic grade (granulite facies is common) which are locally migmatized and

intruded by granite, ultrabasic and other intrusives. Furthermore, the Occidental

Cordillera of Colombia is associated with a "Basin Igneous Complex", and the intra-
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Andean ridge contains very thick submarine basic Cretaceous lavas which are associated

with the ultrabasic intrusions. These geologic complexes may in total be an important

factor in causing the large magnetic anomaly high in Colombia (A4 in fig. 8). On the

other hand, no metamorphic basement and few volcanic rocks occur at the northern

portion of Peru. This may be the reason why a magnetic minimum (D3 in fig. 9)

occurs in this portion of the northern Andes.

As regards the region of the central and southern Andes (south of latitude 16 S),

with the exception of the Coastal Cordillera of Peru and Chile and excluding also the

chains of the Oriental Cordillera in the northern part of Argentina, metamorphic

basement rocks are rarely present. Negative magnetic anomalies occur in most areas of

this region. A large volume of Cenozoic sedimentary rocks characterizes the central

part of the Andes where the continental crust reaches its maximum thickness.

Granodioritic to dioritic rocks of Cenozoic age are also abundant. Thus, a large

magnetic anomaly low (C5 in fig. 9) is associated with these Cenczoic formations.

Attention is called to the fact that a deep-sea trench is well-developed along the

Pacific margin in this region of the central Andes. According to the plate tectonic

theory deep-sea trenches form as a result of the subduction of lithospheric plates at the

margins of continents. These trenches, having maximum depths of 8,055±10 m (Fisher,

1974), are characterized by seismically active zones and minimum Bouguer gravity

anomalies. These trenches along with two large Cenozoic continental grabens (fig. 6)

may significantly influence the magnetic anomalies that occur at the central section of

the Andes.
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CHAPTER 6

GRABENS AND AULACOGENS

Several types of grabens and aulacogens (or aulacogen-like) structures exist in

South America (fig. 3). Each has its own characteristics, and the origin and

development of most of them can be tied to plate-tec tonic movements. These

structures are thus important and interesting features.

The grabens in the Andes are true grabens. They are bounded by normal faults

on both sides and are probably caused by deep fractures associated with geanticlinal

uplift. In contrast, the Rio Orinoco structure (fig. 3), which is located between the

Guyana Shield and the Caribbean Mountain System, is not a true or well-developed

graben but is better classified as a trough in which up to 5,000 m of sediments

accumulated along an E-W trend. Most of these sediments were deposited in post-

Triassic lime. Data is insufficient to establish whether or not this is an incipient rift

system. The Takutu rift valley (fig. 3) is located at the inner-Guyana shield and is

bounded by great faults on both sides. It contains sediments that are several kilometers

thick and are believed to be the only Jurassic-Cretaceous formations in the shield. The

Takutu rift, is a probable aulacogen. A very similar structure occurs in the Amazon

basin. The structure underlying the Amazon basin is regarded as a failed arm of a

triple junction-lhe one that does not become a trailing edge of a continent This basin

has also been regarded as being an intercratonic basin and as an extensive and complex

graben. In the uplifted era tonic area between the Amazon and Parnaiba basins, there

are also several relicts of formerly connected basins. They are called cratonic fault
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basins. Remnants are preserved as graben. For example, the Agua Bonita Graben and

the Braganca-Jacunda Graben (state of Para) are structures of this type.

In the southern part of the South-America Platform and northern part of

Patagonian Platform, two aulacogen-like structures are developed. Each has a large

basin associated with it These are the Salado basin and the Colorado basin (fig. 3).

Both are marginal-type basins elongated perpendicular to the continental margin and

were formed as a result of fracturing in the post-Cretaceous time.

6,1. The Grabens of the Andean Fold Belt

Large sections of the Andean Fold Belt are intersected by deep fractures that

developed approximately at the same time as and parallel to the Cenozoic volcanic

zones. Most of these faults can be described as "tectonic grabens". Such structures

include the large longitudinal faults which are structural depressions between the

individual Cordilleran chains in Colombia/Ecuador, in Bolivia, and in northern and.

central Chile (fig. 6), Their internal structural characteristics are largely unknown.

However, the age of these inner-Andean longitudinal fractures can be approximately

determined on the basin of material with which they are filled. They are certainly

recent and their main development took place in the Cenozoic; they contain sediments

that are between 5 and 15 km thick. It is necessary to use geophysical methods to

study in detail the boundaries between these Andean macrostructures because they

definitely extend deep into the crust, perhaps even as far as the mantle.

The recent volcanic regions of the Andes are located precisely along areas where

the Andes are intersected by the graben-depressions. Both run parallel to .the strike of

the range (fig. 6). There is thus an apparent connection between recent fracture

tectonics, strong uplift, and recent volcanic activity. In the northern Andes the

volcanoes are situated in the Central Cordillera (fig. 6 and fig. 25), the basement of

which is uplifted most strongly in block-like form. West of the intra-Andean ridge,
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i.e. west of the Central Cordillera in Colombia (fig. 25), including its western flank, is

a region of linear pericratonic troughs which developed on an oceanic crust. Gabbros

and serpentinites as well as greenstones, diabases and pillow-basalts of the "Diabase

Formation" have been found in this area. The region lying to the east of the.intra-

Andean ridge, i.e. the region between the Central and Oriental Cordillera, developed

linear intracratonic troughs which are more or less clearly separated by massifs with

pre-Cretaceous structures and which show a tendency to be uplifted.

The same connection between recent fracture tectonics, strong uplift and recent

volcanic activity also holds true in the central section of the Andes (over a high-

altitude plain at 3,500-4,000 m, the Altiplano, fig. 7, 25). In the southern section,

despite the gradual decline in height, striking volcanic peaks are still present. As the

thick volcanic products frequently do not permit exact identification of the conduits

along which they were transported and as the age of the recent grabens is unknown, it

is not possible to make any clear statement about the exact correlation between the

volcanic activity and the recent tectonic events. However, it is inferred that the large

volume of magma and the development of the linear large tectonic grabens are

associated with the eastward subduction of oceanic crust along the continental margin

and the concomitant geanticlinal Andean Mountain Range.

6.2. Takutu Rift Valley

The Takutu rift valley (fig. 3 and fig. 8) forms the southern boundary of the wide

Guyana-Venezuela basin. The rift valley is about 65 km wide, trending east-northeast

and containing sediments of several kilometers thickness of the Takutu Formation

believed to be of Jurassic-Cretaceous age. South of the great fault bounding the

southern edge of the Takutu rift valley is a range of mountains 60 km across that are

underlain by rocks of the Kanuku Group (Barren, 1962; Singh, 1966). These rocks

consist chiefly of banded biotite and biotite-garnet gneisses in the amphibolite and

granulite facies, hypersthene gneisses, and charnockites (fig. 8).
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An Rb-Sr isochron by Spooner et al. (1971) indicates that the Kanuku Group is at

least 2,000 m.y. old and distinctly older than the typical Trans-Amazonian

thermotectonic event that affected most of the rocks of the Guyana Shield. Thus it is

possible that the foreland surrounding the great basin of northern Guyana and southern

Venezuela may be the Imataca complex on the north and the Kanuku and correlated

high-grade rocks on the south (fig. 8). Previously, some geologists have assumed that

the Kanuku group was comparable in age to the Imataca (2,700-3,400 m.y.), namely

older than 2,500 m.y., thus forming part of an Archean basement that rimmed the

eugecsynclinal basin of northern Guyana. But, the younger date (at least 2,000 m.y.)

by Spooner et al. (1971) has made the picture more complicated.

The great fault system outlining the Takutu rift valley can be traced to the east

and northeast for some 400 km based on the correlation of pyroxene granulites and

gneisses of the Bakhuys Mountains in Surinam, with associated charnockites of the

Kanuku Group. These gneissic and granulitic rocks in western Surinam have been

called the Coeroeni and Falawatra group. They appear to represent the uplifted

basement on which the sediments of the Surinam-French Guyana basin were deposited.

The faulted uplift of Falawatra basement has resulted in a physical separation of the

remnant geosynclinal rocks of this eastern basin from those of the Venezuela-Guyana

basin to the west.

The Takutu rift valley is clearly a major rift structure in the South American

Platform. The rift is regarded as being an aulacogen (Burke and Wilson, 1976; Burke,

1980; Braile et. al., 1982) associated with continental breakup during Mesozoic time.

The rift is remarkable similar in age, size, shape, and configuration to other continental

rifts that formed during the opening of the central Atlantic Ocean.
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6.3. Amazon Basin (Aulacogcn)

A general description of the stratigraphy, geotectonic and structural pattern,

volcanism and geologic history of the Amazon basin has already been given in Section

3.1.4. In this section, the different theories of origin are discussed. Three different

theories have been proposed to explain the origin and present position of the Amazon.

The current most widely accepted theory for the origin of the Amazon basin is as

a triple junction-aulacogen-rift structure (Burke and Dewey, I973a). Figure 26 shows a

developmental sequential model of early doming caused by a mantle plume and deep-

seated axial dikes, followed by development of a triple junction rift network (rrr

junction), development of an open ocean or a geosyncline and an aulacogen (the failed

arm), and finally the formation of a mountain range during compression and the

continued development of the aulacogen. Spreading may take place on any of the three

arms. If it develops on all three, then three plates are formed, but if only on two,

then the failed arm of the triple junction-the one that does not become a trailing edge

of a continent-is a zone of weakness, that becomes a rift system. Consequently, it may

localize a major river with a delta at its mouth. The typical example is the Niger

River and its delta. This rifting is believed to be the cause of most aulacogens, which

are long, narrow and deeply filled troughs that extend into cratons.

The structures shown on figure 27 are two Cretaceous triple junctions (Junction A

shares one of its three arms with junction B) that, joined South America and Africa.

Two arms of each junction separate to form the South Atlantic. The third arm of

each was abandoned and remains as the Benue Trough (Burke et al. 1971; Grant, 1971:

Nwachukwu, 1972; Olade, 1975) and Amazon Basin, respectively. In addition, the same

kind of structure is a Tertiary triple junction centered around the Afar Depression.

Two arms (the Gulf of Aden and the Red Sea) have begun to separate, while the third

(the Ethiopian Rift) failed to move.
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A second theory on the origin of the Amazon basin was proposed by Grabert

(1971). The Amazon and Parana drainage systems flow over a widespread lateritic cover

that is up to 40 m thick. Grabert assumed that since the Triassic or even since the

late Paleozoic most of this shield has been uplifted and exposed to weathering. He

inferred that its paleodrainage was chiefly radial toward the surrounding seas and

oceans. Thus its western rivers should have flowed into the Andean geosyncline.

Uplift of the Andes during mid-Tertiary time reversed this patter, causing the Amazon

to flow eastward (occupying the position of a structural low) and the Parana to flow

southward subparallel to the strike of the Andes. Most probably a widespread inland

lake developed during the early stages of this major drainage reorganization.

A third interpretation of the present position of the Amazon and the Parana rivers

was suggested by de Rezende (1972). He has emphasized that tectonic control of two

gigantic geofracture systems related to the separation of South America and Africa (fig.

28) localized the main drainage systems. Throughout much of its lower course the

Amazon does occupy a combined graben and/or linear structural low which preserves

lower Paleozoic sediments as a long, narrow belt extending across the Brazilianj

Precambrian shield with notable parallelism of rivers and lineaments within it It has

also been suggested that the Parana in far south-western Brazil and adjacent Uruguay

and Paraguay follows the axis of greatest thickness of Cretaceous basalts (fig. 18) simply

because the crust is depressed by their extra weight (Cordani and Vandoros 1967).

Structural control

There is a general consensus that old sutures or vertical mobile belts are zones of

weakness extending deep into the lithosphere. They are subject to easy rejuvenation and

are more susceptible to fracturing than normal continental lithosphere. The high

thermal gradients associated with the old mobile belts become the site of renewed

thermal activity, a rift generates giving rise to a spreading ridge, and thus the continent

is split and plate separation take place (Windley, 1977).
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The Amazon River derives most of its debris from the Andes which are the

leading edge of the South American plate. The trailing continental edge (coast) will

normally receive more sediment than the collision edge (coast), because they have larger

drainage areas. Thus, in the broadest view, rivers respond to the megageomorphology

of continents, which is relatable to plate tectonics. If, in addition to rifting and

downfaulting parallel to a coastline, there is also a fault or rift system at some angle to

the coast, it tends to collect and focus major paleodrainage. The Amazon river is a

typical example, and figure 29 shows this rift control on the lower part of the Amazon

River.

6.4. Salado and Colorado Basins

There are several marginal geologic basins along the south-eastern border of South

America (fig. 4). Two of these marginal basins are the Salado and Colorado basins

which are located in the northern part of Argentina. Although it has been suggested

that the continental margin of southern Brazil and Argentina has not been deformed

since at least upper Paleozoic or lower Mesozoic time (Zambrano and Urien, 1970),

major structures and changes in structural trends have occurred in Late Jurassic or Early

Cretaceous time. These represent formation of basins and changes in basin trend from

parallel to the shore to a new basin type perpendicular to the continental margin which

also enter the continent The Salado and Colorado basins are typical examples for these

perpendicular types of basins. The predominant trends are NW-SE, E-W, or WSE-ENE

(fig. 24) and the major part of the basins extend into the continental shelf.

Table 18 shows the stratigraphic succession of the post-upper Jurassic sedimentary

rocks in Salado and Colorado basins. Figure 30 and figure 31 are cross sections of

these two basins illustrating the Cretaceous and Tertiary formations found there.

The presence of lower Cretaceous sediments in the Salado and Colorado basins has

not been proven, as no fossil remains older than Cenomanian (lowermost upper
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Cretaceous) have been found. However, it should not be forgotten that the basement

in ihe deeper parts of the Salado basin has not yet been reached by wells.

The younger Cretaceous formations in the Salado and Colorado basins are

represented by red beds (Zambrano and Urien, 1970). The scarcity of organic remains

points to a nonmarine origin. The only possibility for a lateral transition to marine

conditions lies in the easternmost part of the basin, close to the continental slope.

Malumian (1968, 1970) made a micropaleontologic study of Maestrichtian (upper

Cretaceous) fossils in the lower part of the Pedro Luro Formation which was formerly

assigned to the Paleocene (Zambrano and Urien, 1970, Kaasschieter, 1965; Ewing et al.,

1963). These sediments which are from wells drilled on the continental shelf are of

neritic type, rich in calcareous layers, which alternate with greenish gray or dark gray

shales and greenish sandstone. In the Salado basin, the Chilcas Formation of Paleocene

and Eocene age is confirmed by micropaleontologic research. Contrary to the

conclusions of earlier studies, the upper parts of- this unit may reach up into lower

Oligocene, a period which as been found to be represented in offshore drillings

(Malumian, 1970).

The deposition of younger Tertiary sediments was formerly thought to begin in the

Miocene (Table 18). However, in the lower part of the Barranca Final Formation,

fossils of probable upper Oligocene age have been found, and upper Oligocene deposits

are also reported in the Salado and other basins from both surface and subsurface

studies. This means that the sedimentary break during the Oligocene is reduced to the

middle part of the period. In the Colorado basin, the Miocene, Pliocene, and

Quaternary are represented by marine paralic deposition. On the other hand, the

Miocene and post-Miocene in the Salado basin is represented by marine neritic

sediments.

Tectonics of the Basins
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The post-Cretaceou tectonic pattern of the Salado and Colorado basins is very

similar. These basins were formed as a result of post-Jurassic fracturing. Pre-upper

Jurassic units cropping out in the area, or present in the subsurface, are composed of

igneous and metamorphic rocks together with indurated sediments which, due to

consolidation, have acquired the accoustic properties of true basement rocks. In the

Salado basin, the presence of basalts (Table 18 and' fig. 30) was detected by wells.

They lie between the continental Cretaceous sediments and the basement, in a similar

way as those reported by Jones (1956) in the Canelones Graben.

The tectonic features of these Atlantic basins are controlled by vertical movements

of basement blocks along normal faults; major transcurrent faults may also occur here

with a predominant E-W trend. The tensional faults may be parallel, transverse, or,

less frequently, oblique to the main depositional axis, and there is a tendency towards

E-W, NE-SW, and NW-SE directions.

The inception of faulting probably occurred between middle and younger Jurassic

time. The faults were intermittently reactivated throughout Cretaceous time. From

Maestrichtian (upper Cretaceous) time onwards, the sedimentary fill absorbed most of

the faulting stresses, and few faults were able to fracture the Tertiary cover. However,

the basins were subjected to repeated marine transgressions and regressions during the

Cenozoic.

De Rezende (1972) suggests that the Salado and Colorado basins belong to the

Southern Rifting event (fig. 28) of continental separation between South America and

Africa. Thus, both the Salado and Colorado basin are regarded as being aulacogens

(fig. 3) and both contain deep sedimentary deposits (fig. 4) with normal faults and

associated basaltic intrusions.
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6.5. Magnetic, Gravity Anomalies and Correlation (fig. 9, 10, 11, 16)

Generally speaking, magnetic minima and gravity maxima are associated with

aulacogens which have a thin crust, a thick cover of sedimentary rocks and which may

be sites of high heat flow. This is true for the Takutu, Amazon, Colorado, and Salatio

basins. In the Takutu rift valley, a magnetic low occurs (Cl in fig. 9} which may

extend southeastward to the Amazon basin. The Bouguer gravity anomalies also show a

trend of gravity maxima (Tl in fig. 10) in the area of Takutu rif t valley. Furthermore,

the trend of the gracity maxima is NE-SW which is the same as the trend of the rift

valley. In the Amazon basin, a magnetic minima (C2« C3 in fig. 9) occurs throughout

most of the entire area. This basin separates the Guyana Shield to the north from the

Central Brazilian Shield to south, both areas of high positive anomalies. Both Bouguer

and Free-Air gravity maxima {B, Bl, B2 in fig. 10, 11) also occur which coincide very

well with the trend of the Amazon basin. In the southern part of the South-American

Platform and the northern boundary of the patagonian Platform, a large magnetic

minima (D2 in fig. 9) and gravity maxima (C in fig. 10, D in fig. 11) are associated

with the Salado aulacogen (or so-called Argentina aulacogen) (fig. 3) where two big

rivers-Rio Parana and Rio Salado appear. Both the magnetic and gravity anomalies

along the Salado aulacogen have the same SE-NW trend.

Several different correlations between the anomalies and the grabens (or

aulacogens) that do not follow the general rule of an associated magnetic low and

gravity high are also observed in South America. For example, the Reconcavo basin (or

aulacogen) (basin 8 in fig. 4) is characterized by a positive magnetic anomaly (A2 in

fig. 9) and an poorly-defined regional gravity minimum (A6 in fig. 10, 11). A large

amount of metamorphic and volcanic intrusive rock occurs around the Reconcavo basin,

and an underlying thick continental crust probably is the main reason for this inverse

correlation. Secondly, the Rio Orinoco trough (fig. 3) is associated with moderately

high magnetic anomalies (northern part of Bl in fig. 9) and poorly-defined positive

gravity anomalies.
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Located at the middle of two highly elevated areas (Caribbean Mountain System to

the north and Guyana Shield to the south), the Rio Orinoco trough contains Cenozoic

sedimentary rock of relative low elevation. The rather indistinct positive gravity

anomalies suggest that the area should be underlain by a relatively thin crust The

positive magnetic anomalies in the trough may be influenced by the larger magnetic

high that occurs the northwest portion of the Guyana Shield. The third example is the

Colorado basin (basin 15, fig. 4) which is characterized by an anomaly trend (Tl, fig. 9

and 11) of a moderate magnetic high and gravity low. This anomaly trend has the

same direction with the axes of Colorado basin and is probably associated with a deep

geologic structural trend.

The grabens in the Andes are usually very narrow and small so that no well-

defined magnetic and gravity anomalies is associated with them.
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CHAPTER 7

CONCLUSIONS

The correlation between geophysical data, which includes magnetic, Bouguer gravity,

and Free-Air gravity anomalies, and the known geologic features is generally good over

the entire continent of South America. Correlations are noted between magnetic and

gravity anomalies and tectonic provinces, continental rif t zones, erogenic fold belts,

metallogenic zones, volcanism, grabens, and aulacogens.

Based on origin, age, and structural development, three extensive tectonic provinces

can be recognized in South America.

(1) South American Platform. It is the oldest province and contains the only

know Archean rocks of the continent The basement of the platform is exposed in

three major shields-Guyana, Central Brazilian, and Atlantic Shield. All of these shields

contain thick Precambrian metamorphic sequences and a wide variety of volcanic and

intrusive rocks and are characterized by positive magnetic (fig. 32) and Free-Air gravity

anomalies (fig. 33). An exception is the eastern part of the Guyana Shield which

corresponds to a well-defined negative Free-Air gravity anomaly.

The sedimentary cover and associated volcanics of the platform, which are of

Silurian or younger age, are well developed in the four great synclines-Amazon,

Parnaiba, Parana, and Chaco basins. These basins are filled with a thick sequence of

non-magnetic and low density sedimentary rocks and are associated with negative

magnetic and gravity anomalies (fig. 34, 35). An exception is the Parana basin.
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Positive magnetic anomalies occur in the basin which are associated with a thick

sequence of Parana basalts. In general, grabens or aulacogens, underlying the large

basins (Amazon and the southern part of Chaco basins) or in the shield (Takutu rift

valley), are characterized by magnetic minima and gravity maxima (fig. 36, 37). These

relations suggest a thin continental crust and a thick cover of sedimentary rocks. These

aulacogens may be areas of high heat flow.

A thick continental crust underlies the whole eastern .part of the South American

Platform which includes the Sao Francisco Craton, the northern part of Parana basin,

and the southern part of Parnaiba basin. This is the thickest continental crust exclusive

of the Andes. A large Bouguer gravity anomaly low occurs in this region (fig. 10).

(2) Patagonian Platform. This is a young platform with a basement that stabilized

during the middle Paleozoic. A volcano-sedimentary cover of Carboniferous or younger

age almost completely masks the platform basement. Both magnetic and gravity

anomaly patterns show a gradient over the platform. These gradients are apparently

associated with variation in elevation and thickness of the continental crust. A

subsurface geologic structural trend with a NW direction is characterized by a magnetic

high and Free-Air gravity low in the northern boundary of the Patagonian Platform.

(3) The Andean Fold Belt The Andean Cordillera constitutes the entire western

margin of South America with rocks dating from the Precambrian to recent time. It is

a region of strong seismicity and volcanism. Both the Bouguer and Free-Air gravity

anomalies show a distinct trend that parallels the fold belt (fig. 10, 11), and the

tremendous low values of Bouguer gravity anomalies indicate that the thickest

continental crust underlies the Andean Fold Belt in South America.

However, the magnetic anomaly trends of the Andes do not parallel the gravity

anomaly trends which follow the north-south structural trend of the fold belt (fig. 9).
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The metamorphic basement probably plays a major role in this magnetic pattern. The

distribution of the positive magnetic anomalies match well with the occurrence of the

metamorphic basement The adjacent deep-sea trench along with two large Cenozoic

continental grabens may significantly influence the large magnetic low that occurs at the

central pan of the Andean Fold Belt
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A: South American Platform
B: Patagonian Platform
C:'The Andean Fold Belt
C1:. Caribbean Mountain System
D: The Transitional Zone—

between the Platform and •
the Fold Belt

Figure 1: The Tectonic Provinces of South America
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A. South-American Platform

A.1. Amazon Craton
Ala. Guyana Shield
A1b. Central Brazilian "Shield
Ale. Amazon Basin

A2.

A3.

Sao Francisco Craton

Parnaiba Basin

A4. Atlantic Shield
A4a. Caririan-Propria

Fold Belt
A4b. Ribeiran Fold Belt

A5. Sao Luiz Craton

A6. Rio de La Plata Craton
A6a. Chaco Basin
A6b. Parana Basin

B. Patagonian Platform

C. The Andean Fold Belt
C1. The Caribbean

Mountain System

D. The Transitional Zone
between the Platform
and the Fold Belt

Figure 2: The Tectonic Sub-provinces of South America
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Brazilian Orogenic Cycle
A: Caririan Fold Belt

B: Propria Fold Belt
C: Ribeira Fold Belt
D: Paraguay-Araguaia

Fold Belt
E: Brazilia Fold Belt

Figure 3: Main Structures of South America
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Figure 5: The Principal Geologic Provinces of Patagonian Platform
(modified after Zambrano et al., 1970)
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Figure 6: The Andean' Orogenic Belt
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1. Imataca Complex (2700-3400 m.y.)

2. Kanuku Group (Archean)

3. Pastora-Carichapo Assemblage (2000-1800 m.y.)

4. Barama-Mazaruni Assemblage (1900-1800 m.y.)

5. Coeroeni-Palawatra Group (Archean)

6. Trans-Amazonian Granitic Rocks (1900 m.y.)

7. Paramaca-Bonidoro-Lorapu Formation (1900 m.y.)

8. lie de Cayenne Group (Archean)

Figure 8: The Geological Outline of Guyana Shield (modified after
Hurley and Rand, 1973)



Pig. 9 Magnetic Anomaly Map of South America
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Pig. 10 Bouguer Gravity Anomaly Map of South America
(from Defense Mapping Agency Aerospace Center)
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Fig. 11 Free-Air Gravity Amomaly Map of South America
(from Defense Mapping Agency Aerospace Center)
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Figure 14: Sao Francisco Craton
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Figure 15: The Saiaes of Brazil
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Figure 16: Mean Elevation Map of South America
(from Defense Mapping Agency Aerospace Center)
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Figure 17: Palcocurrent Direction of South America and Africa
(modified from Bigarella, 1970)



115

, £ff«5/Ve Roc As
Acid, may include, andesites
C I, foo TO /, foo my. )

,Intrusive Rocks
Undivided granitoids
C o/der than I, foo rx.y.)
Lo-te. and post iectort'ic am/r/VWj
(_ /, too my. to about 2.2t
Cratomc granitoids
( l.ooo to i. foo tn.y.)

include mljm.AT.ites, or
arnmiolji ( SCO to l.ooo my.)
uriw And Sub-volcanic Rocks

Acid and interned/ate.
(.1,000 -io ( .foo m.y. )
/\a<l and intermsdla-te
(. Jurassic)
Baiic effufi've and rub -Volcanic
rocks (Tertiary to Q

Plateau basalts and sills
( Cretaceous )

Figure 18: The Volcanics of South America (exclusive of the Andes)
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Parricubcu -V /
_ - i i i
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' I . Approx imate Boundary Between Geotectonic Units

2. Undivided Phanerozoic

3. Structural Trends

4. Faults

Region A: Uaririan Fold Belt

Region B: ijroprian Fold Belt

Region U: Reconcavo-Tucano Basin

Figure 20: Geotectonic Outline of Caririan-Proprian Fold Belt
(modified after de Almeida et al., 1973)
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A. Ribeiran Fold Belt
B. Caririan-Proprian Fold Belt
C. Sao Francisco Craton
D. Parana Basin
E. Parnaiba Basin
F. Central Brazilian Shield

J Approximate Boundary Between Geotectonic Units

f' Boundary of States

J National Boundary

Figure 21: Geotectonic Outline of South and East Brazil
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Figure 22: Geotectonic Outline of Ribeiran Fold Belt
(modified after Cordani et al., 1973)
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Figure 23: Geological Outline of Rio de La Plata Craton
(modified after Amaral et al., 1973)
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- 36°

Figure 24: Patagonian Platform and Its Basins
(modified after Zambrano et al, 1970)
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Cenira.1 Cordillera

Figure 25: Geological and Tectonic Features of The Andes
(modified after Zeil, 1979)
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(a)
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Aval di
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815

Figure 26: Evolution of Triple Junction, Aulacogen, Mountain Systems,
and Big River (modified after Burke and Dewey, 1973a)
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Figure 29: Rift Control on Lower Part of Amazon River '
(redrawn from Bacoccoli and Texeira 1973, fig.4)
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Figure 30: Cross Section of the Salado Basin
(after Urien and Zambrano, 1973)
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Figure 31: Cross Section of the Colorodo Basin
(after Urien and Zambrano, 1973)
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Figure 32: Correlation between the Magnetic Anomalies
and Volcanic Rocks of South America
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Figure 33: Correlation between the Free-Air Gravity Anomalies
and Volcanic Rocks of South America
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I .Amazon Basin

1a.Upper Amazon Basin

1b.Middle Amzon Basin

1c. Maiajo Basin

S.Parnalba Basin

3.Sao Lulz Basin

4.Barrelrinha Basin

S.Potlguar Basin

6.Recl fe-Joao Basin

T.Sergipe-Alagoas Basin

S.Reconcavo Basin

S.Jequitinhonha Basin

lO.Esplrlto Santo Basin

1 1 .Campos Basin

1 2.Santos Basin

1 S.Pelotas Basin

14.Salado Basin

1 S.Colorado Basin

1 6.San Jorge Basin

(Chubut Basin)

1 7 .MagaManes Basin

18.Parana Basin

1 9.Corumba-Culba Basin

20 .Chaco Basin

2 1 .Orinoco Basin

22.Malv inas Basin

,2000

• / Precambrian Basemen t S u r f a c e

Pre-Cretaceous Basement S u r f a c e

Figure 34: Correlation between Magnetic Anomalies and
Major Basins of South America
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I .Amazon Basin

1a.Upper A m a z o n Basin

1b.Middle Amzon Basin

1 c. Mala Jo Basin

2.Parnalba Basin

3.Sao Lulz Basin

4.Barrelr lnha Basin

S.Potlguar Basin

6.Reclfe-Joao Basin

/ .Serglpe-Alagoas Basin

B.Reconcavo Basin

G.Jequltlnhonha Basin

tO.Esplr l to Santo Baaln
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1 2.Santos Basin
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1 4.Salado Basin
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(Chubut Basin)
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18.Parana Basin
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Pre -Cre taceous Basement Sur face

Figure 35: Correlation between the Free-Air Gravity Anomalies
and Major Basins of South America
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Figure 36: Correlation between the Magnetic Anomalies and
Main Structures of South America
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Figure 37: Correlation between the Free-Air Gravity Anomalies
and Main Structures of South America
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A. Brazilian Orogenic Cycle

450-700 m.y. (Late Proterozoic to Early Paleozoic)

These are several fold belts surrounding old cratonic areas:

(1) Caririan—northeastern Brazil

(2) Proprian—northern Bahia and Sergipe, Brazil

(5) Paraguay-Araguaia—central-western Brazil, and Paraguay

(4) Brazilian—central-southeastern Brazil

(5) Ribeiran—southeastern Atlantic coast of South American

Platform

B. Uruacuano Orogenic Cycle

900-1300 m.y. (Middle Proterozoic)

(1) Minas Fold Belt—southern and eastern Minas Gerais Brazil

(2) Araxa Fold Belt—western Minas Gerais and Goian, Brazil

C. Trans-Amazonian Orogenic Cycle

1800-2200 m.y. (Early Proterozoic)

It is best known in the following areas:

(1) Guyana Shield—northern Brazil, Venezuela and the Guyanas

(2) Guapore Craton—northwestern Brazil

(3) Sao Luiz Craton—coastal area of Para and Maranhao Brazil

(4) Sao Francisco Craton—Goias, Minas Gerais, and Bahia,

Brazil

(5) Rio de La Plata Craton—southern Uruguay and Buenos

Aires Province, Argentina

Table 1: Main Geotcctonic Cycles of The South America Platform
(after de Almeida et al.. 1973)
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Unit Approximate Radiometric Age

Gorotire Formation (?)

Rio Fresco Formation

Vatuma Group

Cubencranquen Formation (?)

Unconformity

Serra dos Caracas Group

Unconformity—

Undivided basement

1600 o.y.

2000 m.y .

m.ore than 3000 m.y.

Table 2: The Stratigraphical Sequence of the Northeastern
Portion of the Central Brazil Shield (after Amaral et al.,

1973)
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Unit (age) Lithology

After do Chao Formation poorly consolidated, sandy, silty,
chayey sediments, often with a basal

(Tertiary) conglomerate. (600 to 1084 m thick)
(one of the most important sequences
in the world)

00
zo
*>
o
rt-p
O
h
o

•extensive erosional surface-

Paituna Formation cross-bedded sandstone (100 to 200 m
thick)iintercalated siltstone

Rio Acre Formation claystone with many concretions
Divisor Formation whitish sandstone, intercalation clays
Rio Azul Formation limestone, shale
Moa Formation sandstone (1) Upper member (300 m)

2) Capanaua member (100m):
basal conglomeratic layer

Jurassic
Big Gap

Triassic

•extensive erosional surface-

Sucuruendi Formation micaceous, slightly calcareous sand-
stone, siltstone, evaporites

(Permian) (no outcrop, 645 m)

CO
flo
h
4>

er

ctf

Nova Olinda Formation clastic deposits, evaporites
(1209 m, maximum)

Itaituba Formation microcoquinas and calcareous muds
(neritic deposits) 150 to 320 m
(north), 35 to 400 m (south)
limestone, shale, sandstone, siltstone

Monte Aiegre Formation cross bedding of sandstone (shallow-
water marine) limestone,, microcoquinas
(25 to 300 m)

(long hiatus,"no unconformity)
Curua Formation uniform, dark shales and siltstone

(1300 m)
Unconformity- — —

Trpmbetas Formation cross-bedded sandstone, siltstone,

(Ordovician ? to Silurian) shale
_— —-angular unc onformity————---

Uatuma Formation (Precambrian) in upper Amazon Basin

Table 3: Siraiigraphical Successions in Amazon Basin
(Summarized from Bigarella, 1973)
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Unit (radiometric age) Lithology

Bambui Group

(600 20 ffl.y.)

Unconformity-*-

Lavras Group

(doubtful age, possibly
post-Trans-Amazonian)

fine detrital rocks, important limestone

beds, Locally stromatolithic.

arenacious rocks (mainly), in part of
glacial origin.

late upper PreCambrian, certainly

Unconformity-

Jacobina Group

(2000 m.y.)

Uaua Group

a narrow metasedimentary belt (more than
8000 m thickness), phyllite, quartzite,
schists, metaconglomerates, and associated
metabasites.

schists, quartzite, marbles, amphibolites,
and several types of paragneisses.
amphibolite facies.

-Unconformity-
I
!Caraiba Group
i

(more than 2000 m.y.)

low-maturity Eetasediments associated
with eruptive rocks of basic and ultra-
basic character.
show extensive migmatization and
granitization.
granulite facies.

Table 4: Principal Precambrian Formations in the Northern
Part of the Sao Francisco Craton (region 1, Fig. 16)

(after Cordani et al., 1973)
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Unit (radiometric age) Lithology

Rio Pardo Group

(600 m.y.)

shales, silstones, greywackes,

conglomeratic arkoses, Limestones,
dolomites.

Unconformity-

Basement

(2000 m.y.)

gneisses, schists, quaitzites,

and marbles.

Table 5: The Succession of the Eastern Portion of the
Sao Francisco Craton (region 2 in Fig. 16) (after

Kawashita et al., 1973)
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Dnit (age)
sedimentary
tnviromtnt

maximum .
thickness

Cm)
Lithology

ambui Group
(600 20 m.y.)

Itacolomi
(unknown)

- ------ Unconformity- —
Paralic 2000 ?
Molasse ? 1000 ?

O
O

C
d
.C

—a sharp angular unconformity-
Piracicaba Euseosynclinal 3000

(flysch)
Group Stable 685

Shelf
local
erosional (blanket) 600
unconformity ——--

Itabira Stable 600
ShelfGroup

Caraca

Group

local
erosional

! c 'unconformity
i co

(blanket)

Stable
Shelf

350

1000

Tamandua
Group

Stable
Shelf
Paralic
Prismatic

300

1000

see Ta"ble 4

quartzite with subordinate
phyllitea and zceta-
conglomeratea

chlorite schist, phyllite,
graywacks, congl, quartzite
phyllite, orthoquaitzite,
siliceous dolomite,
quartzite, phyllite, minor
conglomerate, dolomite.

Dolomite, minor limestone,
dolomitic itabirite phyllite
Itabirite, iron-formation,
minor dolomite and phyllite.
phyllite, Orthoquartzite,
conglomerate.

minor metachert and
iron-formation.

Dolomitic phyllite and
iron-formation.
Orthoquartzite, conglomerate,
grit.

•Erosional and angular unconformity-

continue on next page

Table 6: Straiigraphic Section in the Southern Portion of
the Sao Francisco Craton ("Quadrilatero Fernfero")

(region 3 in fig. 16) (modified from Dorr, 1969}



Unit (age)
sedimentary
enriroment

maximurn
thickness Lithology

n
0

O
CO

H
e

a
ct
•o
o
•H

Kaqulne

Group

Engeosynclinal

Molasae
1800

quartz-sericite schists,
phyllites, Beta-
conglomerates, and
quartzites.

-—-—-Local erosional and possibly angular unconformity

Neva Lima Engeosynclinal 4000

Group (flysch)

subordinate graywackts,
quartzites, dolomites,
Bietaconglomerates,
cherts, itabirites,
metavolcanics.

•Unc onTormity-

Basement no basement rocks exposed in the "Quadrilatero
Ferrifero" all granitic rocks .are intrusive,

(more than 2700 n.y.)
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Unit Cage)
Sedimentary
Environment Lithology

Bambui

Group (?)

Eo-Cambrian

transitional

(Continental marine)

orthoquartzite and siltstone
containing interbeds or
shale (called phyllite, but,
although at chlorite grade,
it lacks a penetrative
foliation)

Canastra

Group

620-900 m.y.

Pre-Cambrian

quartzite, quartz-rich
phyllite, pelitic schist
(Braun 1970)

biotite grade of regional
metamorphism

Oo
KN

O
O
cr-

2

Upper

unit

Middle

unit

Lowermost

unit

deep marine

quite pelitic, muscovite-
biotite-plagioclase-quartz
schist (most common),
garnet-chlorite-biotite-
qua.rtz schist (fairly abundant)

more psammitic, interbedded
quartzite (quartz and
turbidites) and muscovite-
quartz schist

consists primarily of
rauscovite-biotite-plagioclase-
quartz schist, some micaceous
quartzite

Table 7: Stratigraphic Section in Serra de Caldas, Goias
(modified from Dralce, 1980)
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Unit (age) Lithology

Itapecuru Formation sandstone, siltstonc, shale

(lower Tertiary)
t>
o
rt

o

Codo Formation "black shale (220 m)
Corda Formation yellow sandstone, no fossil
Basalts 127 m.y. 175 m thick (maximum)

Sambaiba Formation sandstone (400 m), no fossil
(Jurassic)

Pastes Sons Formation white sandstone (70 m), shale,
(Triassic) thin limestone (lenses of opal)

-great erosional unconformity——————
c
Motuca Formation shale sandstone, anhydrite, limestone
Pedra de Fogo Formation chert, petrified wood (40 cm)

4)

Piaui Formation (1) upper: shale, sandstone, anhydrite,
dolormite limestone (250 m)

(2) lower: sandstone, shale (170 m)
— Unconformity ——
Poti Formation carbonaceous sandstone, siltstone

c
° * ^v~

(300 m), coal
rt
o

o

Longa Formation black shale, sandstone, more than
120 m

Cabecas Formation sandstone, siltstone, rare shale,
300 to 400 m

_Q
Pimenteira Formation Pico member

(Silurian) Itaim member (150 m)
Serra Grande Formation sandstone, conglomerate, 200 m (average)

(Ordovician ? to Silurian)

—Unconformity———

Jaibara Formation (Ceara Group) (Precambrian)

Table 8: Stratigraphic Successions in Parnaiba Basin
(summarized from Bigarella, 1973)
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Unit
Approximate age
(radiometric) characters

Paleozoic or Younger sedimentary rocks

Gurupi Group 550-600 m.y.

Unconformity--

Basement 2000 m.y.

schists, phyllites,
quartzites and itabirites
folded with northwest
strikes.

Table 9: Principal Successions in Sao Luiz Basin
(modified after Bigarella. 1973)
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Age Geological Characters of the Formation

Quaternary

Miocene

Kiddle Cretaceous

—Upper Cretaceous

(Cenomanian-

Campanian)

Lower Cretaceous

—Middle Cretaceous

(Aptian-

Albian)

The lowermost

Cretaceous

(120-130 m.y.)

The basement

A predominantly eolian sedimentation in the
onshore part covering it with a thin but
widespread blanket of sand.

A sniocene transgression completely covered
the basin and extended beyond its limits,
flooding also the Sao Luiz basin and the
northern part of the Maranhao Paleozoic
b&sin to deposit carbonates and elastics.

The Ferrer-Urbano Santos-Pamaiba arch subsided

The carbonate deposition of the Caju Group of
upper Albian through Caapanian age.
Both shelf limestones and reef complexes
were developed.

A marine invasion took place during Aptian
time.
An Albian marine transgression extended
beyond the limits of the basin flooding the
northern part of the Paleozoic Maranhao
-basin to the south of the Ferrer-Parnaiba
arch. The western part of this arch
supplies clastic materials of the
Canarias Group.
An upper Albian regression exposed portions
of the area to erosion prior to the
beginning of the next cycle.

is marked by widespread basic volcanisa;

(Wealdian)

is heterogeneous consisting of Precambrian
crystalline rocks. Paleozoic-Lower Mesozoic
sediments, and lower-most Cretaceous
basic volcanics.

Table 10: Principal Sequences in Barreirinhas Basin
(modified after Asmus and Ponte, 1973)
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Unit Appoximate radiometric age Lithology

Jaibaras Group (500 m.y.)

———Unconformity-

Caico Group (2000 m.y.)

Unconformity-

Basement (unknown)

affected by granitic and grano-
dioritic plutonic intrusions,
rhyolites, andesites, basalts.

Undifferentiated Precambrian

Undifferentiated Precarabrian

Table 11: Principal Sequences in the Caririan Fold Area
(modified from de Almeida et al.. 1973)
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Unit, Approximate radiometric age Lithology

Estancia Group (on the platform)

Jua and Acaua Formation (within the geosyncline)

Unconformity-——

600 m.y.

eugeosynclinal zone ("basic
Vaza Barris Group, more than 600 m.y. volcanic products are

associated with pelites,
metagraywackea, in part
conglomeratic, sandstones,
and limestone).

//////////thrust contact//////////

Miaba Formation

(and Canudos Formation)

Basement

age unknown, miogeosynclinal zone

more than 2000 m.y. (up to 2530 m.y.)
undifferentiated Precambrian and middle Precambrian

Table 12: Principal Formations in the Propria Fold Belt
(modified from Amaral et al.. 1973)
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Unit (Approximate radiometric age) Lithology

Serra dos Orgaos Series,

(550-600 m.y.)

Unconformity—

Paraiba-Desengano Series,

(2000 m.y.)

migmatites

granitic gneisses

Paragneisses, metagraywackes,

raetaarkoses with subordinate

quartzites mica schists.

Table 13: Successions in the Paraiba do Sul and Ribeira
Fold Bell, near Rio de Janeiro (region 1 in Fig. 21)

(modified from Cordani et al., 1973)
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Unit (Approximate radiometric age) idthology

Castro and Ita^ai Group
Camarinha and
Guaratubinha Formations

(Cambro-0rdovician,500 m.y.)
Unconformity —

Sao Roque, Acungui
and Brusque Groups

(650 ffl.y.)

detritic sediments of molassic
nature, volcanic rocks of

andesite-rhyolite character.

phyllites, achiats, quartzites,
dolomites, limestones with

euborinate metaconglomerates,

metaarkoes, metagrayvackes,
and itabirites.

Unconforitity —

3aseir.ent (more than 1200 m.y.) undifferentiated Precambrian

Table 14: Sequences in the Ribeira Fold Belt, in Sao Paulo,
Parana, and Santa Catarina Slates, (region 2 in Fig. 21)

(modified from Kawashila et al., 1973)
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Unit and Approximate radiometric age Lithology

Camaqua Group

—Unconformity— Cambro-Ordovician

Bom Jardim Group (500 m.y.)

continental detrtic sedi-
ments.
Lavas, pyroclastic rocks of
andesitic, rhyolitic and
dacitic composition,
granite and granodiorite
intrusion.

Unconformity—

Porongos Group (650 m.y.)

Cam"bai Formation

phyllites, schists, quarxzites,
limestones, metaconglomerates,
metagraywackes, -metaarkoses,
rhyolitic, andesitic or
pyroclastic metavolcanics.

gneisses, amphibolites, and
marbles with associated mig-
matization and granitization.

•Unconformity-

Zncantadas Formation (Probably 2,000 m.y.)
hornblende and biolitej
gneisses partially
migmatized

Table 15: Successions in Riberia Fold Belt, in the state
of Rio Grande do Sul (region 3 in Fig. 21) (modified from

de Almeida et al., 1973)
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Unit and Approximate radiometric age Lithology

Sierra de Animas
Piedras de Afilar
(500 30 m.y.)

— Unconformity-
Lavalleja Group
(600 m.y.)

trachytes, syenites, rhyolites
Sandstone, quartzites,
limestones

phyllites, schists, quartzites,
marbles basic metavolcanic
rocks.

__ —Unconformity ———
Basement (including Montevideo Formation, 2000 m.y.)

Table 16: Successions of the Rio de La Plata Craton in
Uruguay (region Al in Fig. 23) (modified from Cordani

et ah, 1973)
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Unit and Approximate Radiomctric Age Lithology

La Tinta Group

(possibly 600 m.y.)

Unconformity-

Basement

(around 2000 m.y.)

sandstones, quartzites, limestones,

dolomites, fine-grained detrital

sediments.

gneissic complex oi metasedimentary

origin amphibolites, mica-schists,

phyllites, quartzites, mig-

matites, granites, granodiorites,

tonalites, diorites.

Table 17: Successions of the Rio de La Plata Craton in the
Province of Buenos Aires, Argentina (region A2 in Fig. 23)

(modified from Kawashita et al., 1973)
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m.y.

26

3S

C A
J°r

65

85

100

112

* *7 f136

age

Quaternary

>>
Ct

£
£

Pliocene

Xiocene

Oligocene

Eocene

iPaleocene

Oj

o [Upple
C'
O

o

»

Kiddle

Lover

Basins

Salado

Parana Formation

Fray Bentos Formation

Chilcas Formation

G. Belgrano Formation

R. Salado Formation

Basalts

Diabases

Precambrian Basement

Colorado

Belen Formation

Bca. Final Formation

Elvira Formation
P. Luro Formation

Colorado Formation

Fortin Formation

j

Paleozoic Baserr.ent

Table 18: Stratigraphic Columns of Salado and Colorado
Basins (modified from Urien and Zambrano, 1973)
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ABSTRACT

The regional crustal structure of South Amer ica has

been inves t iga ted by combining a comprehens ive ana lys is of

su r face wave d ispers ion along two stat ion paths invo lv ing

W W S S N se i smograph s ta t ions and p rev ious geophysical

studies. The major results of this study were depicted by

construct ing a contour map of crustal th ickness. A v e r a g e

va lues for se ismic ve loc i t i es in the crust and upper mantle

were a lso calculated. These results were compared to maps

of regional grav i ty anoma l i es , satel l i te ( M A G S A T ) magnet ic

anomal ies , and major tectonic features. Severa l interest ing

cor re la t ions and re la t ionsh ips were d i scovered .
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INTRODUCTION

South America is characterized by a wide variety of

strongly contrasting geological and tectonic features. The

bu l k of the continent is made up of a broad, nearly aseismic

stable platform whose Precambrian basement is exposed in

large crystalline shields. The eastern edge of this

cratonic area, which borders the South Atlantic, forms a

passive or trailing plate margin, penetrated by several

failed rifts. In sharp contrast, the western edge of the

craton is separated from the Pacific ocean by a complex and

tectonically active mobile belt which finds its modern

expression in a mountain range of spectacular morphology.

Strong contemporary seismicity and volcanism occur in parts

of the range. The western edge of the South American plate,

which carries the continent, is presently overriding the

Nazca plate of the East Pacific to form an active or

convergent plate margin.

These varied tectonic features are all expressions of

South America's imperfectly known crustal and upper mantle

structure. Geophysical investigations designed to shed

l i g h t on the lithospheric structure of South America,

however, are hampered by the extensive jungle and rugged

terrain which l i m i t s access to the interior. Detailed

geophysical surveys have been performed only in isolated

1
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par ts of the Andes Mounta ins and a c r o s s cer ta in p ro f i l es of

the Peru-Chi le t rench. W i t h the excep t i on of a recent heat

f l o w study of a port ion of the A t lan t i c sh ie ld (V i t r oe l l o ,

1978 ) , the rest of the cont inent has been sub jec ted to only

very genera l s tudies. None of this work has been in tegrated

into a comprehens ive v iew of the con t inen t ' s c rus ta l

s t ructure.

The only set of geophys ica l data that p rov ides

uni form cove rage of the South Amer i can cont inent and

surrounding oceanic areas are the satell i te scalar magnetic

anomaly data ga thered by the M A G S A T orbital magnet ic f ie ld

survey in 1979-1980. These data were reduced to radial

polar izat ion by the South Amer ican MAGSAT group (Hinze et

al., 1982) to f a c i l i t a t e c o m p a r i s o n w i th the major tecton ic

fea tu res of South A m e r i c a . A f ree-a i r g rav i ty map

complement ing the magnet ic data was also compiled as part of

this i nves t i ga t i on (Longac re , 1981) . The purpose of the

present study is to cont inue the M A G S A T i nves t i ga t i on by

search ing for co r re la t ions be tween these prev ious ly measured

potent ia l f i e ld a n o m a l i e s and the genera l crustal s t ruc ture

of South Amer ica .

Because so few g e o p h y s i c a l i nves t i ga t i ons have been

made over the s tab le e a s t e r n p la t f o rm of South Amer i ca , the

major part of th is study c o n s i s t e d of determining v a r i a t i o n s

in the average c rus ta l t h i c k n e s s of the South A m e r i c a n

p la t fo rm. Th is was done by measur ing fundamenta l mode
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R a y l e i g h w a v e d i s p e r s i o n be tween nine pa i rs o f South

Amer i can W W S S N se i smog raph s ta t ions and invert ing the

measu remen ts to ob ta in a v e r a g e shear wave ve loc i t y -dep th

models a c r o s s the p lat form. Addi t ional models were de r i ved

f rom the Ray le igh wave d i spe rs ion data measured by Sherburne

( 1 9 7 4 ) over eas te rn South Amer i ca . Both sets of mode ls were

interpreted in terms of average crustal th ickness and

a v e r a g e c rus ta l shear w a v e ve loc i t y , and the resu l ts were

comb ined w i th the resu l ts of c rus ta l model ing in the Andean

cord i l le ra , repor ted in the l i te ra ture , to const ruc t a

g e n e r a l i z e d c rus ta l s t ruc ture map of the South A m e r i c a n

cont inent. Th is map forms the b a s i s for mak ing c o m p a r i s o n s

be tween the potent ia l f i e ld anoma l i es mapped as par t of the

MAGSAT pro jec t and the under ly ing s t ructure of South

Amer i ca .



G E N E R A L G E O L O G I C AND TECTONIC SETTING

The South Amer i can cont inent can be d iv ided into

three broad tectonic p r o v i n c e s based on important

d i f f e rences in or ig in, age, and tectonic deve lopment . These

p rov inces are the South A m e r i c a n p la t fo rm, the Pa tagon ian

p la t fo rm, and the Andean cord i l le ra .

South A m e r i c a n P la t fo rm

The o ldes t , and by far the la rges t , of the three

p rov i nces is the South Amer i can p la t f o rm (Fig. 1). Th is

s tab le p la t fo rm forms the bu lk of the South A m e r i c a n

cont inent , inc lud ing al l the te r ra in eas t of the Andes

Mounta ins and north of app rox ima te l y la t i tude 35° south. It

has a c o m p l e x , dominant ly c r ys ta l l i ne P recambr ian basement

w h i c h is uncon fo rmab ly o v e r l a i n in p l aces by a c o v e r of

sedimentary and v o l c a n i c r o c k s that d e v e l o p e d f rom the

S i lu r ian onward .

P recambr ian Basement

The basement of the South Amer i can p la t fo rm is

exposed in three major sh i e l ds—the Guyana sh ie ld , the

Central B r a z i l i a n sh ie ld , and the A t lan t ic sh ie ld — as wel l

as in severa l sma l le r i so la ted m a s s i f s (Cordan i et al .,

1973; de A lme ida , 1978). The s impl i f ied tec ton ic map of
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South Amer i ca in Figure 2, mod i f i ed af ter de A lme ida (1978) ,

shows the locat ion of these shie lds, and gives the

app rox ima te pos i t i ons of the Precambr ian c ra ton ic a r e a s and

the super imposed Phanerozo ic in t racraton ic bas ins .

The P recambr ian evo lu t i on of the South Amer i can

p la t fo rm can be roughly in fe r red from the rad iometr ic ages

and d ispos i t ion of the rocks e x p o s e d in the three shie lds.

Most of the radiometr ic dates fall into two dist inct ranges ,

co r respond ing to two w i d e s p r e a d tectonic events (Cordan i et

al. 1973; de A l m e i d a , 1978). The f i rs t of these even ts , the

T r a n s - A m a z o n i a n orogenic cyc le , occur red between 2,200 and

1,800 mi l l ion years ago, and represents a time of e x t e n s i v e

cont inenta l remob i1 i za t ion that a f f ec ted the entire South

Amer i can p la t fo rm. R o c k s e i ther formed or s t rongly a f f e c t e d

by this cycle can be found w i th in the large c ra ton ic a reas

of South A m e r i c a , wh i ch s t a b i l i z e d af ter the de fo rmat ion

ceased , or w i t h i n rel ic b l o c k s w h i c h crop out o c c a s i o n a l l y

in the younger P recambr i an metamorph ic bel ts.

The c ra ton i c a reas are s e p a r a t e d from each other by

remob i l i zed metamorph ic be l ts w h i c h formed during the

B raz i l i an orogenic cycle over the la te P recambr i an -ea r l y

P a l e o z o i c , be tween 700 and 450 mi l l i on years ago. The fac t

that rocks of T r a n s - A m a z o n i a n and even older ages are found

wi th in the B r a z i l i a n metamorph ic bel ts ind ica tes that the

be l ts deve loped over p reex is t ing cont inenta l crust .
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Four stable cratonic areas (or continental n u c l e i i )

have been recognized in the South American platform (Cordani

et al . 1973). The largest of these regions, covering an

area of around 4.5 m i l l i o n square kilometers, includes the

Guyana shield, the basement of the Amazon basin, and the

Guapore craton just south of the Amazon basin. In a few

isolated regions of this cratonic area, rocks of g r a n u l i t i c

facies yield radiometric ages as great as 3400 m.y.b.p. (de

Almeida, 1978). Such areas represent relics of continental

nucleii still older than the Trans-Amazonian. In eastern

Brazil, the Atlantic shield exposes the Sao Francisco

craton, which outcrops over an area of around one m i l l i o n

square kilometers. The Sao Luis craton, located along the

northern coast of Brazil southeast of the Amazon river

mouth, and the Rio de la Plata craton, surrounding the La

Plata river in Uruguay and northern Argentina are two

smaller cratons also exposed by the Atlantic shield. Figure

2 shows the locations of these areas. Rock types common to

each of these regions include granulites and anorthosites,

quartz monzonites, granodiorites, diorites, banded gneisses,

migmatites, garnet-quartzite schists, muscovite schists,

amphibolites, iron formations, and low-grade metasediments

and metavolcanics (de Almeida et al . 1973; Leonardos and

Fyfe, 1974).

These r i g i d blocks of continental crust acted as

platforms for the major tectonic remobilization which
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occur red during the late P recambMan B raz i l i an cyc le . The

per ipheral mobi le bel ts wh ich deve loped during this cyc le

are c h a r a c t e r i z e d by geosync l i na l sedimentat ion, fo ld ing and

thrust ing, and e x t e n s i v e metamorphism. The pr inc ipa l

geotec ton ic units of the Braz i l i an cycle are the C a r i r i a n

fo ld belt and the Sergipe geosync l lne in no r theas te rn

Braz i l , the R ibe i ra fo ld belt wh i ch c rops out along the

At lan t ic coas t of Brazi l and Uruguay, and the B r a s i l i a and

Pa raguay -A ragu l a fo ld bel ts in the central part of the

cont inent (Cordonl et al. 1973). Rock types common to the

metamorphic be l ts include mica sch is ts , g n e i s s e s , phyl l i tes,

quartz d ior i tes, syen i tes , quar tz i tes , do lomi tes ,

m e t a g r a y w a c k e s and m e t a v o l c a n i c s , g ranu l i t es , and m igmat i tes

p reserved f rom older even t s (de A lme ida et al . 1973;

Leonardos and Fyfe, 1974).

A l though each of these be l ts was s t rong ly a f f e c t e d by

the even ts of the B r a z i l i a n erogenic cyc le, a s u c c e s s i o n of

older rad iometr ic dates measured from the rocks ind ica tes

that the belts were zones of w e a k n e s s repeatedly a f f e c t e d by

tectonism subsequent to the T r a n s - A m a z o n i a n cyc le and prior

to the B r a z i l i a n cyc le (V i t roe l l o , 1978). The be l ts

s tab i l i zed af ter the B raz i l i an cyc le , w i th a t rans i t iona l

stage f rom Precambr ian tec ton ic events to p la t fo rmal

cond i t ions that pers is ted in p laces into the O r d o v i c i a n (de

Almeida, 1970).
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P h a n e r o z o i c B a s i n s

The sedimentary and v o l c a n i c cover which uncon-

formably o v e r l i e s the P recambr ian basement is p r inc ipa l l y

deve loped in the four great in t racra ton ic bas ins of the

Parana , the C h a c o , the Pa rna iba , and the Amazon (F ig. 2) .

An e x t e n s i v e b lanke t of sed iments a l s o cove rs the zone of

transit ion from the Andean cordi l lera to the shields. The

in t racra ton ic b a s i n s formed through the gen t le subs idence

and normal fau l t ing a s s o c i a t e d w i th in termi t tent epe i r ogen i c

movements of the basement throughout the P a l e o z o i c .

Subs idence and sed imen ta t ion began during the S i lu r ian . The

S i lu r ian and D e v o n i a n sed iments depos i ted in the b a s i n s are

almost e x c l u s i v e l y mar ine. The sed iments depos i ted dur ing

the C a r b o n i f e r o u s show a m ixed mar ine -con t i nen ta l c h a r a c t e r ,

and Permian and T r i a s s i c sed imen ts a re p redominan t l y

cont i nental.

The Pa rana b a s i n is a large oval b a s i n whose

loca t ion , south of the Centra l B r a z i l i a n sh ie ld and wes t of

the Sao F r a n c i s c o c ra ton , was apparent ly con t ro l led by the

pos i t ion of P recambr ian s t ruc tures . The b a s i n con ta ins over

5,000 meters of sediment in i ts center . The o ldes t of these

depos i ts are mar ine sed imen ts la id down in the Devon ian .

Cont inenta l g l ac ia t i on depos i t s in ter f inger w i t h mar ine

sediments in the upper Ca rbon i f e rous , and e x te n s i v e

cont inenta l sed iments c h a r a c t e r i z e the Perm ian and upper

T r iass i c . The w i d e s p r e a d p la teau b a s a l t s and s i l l s wh ich
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accumula ted along the edges of the b a s i n during the late

Mesozoic and early Cenozo ic , in response to a period of

tec ton ic r eac t i va t i on , are pa r t i cu la r l y notable (de A l m e i d a ,

1978, 1970).

The P a r n a i b a b a s i n , l oca ted southeast o f the A m a z o n

R ive r mouth, is s i tua ted on the Precambr ian metamorph ic belt

separat ing the Guapore c ra ton f rom the Sao F r a n c i s c o and Sao

Luis c ra tons . Sed iments in this bas in reach t h i c k n e s s e s in

e x c e s s o f 3,000 me te rs , w i th approx imate ly 2 ,500 meters

being detr i tal sed iments of P a l e o z o i c age (de A l m e i d a , 1978,

1970).

The Amazon bas in is a long t rough- l i ke b a s i n w h i c h

sepa ra tes the Guyana sh ie ld from the Central B r a z i l i a n

shie ld. The b a s i n may have deve loped over a f rac tu re zone

wh ich s e p a r a t e s and o f f s e t s these two c ra ton ic a reas (de

A lme ida , 1970; de Loczy , 1970), or it may have had its

or ig in in P a l e o z o i c r i f t ing (Burke , 1978). Over 5 ,000

meters of sediments are depos i ted in p l a c e s in the A m a z o n

basin, with more than 3 ,000 meters of these resul t ing from

mar ine t ransg ress ions wh ich occured during the middle

P a l e o z o i c . Cont inenta l red beds c h a r a c t e r i z e the late

Pa leozo i c . To the w e s t , at the t rans i t ion be tween the

Amazon bas in and the Andean co rd i l l e ra , M e s o z o i c and

Cenozo ic sed iments are much more abundant , rang ing in

max imum th i ckness f rom 5,000 meters in the nor thern O r i n o c o

t rough to 10,000 meters in the bas ins ad jo in ing the Andean
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cordillera. Basaltic dikes and s i l l s , intruded during the

Triassic, are also abundant in the basin (de Almeida, 1978,

1970).

The Chaco basin, which actually developed as a

pericratonic basin at the Andean border of the South

American platform, covers the southern and southwestern part

of the platform. It is a broad shallow basin containing a

maximum of around 2,500 meters of mostly Devonian and

Triassic sediments. A major tectonic boundary hidden

beneath the southern rim of the basin and the Cenozoic

platform associated with the Andean cordillera separates the

South American platform from the younger Patagonian platform

to the south (de Almeida, 1978, 1970).

Tectonic Reactivation

A strong tectonic reactivation occurred across the

South American platform toward the end of the Mesozoic,

culminating in the rifting of the South American continent

from the African continent and the opening of the South

Atlantic oceans. This reactivation can be d i v i d e d roughly

into three phases (de Almeida, 1970). The first phase,

which occurred between the late Jurassic and the early

Cretaceous, was characterized by intense t h o l e i i t i c b a s a l t

and a l k a l i n e volcanism, along with extensive faulting and

fault reactivation. Large volumes of t h o l e i i t i c basalts

were extruded over the platform or intruded as dikes and

s i l l s w i t h i n the basins. Large scale structures and h i g h
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angle fau l ts were r eac t i va ted w i th in al l four of the

intracratonic bas ins, and in places fault-block mountains

began forming. New fau l ted bas ins a lso began fo rm ing ,

par t i cu la r ly near the present coas t l i ne , but they r e c e i v e d

only cont inenta l sed iments at this stage.

Dur ing the second phase , wh ich las ted from the midd le

Cre taceous to the Eocene, basa l t i c vo l can i sm ceased .

Al ka l i ne v o l c a n i s m cont inued, however , and some g ran i t es

were intruded in nor theastern Brazi l . At this time the sea

t ransg ressed into the marginal fau l ted bas ins and th ick

marine sedimentary sequences were deposi ted. Severa l smal l

sedimentary b a s i n s along the coas ts of northern A r g e n t i n a ,

B raz i l , the G u i a n a s , and V e n e z u e l a wh i ch exhib i t g raben

comp lexes formed at r i f t ing are known (Burke , 1973). Some

of these bas ins con ta in a total of more than 5 ,000 meters of

sediments. The sedimentat ion in all of the b a s i n s occur red

under ac t ive tectonic cond i t ions , as shown by the numerous

unconformi t ies , rap id f ac ies changes , and thick i n t e r spe rsed

conglomerate fo rmat ions . Burke (1973) has further

ident i f ied s ix of these marg ina l bas ins - - the Rio S a l a d o -

Cane l lones , R e c o n c a v o , Sao Lu is , the Amazon bas in mouth,

Taka tu , and the Maracabo b a s i n s — a s fa i l ed r i f ts or

au locogens wh ich par t ia l l y penetrate the South Amer i can

plat form.

The a l k a l i n e v o l c a n i s m which occur red wi th in the

Riber i ra and B ras i l i a P recambr ian fo ld bel ts of Brazi l and
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eas te rn Pa raguay is fur ther ev idence of a strong thermal

disturbance assoc ia ted wi th the tectonic react ivat ion. Some

50 cen ters of a l ka l i ne and al'kal 1 ne-ul t r abas i c v o l c a n i s m ,

wi th a few a s s o c i a t e d carbonat i te and k imber l i te i n t r us i ons ,

are known, all dating from the end of the Ju rass i c to the

Eocene (de A lme ida , 1978).

The last , pos t -Eocene phase of the reac t i va t ion ,

cons is ted of a s low abat ing of tec ton ic ac t i v i t y and a

gradual res tab i l i za t ion of the South Amer i can p la t form.

P a t a g o n i a n P la t fo rm

The Pa tagon ian p la t fo rm forms the remainder of the

tec ton ica l l y s tab le part of the South Amer ica . It occup ies

the sou theas te rn t ip of the cont inent , south of a p p r o x i -

mately lat i tude 35° South , and east of the Andean co r -

d i l lera, extend ing e a s t w a r d o f f sho re as A r g e n t i n a ' s b road

cont inenta l shelf (Fig. 1).

Basement

The basement of the Pa tagon ian p la t fo rm s t a b i l i z e d

during the late P a l e o z o i c . The l imited number of basement

outcrops and occas iona l deep drill holes which penet ra te the

basement reveal both metamorphosed and unmetamorphosed rocks

ranging in age from the late Precambr ian to the middle

Pa leozo i c . The h istory of the b a s e m e n t ' s evolut ion is very

poorly known due to a w i d e s p r e a d cover of sed iments and

bas ic v o l c a n i c s w h i c h has accumu la ted s ince the
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Carbon i f e rous . The cove r is deformed loca l ly near the Andes

(de A lme ida , 1978).

R a s i ns

The b a s i n s c h a r a c t e r i z i n g the P a t a g o n i a n p la t f o rm are

most ly smal l marg ina l f au l ted b a s i n s c reated during the late

Jurass ic tectonic reac t i va t ion that accompanied the rioting

of the South Amer i can cont inent from the A f r i c a n

cont inent. The Co lo rado b a s i n , l oca ted in the no r theas te rn

ext remi ty of the p la t form, may con ta in more than 6,000

meters of sediment . Most of the bas in is still cove red by

the A t l an t i c ocean. The San Jorge b a s i n s have been

ident i f ied as f a i l ed r i f t s or au lacogens by Burke (1978) .

The southern end of the Pa tagon ian p la t fo rm ca r r i es the

Mage l l an b a s i n and the o f f s h o r e M a l v i n a s b a s i n , both o f

wh ich para l le l the e a s t w a r d curve of the Southern Andes .

The M a g e l l a n bas in is f i l led w i t h more than 5,000 meters of

most ly mar ine sed iments depos i ted f rom the Cre taceous

through the Ter t ia ry . The sed imehts in the sou thwes te rn

s ides of both of these bas ins are fo lded and bo rde red by a

long thrust fau l t , due to the in f luence of Andean tec ton ics

(de A l m e i d a , 1978).

The max imum subs idence in each of these marg ina l

b a s i n s occu r red during the C r e t a c e o u s . The fo rma t ion of the

b a s i n s w a s c o n t e m p o r a n e o u s w i th those marg ina l b a s i n s fo rmed

along the South Amer i can p l a t f o r m during i ts tec ton ic
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r e a c t i v a t i o n , and both sets of b a s i n s are re la ted to the

opening of the South A t lan t i c ocean.

Andean Co rd i l l e r a

Both the South A m e r i c a n p la t fo rm and the P a t a g o n i a n

p la t f o rm are bounded to the west by the 9,000 k i lometer long

Andean cordi l lera, a complex and tectonical ly ac t i ve mobile

belt wh i ch m a k e s up the ent i re w e s t e r n marg in of South

Amer ica . A sub-Recent to Recent episode of b lock uplift and

v o l c a n i s m along the Andean co rd i l l e ra has c rea ted a

c o n t i n o u s mounta in cha in wh i ch s u p e r f i c i a l l y a p p e a r s to be

the result of a s ing le orogeny. The c o r d i l l e r a has a c t u a l l y

e v o l v e d in a s e r i e s of i r regu la r l y super imposed o r o g e n i e s

and ep isodes of sedimentat ion which began during the late

Precambr ian . The belt has exh ib i ted mobi l i ty throughout i ts

ent i re h is tory . Fur thermore, the geo log i c h is tory of the

belt d i f f e r s g r e a t l y f rom one part of the c o r d i l l e r a to

another.

G a n s s e r (1973 ) d i v i d e d the A n d e a n co rd i l l e ra into

three s e g m e n t s : the Southern or P a t a g o n i a n A n d e s , the

Central or C h i l e a n - P e r u v i a n A n d e s , and the Northern or

C o l o m b i a n - V e n e z u e l a n Andes . He further d i v i ded the Centra l

Andes into a southern and nor thern sec t i on of the

in te rsec t i on of the a s e i s m i c o c e a n i c N a z c a r idge w i th the

cord i l l e ra . Each of these segments d i f f e rs notably f rom the

others in overal l crustal composition, structural style, and
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degree of seismicity and volcanism. A map showing the

location of the Central and Northern Andes, together with

their internal divisions, is provided in Figure 3.

The following geological discussion is primarily

based on the review of Gansser (1973).

Southern Andes

The Southern Andes stretch from the southern tip of

the South American continent, where the cordillera turns

eastward to merge with the Scotia arc, north to

approximately latitude 47° South, where the active oceanic

Chilean ridge intersects the continent. The most

distinctive characteristic of this segment of the Andes is a

central belt of upper Jurassic and Cretaceous ophiolites

(oceanic crust), mostly metamorphosed to greenschists, with

associated oceanic sediments. In places these rocks are cut

by granitic to dioritic batholiths of late Cretaceous to

late Miocene age. The Pacific border, west of this belt is

made up of widespread granitic to dioritic batholiths

intruded during the late Cretaceous. A belt of slightly

metamorphosed upper Paleozoic sediments is exposed along the

Pacific coast between latitudes 53°South and 48°South.

Quaternary to Recent volcanism is scarce in the

Southern Andes, and earthquakes are uncommon. This

contrasts sharply with the extensive volcanism and strong

modern seismicity of the central Andean cordillera.
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Centra] Andes

The Centra l Andes ex tend f rom the Gul f of Penas in
-U

Chi le , where the Ch i l ean r idge i n te rsec t s the cont inent , to

the Amotape range at the Pe ru -Ecuado r border near la t i tude

5° South. The regular no r th -sou th trend of the Centra l

Andes f rom the Gul f of Penas nor thward is in ter rupted at the

Ch i l e -Pe ru border , where the co rd i l l e ra m a k e s an abrup t "

nor thward bend. Th is dev iat ion is due to the pos i t i on of

the la rge c ra ton i c m a s s of the nor thern South Amer i can

p ia t form.

A l though some g e o l o g i c a l and s t ruc tura l d i f f e r e n c e s

on e i ther s ide of the i n te r sec t i on of the N a z c a r idge w i t h

the cont inent jus t i f y a secondary d i v i s i o n of the Centra l

A n d e s , the co rd i l l e ra as a who le is g e o l o g i c a l l y s imp ler

than e i ther the Nor the rn or Sou thern Andes . Three b a s i c

geol og i ca l /morpho l ogi cal uni ts can be d i s t i ngu i shed a long

i ts length. These are the Coas ta l co rd i l l e ra , border ing the

P a c i f i c , a cen t ra l High c o r d i l l e r a , a lso c a l l e d the W e s t e r n

co rd i l l e ra , and the Eas te rn Sub-Andean ranges , wh ich ad jo in

the s tab le c ra ton i c a reas .

The C o a s t a l co rd i l l e ra c o n s i t s mainly of sharp ly

fo lded and s teeply f au l ted p re -Mesozo i c metamorph ic r ocks

uncon fo rmab l y o v e r l a i n by a much more gent ly de formed

M e s o z o i c and C e n o z o i c cove r . The s t rong ly c o m p r e s s e d and

metamorphosed p r e - D e v o n i a n rocks o f the Coas ta l c o r d i l l e r a

exhib i t a d is t inct no r thwes te r l y t rend that is not pa ra l le l
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to the north-south trend of the southern part of the Central

Andes. Some of /the older rocks of this belt may be as old

as the Precambrian. The Mesozoic cover of the cordillera is

dominated by an enormous volume of Jurassic and Cretaceous

volcanic rocks. However, there are no clear indications of

th o l e i i t i c basalt, ultrabasics, glaucophane schist, flysch,

or radiolarites (Zeil, 1979). The cover is deformed by

gentle flexure and block faulting, in sharp contrast with

the intense compressional deformation of the pre-Mesozoic

rocks. Widespread.and irregularly distributed g r a n i t i c ,

granodioritic , and 'tonalitic batholiths, mostly of late

Jurassic to middle Cretaceous age, intrude the belt.

The Coastal c o r d i l l e r a of the Central Andes ends

abruptly at the Pracas P e n i n s u l a near Nazca, Peru, where the

Nazca ridge intersects the continent.

The High cordillera forms the central geological/

morphological unit of the central Andes over most of its

length. The southern part of the High cordillera consists

mostly of Mesozoic sediments and volcanics intruded in

places by Mesozoic plutons. Volcanics dominate the

Cretaceous rocks, and numerous Quaternary to Recent volcanos

occur in the range. The northern part of the High

c o r d i l l e r a is almost completely covered by PI i o-Pl eistocene

sheet flows and stratovolcanos. The structural style of

this c o r d i l l e r a as a whole is characterized by large scale
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f l exu r ing and b locfc fau l t i ng wh ich dec reases in intensity

from west to east4;

The High co rd i l l e ra merges w i th the A l t i p lano of the

C h i ! e - A r g e n t i n a - B o l i v i a border a rea in that region where the

Andean cord i l lera w idens dramat ica l ly and changes i ts trend

from nor th-south to nor thwest . The high p la teaus are :

cove red by an enormous pi le of P l iocene to Quaternary

v o l c a n i c s wh ich is b lock fau l ted along steep north-

nor theaster ly (p re -P l i ocene } and nor th-nor thwester ly (post -

P l iocene) fau l ts . The A l t ip lano nar rows north of the

no r thwes twa rd bend of the Central Andes, and the High

co rd i l l e ra of B o l i v i a and Chi le becomes the W e s t e r n

co rd i l l e ra of Peru, w h i c h borders the Pac i f i c ocean. This

change co inc ides w i th the d i s a p p e a r a n c e of the Coas ta l

cordi l lera. A near ly cont inuous belt of Cretaceous

batho l i ths is in t ruded along the coas t w i th in this new

coasta l range. Ter t ia ry v o l c a n i c s are w i d e s p r e a d , but

Quaternary v o l c a n i s m d i sappea rs . Further in land, in Peru, a

na r row Centra l c o r d i l l e r a deve lops out of the p la teau

region, character ized by a sharply folded Cretaceous sect ion

int ruded by g ran i t i c to g ranod io r i t i c p lu tons.

The Eas te rn co rd i l l e ra and the S u b - A n d e a n ranges form

a belt border ing the s tab le p l a t f o r m s of South Amer ica a long

the ent i re length of the Centra l Andes. The Sub-Andean

ranges are wide and part icularly well developed in the

Argent ine Andes , where they e x p o s e great t h i c knesses of
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mar ine and cont inenta l sed iments depos i ted from the

Carbon i f e rous onward . These ranges merge nor thward w i th

Eastern cord i l le ra of Bo l i v ia . The Eastern co rd i l l e ra is

d i s t i ngu ished by na r row, t ight ly fo lded an t i c l i nes cored

wi th P a l e o z o i c sed imen ts , separa ted by broader sync l ines

conta in ing Mesozo i c and Ter t ia ry sediments. Steep e a s t w a r d -

d i rec ted thrust fau l t s cut the belt. These s t ruc tures al l

show a d ist inct eas te r l y vergence wh ich i nc reases in

intensi ty to the eas t .

The Eas te rn co rd i l l e ra bends to the nor thwest at

approx ima te l y la t i tude 18° South wi th the rest of the

Centra l Andes and cont inues no r t hwes twa rd a c r o s s Peru to

approx ima te l y la t i tude 5° South, where i t te rmina tes aga ins t

the Amotape zone. The range n a r r o w s somewha t north of the

bend. A zone of e a s t w a r d - d i r e c t e d thrust f au l t s deve lops

along the e a s t e r n border of the mounta ins , and M e s o z o i c

p lutons, wh ich were absent south of the bend, are intruded

into the w e s t e r n half of the range. The Precambr i an and

lower Pe leozo i c rocks of the Eas te rn co rd i l l e ra here are

sharp ly fo lded and are o v e r l a i n by a l e s s deformed cove r of

upper Pa leozo i c and Mesozo i c rocks.

Northern Andes

The Nor thern Andes extend f rom app rox ima te l y la t i tude

5° South, near the Peru-Ch i le border , no r t h -no r t heas twa rd up

to a w ide ly sp layed te rminat ion at the northern end of the

South Amer i can cont inent. Most of the Andean co rd i l l e ra
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tu rns eas t here to merge w i t h the Car ibbean A n d e s ' a n d the

Car i bbean island, arc comp lex . A n a r r o w w e s t e r n b r a n c h of

the moun ta ins con t i nues no r t hwa rd and p a s s e s into the

Cen t ra l A m e r i c a n ranges .

The g e o l o g i c a l d i f f e r e n c e s be tween the Centra l and

Northern Andes are the most s t r i k ing of any g e o l o g i c change

along the Andean co rd i l l e ra . The change occu rs along the

Amotape zone, wh i ch c o i n c i d e s w i t h the i n te rsec t i on of the

o c e a n i c C a r n e g i e r idge w i th the cont inent . The Amotape zone

c o n t a i n s s e v e r a l up l i f t s that e x p o s e o ld e a s t w a r d to

n o r t h e a s t w a r d - s t r i k i n g g n e i s s e s and s c h i s t s in t ruded by

g r a n i t e s . Upper C a r b o n i f e r o u s sed imen ts a re e x p o s e d in

par ts of the zone. Both the Centra l and Nor thern Andes

border the Amotape zone w i t h a b n o r m a l s t r i k e s .

Four c o r d i l l e r a s a re c l e a r l y and independent l y

d e v e l o p e d in the Nor the rn A n d e s : the C o a s t a l c o r d i l l e r a ,

the W e s t e r n c o r d i l l e r a , the Cent ra l c o r d i l l e r a , and the

Eas te rn c o r d i l l e r a . The C o a s t a l co rd i l l e ra o f the Nor the rn

A n d e s c o n s i s t s of a s e r i e s of e a s t - w e s t and n o r t h w e s t w a r d -

t rend ing c o a s t a l r a n g e s c o m p o s e d o f oph io l i t es and pe lag i c

sed imen ts . These o c e a n i c r o c k s , o f C e n o z o i c to ea r l y

T e r t i a r y a g e , d i f f e r g rea t l y f rom the con t inen ta l basemen t

r o c k s w h i c h make up the C o a s t a l c o r d i l l e r a of the Cent ra l

Andes . The no r the rn C o a s t a l c o r d i l l e r a is t r aceab le as a

g e o l o g i c unit as far nor th as P a n a m a , where i t fo rms the

s o u t h w e s t e r n s ide o f the Panama A n d e s .
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The Western cordillera of the Northern Andes is

separated from the Coastal cordillera in Ecuador by a Mio-

Pliocene sediment -f il led basin floored by basic volcanics.

The cordillera itself is composed of thick, slightly

metamorphosed pelitic rocks with interspersed basic

volcanics, all of Cretaceous age. In places, upper ; .

Cretaceous and younger batholiths pierce folded Cretaceous

phyllites. In Columbia and eastern Panama, the Western

cordillera is composed mainly of thick p h y l l i t i c to

schistose pelites of late Jurassic to Cretaceous age,

together with basic volcanic intercalations and some large

ultramafic bodies.

The eastern border of the Western cordillera in

Ecuador is formed by the Quito graben, which is f i l l e d with

late Tertiary continental sediments and Quaternary tuffs. A

young volcanic belt lying along fractures in alignment with

the Quito graben forms the eastern border of the range in

Colombia. The entire eastern border of the Western

c o r d i l l e r a is an important tectonic boundary which separates

a belt of oceanic crust from thicker continental crust to

the east.

The sedimentary facies, the distribution of basic and

ultrabasic rocks, and the regional metamorphism of the

northern ranges of Venezuela and Trinidad are strikingly

s i m i l a r to that of the Western cordillera of Ecuador and

Colombia. An apparent connection exists in the northernmost
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t ip of the S i e r r a Nevada de Santa Mar ta of C o l o m b i a -

V e n e z u e l a , th rough wh i ch s imi lar r ocks , o f f se t by the Santa

Mar ta faul t zone , can be t raced .

Steep e a s t - w e s t t rending faul t zones show ing s t r i ke -

s l ip movement border the nor thern ranges of V e n e z u e l a and

Tr in idad on both their nor thern and southern s ides . The

southern faul t zone s e p a r a t e s the c rys ta l l i ne m a s s e s of the

nor thern ranges f rom an inter ior range of g r e e n s c h i s t

m e t a v o l c a n i c s and C r e t a c e o u s ocean ic sed iments thrust in

f rom the north. Further e a s t , these ocean ic rocks s w i n g

nor theas t to d i s a p p e a r into the C a r i b b e a n , and the in ter ior

ranges change in c o m p o s i t i o n to unmetamorphosed sed imen ts of

a pi a t fo rm- type f a c i e s .

The Cent ra l co rd i l l e r a of the Nor thern A n d e s is

c o m p o s e d ma in l y of a belt of c r ys ta l l i ne metamorph ic

r o c k s . P r e c a m b r i a n basemen t r o c k s are hidden under a cove r

of s l ight ly m e t a m o r p h o s e d O r d o v i c i a n sed iments , and numerous

la rge young p lu tons a l i g n e d w i th the late M e s o z o i c A n d e a n

ba tho l i ths intrude the belt. These rocks are d iv ided f rom

the oph io l i t i c rocks of the W e s t e r n co rd i l l e ra by a sharp

tectonic boundary to the wes t ; p lat form-type Cretaceous

l i m e s t o n e s o v e r l a p the c r ys ta l l i ne rocks in the eas t and

blur the e a s t e r n boundary of the cord i l le ra .

The n o r t h - n o r t h w e s t w a r d - t r e n d i n g Santa Mar ta faul t

zone d i s p l a c e s the ent i re Cent ra l co rd i l l e ra no r t hwa rd as

the separa te b lock of the S ie r ra Nevada de Santa Marta.
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Th is b lock r e p r e s e n t s the nor thernmost part of the Centra l

co rd i l l e ra .

The E a s t e r n co rd i l l e ra of the Nor thern Andes l ies

between the Centra l c o r d i l l e r a and the Guyana shie ld. The

p r e - M e s o z o i c r o c k s o f the Central co rd i l l e ra apparen t l y

connect w i th the p r e - M e s o z o i c r o c k s o f the E a s t e r n

c o r d i l l e r a and even tua l l y p inch out aga ins t the P r e c a m b r i a n

rocks of the Guyana shield. The thin P a l e o z o i c sed imen ta ry

veneer cover ing the Centra l co rd i l l e ra , h o w e v e r , e x p a n d s

into a th ick sed imen ta ry sequence in the Eas te rn

cord i l le ra . P r e c a m b r i a n rocks and lower Pa leozo ic

sed imen ts , o c c a s i o n a l l y in t ruded by g r a n i t e s , are f requen t l y

e x p o s e d in the up l i f ted ranges . The lower P a l e o z o i c most ly

c o n s i s t s of a pe l i t i c f a c i e s severa l k i l ome te rs th ick that

is s l igh t ly m e t a m o r p h o s e d in p l a c e s . There is ample

e v i d e n c e for a p r e - D e v o n i a n orogeny.

A l though v o l c a n i c r o c k s are common at the base of the

M e s o z o i c , C r e t a c e o u s mar ine sed imen t s la id down by a ma jo r

t r a n s g r e s s i o n make up the most w i d e s p r e a d rocks of the

Eas te rn co rd i l l e ra . Some b a s i n s c o n t a i n C r e t a c e o u s mar ine

sed imen ts 17 k i l o m e t e r s th ick . The mar ine sed imen ts th in

e a s t w a r d t o w a r d the Guyana s h i e l d , where they g rade into the

veneer of qua r t z s a n d s t o n e s that cove r the w e s t e r n part of

the c ra ton .



27

Tectonic Development

The Andean C o r d i l l e r a has developed along the western

margin of South America in apparent response to the

subduction of oceanic lithosphere beneath the moving South

American plate. Currently the Nazca plate is being

subducted beneath western South America, and there are some

complex plate interactions with the Cocos and Caribbean

plates occurring in northern South America. The continent

has also been influenced by interaction with the Antarctic

plate in the south. The presence of Benioff zones beneath

parts of the Andean-eprdi 1 lera, the position of the Peru-

Chile trench, the i n i t i a t i o n of extensive magmatic activity

in the Triassic with its subsequent eastward migration and

the concurrent development and deformation of a wedge of

sediments and volcanics have made the C o r d i l l e r a

(particularly the Central Andes), the classic example of a

marginal orogeny due to the consumption of an oceanic plate

beneath a continental plate (Dewey and Bird, 1970; James,

1971, 1973). However, as more and more geological and

geophysical data about the Andean c o r d i l l e r a are collected,

it is becoming clear that a s i m p l e model of orogeny cannot

be a p p l i e d to the entire cordillera. A uniform Benioff zone

has not developed beneath the entire c o r d i l l e r a ; the v a r i o u s

zones which have been discerned vary in dip, and seem to

indicate the subducting Nazca plate has s p l i t into

unconnected tongues (Barazangi and Isacks, 1976). Only the
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modern d i s t r i bu t ion o f s e i s m i c i t y (and v o l c a n i s m ) is known ,

and any p ro jec t ion back into geo log i c t ime is very ten ta t i ve

( G a n s s e r , 1973; Ze i l , 1979). Fur thermore , the r e l a t i o n s h i p

between more or l e ss con t inuous o c e a n i c plate c o n s u m p t i o n

and e p i s o d i c orogeny is still unc lear .

The p r e - M e s o z o i c h i s to ry of the Cen t ra l and Southern

A n d e s a l s o p resen ts d i f f i cu l t i es . The highly c o m p r e s s e d ,

ob l i que l y - s t r i k i ng P r e c a m b r i a n and P a l e o z o i c subs t ruc tu re o f

the Coas ta l c o r d i l l e r a , w h i c h is o v e r l a i n by an only mi ld ly

deformed v o l c a n i c c o v e r , c rops out a long the P a c i f i c coas t

and c o n t a i n s no ocean i c r ocks . Th is con f l i c t s w i th the

d is t r i bu t ion of r o c k s p red ic ted by a s imple p a c i f i c - t y p e

convergen t p la te m a r g i n mode l .

Except for the Eas te rn co rd i l l e ra of the Cent ra l

Andes and the zone immed ia te l y l a n d w a r d of the Pe ru -Ch i l e

t rench, the predominant tec ton ic s ty le of the A n d e a n

c o r d i l l e r a s ince the T r i a s s i c has been ve r t i ca l upl i f t and

b l o c k fau l t i ng ( Z e i l , 1979). W h e n th is o b s e r v a t i o n i s

comb ined w i t h the t remendous amount of i gneous ac t i v i t y that

has occu r red in the cen t ra l par ts of the co rd i l l e ra , i t

po in t s to a genera l reg ime of upl i f t and e x t e n s i o n rather

than c o m p r e s s i o n . Many c o m p r e s s i o n a l f e a t u r e s of the Andes

can be e x p l a i n e d as the resu l t of ba tho l i th emp lacemen t and

g rav i t y t e c t o n i c s (Meye rs , 1975; D e n n i s , 1982).

Recen t l y , the poss ib i l i t y that the a c c r e t i o n of

a l 1 o c h t h o n o u s t e r r a n e s may have p layed a ro le in the
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f o r m a t i o n of the A n d e s has r e c e i v e d some a t tent ion. Ben-

A v r a h a m et a l . (1981) have sugges ted that ocean i c p l a t e a u s - -

ex t inc t i s land a r c s , submerged cont inenta l f r agmen ts ,

seamount c lus te rs , or hot spot t races- -may have col l ided

w i t h the South A m e r i c a n cont inent and been i n c o r p o r a t e d into

the c o n t i n e n t ' s marg in in the past. Un l i ke the more

thoroughly s tud ied North A m e r i c a n co rd i l l e ra , the Andean

cord i l le ra is not known in suf f ic ient geological detail to

con f i rm the p resence of embedded te r ranes. The unusual

c rus t of the w e s t e r n part of the Northern Andes is

c o n s i d e r e d a p o s s i b l e e x a m p l e , howeve r . At p resen t , both

the Nazca r idge and the Juan Fernandes r idge, wh i ch are

a s e i s m i c o c e a n i c r i dges o f th ick b a s a l t c u m u l a t e s , a re

co l l i d ing w i th the South A m e r i c a n con t inen t . Nur and Ban-

A v r a h a m (1981) have s u g g e s t e d that the at tempt to consume

these th i ck - roo ted , bouyant r i dges has i n t e r rup ted

s u b d u c t i o n in p l a c e s along the m a r g i n of South A m e r i c a ,

caus ing the g a p s in v o l c a n i s m and s e i s m i c i t y w h i c h

c h a r a c t e r i z e par ts o f the A n d e a n co rd i l l e ra .

Jordan et al . (1983) have pub l ished an even more

recent study w h i c h l i n k s la tera l tec ton ic s e g m e n t a t i o n a long

the Cent ra l Andes ( b e t w e e n la t i t udes 5° South and 40° South )

to s e g m e n t a t i o n of the subduc t ing N a z c a p late. The N a z c a

plate segmen ts are d e f i n e d by major va r i a t i ons in the dip of

the Ben io f f zone , i n f e r r ed f rom the s p a t i a l d is t r ibu t ion of

in te rmmed ia te depth e a r t h q u a k e s . From wes t to eas t , pos t -
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O l i g o c e n e A n d e a n tec ton ics above near ly f la t -subduct ing

segments are cha rac te r i zed by a constant topograph ic r ise

f rom the P a c i f i c coas t to the c res t of the A n d e s ,

i ns i gn i f i can t v o l c a n i s m , a na r row belt of e a s t w a r d - m i g r a t i n g

poss ib l y th in -sk inned shor ten ing , and PI i o-Plei s tocene

upl i f t o f c rys ta l l i ne basemen t a long reverse fau l t s . A b o v e

s teep ly d ipp ing ( 3 0 ° ) s e g m e n t s , post-01 i gocence Andean

t e c t o n i c s are c h a r a c t e r i z e d by a f au l t - bounded long i tud ina l

va l ley east of coasta l mounta ins, on act ive belt of

andes t i t i c v o l c a n i s m , an e l e v a t e d h igh p la teau, a high,

i nac t i ve thrust bel t , and an ac t i ve e a s t w a r d - m i g r a t i n g th in-

sk inned thrust belt. No de fo rma t i on of the South A m e r i c a n

p la te (i.e., basement i n v o l v e m e n t ) occu rs east of the

e a s t e r n l imit of Ben io f f zone se i sm ic i t y , a l though thin-

s k i n n e d thrust be l ts have m ig ra ted ou twa rd beyong th is

limit. Crusta l se ismic i ty above f la t -subduct ing segments is

d i s t r i bu ted a c r o s s the c o r d i l l e r a , wh i l e c rus ta l se i sm ic i t y

above s teep l y -d i pp ing segmen ts is l imi ted to the a c t i v e

thrust bel ts .

A l t h o u g h these au tho rs e m p h a s i z e the impor tance of

the i n f l u e n c e of N a z c a p la te semen ta t i on on the segmen ta t i on

of centra l A n d e a n t e c t o n i c s , they a l so ment ion the po ten t ia l

e f f ec t that p re -ex is t ing s t ruc tures in the South Amer i can

p la te have had in con t ro l l i ng A n d e a n t ec ton i cs and p o s s i b l y

e v e n the pos i t i on of the Nazca p late segmen ts . The au tho rs

further note a re la t ionship between the early Cenozo ic
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te ton ics of w e s t e r n North Amer i ca and the post -01 igocene to

Holocene tec ton ics of the Central Andes.



PREVIOUS GEOPHYSICAL INVESTIGATIONS

Relatively few detailed geophysical investigations

have been made over the South American continent, compared

with the work done over the other continents of the world.

The majority of South American studies have concentrated on

the impressive Andean C o r d i l l e r a and adjacent oceanic areas

in attempts to understand the structures and tectonic

processes associated with a currently active orogenic

belt. The continent's stable platform and s h i e l d areas have

in contrast received relatively l i t t l e attention. The only

set of geophysical data that provides uniform coverge of the

South American continent and surrounding oceanic areas are

satellite scalar magnetic anomaly data recently collected by

NASA's MAGSAT orbital magnetic field survey (Hinze et al. ,

1982). Before discussing the results of an analysis of

these datas, however, it w i l l be useful to give a general

survey of e a r l i e r geophysical investigations relevant to the

lithospheric structure of South America.

Lithospheric Thickness

Many investigators have used the earthquakes

distributed along the Andean subduction zone to estimate the

thickness of the South American lithosphere. The

lithosphere is defined to be the relatively rigid lid or

32
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outer layer of the earth, i n v o l v i n g the crust and part of

the upper mantle, that overlies a zone of less r i g i d mantle

called the asthenosphere. The asthenosphere is

characterized by slightly lower seismic velocities, and much

lower Q (a measure of the efficiency of seismic wave

propagation) and viscosity than the lithosphere.

Based on the scatter of earthquake foci throughout

the wedge of crust and mantle overlying the subducted Nazca

plate, James (1971) suggested that a 200 to 300 kilometer-

thick lithosphere underlies central western South America.

In contrast, Barazangi and Isacks (1976, 1978) determined

the position of four i n c l i n e d seismic zones beneath western

South America, and after identifying them with the location

of the descending Nazca plate, suggested that the shallow

(10°) dip of the plate beneath northern and central Peru and

central C h i l e constrained the l i t h o s p h e r i c thickness of

western South America to approximately 130 kilometers.

James (1978), however, emphasized that the spatial

d i s t r i b u t i o n of earthquakes foci beneath central Peru is

confined to small active clusters, rather than being spread

along a plane, and that apart from a single isolated

intermediate cluster, there is l i t t l e evidence for a shallow

seismic zone beneath the continent. He also mentioned

geological and geochemical observations which show that the

undersaturated a l k a l i c rocks of eastern Peru were probably

associated with a subducted slab at a depth of 300 to 400
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ki lometers (implying a 30° dip) as recently as 5 m.y.b.p.

Sack and Snoke ( 1 9 7 8 ) reemphas i zed the d i f f use charac te r of

the se i sm ic i t y benea th centra l Peru. They a lso repor ted a

set of o b s e r v a t i o n s of the ScSp phase, (an S - w a v e r e f l ec ted

f rom the core and c o n v e r t e d to a P w a v e at a d i scon t i nu i t y

w i th in the upper m a n t l e ) f rom deep focus e v e n t s that sugges t

the N a z c a p la te has a dip of a p p r o x i m a t e l y 30° benea th

centra l Peru.

Further e v i d e n c e for a th ick l i t hosphere beneath

wes te rn South Amer ica comes f rom the ane las t i c i t y s tud ies of

S a c k s a n d O k a d a ( 1 9 7 4 ) a n d S a c k s ( 1 9 7 7 ) . These

i n v e s t i g a t o r s found 1 i thospher i c - t ype Q v a l u e s ( l o w e l a s t i c

a t t enua t i on ) down to about 350 k i l omete rs benea th w e s t e r n

South A m e r i c a , and a l o w - Q zone c o i n c i d i n g w i t h a s e i s m i c

zone b e t w e e n depths of 350 to 500 k i l ome te r s . S a c k s and

Snoke ( 1 9 7 7 ) i n f e r r e d the e x i s t e n c e o f an a p p r o x i m a t e l y

ho r i zon ta l i n t e r f a c e under w e s t e r n and c e n t r a l - s o u t h e r n .

South A m e r i c a at a depth of a round 400 k i l o m e t e r s , b a s e d on

the p o s i t i o n s of S to P w a v e c o n v e r s i o n s ( the sp p h a s e )

b e l o w the cont inent . The po lar i ty of the c o n v e r t e d phase

indicated a ve loc i ty reve rsa l be low the in te r face , and the

i n v e s t i g a t o r s i n te rp re ted the d i scon t i nu i t y as the

1 i t h o s p h e r e - a s t h e n o s p h e r e boundry .

A study re la t ing the la tera l segmen ta t i on of the

tec ton i cs of the Cent ra l A n d e s to d i f f e ren t l y d ipp ing

segments of the subduc t i ng N a z c a p la te has been pub l i shed
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recent ly by Jordan et al . (1983) . The co r re la t i ons put

for th by these authors depend upon the ex is tence of two

oceanic segments being subduc ted at 30° and two segments

being subduc ted near ly ho r i zon ta l l y beneath the South

A m e r i c a n p la te . These s e g m e n t s were de f ined by v a r i a t i o n s

in the dip of the Beniof f zone in fe r red f rom the spat ia l

d istr ibut ion of in termediate-depth ear thquakes . The

tec ton i c s e g m e n t a i o n o b s e r v e d in the Andean co rd i l l e ra

appears to be val id; the confl ict between the existence of

s h a l l o w - d i p p i n g o c e a n i c p la te segmen ts and the ev idence for

t h i ck l i t hosphe re p resen ted ea r l i e r was not men t ioned . A

very recent h igh- reso lu t ion study of the B e n i o f f zone

beneath southern Peru (Boyd et al . 1983) seems to conf i rm

the e x i s t e n c e of a s h a r p change in dip in the N a z c a p la te

b e l o w th is part o f w e s t e r n South A m e r i c a . The ea r thquake

data gathered by these researchers from a local se ismic

ne twork i n d i c a t e s that the B e n i o f f zone dips at a near ly

c o n s t a n t 30° benea th southernmost Peru wh i le dipping at 30°

and l e v e l i n g of f a 100 k i l o m e t e r s depth to become near ly

hor i zon ta l fur ther to the north. P late d e f o r m a t i o n a p p e a r s

to be c o n t i n u o u s a c r o s s the t rans i t ion .

The r esu l t s of a s u r f a c e w a v e d i s p e r s i o n study

conducted by Sherburne ( 1 9 7 5 ) suppor t the poss ib i l i t y that a

thick l i thosphere e x i s t s beneath the South Amer i can p la t fo rm

eas t o f the A n d e a n c o r d i l l e r a . A f t e r exam in ing the phase

and group ve loc i ty d ispes ion of both Love and Ray le igh w a v e s



36

along several paths across the South American platform (Fig.

12) Sherburne was unable to identify any pronounced low

velocity zone within the mantle, and he concluded that the

entire region is laterally uniform and structurally s i m i l a r

to other shield areas to depths of at least 400

kilometers. The dispersion characteristics of the South; .

American platform were most s i m i l i a r to those observed over

the South African shield, indicating a strong structural

similarity between the two regions. These results are in

agreement with the earlier work of Mol nar and Oliver (1969),

who found that shear waves propagate very efficiently

(implying high Q) below both the Guyana and Central

Brazilian shields. These investigators based their findings

on the low attenuation of the seismic phase Sn (a short-

period shear wave channeled through the uppermost part of

the mantle) observed along several paths emanating from an

earthquake which ocurred between the Guyana shield and the

Amazon basin.

The Brazilian heat flow study of Vitroello (1978)

forms an Important counterpart to the seismic studies

conducted over the South American platform. Vitroello

measured the heat flow and heat generation at 19 sites in

eastern and central Brazil, sampling the Brazilian portion

of the Atlantic shield and part of the Parana basin. The

sites were chosen to investigate the influence of three

major tectonothermal events: the consolidation of the
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c ra tons fo rmed during the m i d - P r e c a m b r i a n T r a n s - A m a z o n i a n

o rogen ic cyc le , the fo rmat ion of the metamorph ic be l t s

during the 1a te -P recambr ian B raz i l i an orogenic cyc le , and

the tec ton i c r e a c t i v a t i o n and Cre taceous m a g m a t i s m

a s s o c i a t e d w i t h the open ing o f the South A t lan t i c ocean.

V i t r o e l l o ' s resu l ts i nd i ca te a p r o g r e s s i v e dec rease in heat

f l o w w i t h age of the las t thermal event . He measured an

a v e r a g e heat f l o w of 42 mW m~^ in the Sao F r a n c i s c o c ra ton ,

w h i c h is typ ica l of sh ie ld a r e a s , a s l ight ly higher heat
p

f l ow of a round 55 mW m in the B r a z i l i a n metamorph ic be l t s ,

and a no tab ly h igher heat f l o w of about 79 mW m~^ in the

P a r a n a bas in . Such d i f f e r e n c e s imply d i f f e r e n c e s in

temperature of a few hundred degrees Ce ls ius in the lower

c rus t and upper m a n t l e b e l o w the three p r o v i n c e s . The heat

f l o w con t r i bu ted by deep s o u r c e s benea th a l l th ree p r o v i n c e s
p

(the reduced heat flow) measured approximately 28 mW m .

V i t r o e l l o concluded that the B r a z i l i a n Coastal Shield

(the Atlantic shield) represents a typical stable s h i e l d

e x h i b i t i n g low heat flow and heat production, with a

subsolidus geotherm extending deep into the mantle. Taking

into account the l i m i t e d seismic data, this low temperature

regime probably extends below most of the South American

platform. Since residual heat is observable in provinces as

old as 500 to 600 m.y.b.p., he further concluded that the

conductive cooling of a thermal disturbance in the platform

must extend to a depth of at least 400 kilometers. When
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th is o b s e r v a t i o n is comb ined w i t h the o b s e r v a t i o n that the

heat f l o w v a r i e s w i t h the age of the p r o v i n c e , i t s u g g e s t s

that the subcon t i nen ta l c rus t and upper man t le b e l o w the

South A m e r i c a n p l a t f o r m has re ta ined i t s s t ruc tu ra l

in tegr i t y to a depth of a round 400 k i l o m e t e r s for more than

500 mill ion y e a r s .

A n d e a n Crus ta l S t ruc tu re

A l t h o u g h the A n d e a n c o r d i l l e r a has a t t r ac ted a

r e l a t i v e l y la rge amount o f g e o l o g i c a l and g e o p h y s i c a l

a t t en t i on c o m p a r e d to the rest of the South A m e r i c a n

con t i nen t , the de ta i l s of i ts subs t ruc tu re rema in poor ly

unde rs tood . W i t h the e x c e p t i o n o f s t u d i e s d e s i g n e d to

determine the pos i t ion and con t inu i t y of the subduc ted N a z c a

p la te , the ma jo r i t y o f the A n d e a n g e o p h y s i c a l i n v e s t i g a t i o n s

have been c o n c e r n e d w i th the c rus ta l s t ruc tu re of the

cord i l1 era.

The e a r l i e s t a t tempts to determine the t h i ckness of

the crust suppor t ing the Andes took a d v a n t a g e of l a r g e - s c a l e

b l a s t i n g in two open-p i t copper m ines in southern Peru and

nor thern C h i l e ( A l d r i c h et at . 1958; Tatel and T u v e ,

1958). I n v e s t i g a t o r s f rom the Carneg ie Inst i tu t ion of

W a s h i n g t o n recorded the resu l t ing r e f l e c t e d and r e f r a c t e d

s e i s m i c w a v e s a long seve ra l p r o f i l e s rad ia t i ng o u t w a r d f rom

the two pi ts a long the w e s t e r n f lank of the Centra l Andes .

No a r r i v a l s of any k ind were ob ta ined beyond a p p r o x i m a t e l y

200 k i l ome te r s a long pro f i les running e a s t - w e s t ,
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perpendicular to the cordillera. This was attributed to

extreme attenuation w i t h i n the crust. Profiles running

p a r a l l e l to the c o r d i l l e r a in Peru yielded a depth to the M-

discontinuity of 34 to 36 kilometers (possibly reaching 46

kilometers), assuming a two-layer structure for the crust.

In northern Chile, profiles running parallel to the

c o r d i l l e r a yielded a 46 kilometer crust, again assuming a

two-layer structure. There were fainter signs of an

interface at 56 kilometers below Chile. Woollard (1960)

reinterpreted this data and tentatively inferred a crustal

thickness of around 65 kilometers below the Western

c o r d i l l e r a (High cordillera) of the Central Andes, with a

steep dip in the M-discontinuity of approximately 18° from

west to east. Slightly north of this area, Cisternas (1961)

conducted a simple Rayleigh wave dispersion study along two

short, single station paths in the Andes to Huancayo, Peru,

and concluded that the local crustal thickness was on the

order of 50 kilometers.

Lomnitz (1962) discussed the crustal structure of the

Chilean Andes in terms of the physiography, seismicity,

gravity a n o m a l i e s , and geologic evolution of Chile. He

constructed a north-south gravity profile and theoretical

crustal section along the center l i n e of C h i l e between

latitudes 18° South and 41° South, calculating crustal

thickness with a rough empirical formula justified by the

sparse data. On this basis he concluded that the crust
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reaches a thickness of about 70 kilometers beneath the Puna

block (the southern Altiplano) at the borders of C h i l e ,

Argentina, and B o l i v i a . The crust thins southward. Lomnitz

also provided a simple transcontinental crustal profile,

based on gravity anomalies, from Valparaiso, Chile, to Mar

del Plata, Argentina, extending offshore at both coasts.

A model of the crustal structure beneath the Peru-

C h i l e trench off the coast of Peru was derived by Fisher and

Raitt (1962) using offshore refraction methods. Their model

shows oceanic crust thickening from about 11 kilometers

below the Pacific basin to nearly 17 kilometers beneath the

trench. L u d w i g , Ewing, and Ewing (1965) presented the

results of 22 offshore seismic retraction profiles made in

the Magellan Straits, over continental crust. At the

northern end of one profile, running approximately north-

south at longitude .71° West, these investigators measured a

depth to the M-discontinuity of 29.6 kilometers, increasing

steadily to the south to 34.8 kilometers. The velocity of

P-waves in the mantle measured 7.95 km/sec.

Based on an analysis of the spectra of teleseismic P-

waves, Fernandez and Carcaga (1968) estimated the thickness

of the crust beneath La Paz, B o l i v i a to be 64.6 ± 7.8

kilometers, with a P-wave velocity in the mantle of 8.1

km/sec and in the crust of 6.76 km/sec.

Dragicevic (1970) constructed an extensive Bouguer

gravity anomaly map of the southern Central Andes between
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latitude 14° South and latitude 40° South. Dragicevic also

constructed two simple profiles of the crust across the

central and southern Central Andes at latitude 20° South and

latitude 33° South using a density of 2.84 g/cm3 for the
o

crust and 3 .27 g/cm° for the mant le. His resul ts con f i rm

the presence of a deep, low densi ty root beneath the

mounta ins that thins to the south.

By determining the hypocenters of a group of

e a r t h q u a k e s beneath San t i ago , Chi le , and then min imiz ing the

d i f fe rence be tween a r r i v a l s p red ic ted by a s imple model and

obse rved a r r i v a l s , Chuaqu i (1973) in fer red the presence of a

dipping in te r face whose pos i t ion and s lope agrees w i th the

c rus t -man t l e i n te r face de r i ved f rom D r a g i c e v i c ' s g rav i t y

model ing at that lat i tude. Chuaqui a l so obta ined a mant le

P-wave v e l o c i t y of 8.1 k m / s e c and a crusta l P - w a v e ve loc i t y

of 6.1 km/sec .

The resu l t s of two s u r f a c e wave d i spe rs i on s tud ies

conducted in the Andean co rd i l l e ra were repor ted in 1970 and

1971. Leeds and K n o p o f f (1970) measured Ray le i gh w a v e phase

ve loc i t y d i spe rs i on be tween Qui to , Ecuador and Bogota ,

C o l o m b i a for two e a r t h q u a k e s and in fer red an ave rage crusta l

t h i c k n e s s of 60 k i l o m e t e r s between the two s ta t ions . They

conc luded that i f any l o w - v e l o c i t y zone e x i s t e d , i t was

either poor ly deve loped , or ex t remely deep. An a n a l y s i s of

the phase ve loc i t y d i s p e r s i o n o f Love w a v e s be tween

Peldehue, Peru, and A n t a f a g a s t a , Ch i le for one ea r t hquake
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y ie lded a thinner c rus t of 40 to 45 k i l omete rs . Shear w a v e

v e l o c i t i e s in the mant le here were s l ight ly higher than

those m e a s u r e d in the north.

James (1971) made a much more e x t e n s i v e study of the

crust and upper mant le s t rudture beneath southern Peru,

e a s t e r n Bo l i v ia , and northern Chi le using both Ray le igh and

Love w a v e phase and group ve loc i t y d i spe rs ion be tween

s e v e r a l wes te rn South A m e r i c a n s e i s m o g r a p h s ta t ions . The

paths are shown on the map in Figure 4. James inve r ted his

d i s p e r s i o n measu remen ts and a s s e m b l e d the resu l t ing mode ls

to obta in a th ree -d imens iona l c rus ta l model of the middle

Centra l Andes . His f inal model shows the crust va ry ing in

t h i c k n e s s f rom a m a x i m u m of s l ight ly ove r 70 k i l o m e t e r s

benea th the W e s t e r n co rd i l l e ra and the w e s t e r n s ide of the

A l t i p l ano , to 30 k i l ome te rs a long the P a c i f i c coas t , to 11

k i lomete rs benea th .the P a c i f i c bas in . In the eas t , the

crust th ins to 50 -55 k i l ome te rs beneath the Eas te rn

co rd i l l e ra . It a l so a p p e a r s to thin both north and south of

the A l t i p l ano to around 5 5 - 6 0 k i lometers . The average P-

and S - w a v e v e l o c i t i e s w i t h i n this part of the crust are

a round 6 .2 km/sec , and 3 .45 km/sec , r espec t i ve l y , wh ich are

somewhat lower than a v e r a g e c rus ta l v a l u e s . James found no

s ign i f i can t l o w - v e l o c i t y zone in the upper 150 k i l ome te rs of

the mant le beneath the Centra l Andes . Be low the P a c i f i c

ocean , h o w e v e r , a subs tan t i a l l o w - v e l o c i t y zone rang ing in
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Figure 4. Prev ious geophysical invest igat ions in the A n d e a n
cordil lera. (1) James (1971) ; (2) Oco la and Meyer
(1972); (3) Couch et al. (1981); (4) Ocola et al.
(1975) ; (5) Mooney et al . ( 1979 ) .



44

depth f rom 50-60 k i l o m e t e r s to more than 200 k i l ome te rs was

n e c e s s a r y to sa t i s f y the d i s p e r s i o n data.

A second p rogram of r e c o n n a i s s a n c e e x p l o s i o n

s e i s m o l o g y was c a r r i e d out by the Ca rneg ie Inst i tut ion of

W a s h i n g t o n over the P e r u - B o l i v i a a l t i p l ano in 1968 (Fig.

4) . The data t a k e n f rom th is program, or ig inal ly

in te rpre ted by Oco la , Meyer, and A l d r i c h (1970) , was

re in te rpre ted by Oco la and Meyer (1972) using ray - t rac ing in

a spher i ca l ear th to f i t the a r r i va l t imes and re la t i ve

ampl i tudes obse rved on the record sec t ions . These

i n v e s t i g a t o r s recon f i rmed an e a r l i e r - d e r i v e d model hav ing

three major r e f r a c t o r s : a sed imen ta ry -me tamorph ic layer 4-9

k i l o m e t e r s th ick , c h a r a c t e r i z e d by P-wave v e l o c i t i e s of 4 .5 -

4.9 k m / s e c ; a " g ran i t i c " layer reach ing depths of 26 -30

k i l o m e t e r s , c h a r a c t e r i z e d by P - w a v e v e l o c i t i e s of 6.0-6.1

k m / s e c ; and a "gabbro ic " layer bot toming out of 68-70

k i l ome te r s , c h a r a c t e r i z e d by P - w a v e v e l o c i t i e s of 6.8 to 6.9

km/sec . H o w e v e r , in order to accoun t for re la t i ve l y l a rge

ampt i tude secondary a r r i v a l s , two new l o w - v e l o c i t y zones

w i th in the c rus t be low the A l t i p l a n o were modeled. A

s h a l l o w l o w - v e l o c i t y zone benea th Peru was pos i t i oned

between depths of 9 and 12 k i l ome te rs , separa t i ng m a t e r i a l s

of 6.0 km/sec ve loc i ty f rom those of 6.1 km/sec ve loc i ty . A

deeper, somewhat th icker l o w - v e l o c i t y zone was p l a c e d

be tween 30 and 40 k i l o m e t e r s benea th B o l i v i a , and be tween 36

and 46 k i l ome te rs benea th Peru. Th is layer was s a n d w i c h e d
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between 6.8 k m / s e c and 6.9 km/sec ve loc i ty mate r ia l . These

l o w - v e l o c i t y zones were ten ta t i ve ly re lated to the magma t i c

ac t i v i t y wh i ch c h a r a c t e r i z e s the Central Andes.

Oco la and Meyer (1973) later pub l ished two c rus ta l

mode ls a long p ro f i l e s from the Pac i f i c b a s i n to the

B r a z i l i a n sh ie ld for southern Peru and northern Chi le.

These models were des igned to sa t i s f y both the p rev ious l y

co l l ec ted se ismic data and the major fea tures of the Andean

and Peru -Ch i le t rench g rav i t y anoma l ies . Their crusta l

sec t i ons show in general an approx imate ly 10 k i lometers

th ick sed imenta ry -metamorph ic layer c h a r a c t e r i z e d by a P-

wave ve loc i t y of 4.5 km/sec beneath the A l t i p l ano , above a

second layer c h a r a c t e r i z e d by a P -wave ve loc i t i es rang ing

from 5.7 km/sec to 6.1 km/sec. This second layer is

th i ckes t under the A l t i p l a n o and p inches out near the Peru-

Chi le t rench. A third layer , a l so deepest and th i ckes t

beneath the A l t i p lano , l ies be low these two laye rs , and has

a P -wave v e w l o c i t i e s ranging f rom 6.8 km/sec to 7.0

km/sec . The total crusta l t h i ckness is about 12 k i lometers

beneath the Pac i f i c bas in , i nc reas ing rapid ly to 76

k i lometers beneath the Al t ip lano, and thinning more s lowly

to app rox ima te l y 40 k i l ome te rs beneath the B r a z i l i a n shield.

The most recent , and by far the most de ta i led set of

crusta l p ro f i l es a c r o s s the cont inental margin and Andean

c o r d i l l e r a of Peru and Ch i l e has been publ ished by Couch et

al. (1981). The l oca t i on of their p ro f i l es is shown in



46

Figure 4; the c rus ta l p ro f i l es themse lves are reproduced in

Figure 5 through Figure 9. These models were der ived by

two-d imens iona l model ing of the cont inenta l marg in g rav i t y

a n o m a l i e s , cons t ra i ned by bathymet r ic , topograph ic , s e i s m i c

r e f r a c t i o n , and magnet ic data. The i n v e s t i g a t o r s used

empi r ica l re la t ions between se ismic ve loc i ty and densi ty ,

together wi th mapped sur face geo logy, to choose the modeled

layer dens i t ies . They a l s o assumed a s tandard mass co lumn

of 70 k i l ome te rs , w i th no lateral var ia t ions in density

be low 70 k i lometer depth.

Nor thern Andean Crus ta l Structure

Since 1971, the Northern Andes (Ecuador , Co lumb ia ,

V e n e z u e l a ) have r e c e i v e d a compara t i ve l y la rge amount of

geophys i ca l a t tent ion . Such in terest has been spur red by

severa l fac to rs . Unl ike the s impler t ec ton i cs of the

centra l and southern par ts of the Andean co rd i l l e ra , the

tec ton ics of the Northern Andes re f lec ts the c o m p l e x

in te rac t ion of the Guyana sh ie ld , the Nazca and Cocos p la tes

of the Pac i f i c , and the Car ibbean plate. The western two

ranges of the Nor thern Andes are c h a r a c t e r i z e d by an ocean ic

suite o f th ick , la te Mesozo ic thole i i t ic v o l c a n i c s , w i t h

a s s o c i a t e d pel i t ic sed imen ts , wh i ch con t ras t s s t rong ly wi th

the more typ ica l ly cont inental rocks of the eas te rn two

ranges. Th is geo logy is very much d i f fe ren t f rom the

geo logy of the Centra l and Southern Andes . The Northern

Andes are a lso d is t inguished by an i rregular d is t r ibut ion of
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earthquake foci which makes it impossible to identify a

uniform Benioff zone. There are almost no deep focus

earthquakes (Zeil, 1979). All of these factors suggest the

presence of an unusual substructure which must differ from

the substructure of the rest of the cordillera.

Case et al . (1971) published a synthesis of the

geological and geophysical information available for western

Colombia and eastern Panama. The investigators also

conducted a gravity and vertical intensity magnetic survey

over northwestern and central Colombia to supplement

previously collected geophysical data. These measurements

revealed a Bouguer anomaly range of a few hundred mgals

across the Andean ranges. Once corrections were made for

low density Tertiary basin f i l l , nearly the entire strip of

land between the Pacific coast and the Western cordillera of

Colombia (the so-called Mesozoic eugeosyncline) was

discovered to be characterized by strongly positive Bouguer
1

anomalies. A particularly h i g h ridge of gravity values

ranging to +95 mgals (the West Colombian hig h) paral 1 el s the

western flank of the Western cordillera, running nearly the

entire length of Colombia and extending into southern

Ecuador. A complex regional pattern of anomalies exists

east of this high, characterized by the distinctive lows of

the Central c o r d i l l e r a and its adjacent basins. Case et al.

concluded that the eastern margin of the West Colombian high

marks the boundary between a thin, dense, probably oceanic
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c rus t f loor ing w e s t e r n m o s t Co lomb ia and th icker continental

crust to the eas t . The high i tsel f is caused by a long

n a r r o w belt of dense up l i f ted rock wh i ch the au thors

interpret as e i ther an ocean ic r idge or an i s l and arc

complex wh i ch was overr idden by the Mesozoic eugeosync l ine

in Tert iary t ime. Cont inenta l crust ex tends e a s t w a r d f rom

the eas te rn f l ank of the high and suppor ts the Central

co rd i l l e ra of the Northern Andes and ad jacent bas ins . These

authors a l so p rov ided a c rus ta l pro f i le ex tend ing f rom the

Pac i f i c e a s t w a r d a c r o s s the Central co rd i l l e ra w h i c h shows

the t h i c k n e s s of the crust i nc reas ing f rom 16 k i lometers

beneath the Pac i f i c ocean to around 30 to 35 k i lometers

beneath the Centra l co rd i l l e ra .

C a s e and M a c D o n a l d (1973) later ex tended the g rav i t y

and magnet ic su rvey to inc lude nor thern Co lomb ia . The

survey pr inc ipa l ly cove red the t r iangular f au l t - bounded

Santa Marta upl i f t and the G u a j i r a Pen insu la of extreme

northern Co lomb ia . The Santa Marta upl i f t , an o f f se t and

topograph ica l ly high sec t i on of the W e s t e r n co rd i l l e ra , is

c h a r a c t e r i z e d by a la rge pos i t i ve Bouguer anomaly wh i ch

reach a maximum value of more than 130 mgals in the

nor thwestern corner of the m a s s i f . Except for the Ter t ia ry

sed imentary b a s i n s , much o f the G u a j i r a Pen insu la is a l so

c h a r a c t e r i z e d by pos i t i ve Bouguer anoma l i es . The

i n v e s t i g a t o r s conc luded that a l though these high v a l u e s may

par t ia l ly be due to dense metamorph ic r o c k s , they ind icate
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the cont inenta l crust of ext reme northern C o l o m b i a is very

thin, and that dense l owe r crusta l or mant le mater ia l is

unusua l l y c lose to the su r face . The Santa Mar ta upl i f t in

par t icu lar is s t rongly out of i sos ta t i c equi l ibr ium. The

total crusta l t h i c k n e s s of the m a s s i f may only be 15

k i lometers . In l ight of these o b s e r v a t i o n s , the

inves t i ga to rs sugges t that the cont inenta l crust of the

Santa Mar ta upl i f t and the G u a j i r a Pen insu la has ove r r i dden

the ad jacen t c rust and upper mant le of the Car ibbean.

In the same year , Case et al. (1973) publ ished the

resu l t s of a 300 k i l ome te r - l ong geophys i ca l p ro f i le a c r o s s

the Andes of sou thwes te rn Co lomb ia . Th is p ro f i le was

para l l e l to the C o l o m b i a - E c u a d o r border and ex tended f rom

the Pac i f i c coas t to the Putamayo bas in east of the A n d e a n

cordi l lera. The general pattern of grav i ty anomal ies along

this pro f i le is very s im i la r to that measured in the ea r l i e r

C o l o m b i a n g rav i t y survey of Case et al . (1971). Bouguer

anoma l i es range f rom -80 mga l s near the Pac i f i c coas t over

the Ter t ia ry B o l i v a r t rough, to. a high of +75 mga ls a long
• ,>

the western f lank of the Weste rn cordi l lera. This high

represen ts the southern e x t e n s i o n of the Wes t Co lomb ian

high, and the au thors a g a i n asc r i be it to a ra ised b lock of

ma f i c or u l t ramaf i c c rus t just beneath the eas te rn s ide of

the Bo l i va r t rough and the wes te rn edge of the Mesozo i c

eugeosyncl i ne. From this high the gravi ty va lues decrease

s tead i ly e a s t w a r d to a min imum of -220 mga ls over the
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Co lomb ian a l t i p lano and the Central cord i l lera. The au tho rs

interpret this steep gradient as the re f lec t ion of a

deep-sea ted zone separa t ing ocean ic crust under ly ing w e s t e r n

coasta l Co lomb ia f rom th icker cont inental crust beneath the

bulk of the Andean cord i l le ra . Case et al . (1973) a l so

cons t ruc ted a c rus ta l p ro f i le , based on g r a v i t y mode l ing ,

w h i c h shows the t rans i t ion f rom maf ic crust in the west " to

cont inental crust in the east . The large negat ive Bouguer

anomaly over the C o l o m b i a n a l t i p lano and the Central

co rd i l l e ra suggest a max imum crusta l root th i ckness of

around 45 k i l omete rs for this sec t ion of the Nor thern Andes .

The geophys ica l data p rov ided by these g rav i t y and

magnet i c su rveys have been supp lemented recent ly by two

important s e i s m i c r e f r ac t i ons s tud ies c a r r i e d out in the

Nor thern Andes . Oco la et al . (1975) repor ted the f ind ings

of a se ismic re f rac t ion survey made along the a x i s of the

regional g rav i t y low of the a l t i p lano of Co lomb ia and

Ecuador. The re f rac t i on l ine extended roughly from Bogota

through Qu i to into central Ecuador a long two b ranches

rad ia t ing f rom a sou thwes te rn Co lomb ian lake shot point

(Fig. 4). Synthet ic record sec t i ons , genera ted by the

re f lec t i v i t y methods of Fuchs and Mul ler (1971), were

cons t ruc ted by trial and error model ing of the

ve loc i t y -dep th s t ructure be low the line. The best f i t s

between the o b s e r v e d and synthet ic data were obta ined f rom

models con ta in ing P - w a v e l o w - v e l o c i t y zones. In g e n e r a l ,
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both the C o l o m b i a and the Ecuador b ranches showed upper

crusta l r e f r a c t o r s w i th apparent ve loc i t i es l ess than 6 .4

km/sec , lower crusta l r e f r ac to r s wi th apparent ve loc i t ies

ranging f rom 6.4 km/sec to 7.5 k m / s e c , and a c rus t -upper

mant le t r a n s i t i o n zone w i th apparen t v e l o c i t i e s greater than

7.5 km /sec . Both b ranches a lso show s imi la r ly p laced , wel l

d e v e l o p e d l o w - v e l o c i t y zones. The total c rus ta l t h i c k n e s s

beneath the a x i s of the g r a v i t y low m e a s u r e d 66

k i lometers . This is in sharp d i sag reement wi th the crus ta l

th i ckness of 30 to 45 k i l ome te rs der ived by Case et al .

(1971, 1973), but it does agree w i th the crustal th ickness

of 60 k i l omete rs in fe r red f rom R a y l e i g h wave d i s p e r s i o n

b e t w e e n Bogota and Qu i t o by Leeds and Knopo f f (1971).

The resu l ts of a pair of s e i s m i c r e f r a c t i o n / w i d e -

ang le re f l ec t i on s t u d i e s made ove r the W e s t e r n co rd i l l e ra o f

Co lomb ia were repor ted by Mooney et al. (1979). Data were

taken f rom two p ro f i l es ex tend ing both nor th -nor theas t

(para l le l to the s t r i ke of the co rd i l l e ra ) and

wes t -no r thwes t (perpend icu la r to s t r ike) f rom a shot point

in a quarry on the e a s t e r n f lank of the W e s t e r n co rd i l l e ra

(Fig. 4). The i n v e s t i g a t o r s app l i ed a technique of

t rave l - t ime and re l a t i ve ampl i tude mode l ing of bo th P- and

S- w a v e f i rs t a r r i v a l s to ob ta in ve loc i t y -dep th p r o f i l e s o f

the upper c rust . Best resu l ts were ob ta ined f rom mode ls

hav ing ve loc i t y g r a d i e n t s , rather than d is t inct layers . Two

a l te rna t i ve lower c rus ta l m o d e l s , one w i th l o w - v e l o c i t y
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zones and one w i thou t , were ob ta ined for the

no r th -no r theas te r l y s t r ik ing line by model ing r e f l e c t e d

a r r i v a l s . In this c a s e , somewhat bet ter agreement was

obta ined by us ing l o w - v e l o c i t y zones .

The total crusta l t h i c k n e s s beneath the W e s t e r n

co rd i l l e ra measured e i ther 2 6 . 5 k i l ome te rs or 29 k i l ome te rs ,

depend ing on the cho ice of lower c rus ta l model . The s e i s m i c

v e l o c i t i e s measu red in the upper crust are unusua l ly high.

P-wave v e l o c i t i e s i n c r e a s e from 4.5 k m / s e c at the su r face to

6.7 km/sec at a depth of 6 k i l ome te rs , reach ing 7.0 km/sec

at a depth of 11 k i l omete rs . S - w a v e ve loc i t i es i nc rease

f r o m 2.5 km/sec at the s u r f a c e to 4.0 km/sec at 11

k i l omete rs . Such v e l o c i t i e s are more typical of o c e a n i c

crust than cont inenta l c rus t , and the i nves t i ga to rs comb ined

th is o b s e r v a t i o n w i t h the a s s o c i a t e d pos i t i ve Bouguer

anomaly and g e o l o g i c a l e v i d e n c e to conc lude the upper crust

of the W e s t e r n co rd i l l e ra c o n s i s t s o f igneous ocean ic rocks

of C re taceous age. An in t ra -c rus ta l boundary e x i s t s at a

depth of 19 k i l o m e t e r s to 21 k i l omete rs . The ve loc i t y

s t ructure of the lower c rus t , d e r i v e d f rom the re f l ec t i on

da ta , is amb iguous . Depend ing on the cho ice of m o d e l s , the

lower c rust cou ld cons i s t ent i re ly of ocean ic r o c k s , or

c o u l d c o n t a i n an upper 15 k i l ome te r layer of ocean ic rock

over l y ing cont inenta l rock .



THEORETICAL BACKGROUND

The geophysical technique used in this study to

determine variations in the average crustal thickness of the

South American platform was fundamental mode Rayleigh wave

dispersion analysis. The following sections provide the

theoretical background and justification for the use of this

technique.

Rayleigh wave Dispersion

In 1885 Lord Rayleigh investigated the behavior of

elastic waves which propagate along the plane free surface

of a homogeneous elastic half-space, in rough analogy to

water waves traveling over deep water (Rayleigh, 1885).

Rayleigh demonstrated that such a medium can support a

particular type of harmonic surface wave (now called a

Rayleigh wave) which travels with a slightly lower velocity

than shear waves traveling in the same medium. Points on

the surface of the medium move in vertically polarized,

retrograde e l l i p t i c a l orbits with the passage of this wave;

no motion transverse to the direction of wave propagation

occurs at all. The amplitude of the orbital motion of

points w i t h i n the medium is greatest at the free surface and

decays exponentially with distance from the surface. The

rate of amplitude decay with depth is proportional to the

58
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wave leng th , so that w a v e s wi th long w a v e l e n g t h s penet ra te

deeper Into the medium than w a v e s w i t h shorter wave leng th .

Ray le igh w a v e s are gu ided along the free su r face of

the medium in which they propagate , and there fore sp read

cy l indr ica l ly in two d imens ions rather than spher i ca l l y in

three d imens ions. They consequent ly form an inc reas ing ly

dominanant part of the ver t i ca l su r face motion of the ear th

at greater and greater d i s tances f rom an ear thquake source ,

as Ray le igh predicted. Unl ike the case Inves t iga ted by

Ray le igh , however , the ear th is not a f lat, homogeneous

e las t i c medium. S ince the ve loc i t y of se i sm ic w a v e s in the

ear th genera l l y i n c r e a s e s w i th depth, Ray le igh w a v e s o f long

w a v e l e n g t h and cor respond ing ly deeper penet ra t ion t rave l

fas ter than w a v e s of shor ter wave leng th . F igure 10 shows a

t ra in of Ray le igh w a v e s exc i t ed by an ear thquake along the

Mid-At lan t ic r idge recorded ini t ial ly at Nata l , B raz i l ,

1,260 k i l ome te rs f rom the ep icenter . The second s e i s m o g r a m ,

beg inn ing 18 minutes la ter , shows the same Ray le igh w a v e

t ra in recorded in line w i th the source at La Paz , Bo l i v i a ,

3,817 k i lomete rs f rom Nata l . The gradual sepa ra t i on of w a v e

components of d i f fe rent w a v e l e n g t h s that occurs as the w a v e

t ra in c rosses the South Amer i can P la t fo rm is very wel l

d isp layed. Th is phenomenon is known as d ispers ion .

Group and Phase Ve loc i t y

Let the funct ion f ( t ) descr ibe a fundamenta l mode

Ray le igh w a v e recorded by a s ta t ion at a d is tance r and
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azimuth e from the epicenter of an earthquake. The Fourier

transform of this function gives the spectrum of the

Rayleigh wave in terms of its amplitude A and phase <j>:

F(») - A(r, 6, «) . e1<t>(r' 6' u>

The v a r i a b l e ID (= 2ir/T, T = wave period) represents the

frequency of the wave.

The techniques used in this study extract some of the

information contained in Rayleigh wave velocity

dispersion. For Rayleigh waves of a g i v e n mode, it is

possible to attribute the time delay due to wave propagation

between two stations to the phase difference between the

spectra of the waves recorded at each station. ( Given the

time delay and the distance between the two stations, wave

velocities can be calculated.) The information carried by

changes in amplitude of the Rayleigh waves with time is

ignored.

The waveform of a Rayleigh wave recorded at a station

is a function of the earthquake mechanism and the

instrumental response of the seismometer as well as a

function of the elastic properties of the medium over which

the wave has traveled. The two-station method used in this

study, which measures the velocity dispersion between two

stations with matched instuments, e l i m i n a t e s the effects of

both earthquake source phase shift and the instrumental

phase shift, and considers only the phase shift due to wave
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propagation between the stations. If the terms describing

the source and instrumental phase shifts are dropped, the

inverse Fourier transform of F(<") can be written:

f t t 1 — ^^^^ I A f r* o di i A v n I ^ I (l)̂  ^ f* i I /I (i)
\ / Oir J/s * ^ \ > 9 I • Crtk/ L ' V ** ™* /J *^ •

where k is the wavenumber ( = 2 V * » ^ = w a v e l e n g t h ) . Th i s

equa t i on app rox ima te l y d e s c r i b e s a s ing le -mode R a y l e i g h w a v e

p rpaga t ing in t ime.

C o n s i d e r a s i ng le s inuo ida l component of this w a v e ,

of f requency w . S u r f a c e s of cons tan t phase , such as the

c res t or trough of a w a v e , move w i th a ve loc i t y wh ich can be

found by set t ing the phase term of th is equat ion equal to a

c o n s t a n t :

w t - k(w ) r = constant

Differentiating with respect to distance r yields

Bo IF - k ( " o ) • °

g iv ing the phase vel oci ty

0)

If the phase velocity of each of the sinusoidal

components of the Rayleigh wave is the same, as is true in a

homogeneous elastic medium, the components move together,

and a g i v e n waveform will not change shape as it propagates

across the medium. Furthermore, the velocity of the various
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components w i l l be identical to the group velocity--the

speed at which the entire wave train or packet travels.

(The group velocity is generally associated with the rate of

wave energy transport.) However, in a medium composed of

layers whose elastic properties vary with depth, the phase

velocity does depend on the wave period, and the various

sinusoidal components sort themselves out in time and with

distance. As a result the Rayleigh wave train spreads out

and changes shape, or disperses, as it travels. In the

earth, where seismic velocities generally increase with

depth, i n d i v i d u a l wavefronts actually move faster than the

spreading packet of Rayleigh waves which carries them. Wave

crests appear at the back of the Rayleigh wave train and

move forward to disappear at the front of the train, making

it necessary to d i s t i n g u i s h between the group velocity and

the phase velocity.

A group velocity can be associated with each

frequency component w of a Rayleigh wave by evaluating the

equation of the wave in the v i c i n i t y of u> :^ o
a) + e

f ( t ) - / A (r, e, ID) . exp [ i (u> t - k r ) ] du .
uo % " e

Th i s func t ion is l a rges t (i.e. w a v e energy is m a x i m i z e d )

when al l the w a v e s w i t h i n the n a r r o w band of

f r equenc ies [o> - e, u> + e] are in p h a s e , or when

4- (cot - kr) = 0 .
a w a) = to
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This y ie lds the g roup t rave l t ime

do)

and finally the group velocity

. r
0) = 0).

.J

An equation un

(Dziewonski and Hales, 1972).
U) = 0).

quely re la t ing the g roup ve loc i t y to

the phase ve loc i t y can be de r i ved by d i f f e ren t i a t i ng the

phase ve loc i t y c = uj /k(u)) w i th respect to the w a v e -

number k ( (o ) :

dc

(0dc
dkU)

Upon rearrangement this becomes

dm
tfirnrj"

or

tp

dc

This equation shows that as long as the phase velocity does

not depend on the wavelength, dc(o>)/dk(to) = 0, and the group

velocity is identical to the phase velocity. The group

velocity w i l l differ from the phase velocity, however, if

any dispersion occurs.
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Uti l i ty

R a y l e i g h w a v e ve loc i ty d i spe rs ion is most sens i t i ve

to changes in the d is t r ibut ion of shear wave ve loc i t y w i th

depth in the ear th (Brune and Dorman 1963; Der et al.

1970) . Th i s dependency makes i t poss ib le to use d i s p e r s i o n

measurements to model the ave rage shear w a v e ve loc i t y

d is t r ibut ion wi th depth be tween appropr ia te ly chosen pa i rs

of s e i s m o g r a p h s ta t ions . Model ing proceeds by choos ing an

initial model of ve loc i t y d is t r ibut ion, comput ing the phase

and g roup ve loc i t y d i s p e r s i o n wh i ch this model wou ld

genera te , compar ing the computed d i spe rs i on w i th the actua l

o b s e r v e d d i spe rs i on , and then repeatedly mod i fy ing the

ve loc i t y d is t r ibut ion model until a s a t i s f a c t o r y f i t be tween

the computed and obse rved d i s p e r s i o n is obta ined. The long

w a v e l e n g t h s of the s u r f a c e w a v e s wh ich d i spe rse blur the

deta i ls of ea r th s t ruc tu re both la te ra l l y and ve r t i ca l l y ,

jus t i f y ing only a v e r a g e mode ls . Because of this, i t is

impor tant to res t r i c t the cho ice of w a v e t rave l paths to a

s ing le geo log ic p rov ince i f poss ib le .

The shear w a v e ve loc i t y mode ls d e r i v e d in this way

complement the mode ls of c o m p r e s s i o n a l wave ve loc i t y

d is t r ibu t ion ob ta ined by re f rac t i on pro f i l ing . Fur thermore,

low se i sm ic ve loc i ty zones , wh ich are d i f f i cu l t to detect by

conven t iona l r e f r ac t i on and re f lec t ion methods, show up wel l

in mode ls de r i ved th rough d i spe rs i on measuremen ts . Ray le i gh

w a v e t ra ins are eas i l y d i s c e r n e d on the l ong -pe r i od ver t i ca l
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component s e i s m o m e t e r s opera ted by the W o r l d - W i d e S tandard

S e i s m o g r a p h Network ( W W S S N ) . The s e i s m o g r a m s a re

i n e x p e n s i v e and re la t i ve ly easy to obta in ; the digital

a n a l y s i s techn iques n e c e s s a r y to measure group and phase

ve loc i t y d i spe rs ion and genera te mode ls are a l ready

es tab l i shed . The paths connec t ing W W S S N s ta t ion pa i rs

prov ide a network of remote geophys i ca l coverage that is

o f ten d i f f i cu l t to obta in o the rw i se . Al l of these

a d v a n t a g e s combine to make R a y l e i g h w a v e d i spe rs i on a n a l y s i s

an ideal technique for s tudying the l i thopher ic s t ruc ture of

an area as large and i n a c c e s i b l e as the interior of South

Amer i ca .



DATA ANALYSIS

In this study, the procedure used for obta in ing

mode ls o f the shear wave ve loc i t y d is t r ibu t ion w i th depth

be low the South Amer i can p l a t f o rm can be d iv ided into three

genera l s teps. The f i rs t s tep i n v o l v e d chosing a set of

Rayle igh wave data that would provide suitable coverage of

the South A m e r i c a n p la t fo rm. The second step i n v o l v e d

measu r ing the fundamenta l mode g roup and phase ve loc i t y

d i s p e r s i o n that these d a t a s d i sp l ay . The f inal s tep

i n v o l v e d inver t ing the d i s p e r s i o n measu remen ts to ob ta i n

shear wave v e l o c i t y - d e p t h mode ls .

Data S e l e c t i o n

The l o c a t i o n s of the South A m e r i c a n members of the

W W S S N s ta t i ons c h o s e n for use in th is study are shown in

F igure 11. The l a t i t u d e s , l ong i tudes , and e l e v a t i o n s of

these s ta t i ons are g i v e n in Table 1. W i t h the e x c e p t i o n of

the B r a s i l i a s t a t i on , e a c h of these s ta t i ons l ies near the

per imeter of the South A m e r i c a n p la t fo rm, and the paths

connec t ing them p rov ide genera l c o v e r a g e of the s tab le

c ra ton i c por t ion of South A m e r i c a . These paths are a l s o

s h o w n in F igure 11. F igure 12 s h o w s the South A m e r i c a n two -

s ta t ion paths a long w h i c h Sherburne ( 1 9 7 4 ) measured Ray le igh

w a v e phase v e l o c i t y d i s p e r s i o n . H is resu l ts have a l so been

67
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T a b l e 1

Lat i tude, Longi tude, and E leva t ion of S e i s m o g r a o h
Sta t ions Used in Th is Study

Code

&DF

BOG

C A R

IPA

IPS

MAT

TRN

QUI

Sta t ion
Name

Brasi l i a

Bogota

C a r a c a s

La P la ta

La Paz

Nata l

T r i n idad

Qui to

Lat i tude

15°

4°

10°

34°

76°

5°

10°

0°

39 '

3 7 '

30 '

5 4 '

3? '

0 7 '

38 '

12 '

50"

2 3 "

24"

32 "

58"

00"

56"

0 5 "

S

N

N

S

S

S

N

S

Longi

47°

74°

66°

57°

68°

35°

61°

78°

5 4 '

0 3 '

5 5 '

5 5 '

05 '

0 2 '

2 4 -

30 '

tude

12"

54"

39"

5 5 "

54"

00"

10"

02"

El evat i on

W

W

VI

W

W

W

W

W

1 ,260

2,658

1 ,035

14

3,292

10

24

2 ,837

m

m

m

m

m

m

m

m
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-30°
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Figure 11. Locations of WWSSN seismograph stations used in
this study and the paths over which Rayleigh wave
dispersion measurements were made.



70

90° 60°
I I

30°-

30°-

RDJ

30°

500 1000 1500 2OOOKM

-30e

-30°

90° 60° 30°

Figure 12. Paths over which Sherburne (1974) made Rayleigh
wave dispersion measurements.
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i nve r ted to p rov ide add i t i ona l shear w a v e ve loc i ty mode ls

a c r o s s the p la t fo rm.

Barr ing lateral r e f ac t i ons , a g i v e n point on the

wave f ron t of a su r face wave desc r ibes a great c i rc le as the

w a v e spreads over the ea r th ' s sur face. To obta in su i tab le

Ray le i gh wave data, the great c i rc le path connect ing each

s t a t i o n pair was p ro jec ted into an a rea of known se ismic i t y

and a Marsden square computer sea rch of the se ismic i t y tapes

p rov i ded by the Nat ional Geophys i ca l and S o l a r - T e r r e s t r i a l

Data Center, NOAA, was performed around the intersect ion of

the p ro jec ted path and the ac t i ve area. Each s e a r c h

gene ra ted a l ist of ea r thquake ep icen te rs , o r ig in t imes ,

magn i t udes , and depths to focus . The computer s e a r c h e s were

l im i ted to e a r t h q u a k e s recorded sine 1965. V i sua l

inspect ion of the actual records was further l imited to

even ts w i th magn i tudes g rea ter than f i ve on the R ich te r

s c a l e . The l ong -pe r i od ver t i ca l component s e i s m o g r a m

recorded at each s ta t i on of a g i v e n s ta t ion pair was then

e x a m i n e d fo r c lea r , no i se - f ree Ray le igh w a v e t ra ins that

wou ld be suitable for digi t izat ion.

Once a useab le e a r t h q u a k e was loca ted , the great

c i rc le d is tance and a z i m u t h f rom the ep icenter to each
v!'

station of the station p a i r was computed. This was done

first, to assure the azimuth of the event actually lies

within a few degrees of the great circle path connecting the

station pair, and second, to establish the distances that
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would later be needed for wave velocity dRterminations. A

list of the earthquakes chosen for each station pair, with

their origin times, distances, and azimuths, is provided in

Table 2.

The peaks, troughs, and inflection points of each

seismogram were digitized by hand on a tablet digitizer.

Using the interpolation technique of W i g g i n s (1976), the

irregularly sampled seismograms were d i g i t a l l y reconstructed

by first fitting a piecewise-continuous cubic curve to the

digitized points, and then resampling the curve at a rate of

one sample per second. The reconstructed seismograms were

also plotted and v i s u a l l y compared to the original paper

records to insure the accuracy of the interpolation

routine. The seismograms shown in Figure. 10 are taken from

a series of these plots.

Pi s per si on" 'Analysis

The d i g i t a l processing technique used to measure the

group velocity dispersion between the earthquake epicenter

and the stations in this study was the moving window

technique of Landisman et al . (1969). In this method, the

range of wave periods over which the dispersion w i l l be

measured is specified. For each period of interest, a

computing routine defines a rectangular time window whose

length is proportional to the product of the period and a

fixed window factor. This window then moves across the

digitized seismogram in a series of time steps which
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Table 2

Data for Earthquakes Used in This Study

Eve nt

BZB1

Station

BDF
LPB

Event

SNQ1

Station

NAT
QUI

Event

SNQ2

Station

NAT
QUI

Event

NBG1

Station

NAT
BOG

B r a s i l i a - L a Paz

Date Time Latitude

6-14-77 21 :39 :35.2 14.120° S

Epicenter-Station Distance

3,598.77 km
5,747.64 km

Natal-Quito

Date Time Latitude

3-20-66 01 :42:49.9 0.600° N

Epicenter-Station Distance

7,271 .79 km
12,087.00 km

Date Time Latitude

2- 5-67 18:55:47.1 5.500° S

Epicenter-Station Distance

2,616.94 km
7,471 .10 km

Natal -Bogota

Date Time Latitude

5-13-68 21 :04:13.0 12.975° S

Epicenter-Station Distance

2,391 .84 km
6,835.43 km

Longi tude

14.433° W

Azimuth

262.971°
259.974°

Longi tude

30.200° E

Azimuth

264.134°
269.991 °

Longi tude

1 1 .400° W

Azimuth

269.812°
272.088°

Longi tude

14.721° W

Azimuth

289.439°
282.584°
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Eve nt

NBG

Stat ion

NAT
BOG

Event

NBG3

Sta t ion

NAT
BOG

Event

NBG4

Stati on

NAT
BOG

Event

NBG5

S ta t ion

NAT
BOG

Nat

Date

11-29-70

E p 1 c e

Date

9- 9 -73

Epice

Date

2 - 2 5 - 7 4

Ep ice

Date

2 - 2 7 - 7 4

Ep ice

a l -Bogota (cont i

Time

06:01 :18.7

nter-Stat ion Di s

2 , 4 1 4 . 3 2 km
6 , 8 7 2 . 7 1 km

Time

0 8 : 3 2 : 1 4 . 8

nued)

Lat i tude

11 .681° S

tance

Lati tude

7.112° S

n ter -Sta t ion D is tance

2,463.38 km
6 , 9 1 6 . 5 7 km

Time

01 : 3 2 : 1 7 . 3

nter-Stat i on Di s

2 , 4 9 2 . 1 4 km
6 , 9 5 2 . 9 3 km

Time

0 4 : 2 8 : 3 0 . 3

n te r -S ta t ion Di s

2 , 4 8 3 . 6 2 km
6 , 9 4 3 . 7 0 km

Lati tude

11 .518° S

tance

Lat i tude

11 .604° S

tance

Longi tude

14.087° W

Azimuth

2 8 5 . 7 3 7 °
281 .700°

Longi tude

12.841° W

Az imuth

273.878°
279 .005°

Longi tude

13.302° W

Azimuth

284 .696°
281 .379°

Longi tude

13.406° W

Az imuth

284 .981°
281 .453°
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Event

CQI1

Stat ion

C A R
QUI

Event

NCA1

Stat ion

NAT
CAR

Eve nt

NCA2

Sta t ion

NAT
C A R

Event

NLB1

Sta t ion

NAT
LPB

C a r a c a s - Q u i to

Date Time Latitude

11-16-65 1 5 : 2 4 : 4 3 . 0 31.000° N

Ep icen te r -S ta t i on D is tance

3 , 4 6 7 . 3 1 km
5,208 .68 km

N a t a l - C a r a c a s

Date T ime Lat i tude

5-13 -68 21 :04:13.0 12 .975° S

Ep i cen te r -S ta t i on D is tance

2,391 .84 km
6 , 3 1 9 . 6 3 km

Date Time Lat i tude

11- 5 -75 1 6 : 5 5 : 2 4 . 4 14.305° S

Ep icen te r -S ta t i on D i s t a n c e

2 , 5 7 7 . 0 3 km
6 , 5 0 7 . 2 5 km

Na ta l - La Paz

Date Time Lat i tude

9- 1-68 0 4 : 4 8 : 5 2 . 2 0 .995° S

Ep i cen te r -S ta t i on D i s t a n c e

1 , 2 5 3 . 5 8 km
5 ,071 .52 km

Longi tude

41 .500° W

Azimuth

2 3 4 . 6 4 5 °
2 3 5 . 5 8 7 °

Longi tude

14.721° W

Azimuth

289.439°
291 .813°

Lo ngi tude

13.397° W

Azimuth

291 .063°
291 .975°

Longi tude

2 4 . 5 1 2 ° W

Az imuth

248.488°
2 4 7 . 7 3 3 °
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Nata l -La Paz (cont inued)

Eve nt

NLB3

Stat ion

NAT
LPB

Event

NLB5

Stat ion

NAT
LPB

Event

LAN1

Stat ion

LPA
NAT

Eve nt

LAN2

Sta t ion

LPA
NAT

Date

4- 7 -70

Epi ce

Date

8-22 -73

Epi ce

Date

5- 2 -73

Epi ce

Date

8-11-75

Ep ice

Time

15 :36 :19 .2

nter-Stat ion Di sta

1 ,259 .65 km
5 ,076 .45 km

Time

2 2 : 1 5 : 1 7 . 3

nter-Stat ion Di sta

1 , 2 4 7 . 2 7 km
5 , 0 5 5 . 2 7 km

La P la ta -Nata l

Time

1 3 : 3 9 : 4 5 . 4

nter-Stat ion Di sta

2 ,140 .84 km
6 ,189 .72 km

Time

0 8 : 3 6 : 4 4 . 8

nter-Stat ion Di sta

1 ,909.46 km
5 , 9 5 5 . 10 km

Latitude

0 . 2 7 3 ° S

nee

Lati tude

0.598° N

nee

Lati tude

48.908° S

nee

Lat i tude

4 5 . 7 5 6 ° S

nee

Longi tude

24 .763° W

Azimuth

244.698°
246.994°

Longi tude

2 5 . 3 4 7 ° W

Azimuth

239 .488°
2 4 5 . 9 8 6 °

Longi tude

75.840° W

Az imuth

50 .033°
52.026°

Longi tude

75 .471° W

Az imuth

5 7 . 0 2 4 °
53 .431°
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La Paz Caracas

Event

LPC2

Station

LPB
CAR

Event

LPC4

Station

LPB
CAR

Event

LPC6

Station

LPB
CAR

Eve nt

LPC7

Station

LPB
CAR

Date

9-26-67

Eplce

Date

7-31-71

Eplce

Date

12-29-72

Epi.ce

Date

7-16-76

Epi ce

Time

11:11:23

nter-Statlo

1,904.89
4,891 .46

Time

22:08:48

nter-Statio

1 ,786.23
4,764.77

Time

04:51 :01

nter-Statio

1 ,580.33
4,560.39

Time

15:59:32

nter-Stati o

1 ,690.78
4,669.90

Latitude

.7 33.600° S

n Distance

km
km

Latitude

.0 32.362° S

n Distance

km
km

Lati tude

.6 30.556° S

n Distance

km
km

Lati tude

.3 31 .523° S

n D1 stance

km
km

Longi tude

70.500° W

Azimuth

7.844°
5.061°

Longi tude

71 .533° W

Azimuth

11 .987 °
6.667°

Longi tude

71 .021° W

Azimuth

11 .491°
6.140°

Longi tude

71 .305° W.

Azimuth

11 .806°
6.441°
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Event

SCL1

Station

CAR
LPA

Event

NLA3

Station

NAT
LPA

Caracas-La Plata

Date Time Latitude

9- 4-63 13:32:12.3 71 .300° N

Epicenter-Station Distance

6,767.84 km
11 ,837.70 km

Natal-La Plata

Date Time Latitude

1-13-74 21 :31 :39.4 3.663° N

Epicenter-Station Distance

1 ,043.27 km
5,078.45 km

Longi tude

73:100° W

Azimuth

173.0^49°
167.042°

Longi tude

31 .569° W

Azimuth

201 .666°
210.677_°
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correspond to a series of constant increments in group

velocity. At each step in time, the seismogram is

m u l t i p l i e d by the window, yielding a truncated fragment of

data centered on the group velocity of interest. The

fragment is then mutiplied, or modulated, by a
2

symmetrical cos function. This modulation gives greatest

weight to that portion of the seismogram fragment which

corresponds to the group arrival. It also reduces the

prominent side lobes which would otherwise appear in the

frequency domain when such a sharply truncated signal is

Fourier analyzed. The routine next evaluates the Fourier

transform of the modulated fragment and returns an

instantaneous spectral amplitude, which is normalized to 100

decibels. For each period, a set of these amplitudes, one

for each of the increments of group velocity examined, is

produced. These steps are then repeated for each period in

the specified period range. As each amplitude is printed as

a function of period and group velocity, a two-dimensional

numerical display in matrix form is generated. These data

are contoured, and a group velocity dispersion curve is
x

d rawn along the c res t of the con tou red va lues .

Increas ing the w i n d o w length in propor t ion to
\

i n c r e a s i n g wave pe r iod is done to keep the f requency

resolut ion re la t ive ly constant ac ross the range of

per iods. A w indow leng th of three t imes the per iod of

in terest p rov ided good resu l ts in th is study. Figure 13
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65 68 61 66 66

KMIOO (KC)

Figure 13. Samp le computer output for the mov ing w indow
a n a l y s i s . Group ve l oc i t y de te rmina t ions a re
shown by dots .
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presents a sample computer output of the moving w indow

ana lys is with group ve loc i ty determinations shown by dots.

Once the group veloci ty d ispers ion from the

earthquake epicenter to the f i rst and second s ta t ions of a

stat ion pair is determined, the group velocity dispersion

along the path connect ing the two stat ions is obta ined by

simply computing the range of group delays between the two

stat ions, and d iv id ing the delays into the in t rasta t ion

di s tance.

The cross-mult ipl ication technique of Bloch and Hales

(1968) was used to determine the phase ve loc i ty d i spe rs ion

between each pair of s tat ions. In order to apply this

technique, it is necessary to know the range of group

arr iva l t imes of the fundamental mode Rayleigh w a v e per iods

for both stations. This informat ion is taken from the group

veloc i ty d i spe rs ion cu rves obta ined prev ious ly by mov ing

window ana lys i s . Once these times are known, a comput ing

routine is employed that w indows both digi t ized se ismogram,

centering each window at the group arr ival time of the

period of interest. W i n d o w i n g suppresses those port ions of

the se lsmograms outside the interval of expected ar r iva l of

the fundamental mode group, e l iminat ing higher mode

inter ference and none- least - t ime path a r r i va l s .

As in the mov ing w indow technique of L a n d i s m a n et al .

(1969) , a symmetr ic, var iab le length cos2 func t ion is used

to w indow the digit ized se ismograms. In this case , a w i n d o w
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length f ive t imes each per iod of interest produced good

results. Both sejsmogram fragments are narrow band-pass

f i l tered for the appropr iate period to obtain two

essent ia l l y single frequency w a v e s separated by a phase

shift . Two- th i rds of a wave leng th of one of the f i l tered

seismograms is then cross-mul t ip l ied with the trace of the
•*i

second f i l tered se ismogram over a range of time shi f ts.

Each time shift cor responds to an increment in phase

veloc i ty . The resul ts of the point-by-point c ross

mul t ip l icat ion at each time shift are summed and normal ized,

and printed as an ampl i tude at the appropr ia te per iod and

phase ve loc i ty in a matr ix format identical to that used for

group ve loc i ty ana lys i s . These ampl i tudes reach a

normal ized maximum of 99 dec ibe ls when the two f i l tered

se ismogram f ragments are per fect ly in phase. W h e n the w a v e s

are 180° out of phase , a minimum of -99 decibels is printed.

As the two f i l tered w a v e s are time shif ted wi th

respect to each other, the waves a l ternately go in and out

of phase severa l t imes. Th is causes a ser ies of semi-

paral le l ampli tude bands to be printed on the per fod-phase

ve loc i ty d iagram. The appropr ia te phase ve loc i ty d ispers ion

curve is chosen by p ick ing the maximum va lues that l ie a long

the crest of the band wh ich d isp lays reasonab le phase

ve loc i t ies at long per iods. Figure 14 i l lustrates the

resul ts of a c ross -mu l t i p l i ca t i on ana l ys i s .
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Figure 14. Sample computer output of the c ross -mu l t i p l i ca t i on
technique. Phase ve loc i ty determinat ions are
shown by dots.
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For each two-s ta t ion paths, anywhere f rom one\ to f i ve

seismic events were ana lyzed for group and phase ve loc i t y

d ispers ion by the proceeding methods. To obta in a s ing le

representa t ive group and phase ve loc i ty d i s p e r s i o n curve

over each path, a l eas t - squa res f i t to the two r e s p e c t i v e

groups of data was computed. Th is procedure y ie lded two
•*t

data sets for each two -s ta t i on path e x a m i n e d in the study:

(1) group ve loc i t ies for a per iod range of approx imate ly 11

to 91 seconds , at 2 -second i n te r va l s , and (2) co r respond ing

phase ve loc i t i es for approx imate ly the same per iod range.

(The Ray le igh wave t ra ins a n a l y z e d in the i n v e s t i g a t i o n

rarely a l l owed the reso lu t ion of phase ve l oc i t i e s at pe r iods

less than 25 s e c o n d s . ) These d i spe rs ion c u r v e s are shown in

Figures 15 through 37. The t w o - s t a t i o n phase ve loc i t y

d i spe rs ion c u r v e s obta ined by Sherburne ( 1 9 7 4 ) are shown in

Figure 38 through 43. The s ingle s ta t ion ve loc i t y

d i spe rs i on data, the ca l cu l a ted in te rs ta t ion group ve l oc i t y

d ispers ion data, and the in te rs ta t ion phase ve loc i t y

d i s p e r s i o n data measu red over each two -s ta t i on path fo r each

event are tabu la ted in A p p e n d i x A. The l e a s t - s q u a r e s f i t ted

group and phase veloci ty d ispers ion data are a lso included

here. The t w o - s t a t i o n phase ve loc i ty d i s p e r s i o n data

obta ined by Sherburne are tabu la ted in A p p e n d i x B.

D i spe rs i on Invers ion

The f inal s tep in the procedure of a n a l y z i n g R a y l e i g h

wave d i spers ion data is to use the d i s p e r s i o n measu remen ts
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to derive earth mp.de 1 s whose parameters can be related to

actual geologic structures. In order to do this, it is

first necessary to have available a means of computing a

range of theoretical group and phase velocity dispersion

values from an appropriate earth model. Such a model should

be able to represent the variation of elastic properties

with depth that can be expected to exist within the earth.

Once a method of solving this so-called "forward problem" is

established, it is then necessary to have a consistent means

of modifying the earth model to bring the theoretical

dispersion values it produces into correspondence with the

values actually observed. The process of determining a

model whose properties match a given set of observations is

cal1ed i nversi on.

Forward Problem

Thomson (1950) and Haskell (1953) derived a matrix

method of calculating the phase and group velocity

dispersion of surface waves propagated across a stack of

homogeneous elastic layers overlying a homogeneous half-

space. Their method evaluates the wavenumbers

kn(
w ). K-j(un).

 k9^n^' * * " kn/wn) that cnaracteri ze the

fundamental and higher modes of surface waves propagating in

a horizontal direction across the multiple layers. This is

done by progressively solving the boundry conditions

(appropriate to either Rayleigh or Love waves) that exist

within the stack of layers in such a way that the general
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equat ion of mot ion for e las t i c media is sa t i s f i ed over a

range of frequencies u . Once the corresponding range of

wavenumbers k for a s ingle mode is determined, the range of

phase v e l o c i t i e s c = u
n/l<n for that mode immediate ly

f o l l o w s . The range of group ve loc i t ies Un can then be

ca l cu la ted from this in format ion. By spec i f y ing the
•*i

material properties of the various homogeneous layers

(models parameters of thickness, Poisson's ratio,

congressional wave velocity, shear wave velocity, and

density), a large variety of seismic velocity distributions

within the earth can be approximated.

Inverse Problem

The relationship between a set of M model parameters,

x., and N observables, y^, can be written as a linear system

of equations:

yi - ̂  FijXj i . l, N .

In this study, this system of equations would represent the

Haskel1-Thomson relationship between the layered model and

the predicted dispersion values. The inverse problem

involves finding a set of model parameters, x • , which w i l l
J

gene ra te a set of p red ic ted data , y i , that agrees as c l o s e l y

as requ i red w i th the actual data. These model p a r a m e t e r s

are fur ther c o n s t r a i n e d to be r e a s o n a b l e ear th - l i ke

va lues . A s tanda rd means of deal ing w i th prob lems of this

nature is to wr i te the re la t i onsh ip be tween model p a r a m e t e r s
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and observables as a system of simultaneous linear

equations, and then solve for the desired x.. The Haskell-
J

Thomson relationship is not linear in the model

parameters. It can be linearly approximated, however, by

expanding the relationship in a Taylor series about some

initial model, XQ, and ignoring second and higher order

terms :

M 3Fi 'yi :*• z Fij xo + jli TX-^XJ - xo>

(+ higher order terms) .

This can be wr i t ten in vector form as

y = y0 + A(X - x0)

or

AY = A Ax .

(Here lower case le t te rs represent v e c t o r s , and upper c a s e

le t ters represent m a t r i c e s . ) In the las t equat ion Ay

represents an N-length vector conta in ing the d i f f e r e n c e s

be tween the ac tua l data y and the mode l -p red ic ted data y , A

rep resen t s an NxM mat r i x of par t ia l d e r i v a t i v e s of the

funct ion F^^ eva lua ted at the initial model parameters XQ ,

and #< represents an M-length vector conta in ing the

d i f f e r e n c e s be tween a des i r ed set of model pa rame te rs x and

the initial model p a r a m e t e r s x . Once th is l inear

app rox ima t i on has been made, the inve rse problem becomes
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f ind ing a vector AX w h i c h m i n i m i z e s the d i f f e rence ^or

"er ror " ) . • t '

e = AAX - Ay .

Assuming that the number of data values N is greater than

the number of model parameters M, the solution for Ax which

minimizes the squared error e e is g i v e n by

Ax = (ATA)"1 AT Ay (Jackson, 1972) .

The so lu t ion obta ined in th is way sa t i s f i es the least

s q u a r e s f i t c r i te r ion , but i t can d isp lay on la rge range of

va l ues . The method used in this study to c o n s t r a i n Ax to

s m o o t h e r , more s imp le so lu t i ons was to s imu l taneous ly

require the m i n i m i z a t i o n of f i rst order d i f f e r e n c e s be tween

ad jacen t so lu t i on e lemen ts (i.e., m in im i ze the f i rs t

d e r i v a t i v e of the so lu t ion ) . Ma thema t i ca l l y , adding the

s m o o t h n e s s c r i t e r i on i n v o l v e s min imiz ing the quant i ty

CM a ^ c J c . a M /x x \2 - , «c-rn 11
|_ V ' P;£ e T P \f Jfy \* \ , i *u I J PEL." » ' J

N ~ c. ^ ""* I N

to g i ve a c o n s t r a i n e d so lu t ion of the fo rm:

AX = [(1 - B) ATA + 3 (K T K) ] " 1 ( 1 - 3) AT Ay ,

where
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KTK =

1 - 1 ^ 0 0

- 1 - 2 - 1 . 0

0 - 1 2 0

0 0 - 1 2

• • •

• • •

• • •

• • •

(Twomey , 1977 ;
Russell, 1980).

Once AX is known, the desired model parameters x follow by

adding the changes AX to the i n i t i a l model parameters x :

AX = x - x o '

X = X + AX .
0

The predicted observations generated by the model, x, are

computed and compared to the actual data. If the

difference, Ay, is s t i l l unacceptably large, the entire

process can be repeated, using x as a new i n i t i a l model.

Assuming the changes AX are sufficiently small, and given a

reasonable starting model, this process generally converges

Re soluti on

The general statement of the linearized forward

problem i s

Ay = AAX .
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Again assuming that N is greater than M, the NxM matrix, A,

can be decomposed into its constituent eigenvectors and

eigenvalues in order to vacilitate finding its inverse as

fol 1 ows :

A = UAV T ,

w h e r e U r e p r e s e n t s an NxM or thogona l ma t r i x of data

e i g e n v e c t o r s , V rep resen ts an MxN o r thogona l ma t r i x of model

e i g e n v e c t o r s , and A r e p r e s e n t s an MxM d iagonal m a t r i x of

e i g e n v a l u e s . Th i s i s c a l l e d the pr inc ipa l a x i s

d e c o m p o s i t i o n of A. The genera l l i nea r i n v e r s e of A in th is

form is

A"1 = H = V A ^ U 1 ( L a n c z o s , 1961) .

Once this inverse is known, a particular solution AX is

g i v e n by operating on the data vector AY:

= HAAX

AX

AX = VV TAX

The final equation of t h i s set shows that the solution

obtained, AX , is actually a product of the true solution AX

and the matrix VV . For mathematically underdetermi ned

systems (in which there are less e i g e n v a l u e s (in A) than

either model parameters M or data v a l u e s N), the matrix VV
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is often called the resolution matrix R. An i n d i v i d u a l

model parameter in the particular solution Ax , for example,

the kth parameter, can be interpreted as the result of a

convolution of the k row of R with the solution vector

Ax. If R is an identity matrix, the kth parameter of Axp

will exactly equal the k model parameter in AX. The full

solution Ax_ will be unique, and each model parameter in AX_

will be perfectly resolved. If R has non-zero elements

scattered along its rows, however, the k paramter in Axp

will be a weighted sum of several model paramters in Ax, and

the i n d i v i d u a l model parameters in Axp will no longer be

perfectly resolved. The extent to which R approaches the

identity matrix is a measure of the resolution that the data

Ay allows (Jackson, 1972). Since a surface wave of period T

propagating over a layered medium is in general influenced

by the elastic properties of a wide range of layers, it

cannot carry unique information about just one layer. Waves

whose periods are s i m i l a r will carry overlapping or

redundant information. Furthermore, the limited range of

periods investigated may carry little or no information

about, say, very shallow or very deep layers. Error in the

measurements compounds these problems. These shortcomings

show up as scatter in the resolution matrix, and li m i t e d

layer resolution in the final earth model.
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Model Interpretat i on

A 21- layer model of the upper 100 k i lometers of the

ear th was used as the s tar t ing model in each invers ion . The

model c o n s i s t e d of an upper two-k i lometer - th ick layer ,

ass i gned an initial shear wave ve loc i ty of 2.4 km/s

( represent ing an a v e r a g e sed imentary p la t form c o v e r ) ,

fo l lowed by 17 four -k i lometer - th ick layers and three 10-

ki l ometer - th ick layers , each a s s i g n e d on initial -shear w a v e

ve loc i ty of 4.0 km/s . A total th i ckness of 100 k i lometers

was chosen as the app rox ima te depth range over wh ich

Ray le igh waves of per iod 10-90 seconds are sens i t i ve . Only

the model parameter of shear ve loc i ty was a l lowed to vary in

the data i nve rs ion . The t h i ckness of each layer was kept

cons tan t . A P o i s s o n ' s rat io of 0 .25 was assumed for the

crust and upper mant le , and compress iona l wave ve loc i t i es

for the ind iv idual l a y e r s were ca l cu la ted f rom the der i ved

shear v e l o c i t i e s and P o i s s o n ' s rat io. Dens i t i es for the

laye rs were c a l c u l a t e d f rom the Na fe -Drake re la t ionsh ip

between density and compress iona l wave ve loc i t y and B i r c h ' s

1 aw (Bi rch, 1964) .

In theory , no more in fo rmat ion shou ld be g i v e n by

s imu l taneous ly inver t ing group ve loc i ty d i spe rs ion data w i th

phase ve loc i t y d i spe rs i on data than is g i v e n by inver t ing

phase ve loc i t y data a lone. Th is is b e c a u s e the group

ve loc i t y can be uniquely de r i ved f rom the phase ve loc i t y

(see ear l ie r d i s c u s s i o n ) . H o w e v e r , s i nce group ve loc i t i es
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are determined Independent ly of phase ve loc i t i es in this

study, the errors the measurements contain should be

somewhat d i f ferent , and the group ve loc i t i es wi l l act as

semi- independent in format ion. The group ve loc i ty d i spe rs ion

may a l so be in f luenced in a sl ight ly d i f ferent manner or

degree by the model parameters than is the phase ve loc i t y ,

and inc luding group ve loc i t i es in the invers ion may i nc rease

the def in i t ion of the ear th model. For this reason group

ve loc i t y d i spe rs ion data was inverted together w i th phase

ve loc i ty data whenever both sets of data were a v a i l a b l e .

It is unrea l is t ic to assume that long-per iod Ray le igh

waves are suff ic ient ly sens i t ive to changes in shear wave

ve loc i t y w i th depth to reso l ve ind iv idual four -k i lometer -

th ick layers in the ear th (Der et al ., 1970) . A s s i g n i n g a

re la t i ve ly large number of thin layers is a means of

a l l ow ing the i nve rs i on to determine ranges of chang ing shear

v e l o c i t i e s wi th depth. Since the shear ve loc i t i es

cha rac te r i z i ng ad jacent l aye rs a re a v e r a g e d , mode ls

cons is t i ng of numerous layers cannot show abrupt c h a n g e s

between w e l l - d e f i n e d zones of constant ve loc i t y . Instead,

major s t ructura l d i v i s i ons , such as the M-d iscont inu i ty ,

show up as zones of changing velocity, and cannot be

reso l ved better than w i th in perhaps ± four k i lometers .

(Both layer t h i c k n e s s e s and shear wave v e l o c i t i e s can be

a l l o w e d to vary s imu l taneous ly during i nve rs ion , but by

doing this, no es t ima tes of the degree of uncer ta in ty in
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shear ve l oc i t i e s in a g i v e n layer can be made [Russe l l ,

1980].)

In this s tudy, a g raph ica l d isp lay of the inc reas ing

uncertainty in shear w a v e ve loc i ty that occurs with

increasing depth resolut ion in the layered model was

genera ted by the edgehog method ( J a c k s o n , 1973) . J a c k s o n

presen ted a method of f ind ing both the max imum and minimum

cont r ibu t ions f rom the k model e igenvec to r which, when

added to an opt imum mode l , genera te a >pai r of ext reme or

marginal mode ls that jus t bare ly sa t i s f y both the least

squares f i t and smoo thness c r i te r ia ment ioned ear l ie r . A

se r ies of these models are genera ted by separa te ly adding

the con t r i bu t i ons f rom the f i rs t , second, third, etc. model

e igenvec to r to the opt imum mode l , and plot t ing the

resu l t s . The edge mode ls genera ted by cont r ibu t ions f rom

the f i rst model e i g e n v e c t o r show the extent to wh ich the

ent i re shear wave ve loc i t y -dep th cu rve may be either

i n c r e a s e d or dec reased w i thout v i o la t i ng either the leas t

s q u a r e s f i t or smoo thness cr i ter ia . The edge models

genera ted from con t r i bu t ions f rom the second model

e i genvec to r ind ica te the extent to w h i c h the shear ve loc i ty

in the upper part of the model may be inc reased if the

ve loc i t y in the lower par t of the model is dec reased (or

v i ce v e r s a ) wh i le still honor ing the data. These par t icu lar

edge mode ls form na r row e n v e l o p e s about the opt imum model.

As the order of the e i g e n v e c t o r s used to genera te the edge
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models is increased, the edge models form wider and wider

spread ing enve lopes pinched together at smaller and smal ler

in te rva ls . Accord ing to Jackson, the degree of layer

resolut ion is related to the th ickness of the ind iv idual

enve lopes , and the degree of uncertainty in shear ve loc i t y

is re la ted to the spread in ve loc i ty ac ross an indiv idual

enve lope . In a sense , each edge model pair spans the range

of potential shear ve loc i ty -depth models that can sa t i s f y

the data, using the spec i f i ed number of model

e igenvec to rs . F igures 44a and 44b show the opt imum model

and three sets of edge model pa i rs , cor respond ing to

contr ibut ions from the third, fourth, and f i f th model

e i g e n v e c t o r s , for the two -s ta t i on path TRN-LPB. The pat tern

of increas ing enve lope w id th ( inc reas ing uncer ta in ty ) w i th

inc reas ing e n v e l o p e number ( i nc reas ing layer reso lu t ion) can

be c lear l y seen. The edge models wh ich show the max imum

accep tab le uncerta inty in shear ve loc i ty in a g i v e n model

can prov ide sub jec t i ve aid in choos ing the pos i t ion of major

layer boundar ies , such as the M-discont inui ty be tween the

crust and upper mantle. Each of the optimum shear wave

ve loc i t y -dep th models repor ted in th is study is shown

together w i th the edge model pair wh ich d isp lays the m a x i m u m

accep tab le uncer ta in ty in shear ve loc i ty .

Final ly, it is important to remember that the mode ls

obta ined by measur ing and inver t ing Ray le igh w a v e d i s p e r s i o n

between two s ta t ions represent b road lateral a v e r a g e s of the
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crustal structure between the stations, as well as vertical

averages. The dispersion measured between two stations is

influenced by all the variations in elastic properties in

the earth along the path, but only one model can be derived

from the measurements.



RESULTS

The two-station paths over which shear wave velocity-

depth models were derived in this study may be i n i t i a l l y

combined into four groups for the purposes of comparison and

discussion. The first group ("Northern platform") includes

three paths which cross the northern quarter of the South

American platform. These three paths radiate in a west-

northwesterly direction from Natal to Caracas, Bogota, and

Quito. The second group ("Southern platform") includes

three paths which cross the central and southeastern

portions of the South American platform. Two of these paths

extend in a southwesterly direction from Natal to La Paz and

La Plata, and one extends due west from Brasilia to I.a

Paz. The third group ("Central platform") includes three

paths which cross the length of the South American platform

from north to south. Two of thes paths extend from Trinidad

south-southeastward to La Plata and Rio de Janeiro, and one

extends southeastward from Caracas to La Plata. The fourth

group ("Northwestern platform") includes four paths which

cross the northwestern lobe of the South American

platform. Three of these paths radiate south to

southwestward from Caracas to Quito, Arequipa, and La Paz.

One path extends from Trinidad to La Paz.

128
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All of these paths are shown in F igures 11 and 12.

T a k e n together , the 13 paths provide general coverage of

near ly the ent i re South A m e r i c a n p lat form. Since al l but

one of the s e i s m o g r a p h s ta t ions lie on the perimeter of the

p la t fo rm, the paths connecting the stat ions are long and

usual ly t raverse more than one cra ton ic area or

i n t r a c r a t o n i c / p e r i c r a t o n i c basin. This leads to an

unavo idab le averaging, over potent ia l ly d i f ferent types or

t h i c k n e s s e s of crust . N e v e r t h e l e s s , i f su f f ic ient ly broad

d i f f e rences in c rus ta l s t ructure ex is t beneath the p la t fo rm,

the shear ve loc i t y -dep th mode ls should ref lect i t .

Nor thern P la t fo rm

The path N A T - C A R l ies along nearly the entire

nor theas te rn coas t o f South Amer i ca , ex tending 3,931

k i l omete rs f rom Na ta l , B raz i l , to C a r a c a s , Venezue la . Part

of the path l ies on the cont inental shel f off the northern

coas t of B raz i l . The path r ega ins land just north of the

Amazon R iver mouth, near the B raz i1 -F rench Gu iana border ,

and c r o s s e s French G u i a n a , Sur inam, nor thern Guyana, and

no r theas te rn Venezue la . Over i ts length, the path N A T - C A R

c r o s s e s the extreme northern end of the At lant ic shield, the

o f f sho re e x t e n s i o n s (?) of the Parna iba bas in , the Sao Lu is

c ra ton , and the A m a z o n R i ve r bas in , the entire nor thern s ide

of the Guyana sh ie ld , and a deep fo re land /marg ina l f au l t ed

b a s i n between the Guyana s h i e l d and the Eastern co rd i l l e ra

of nor theas ten V e n e z u e l a . Of all the paths i nves t i ga ted in
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th is study, N A T - C A R l ies c loses t to the p a s s i v e At lant ic

marg in of South Amer ica . It in tersects both the Amazon

R i v e r and the Taka tu au lacogens , and it may be in f luenced by

the crust under other marginal fau l ted bas ins along the

coas t .

The shear wave ve loc i ty -depth model computed for this

path, based on invert ing both group and phase velocity

d i spe rs i on data for two even t s , suggests a crustal t h i ckness

of 38 + 4 k i lometers (Fig. 45 ) . The opt imum model shows a

near ly constant ve loc i t y grad ient to a depth of

approx imate ly 55 k i l ome te rs , and the M-d iscont inu i ty is

poor ly def ined. The edge mode ls a s s o c i a t e d w i t h the four th

model e igenvector aid in def in ing the crust-upper mant le

t rans i t ion . The a v e r a g e c rus ta l shear w a v e ve loc i t y , taken

from the opt imum model , ranges f rom 3.80 to 3.89 km/s , w h i c h

co r responds to an a v e r a g e compress iona l w a v e ve loc i ty range

of 6.58 to 6 .74 km/s and an a v e r a g e densi ty range of 2.86 to

2.91 g /cm . ( In al l c a s e s , P o i s s o n ' s rat io was assumed to

have a va lue of 0 .25 throughout the crust and upper

mant le . ) The optimum model a l so shows a s l ight low ve loc i t y

channel in the uppermost mant le (be tween 60 and 90

k i lometers depth) wh i ch is probably not rea l , based on the

resu l ts of other sh i e l d -a rea se i sm ic i nves t i ga t i ons . A low

ve loc i t y zone occur r ing at vary ing depths be low 60

k i lomete rs is present to one degree or another in near ly all

the ve loc i t y -dep th mode l s computed in this study. A
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complementary h igh ve loc i t y zone of ten occu rs immediately

above the low ve loc i ty zone, exaggera t i ng i ts appearance .

This pattern of unrea l i s t i ca l l y h igh /unrea l i s t i ca l l y low

shear wave ve loc i t i es in the uppermost mant le is more

pronounced in mode ls where both group and phase ve loc i t y

data have been inver ted together than in models de r i ved f rom

inver t ing phase v e l o c i t i e s alone. It is most ly a resul t of

the decrease in reso lu t ion w i th inc reas ing depth.

The path N A T - B O G , ex tend ing 4 ,466 k i lometers f rom

Nata l , Braz i l , to Bogota , Co lomb ia , c rosses the length of

nor thernmost B raz i l , g r a z e s the southern t ip of V e n e z u e l a ,

and cuts into half of centra l Co lomb ia . Over i ts length,

this path c rosses the extreme northern end of the At lant ic

sh ie ld , the northern end of the Parna iba bas in , the deep

eas te rnmos t end of the Amazon bas in , the length of the

southern Guyana sh ie ld , and the p la t fo rm c o v e r / f o r e l a n d

b a s i n between the sh ie ld and the Eastern co rd i l l e ra of

Co lomb ia .

The shear w a v e ve loc i t y -dep th model computed for the

path N A T - B O G , based on inver t ing both group and phase

v e l o c i t y d i spe rs i on data for f i ve even ts , sugges ts a c rus ta l

t h i c k n e s s of 46 + 4 k i lometers (Fig. 46). The opt imum model

shows a d is t inc t i n c r e a s e in the ve loc i t y -dep th g rad ien t of

this depth, and the edge models a s s o c i a t e d w i th the f i f t h

model e igenvec to r re f lec t th is increase. The ave rage

crusta l shear wave ve loc i t y ranges f rom 3.84 to 3.90 k m / s ,
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which corresponds to an average compressional wave velocity

range of 6.66 to 6.76 km/s and an average density range of

2.91 to 2.93 g/cm . The average upper mantle shear

velocity, down to 100 kilometers, is 4.60 km/s,

corresponding to an average compressional wave velocity of

7.97 km/s and an average mantle density of 3.30 g/cm .

These mantle parameters must be treated with caution, due to

the rather pronounced low velocity zone below 80 kilometers

required by the inversion. However, at these depths,

average velocities are probably more reliable than

velocities of i n d i v i d u a l layers.

The path NAT-QUI, extending 4,857 kilometers from

Natal, Brazil, to Quito, Ecuador, crosses all of northern

Brazil, southern Colombia, and part of northern Ecuador.

After crossing the extreme northern end of the Atlantic

shield and the northern edge of the Parnaiba basin, this

path cuts across nearly the entire length of the Amazon

basin, skirting the Central Brazilian shield to the

southeast and the Guyana shield to the northwest. It also

crosses the extensive platform cover and broad foreland

basin that lies between the western end of the Amazon basin

and the curve of the Andean cordillera through Colombia,

Ecuador, and Peru. A very small portion of the path cuts

the Eastern cordillera of Ecuador.

Two shear wave velocity-depth models were computed

for this path. One model (Fig. 47) was derived from
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inver t ing both group and phase ve loc i ty d i spe rs ion data

(obta ined in this study) for two events , and the other (Fig.

48) was de r i ved from invert ing only phase ve loc i ty

d i spe rs ion data ( taken f rom Sherburne [1974]) , a l so for two

events . The opt imum models agree remarkab ly wel l between

depths of 50 to 100 k i lometers ; d i f fe rences above 50

k i lometers are due to the inc lus ion of group ve loc i ty data

in the f irst i nve rs ion and an extended short per iod range of

phase ve loc i ty data in the second invers ion. The crustal

th i ckness es t ima ted from the data obta ined in this study is

5 0 + 4 k i lometers (Fig. 47 ) . The optimum model shows a

dist inct i n c r e a s e in shear ve loc i ty at this depth, fo l l ow ing

a roughly 20 -k i1omete r - th i ck zone of constant shear w a v e

ve loc i ty . The a v e r a g e c rus ta l shear wave ve loc i ty ranges

f rom 3.81 to 3.90 km /s , co r respond ing to an a v e r a g e

compress iona l w a v e ve loc i ty of 6.60 to 6.76 km/s and an

ave rage densi ty range of 2 .90 to 2.94 g / cm . The opt imum

upper mant le ve loc i ty -dep th model ( f rom 50 to 100

k i l o m e t e r s ) appears reasonab le , y ie ld ing an ave rage upper

mantle shear ve loc i t y of 4 .64 km/s. Th is c o r r e s p o n d s to an

a v e r a g e compress iona l wave ve loc i ty of 8.04 km/s , and an

average densi ty of 3 .32 g/cm 3 .

The M-d iscont inu i ty is l ess e a s i l y def ined in the

ve loc i t y -dep th model computed f rom She rbu rne ' s phase

ve loc i t y d i spe rs ion data. The opt imum model sugges ts a

sl ight ly sha l l ower crust approx ima te l y 46 + 4 k i l ome te rs



( W V O Mld3Q

CJ
UJ
CT)

137

r-
O)

<u
c
i-

oo

E
O
i_
It-

ID
+J
<8
•a

cn
c

(O
a.

0)

° cn
_• cn

UJ Q_
> ZD
Z O
—< CC

Q_
cn

O

cn
00 3
o

UJ
CD
O

cn
z:

i §
cc
I—
cc

o • s s • e " " " o • 2
(33S/WVI) XLI3Q13A 3SbHd

in
•P

<u

c
o
•»"

cn
i-
O)

oo

a>

=9
cn



138

th ick (Fig. 48 ) ; this p ick suppor ted by one of the edge

models a s s o c i a t e d wi th the fourth model e igenvector . The

a v e r a g e crustal shear w a v e ve loc i ty ranges f rom 3.92 to 3.98

km/s (s l ight ly higher than the prev ious range of v a l u e s )

w i th a cor respond ing average compress iona l wave ve loc i ty

range of 6.80 to 6.90 km/s and a density range of 2.93 to

2.96 g/cm3 . The average upper mantle shear ve loc i ty

es t imated from this model is 4 .59 km/s (s l ight ly lower than

the p rev ious es t ima te ) , y ie ld ing an average compress iona l

wave ve loc i t y of 7 .96 km/s and an average density of 3.30

g/cm 3 .

Southern P la t f o rm

The path NAT-LPB e s s e n t i a l l y b i sec ts the South

Amer i can p la t fo rm f rom east to wes t , ex tend ing 3,818

kil ometers f rom Na ta l , Braz i l , to La P a z , Bo l iv ia . The path

c r o s s e s all of central Brazi l and near ly all of centra l

Bo l iv ia . Ove r i ts length, the path NAT-LPB c r o s s e s the

northern At lan t ic shield, the southern end of the Parna iba

bas in , the ent i re length of the south-centra l Central

B raz i l i an sh ie ld , a nar row segment of the fo re land bas in

separa t ing the sh ie ld from the Andean co rd i l l e ra , and the

thrust belt of the Eastern cord i l l e ra of Bo l i v ia . O v e r a l l ,

this path represents a nearly pure sh ie ld path.

The shear w a v e ve loc i t y -dep th model computed for this

path was based on inver t ing both group and phase ve loc i ty

d ispers ion data for three even ts . Only two sets of phase
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velocity data were used because the third set (event NLB5)

was consistently and anomalously high. No explanation could

be found for these high values. The optimum model suggests

a crustal thickness of 42 ± 4 kilometers, based on the

position of a sharp increase in shear velocity (Fig. 49);

this pick is enforced by the more reasonable of the two edge

models associated with the fifth model eigenvector. The

average crustal shear velocity ranges from 3.76 to 3.82

km/s, which corresponds to an average compressional wave

velocity range of 6.51 to 6.62 km/s and an average density

range of 2.85 to 2.88 g/cm3. The velocity distribution with

depth in the upper mantle shown by this model is very

irregular (displaying the high/low pattern mentioned

earlier), but the averaged mantle shear velocity, which is

4.59 km/s, is reasonable. This corresponds to an average

compressional wave velocity of 7.96 km/s and an average

density of 3.30 g/cm3.

The path BDF-UPB, extending 2,160 kilometers from

B r a s i l i a , Brazil, to La Paz, Bolivia, crosses a portion of

central Brazil and most of central Bolivia. This path

crosses the length of the southernmost side of the Central

B r a z i l i a n shield, a narrow segment of the foreland basin

separating the shield from the Andean cordillera, and the

thrust belt of the Eastern cordillera of B o l i v i a . The

larger part of this path lies over the shield.
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The shear w a v e ve loc i ty -depth model computed for this

path, based on invert ing both group and phase ve loc i ty

d i spe rs ion data for one event , suggests a crustal th i ckness

of 44 + 4 k i l omete rs (Fig. 50) . The ve loc i ty gradient of

the opt imum model shows no dramat ic changes to a depth of

around 60 k i lometers , and the pos i t ion of the Ni-

di scont i nuity is hard to es t imate . The pick is based on a

vague inc rease in the shear ve loc i ty grad ient ; the edge

models p rov ide little support . Assuming the c rus t -mant le

t rans i t ion does occur at a round 44 k i lometers depth, the

a v e r a g e c rus ta l shear w a v e ve loc i t y ranges from 3 .65 to 3 .78

km/s , wh ich co r responds to an average compress iona l wave

ve loc i t y range of 6 .33 to 6 . 5 5 km/s and an average densi ty

range of 2 .82 to 2.88 g/cm 3 . The ave rage upper mantle shear

ve loc i t y , down to a depth of 100 k i l ome te rs , is 4 .50 km/s .

Th is c o r r e s p o n d s to an ave rage compress iona l wave ve loc i ty

of 7.78 k m / s , and an a v e r a g e density of 3 .24 g /cm 3 .

The path N A T - L P A ex tends 4,051 k i lomete rs f rom Na ta l ,

Brazi l to La P la ta , A r g e n t i n a , para l le l to the ent i re

southeastern coas t of Braz i l . The path a lso c r o s s e s central

Pa raguay . The path NAT-LPA c r o s s e s the entire length of the

A t lan t i c sh ie ld , cut t ing the Sao F r a n c i s c o c ra ton , the

sou theas te rn s ide of the P a r a n a bas in , and the Rio de la

P la ta c ra ton.

The shear w a v e ve loc i ty -depth model computed for this

path was based on inver t ing both group and phase ve loc i t y
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d ispe rs ion data for three events . Two of these even ts

occur red beneath the southern Central Andes and a r r i ved at

the two s ta t ions f rom the sou thwes t , af ter t rave rs ing purely

cont inental paths ( L P A - N A T ) ; one event occur red along the

Mid -A t lan t i c r idge and a r r i ved at the s ta t ions f rom the

nor theast , af ter t rave rs ing ocean ic and mixed paths,

respec t i ve l y ( N A T - L P A ) . These two cases were a l so inver ted

separate ly to check for poss ib le d i f fe rences . The model for

N A T - L P A (Fig. 51) sugges t s a crustal th i ckness of 38 ± 4

k i l ome te rs , wh ich is s l ight ly thinner than the c rus ta l

t h i c k n e s s of 42 ± 4 k i lometers sugges ted by the model for

L P A - N A T (Fig. 52) . The opt imum L P A - N A T model a l so d isp lays

a more reasonab le d is t r ibut ion of shear ve loc i ty w i th depth

in the crust (and to a lesser extent in the mant le) than

does the opt imum N A T - L P A model . Long-per iod group and phase

ve l oc i t i e s are both s l ight ly higher over the path NAT-LPA.

H o w e v e r , it is important to remember that only one event

p rov ides the data for the path N A T - L P A , whi le the data for

L P A - N A T is based on two even ts . Figure 27 shows the

smoothing e f fec t wh i ch f i t t ing the obse rved d ispers ion

c u r v e s to two even ts has had, pa r t i cu la r l y w i th the shor ter

per iod group v e l o c i t i e s ( w h i c h wou ld o the rw ise show two

fa i r l y sharp b r e a k s at around 15 and 25 seconds ) . Because

of the d i f fe rences in the amount and ranges of data for the

nor th-south and south-nor th t r a v e r s e s , i t is imposs ib le to
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determine whether problems with lateral refraction have

occurred at the continental crust/oceanic crust interface.

The combined optimum model (Fig. 53) suggests a

crustal thickness of 42 + 4 kilometers. This pick is based

on the position of a distinct increase in shear velocity,

following a roughly 16-kil ometer-thick zone of nearly

constant velocity. This pick is supported by the edge

models associated with the sixth model eigenvector, which

reflect this zone of change. The average crustal shear wave

velocity ranges from 3.83 to 3.90 km/s, which corresponds to

an average compressional wave velocity range of 6.64 to 6.76
o

km/s and an a v e r a g e densi ty range of 2.88 to 2 .92 g / c m .

The upper mant le shear w a v e ve loc i ty d is t r ibut ion w i th depth

is i r regu lar , d isp lay ing the same rap id i n c r e a s e , then rap id

dec rease pat tern over 40 to 90 k i l omete rs depth that the

NAT-LPB model d isp lays . The ave rage shear w a v e ve loc i ty

from the M-d iscont inu i ty down to 100 k i lometers is 4.40

km/s , wh ich cor responds to an average compress iona l wave

v e l o c i t y of 7 .63 km/s and an ave rage density of 3.19 g /cm 3

Central P la t fo rm

The path C A R - L P A , wh ich ex tends 5,111 k i lometers f rom

C a r a c a s , V e n e z u e l a , to La P la ta , Argent ina , c r o s s e s centra l

Venezue - l a , wes te rn Braz i l , eas te rn Bo l i v ia , eas te rn

Paraguay, and northern Argent ina . Along i ts length, the

path c r o s s e s the fo re land b a s i n o f nor thwestern V e n e z u e l a ,

the wes te rn lobe of the Guyana sh ie ld , the wide wes te rn end
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of the Amazon bas in , the wes te rn side of the Central

Brazi l ian shield, and the entire north-south length of the

Chaco bas i n.

The shear w a v e ve loc i ty -depth model computed for the

path C A R - L P A , b a s e d on the Invers ion of both group and phase

ve loc i t y d ispers ion data for one event , sugges ts a crusta l

th i ckness of 42 + 4 k i l omete rs (Fig. 54) . This is a lmost

the only useful p iece of in fo rmat ion this par t icu lar model

prov ides. The group ve loc i t y d i spe rs ion curve d isp lays a

range of unusua l l y high v a l u e s a c r o s s per iods 50 to 70

seconds . In addi t ion, the i nve rs ion routine was unable to

fit the short per iod "tail" of the group veloci ty d ispers ion

curve (F ig . 54 ) . The opt imum model d i sp lays a prominent

(and un l i ke l y ) low ve loc i t y zone in the lower c rus t ; the

model a l s o d i sp lays an e x a g g e r a t e d high ve loc i t y zone

(g rea tes t at 60 k i l o m e t e r s depth) f o l l o w e d by a low ve loc i t y

zone (g rea tes t at 85 k i lometers depth) in the upper

mant le. The a v e r a g e crusta l shear w a v e ve loc i t y , computed

from the opt imum model , ranges f rom 3 .76 to 3.80 km/s. T h i s

co r responds to an a v e r a g e compress iona l w a v e ve loc i t y range

of 6 .52 to 6.58 km/s , and an a v e r a g e densi ty range of 2 .85

to 2.87 g/cm3 . The a v e r a g e upper mantle se ismic ve loc i t ies

and densi ty were not computed.

The path T R N - L P A , ex tend ing f rom the i s l and of

T r in idad to La P la ta , A rgen t i na , c r o s s e s ex t reme eas te rn

V e n e z u e l a , wes t - cen t ra l B raz i l , centra l P a r a g u a y , and



149

(WM)

o
UJ
en

o
o
_j
UJ

t
a:

•P
03
a.

o
o

a

a*-
a*-

a <
a
a
a

O ' S S ' £
(33S/WM) X L I 3 Q 1 3 A

en o_ uj
cc 3 en
z o cc
o_ or or

o o_+
LU

O
or

o ° m<i
UJ o
.̂ CC uj

i IZ Q
"a

cc
<-J
cc
oc
cc

en

o

UJ

O
•r-
I/)

<u
>

IT)

O)
s-

O>



150

nor thwes te rn Argent ina. Along its length, the path TRN-LPA

c r o s s e s the central Guyana shield, the central Amazon b a s i n ,

the west -cent ra l Central B raz i l i an shield, and the Chaco

basin. L ike the path C A R - L P A , this path represents a long,

a v e r a g e South Amer ican p la t form path.

The shear wave ve loc i ty-depth model, wh ich was

computed f rom phase ve loc i t y d ispers ion data measured by

Sherburne (1974) for two events , suggests a crustal

th i ckness of 42 ± 4 k i lometers (Fig. 55) . The optimum model

shows a zone of i nc reas ing shear ve loc i ty at this depth,

fol lowing a relat ively thick zone (35 ki lometers) of nearly

constant shear wave ve loc i ty in the crust. One of the edge

models a s s o c i a t e d w i th the fourth e igenvec to r vaguely

supports this p ick , but the t rans i t ion is not very well

def ined. The ave rage crusta l shear wave ve loc i ty range

g i v e n by the opt imum model is 3.90 to 3.92 km/s , wh i ch

co r responds to an ave rage compress iona l ve loc i ty range of

6 .75 to 6.79 km/s and an average density range of 2.91 to

2.92 g /cm 3 . The ave rage upper mant le shear wave ve loc i ty

down to a depth of 100 k i lometers is 4.43 km/s. This

corresponds to an average compressional wave velocity of

7.68 km/s and an average mant le density of 3.20 g /cm .

The path TRN-RDJ , wh i ch extends from the is land of

Tr in idad to Rio de Janei ro, Braz i l , cuts ac ross Guyana and

al l of central B raz i l . A long i ts length, this path c r o s s e s

the eas te rn lobe of the Guyana sh ie ld, the eas te rn Amazon
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bas in , the eas tern Central B raz i l i an shie ld, and the central

At lant ic shield. This path c rosses almost pure sh ie ld

structures.

The shear wave ve loc i ty-depth model computed for this

path, based on invert ing phase veloci ty d ispers ion data

measured by Sherburne (1974) for one event , sugges ts a

crustal th ickness of 42 ± 4 k i lometers (Fig. 56). The phase

veloc i ty d ispers ion measurements start at a per iod of 31

seconds , however , and the crust-mant le t ransi t ion is hard to

def ine. The optimum model shows a zone of increasing shear

ve loc i ty at this depth, fo l lowing a relat ively thick zone

(35 k i l ome te rs ) of constant to sl ightly decreasing shear

veloc i ty . The overa l l d istr ibut ion of shear veloc i ty wi th

depth is very s imi lar to the path TRN-LPA d i scussed

prev ious ly , a l though the average crustal shear ve loc i ty is

somewhat higher. (S ince the phase veloci ty measurements

inver ted to obtain the model TRN-RDJ start at a per iod of 31

seconds , this ave rage is probably not well determined.) The

average crustal shear wave ve loc i ty ranges around 3.99 km/s ;

this cor responds to an average compress ional w a v e veloci ty

range of 6.90 to 6.92 km/s and an average density of 2.96

g/cm^. The average upper mantle shear wave ve loc i ty , down

to a depth of 100 k i lometers, is 4.48 km/s. This

co r responds to an average compress iona l wave ve loc i ty of
o

7.77 km/s, and an average density of 3.23 g/cm .
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Northwestern Platform

The path CAR-QUI, unlike the other paths investigated

in this study, is primarily a sub-Andean to Andean path. It

extends 1,742 kilometers from Caracas, Venezuela, to Quito,

Ecuador, crossing northwestern Venezuela, central to

southwestern Colombia, and northern Ecuador. This path

crosses the foreland basins of northwestern Venezuela and

northern Colombia, and cuts obliquely into the Eastern

cordillera of Colombia and the Central cordillera of

Ecuador.

The shear wave velocity-depth model computed for this

path, based on inverting both group and phase velocity

dispersion data for one event, suggests a crustal thickness

of 48 + 4 kilometers (Fig. 57). The optimum model shows a

distinct increase in shear velocity at this depth. Both the

optimum model and the associated edge models show an

irregular and unlikely velocity distribution with depth,

particularly in the upper mantle. In addition, the phase

velocity dispersion predicted by the model does not match

the observed phase velocity dispersion data very well at

periods between 20 and 50 seconds. The average crustal

shear wave velocity computed from the optimum model ranges

from 3.54 to 3.76 km/s, which corresponds to an average

compressional wave velocity range of 6.14 to 6.36 km/s and
o

an average density range of 2.77 to 2.83 g/cm . The average

shear wave velocity from the chosen M-discontinuity down to
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100 k i lometers is 4 .56 km/s wh ich cor responds to an average

comrpesslonal wave velocity of 7.87 km/s and an average

density of 3.28 g/cm3 .

The path CAR-ARE extends from Caracas , Venezuela, to

Arequ ipa , Peru, c ross ing central Venezue la , eas tern

Co lomb ia , wes te rnmost Braz i l , and nearly al l of southern

Peru. Over its length, this path crosses the fore land

bas in /p la t f o rm cover-qf northern V e n e z u e l a , the wes te rnmost

lobe of the Guyana shield, the extensive platform cover that

merges wi th the wes te rn end of the Amazon bas in in wes te rn

Brazil (the transit ion zone) , and nearly the entire Andean

cord i l l e ra of southern Peru.

The shear wave ve loc i ty-depth model computed for this

path, based on inverting phase velocity dispersion data

measured by Sherburne (1974) for one event, suggests a

crustal t h i ckness of 34 ± 4 k i lometers . The opt imum model

shows a zone of increas ing shear veloc i ty at this depth,

beneath a nearly 30-ki lometer thick zone of almost constant

shear velocity. This transition 1s roughly bracketed by the

edge models assoc ia ted wi th the fourth model e igenvec tor .

The average crustal shear wave ve loc i ty ranges f rom 3.87 to

3.90 km/s, wh ich cor responds to an average compress iona l

wave ve loc i ty range of 6.71 to 6 .75 km/s and an average

density range of 2.90 to 2.91 g/cm3. The upper mantle

ve loc i ty -depth model shows the beginning of a pronounced low

veloc i ty zone be low 80 k i lometers , but as wi th the other
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models derived in this study, the reality of the zone is

questionable. The average upper mantle shear wave velocity

to a depth of 100 kilometers is 4.57 km/s. This corresponds

to an average compressional wave velocity of 7.87 km/s, and

an average density of 3.27 g/cm .

The path TRN-LPB extends from the is l a n d of Trinidad

to La Paz, Bolivia, intersecting easternmost Venezuela,

western Brazil, and northwestern Bolivia. The path crosses

the central part of the Guyana shield (in the western lobe),

the western Amazon basin, and the platform cover, foreland

basin, and Eastern cordillera of northwestern Bolivia.

The shear wave velocity-depth model representing this

path was obtained by inverting the phase velocity dispersion

data measured by Sherburne (1974) for one event (Fig. 59).

The range of periods only extends to 71 seconds. The

optimum model, which shows a broad zone of increasing shear

velocity separating an upper and lower region of nearly

constant shear velocity, suggests a crustal thickness of 38

± 4 kilometers. This pick is roughly bracketed by the edge

models associated with the fourth model eigenvector. The

average crustal shear velocity ranges from 3.72 to 3.80

km/s, which corresponds to an average compressional wave

velocity range of 6.45 to 6.59 km/s and an average density

range of 2.83 to 2.87 g/cm3. The upper mantle velocity,

averaged from the chosen M-discontinuity to a depth of 100

kilometers, is 4.53 km/s. This corresponds to an average
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compress i onal wave ve loc i ty of 7 .73 km/s, and an average

density of 3 .22 g/cm3 .

The path CAR-LPB extends 2 ,990 ki lometers from

C a r a c a s , Venezue la , to La Paz , Bo l iv ia , c ross ing central

V e n e z u e l a , wes te rn Brazi l , and northwestern Bo l iv ia . Th is

path c rosses the fore land bas in of northern Venezue la , the

wes te rn lobe of the Guyana shield, the broad wes te rn end of

the Amazon bas in, the p lat form cover / fo re land bas in of

wes te rn Brazi l and nor thwestern Bol iv ia, and the Eas te rn

cordi l lera of nor thwestern Bo l iv ia .

Three shear wave ve loc i ty -depth models were computed

for this line. One model was based on invert ing both group

and phase ve loc i ty d ispers ion data measured in this study

for four events or ig inat ing south of La Paz (Fig. 60) . The

second model was based on invert ing only the phase ve loc i ty

d ispers ion data of this same set (Fig. 61) . The third model

was based on invert ing the phase ve loc i ty d ispers ion data

measured by Sherburne ( 1 9 7 4 ) for two events or iginat ing

north of C a r a c a s (F ig. 6 2 ) .

The f i rst model sugges ts a crustal th ickness of 38 +

4 k i lometers . The optimum model , and both of the edge

models assoc ia ted wi th the f i f th model e igenvector , show an

extremely sharp inc rease in shear veloci ty across this depth

range. Both the optimum model and the assoc ia ted edge

models show an i r regular distr ibut ion of shear ve loc i ty wi th

depth, par t icu lar ly in the upper mant le, where there is a
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zone of extremely high shear velocities centered at

approximately 50 kilometers depth. There is also a low

velocity zone between 70 and 90 kilometers depth. It should

be noted that the group velocity curve inverted to obtain

this model represents the mean of measurements from four

events, rather than a third or fifth order least-squares fit

(Fig. 36). None of the attempts to fit a least squares

curve to the four sets of measurements led to a satisfactory

represenation. The group velocity dispersion predicted by

the model match the observed group velocity dispersion

fairly well, but the match between the predicted phase

velocity dispersion and the observed phase velocity

dispersion is poor at periods less than 60 seconds.

The average crustal shear wave velocity, computed

from the optimum model, ranges from 3.40 to 3.56 km/s. This

corresponds to an average compressional wave velocity range

of 5.88 to 6.16 km/s, and an average density range of 2.82

to 2.85 g/cm .

The second model (Fig. 61), which is the result of

inverting only the phase velocity dispersion data of this

set, is dramatically different from the first model. It is

a much smoother model, showing a slightly increasing

velocity gradient to a depth of approximately 28 kilometers,

followed by a slightly decreasing velocity gradient to a

depth of at least 100 kilometers. Although the phase

velocity dispersion predicted by this model agrees extremely
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w e l l w i t h the obse rved d a t a , the r ange of data does not

extend to p e r i o d s shor ter t h a n 29 seconds , and i t i s a l m o s t

i m p o s s i b l e to see the c r u s t - m a n t l e t r a n s i t i o n 1n t h i s

m o d e l . I f the t r a n s i t i o n depth chosen f rom the f i r s t model

i s a s s u m e d , t h e a v e r a g e shea r wave ve loc i ty i n t h e u p p e r

m a n t l e i s 4 .52 k m / s , w h i c h co r re sponds to an ave rage

c o m p r e s s i o n a l wave v e l o c i t y o f 7.83 k m / s , and an a v e r a g e

dens i ty of 3.25 km/s ; .

The p h a s e v e l o c i t y d i s p e r s i o n measured by S h e r b u r n e

( 1 9 7 4 ) fo r the pa th C A R - L P B covers a s l i g h t l y greater p e r i o d

range t h a n t h e phase v e l o c i t y d i s p e r s i o n m e a s u r e d i n t h i s

s tudy, s t a r t i n g at a p e r i o d of 17 seconds ra ther t h a n 29

seconds . The shear wave v e l o c i t y - d e p t h model compu ted f r o m

S h e r b u r n e ' s data ( F i g . 6 2 ) shows somewhat more v a r i a b i l i t y

t h a n the second model d e s c r i b e d above , bu t t he t r a n s i t i o n

f rom crust to m a n t l e i s s t i l l h a r d to d e f i n e . The o p t i m u m

mode l v a g u e l y suggests a c rus t a l t h i c k n e s s of 38 ± 4

k i l o m e t e r s , a p i c k w h i c h is suppor t ed by one of the edge

m o d e l s a ssoc ia ted w i t h t he f o u r t h model e i g e n v e c t o r . The

average c rus ta l shear ve loc i ty r a n g e s f r o m 3.70 to 3.77

k m / s . T h i s c o r r e s p o n d s t o a n average c o m p r e s s i o n a l wave

v e l o c i t y r a n g e of 6.41 to 6.54 k m / s and an ave rage dens i t y

of 2.82 to 2.85 g/cm 3 . The a v e r a g e u p p e r m a n t l e shear wave

v e l o c i t y f r o m the o p t i m u m model i s 4.51 k m / s , w h i c h

co r r e sponds to an a v e r a g e c o m p r e s s i o n a l w a v e v e l o c i t y of

7.82 k m / s and an a v e r a g e d e n s i t y of 3.25 g /cm 3 . These th ree



166

va lues are nearly Identical to the average upper mantle

ve loc i t ies and density obtained by invert ing the phase

ve loc i ty d ispers ion data measured in this study.

Tab le 3 summar izes the crustal th icknesses, average

crustal se ismic ve loc i t ies and densit ies, and average upper

mantle se ismic ve loc i t ies and densit ies obtained for each

two-s ta t ion path descr ibed in this sect ion. The final model

parameters generated by each invers ion (cor respond ing to the

shear wave veloci ty-depth models of Figures 45 -62 ) are

1i sted i n Appendix C.

The average crustal parameters obtained by analyz ing

and interpreting Rayle igh wave d ispers ion observa t ions

a c r o s s the South Amer i can p lat form are meant to form an

addit ion (admit tedly a very genera l ized addit ion) to the

better known crustal parameters of the northern and central

Andean Cordi l lera. A prel iminary crustal structure map of

continental South Amer i ca , const ructed by integrating the

crustal models of the South Amer i can plat form obtained in

this study wi th the crustal structure models of the A n d e a n

cordi l lera reported in the l i terature, is shown in Figure

63.
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Table 3

Summary of Earth Models Obtained from
Inversion Results

Na ta l -Ca racas

Crustal th ickness 38 ± 4 km

S-Veloci ty P-Ve loc f ty Density
( k m / s ) ( k m / s ) (g /cm 3 )

Crus t 3.85 6 .66 2.88
Upper Mantle - -

Nata l -Bogota

Crustal th ickness 46 ± 4 km

S-Ve loc i t y P -Ve loc i t y Density
(km/s ) ( km/s ) (g/cm3 )

Crust 3.87 6.71 2.91
Upper Mantle 4.60 7.97 3.30

Natal -Qui to

Crustal th ickness 50 ± 4 km

S-Ve loc i t y P-Ve loc i ty Densi ty
( km/s ) ( km/s ) (g /cm 3 )

Crust 3 .86 6.68 2.92
Upper Mantle 4 .64 8.04 3 .32

Natal-Qui to (Sherburne)

Crustal th ickness 46 ± 4 km

S-Ve loc i t y P-Veloc i ty Densi ty
( k m / s ) ( k m / s ) (g /cm 3 )

Crust 3 .95 6.85 2 .94
Upper Mantle 4.59 7.96 3.30
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Nata l -La Paz

Crustal th ickness 42 + 4 km

Crust
Upper Mantle

S-Ve loc i t y
(km/s )

3.79
4.59

P-Veloc1ty
(km/s )

6.66
7.96

Density
(g/cm3 )

2.86
3.30

Brasil 1 a-La Paz

Crustal th ickness; 44 ± 4 km

S-Ve loc i t y
(km/s )

Crust
Upper Mantle

3 .72
4.50

P-Veloc i ty
( km/s )

6.44
7.78

Densi ty
(g /cm 3 )

2.85
3.24

Nata l -La PI ata

Crustal th ickness 42 ± 4 km

S-Ve loc i ty
(km/s )

Crust
Upper Mantle

3.86
4.40

P-Ve loc i ty
( k m / s )

6 .70
7.63

Densi ty
(g /cm 3 )

2.90
3.19

C a r a c a s - L a P la ta

Crustal th ickness 42 ± 4 km

S-Yeloc i ty
( k m / s )

Crust
Upper Mantle

3 .78

P-Velocity
( km /s )

6.55

Density
(g / cm 3 )

2.86
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Tab le 3 (contl nued)

Tr ln1dad-La Plata (Sherburne)

Crustal th ickness 42 ± 4 km

S-Ve loc i ty P-Ve loc i t y Densi ty
( k m / s ) ( km/s ) (g /cm 3 )

Crust 3.91 6.77 2.91
Upper Mantle 4 .43 7.68 3.20

Tr in idad-R io de Jan iero (Sherburne)

Crustal th ickness 42 ± 4 km

S-Ve loc i t y P-Ve loc i ty Density
( k m / s ) ( km/s ) (g / cm 3 )

Crust 3 .99 6.91 2 .96
Upper Mantle 4.48 7 .77 3 . 2 3

C a r a c a s - Q u i to

Crustal th ickness 48 ± 4 km

S-Ve loc i t y P-Ve loc i ty Densi ty
( k m / s ) ( k m / s ) (g / cm 3 )

Crust 3 . 65 6 .25 2 .80
Upper Mantle 4 .56 7.87 3.28

C a r a c a s - A r e q u i p a (Sherburne)

Crustal t h i ckness 34 ± 4 km

S-Ve loc i t y P-Ve loc i t y Densi ty
( k m / s ) ( k m / s ) ( g / c m 3 )

Crust 3 .88 6 .73 2 .90
Upper Mantle 4 .57 7.87 3 .27
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Tab le 3 ( conti nued)

Tr in idad-La Paz (Sherburne)

Crustal th ickness 38 ± 4 km

S-Ve loc i t y P -Ve loc i t y Densi ty
( k m / s ) ( k m / s ) ( g / cm 3 )

Crus t 3 .76 6 . 5 2 2 .85
Upper Mant le 4 .53 7.83 3 .25

C a r a c a s - L a Paz

Crustal th ickness 38 ± 4 km

S-Ve loc i t y P -Ve loc i t y Dens i ty
( k m / s ) ( k m / s ) ( g / c m 3 )

Crust 3 .48 5 . 9 7 2 .84
Upper Mant le 4 .52 7.83 3 .25

C a r a c a s - L a Paz (Sherburne)

Crusta l th i ckness 38 ± 4 km

S - V e l o c i t y P -Ve loc i t y Densi ty
( k m / s ) ( k m / s ) ( g / cm 3 )

Crus t 3 . 7 4 6 .47 2 .84
Upper Mantle 4.51 7.82 3.25
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Figure 63. Contour map of crustal thickness values.



SOUTH A M E R I C A N M A G S A T P R O J E C T DATA

The only set of geophys ica l data that p rov ides

un i fo rm c o v e r a g e of the South Amer i can cont inent and

surrounding ocean ic a reas are the satel l i te sca la r magnet i c

anomaly data ga thered during the recent MAGSAT m i s s i o n

(October 30, 1979 to June 11, 1980). In a study performed

by the South A m e r i c a n MAGSAT group (W. J. H inze, R. R. B.

von Frese, M. B. Longacre , L. W. Bra i le , E. G. L id iak , and

G. R. Ke l le r ) 2 ° - a v e r a g e d magnet i c anomaly v a l u e s der i ved

f rom the M A G S A T data set were compi led for the South

A m e r i c a n cont inent and sur round ing ocean ic a reas . A f te r

remov ing the g e o m a g n e t i c core f ie ld component f rom these

data , the v a l u e s were reduced to radial po la r i za t i on (as

sensed at 350 k i lometer e l e v a t i o n ) to a l l o w a c o m p a r i s o n

w i th the major tec ton ic fea tu res of the cont inent (Longac re ,

1981; Hinze et al ., 1982). F igure 64 shows the p ro jec t ion

of these magnet ic anomaly data on the g e n e r a l i z e d tectonic

map of South A m e r i c a . The i n v e s t i g a t i o n a l s o spur red the

c o m p i l a t i o n of a s u r f a c e l ° -gr idded f ree-a i r g rav i t y anomaly

map of the same reg ion, us ing g rav i t y data ga thered f rom

d ive rse sources . The cont inenta l g rav i t y data in pa r t i cu l a r

were ob ta ined by d ig i t i z ing the f ree-a i r g rav i t y map of

South A m e r i c a p r o v i d e d by the Defense Mapping Agency

A e r o s p a c e Center ( L o n g a c r e , 1981). I t must be c a u t i o n e d
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Figure 64. Equivalent point source f ield approximation of
2 ° -ave raged sca la r MAGSAT magnet ic anomaly data
d i f ferent ia l ly reduced to radial po la r i za t i on at
350 km e levat ion . Contour interval is 2nT.
Modi f ied from Hi nze et al . ( 1982 ) .
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that predicted values are incorporated in the DMAAC map due

to lack of gravity control over many areas of South

America. These gravity data were 1ong-wavelength-pass

filtered (wavelengths greater than 8°) at the surface to

enhance longer wavelength components, and then upward

continued to satellite elevations in order to allow a

comparison with the satellite magnetic anomalies (Longacre,

1981). Figure 65 shows the projection of the filtered (but

not upward continued) gravity anomaly data on the

generalized tectonic map of South America.

Many of the regional tectonic features of the South

American continent show some degree of correlation with the

1 ong-wavel ength potential field anomalies (Longacre, 1981;

Yuan, 1983). A concise discussion of the extent to which

these anomalies correspond to known tectonic features,

together with some remarks on their geologic significance,

may be found in Hinze et al . (1982). The primary purpose of

constructing a crustal structure map of South America is to

allow further comparisons to be made between the MAGSAT and

gravity anomalies and the underlying structure of South

America.
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DISCUSSION

The average crustal thickness of the central and

northern Andean cordillera is moderately well constrained

due to the number of geophysical surveys which have been

conducted over the range (e.g., Fig. 4). The most notable

feature of the Andean cordillera is the thick crescent-

shaped crustal root beneath the Central Andes, between

latitudes 6° South and 26° South (Fig. 65). This root

reaches depths greater than 70 kilometers beneath the

Altiplano of northwestern B o l i v i a and southern Peru (Fig.

63). A second keel-shaped region of thick crust (greater

than 50 kilometers thick) is present beneath the Northern

Andes of western Colombia and northern Ecuador, according to

seismic evidence (Ocola et al. , 1975; Leeds and Knopoff,

1972). These two regions of thick crust incidentally

correspond to the two most heavily studied portions of the

Andean cordillera, and it is possible that the gap of

thinner crust between them (between latitudes 2° South and

6° South) is due to the lack of geophysical control.

Certainly the pattern of crustal thickness in northern

Colombia (around latitude 6° North) is not well constrained

by geophysical data.

The pattern of filtered free-air gravity anomalies

over the Andean cordillera is dominated by the arc-shaped
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grav i t y high between la t i tudes 11° South and 29° South (Fig.

65). The mean e leva t ion of the Andean cord i l lera is

greates t between lat i tudes 11° South and 32° South ( Y u a n ,

1983), and the grav i ty high is probably directly related to

the topography. The grav i ty high a l so cor responds c lose ly

to the crescent of thick crust beneath the mid-Central

Andes. In a sense , this cor re la t ion is not su rp r i s ing ,

since the est imated crusta l s t ructure of this region is

based heavi ly on g rav i t y model ing. Never the less , those

th i cknesses are suppor ted by se ismic ev idence (James, 1971;

O c o l a and Meyer, 1972) . The g rav i ty high over northern

Colombia , at approx imate ly lat i tude 6° North, is l ess eas i l y

related to topograph ic rel ief , s ince the ave rage e leva t ion

of the cord i l le ra dec reases more or l ess steadi ly north of

lat i tude 15° South. Cons ider ing the re la t ive ly low mean

e leva t ion of the Northern Andes , it is su rp r i s ing that the

underlying crust should be so th ick. (Overcompensated

topography is normal ly cha rac te r i zed by negat ive f ree-a i r

g rav i t y anoma l i es . ) The high cou ld be re lated to the

sha l l ow str ip of dense ocean ic crust beneath wes te rn

Co lomb ia , a long the Pac i f i c coast (Mooney et al . , 1979; Case

and McDona ld , 1973) . Only a s l ight ly pos i t i ve (20 mgal )

a v e r a g e f ree-a i r g rav i t y anomaly c h a r a c t e r i z e s the Andean

cord i l le ra between la t i tudes 3° North and 6° South. The

ave rage f ree-a i r g rav i ty anomaly over the cord i l le ra south

of la t i tude 30° South is near zero.
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The pat tern of magnet ic anomal ies over the Andean

cord i l l e ra is d iscont inuous and shows no cons is ten t

co r re la t i on w i th either the va r i ab le crustal th i ckness

beneath the cord i l le ra or the a s s o c i a t e d pattern of g rav i t y

anoma l i es (Fig. 64) . A region of negat ive magnet ic va lues ,

between lat i tudes 15° South and 30° South, co r responds to a

ce r ta in extent w i th the dominant f ree-air grav i ty high of

the mid-Centra l Andes . A l s o , the prominent magnetic high

centered over south-centra l Co lomb ia (not over the Northern

Andes ) may part ia l ly be re lated to the dense ocean ic crust

of wes te rn Colombia. Neither of these co r re la t i ons is very

spec tacu la r .

F ina l ly , there is a notable cor re la t ion be tween the

north-south width of the central Andean f ree-ai r g rav i ty

high and the lateral boundar ies of a large, s teep ly-d ipp ing

segment of the Nazca plate beneath South Amer ica proposed by

Jordan et al . (1983) . The two ad jacent segments of the

Nazca plate are pos tu la ted to dip much more sha l low ly . The

magnet ic anomal ies show no strong cor re la t ion wi th this

proposed lateral segmenta t ion .

The two -s ta t i on paths wh ich c ross the centra l and

sou theas te rn port ions of the South Amer ican p la t fo rm (NAT-

LPB, N A T - L P A , BDF-LPB) are w ide ly spaced and g i v e only very

general cove rage of this broad area (Fig. 11). The two-

s t a t i o n paths which c ross tne South Amer ican p la t fo rm from

north to south ( C A R - L P A , T R N - L P A , and TRN-RDJ) y ie ld mode ls
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a v e r a g e d over nearly the ent i re eas te rn cont inent, and add

little independent in fo rmat ion about the central and

southern p lat form. The models derived from the paths NAT-

LPB, NAT-LPA, and BDF-LPB indicate that this region of the

South Amer i can p la t fo rm is cha rac te r i zed by a crust of

fa i r ly un i fo rm th i ckness (a round 42 k i lometers th ick) . The

crust may th icken sl ight ly to the nor thwest , a l though the

ev idence , based pr imar i ly on the path BDF-LPB, is sl ight.

It must be caut ioned that none of these three l ines sample

the la rge sect ion of p la t fo rm crust covered by the Chaco

b a s i n (Fig. 2). The models der ived f rom the north-south

paths C A R - L P A , T R N - L P B A , and TRN-RDJ ( two of wh ich do c ross

the Chaco bas in ) do not cont rad ic t the suggested regional

crustal t h i ckness of around 42 k i lometers.

The pat tern of f ree-a i r g rav i t y anoma l i es over the

central and southern South Amer i can p la t form is not

d is t ingu ished by any notable highs or lows (Fig. 65) . Both

the Parna iba bas in and the Parana bas in are c h a r a c t e r i z e d by

semic i r cu la r , s l ight ly negat ive (approx imate ly -20 m g a l s )

grav i ty anoma l i es ; the broad, sha l low Chaco bas in has no

d is t inct ly a s s o c i a t e d negat ive anomaly , a l though a l a rge

elongated low (approx imate ly -20 mga l s ) occurs over the

wes te rn side of the bas in , paral le l to the Andean

cord i l lera. The s l ight pos i t i ve anoma l ies wh ich occur over

the Chaco bas in may be re la ted to a sha l l ow ing of the

basement . The Centra l B raz i l i an shie ld and the A t lan t i c
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shield are characterized by near zero to slightly positive

free-air gravity anomalies. A regional free-air gravity

anomaly near zero, such as that characterizing this area, is

considered evidence for isostatic equilibrium.

The pattern of regional magnetic anomalies over the

central and southern South American platform is much more

distinctive than the pattern of gravity anomalies (Fig.

64). The most prominent feature of the magnetic anomaly map

in the region is the pinched trend of positive anomalies

between latitudes 3° South and 19° South, which extends

across the entire continent from east to west. A branch of

this trend of positive anomalies appears to extend down the

northeast coast of Brazil to Argentina. This branch is

nearly obscured, however, by an enormous negative magnetic

anomaly (-18 nT) at latitude 20° South, near the Brazilian

coast, in the middle of the Atlantic shield. The broad

southern region of the Chaco basin and the western Parana

basin is characterized by an Irregular alternating pattern

of slight positive and negative (mostly negative) magnetic

anomalies.

In general, the shield areas are characterized by

positive magnetic anomalies, as noted by Hinze et al.

(1982). These positive anomalies for the most part blur

over the western side of the Parana basin and the central

and southern parts of the Parnaiba basin. In view of this,

the intense negative magnetic anomaly in the middle of the
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At lan t ic sh ie ld is d i f f icu l t to exp la in . The anomaly

extends over a region including the southern end of the Sao

F ranc i sco c ra ton, the late Precambr ian Ribei ra and B ras i l i a

fold be l ts , and the eas te rn side of the Parana basin. The

Parana bas in and the R ibe i ra and Bras i l ia fo ld bel ts were

strongly a f f ec ted by the tectonic reac t i va t ion of the South

A m e r i c a n p la t fo rm assoc ia ted wi th the opening of the

At lant ic Ocean (de A lme ida , 1970) . Large vo lumes of

tholei i t ic basa l t s were extruded from tensional f rac tu res

along the r im of the Parana bas in , and ex tens ive a l ka l i c

v o l c a n i s m occur red wi th in the Ribei ra and Bras i l ia fo ld

bel ts north and east of the Prana bas in . The igneous

ac t i v i t y that occur red w i th in the Parna iba bas in was more

l imited (V i t roe l l o , 1978). Perhaps the negat i ve anomaly

that occurs over this part of the A t lan t i c sh ie ld is re lated

to this major thermotecton ic event. Unfor tunate ly , the two-

s ta t ion path N A T - L P A wh ich c r o s s e s the A t lan t i c shie ld is

too long to be much a f f ec ted by this anoma lous region. Both

the model computed for the two-s ta t i on path NAT-LPA and the

model computed for the two-s ta t i on path NAT-LPB, of

c o m p a r a b l e length, sugges t crusta l t h i c knesses of

approx imate ly 42 k i l omete rs , in sp i te of the fact that their

r e s p e c t i v e pa i rs o f d i spe rs ion c u r v e s are not iceably

di f ferent (F igs . 49 and 53) . The path NAT-LPB l ies

comple te ly w i th in the major e a s t - w e s t trending pos i t i ve

magnet ic anomaly a s s o c i a t e d w i th the northern A t lan t i c and
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Centra l B raz i l i an sh ie ld; the long-per iod phase ve loc i t i es

measured ac ross this line are the highest recorded along any

path In this study. Never the less , the average crustal shear

wave ve loc i t ies computed f rom the model NAT-LPA range from

3.83 to 3.90 km/s , wh i ch is sl ight ly higher than the range

of crustal shear wave ve loc i t i es computed from the model

NAT-LPB of 3.78 to 3.88 km/s. However , it is not c lear

whether these sl ightly higher crustal ve loc i t i es are re lated

to the anomalous region.

The three two-s ta t i on paths wh ich c ross the South

Amer ican p la t form from north to south ( C A R - L P A , TRN-LPA , and

T R N - R D J ) a l l y ie ld models wh ich suggest (without great

def in i t ion) an average crustal t h i c kness of approx imate ly 42

k i l omete rs . These models represent ave rages over nearly the

ent ire South Amer i can plat form. Crusta l t h i cknesses in th is

range are common beneath sh ie lds and stable p la t fo rms (Bott ,

1982). The three two-s ta t ion paths which prov ide coverage

of the nor thern quarter of the South Amer ican p la t fo rm (NAT-

C A R , NAT-BOG, and N A T - Q U I ) , however , y ie ld models wh ich

suggest that a la rge region of somewhat th icker crust

(greater than 50 k i l ome te rs ) underl ies a large port ion of

northern Brazi l (Fig. 63) . The wes te rn ex tent of this zone

of th ickened crust is determined by the crusta l models

computed f rom d i s p e r s i o n measurements over the nor thwestern

p la t form ( C A R - A R E , C A R - L P B , and T R N - L P B ) , wh ich require a

broad, a r c - shaped reg ion of crust somewhat thinner than
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average (s l ight ly less than 35 k i l omete rs ) beneath central

Venezue la , eastern Co lombia , nor theastern Peru, wes te rnmos t

Braz i l , and ext reme northern Bo l i v ia (Fig. 63).

The pattern of f i l tered free-air gravi ty anoma l ies

over the nor theastern part of the South Amer ican p la t fo rm is

a cont inuat ion of the pattern of sl ightly posi t ive to

sl ight ly negat ive (± 20 m g a l s ) grav i ty anomal ies that

cha rac te r i zes the central and southern parts of the p la t fo rm

(Fig. 65) . A d is t inc t ive , pair of g rav i t y anomal ies ex i s t s

over the wes te rn and eas te rn lobes of the Guyana shield.

The wes te rn lobe is cha rac te r i zed by a teard rop-shaped

grav i t y high (20 m g a l s ) wh ich extends part ia l ly over the

t ransi t ional zone between the shield and the Northern

Andes. The eas te rn lobe cor re la tes c lose ly wi th a tongue-

shaped g rav i t y low ( -20 m g a l s ) wh ich merges wi th a regional

g rav i ty low over the adjacent At lant ic Ocean. The d i v i s i on

between the high and low co r responds wel l wi th the T a k a t u

au lacogen wh ich d iv ides the shield.

The Amazon b a s i n has no d ist inct co r re la t i ve g rav i ty

low , unl ike the other 1ntracratonic bas ins of the South

A m e r i c a n p la t form. The f ree-a i r g rav i ty anomaly assoc ia ted

wi th the eastern and central Amazon basin, wh ich is just

s l ight ly l ess than zero, ex tends as far west as longi tude

67° Wes t . The western end of the Amazon bas in , however , is

cove red by a prominent nor thwes tward- t rend ing g rav i ty high

which reaches va lues of 40 mga ls . This high ridge s t re tches
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sou theas twa rd from the 60 mgal high over nor thwestern

Colombia ac ross the broad, low- ly ing t rans i t ion zone be tween

the upper A m a z o n bas in and the Andean cord i l le ra , to the

northestern corner of the Central B raz i l i an shield, at

approx imate ly lat i tude 5° South. A se r ies of e longated

grav i ty l o w s , a s s o c i a t e d wi th the fore land bas ins of the

Andean cord i l l e ra ( W i l c o x , 1977 ) , occur west o f this r idge,

between lat i tudes 3° South and 15° South.

The pattern of magnet ic anoma l ies over the northern

South Amer i can p la t fo rm is dominated by an eas t -wes t

t rending se r ies of i n te rconnec ted negat ive magnet ic

anoma l i es that near ly c r o s s e s the cont inent (Fig. 64) .

These anoma l i es cover much of the Amazon bas in and ex tend

into the central part of the t rans i t ion zone between the

upper Amazon b a s i n and the Andean cord i l le ra . The

northernmost magnet ic low of th is ser ies is centered near

the in te rsec t ion of the t rend of the Taka tu a u l a c o g e n w i th

the Amazon bas in ; this anomaly cove rs much of the southern

s ide of the Guyana sh ie ld (par t i cu la r l y the eas te rn lobe) .

The major wes te rn magnet ic low cove rs most of the central

part of the upper A m a z o n t rans i t ion zone. This anomaly l ies

direct ly over the f ree-a i r g rav i t y high that c h a r a c t e r i z e s

the t rans i t ion zone. Nor thwest of this nega t i ve , however ,

is a very prominent pos i t i ve magnet ic anomaly , centered over

south-cent ra l C o l o m b i a , that a l so l ies di rect ly over the

f ree-a i r g rav i t y high. Th is pos i t i ve anomaly sp reads both



185

nor thward , to cover all of the Colombian Andes, and

nor theas tward , to merge w i th the pos i t i ve anomaly that l ies

over the nor thern side of the wes te rn lobe of the Guyana

shield.

A l though the model N A T - C A R (over the nor theastern

coas t ) suggets a fa i r ly s tanda rd crusta l t h i ckness of around

38 k i l ome te rs , the two models NAT-BOG and N A T - Q U I , w h i c h

c ross the southern Guyana sh ie ld and the Amazon bas in ,

ind icate that th icker crust has been t raversed . These two

models y ie ld ave rage crus ta l t h i cknesses of around 46 to 50

k i lometers . The ave rage crusta l shear wave ve loc i t i es

computed from these two models is a l so somewhat high for

cont inenta l c rus t , fa l l ing somewhere in the range of 3.81 to

3.95 km/s. Since the two -s ta t i on paths c r o s s i n g the

nor thwes te rn por t ion of the South Amer i can p la t f o rm ind icate

that it is a reg ion of somewhat th inner than ave rage c rus t ,

the zone of th ick crus t sugges ted by the mode l s NAT-BOG and

NAT-QUI must be con f i ned to the area of northern Brazi l

(Fig. 63) .

Much of the path lengths of NAT-BOG and NAT-QUI are

con f ined to the negat ive magnet ic anomaly a s s o c i a t e d w i th

the e a s t e r n A m a z o n b a s i n and the spl i t Guyana sh ie ld ,

indicat ing that there may be some re la t ionship between the

zone of t h i ckened c rus t and the magnet ic anomaly . Burke

(1978) has sugges ted that the Amazon bas in is a P a l e o z o i c

r i f t . Perhaps the area of th i ck dense crust and the eas te rn
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pat tern of negat ive magnet ic a n o m a l i e s is a re f lec t ion of

either this tectonic ac t iv i ty , or the tectonic reac t i va t i on

a s s o c i a t e d w i th the later r i f t ing of South Amer i ca f rom

A f r i c a .

The occur rence of both a negat ive magnet ic anomaly

and a (s l i gh t ) nega t i ve f ree-a i r grav i ty anomaly over the

e a s t e r n lobe of the Guyana sh ie ld is unusua l , c o n s i d e r i n g

the usual trend of magnet ic and g rav i ty anoma l ies over the

other sh ie ld a reas of South Amer i ca (F igs. 64 and 65) .

These re la t ions seem to indicate that some d i f fe rence e x i s t s

in the crust beneath the two lobes of the Guyana shield.

The model N A T - B O G requi res the ex tens ion of th ick crust

beneath at l eas t hal f of the eas te rn lobe of the Guyana

shield. Perhaps the d i f f e rence in crustal p roper t ies

beneath the northern c ra ton ic area of South A m e r i c a

in f l uenced the pos i t ion of the Takatu a u l a c o g e n .

The mode ls computed f rom the two -s ta t i on paths w h i c h

cross the no r t hwes te rn port ion of the South Amer i can

p la t f o rm sugges t that a zone of re la t i ve ly thin crust ( l ess

than 35 k i lomete rs t h i ck ) must under l ie part of this area.

Th is zone has been mapped in as a l a rge cu rv ing tongue of

sha l l ow crust roughly para l le l to the no r thwes te rn coas t of

South Amer i ca and the c rescent of th ick crust beneath the

Andean co rd i l l e ra (Fig. 63 ) . The zone is not wel l def ined,

howeve r , because the pa ths wh ich c ross this a rea are m ixed ,

and none of them c ross the westernmost side of the
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t rans i t ion zone. The ave rage crustal shear w a v e ve loc i t i es

computed from models c ross ing this region are not

cons is ten t . The most rep resen ta t i ve range of average

crusta l shear wave ve loc i t i es , computed from the model C A R -

LPB ( inver t ing phase ve loc i ty d i spers ion data a lone) is 3 .70

to 3 .77 km/s. This range of ve loc i t ies is lower than

a v e r a g e crusta l v e l o c i t i e s measured in other parts of the

South Amer i can p lat form. Since most of the models c ross i ng

th is region were de r i ved from inver t ing phase ve loc i t i es

a lone, the upper mant le shear wave ve loc i ty d istr ibut ion

w i t h depth was su f f i c ien t l y stable to p ick a range of

ave rage upper mant le shear ve loc i t i es of 4.51 to 4 .57

km/s . This is a s l ight ly lower range of ve loc i t i es than the

average upper mant le shear w a v e ve loc i ty p i cked f rom the

model NAT-QUI o f 4 . 5 9 km/s ( inver t ing phase ve loc i ty

d i spe rs i on data a lone) . In this region the large negat ive

magnet ic anomaly does not seem to be a s s o c i a t e d with

th ickened crust. An arc of thin crust is cons is tent w i th

the presence of the high f ree-a i r g rav i ty anomaly over the

upper Amazon t rans i t ion zone, however , par t icu lar ly in v i e w

of the l ow , f lat ly ing topography of the t ransi t ional area.

It wou ld be very in terest ing to have a heat f l ow measurement

over the central part of this a rea , to see if the magnet ic

anomaly is re la ted to a thermal d is turbance beneath the

crust .



SUMMARY AND C O N C L U S I O N S

The crusta l t h i ckness map of South Amer ica

cons t ruc ted in this study is b a s e d on very general data.

The long-per iod , long-pa th Ray le igh wave d ispers ion a n a l y s i s

used to es tab l i sh the crusta l structure beneath the South

A m e r i c a n p la t fo rm a v e r a g e s over potent ia l ly s ign i f i can t

d i f f e r e n c e s in the crust and upper mantle of the p la t fo rm,

and the crustal mode ls of the Andean cord i l l e ra , wh i ch have

been der i ved by d i f fe ren t i nves t i ga to rs us ing a var ie ty of

geophys ica l methods, g i ve only a pre l iminary out l ine of the

crus ta l s t ruc ture benea th the cord i l l e ra . The crusta l shear

wave ve l oc i t i e s measured over the South A m e r i c a n p la t fo rm

are a l so the resul t of a v e r a g i n g over la rge , potent ia l ly

d i f ferent sec t i ons of crust . The potent ia l f ie ld a n o m a l i e s

mapped as apart of the MAGSAT pro jec t p rov ide more un i form

and more deta i led geophys ica l cove rage of the South A m e r i c a n

cont inent , but these data are a lso of an a v e r a g e d and

pre l im inary nature. Fu r the rmore , magnet ic and g rav i ta t iona l

f ie ld measurements are s e n s i t i v e to l i tho log ica l v a r i a t i o n s

in the c rus t (and upper man t l e ) w h i c h are not necessa r i l y

re la ted to e i ther the crus ta l t h i c k n e s s or the tec ton ic

fea tu res of South Amer i ca . Neve r t he less , some in teres t ing

r e l a t i o n s h i p s e x i s t be tween the v a r i a t i o n s in c rus ta l

t h i ckness and ave rage c rus ta l shear ve loc i ty , the magnet ic

188



189

and f ree-a i r gravi ty anoma l ies , and the major tectonic

features of South Amer ica.

A relat ively narrow belt of thick crust is present

beneath the trend of the Andean cordi l lera along the wes te rn

coast of South Amer ica . Th is belt thins gradual ly southward

beneath the Central Andes , and rather abruptly northward

beneath the Northern Andes. The crust thickens dramat ica l ly

beneath the bend in the mid-Central Andes at latitude 18°

South, reaching th i cknesses greater than 70 k i lometers. The

crust a lso th ickens beneath the Northern Andes of wes te rn

Colombia . Except for an in tense arc -shaped f ree-air gravity

high over the bend in the Central Andes, neither the pattern

of f i l tered f ree-ai r gravi ty anomal ies nor the pattern of

magnet ic anomal ies show a consistent cor re la t ion with either

the trend of the Andean cord i l lera or the pattern of crustal

th ickness. The large free-air grav i ty high over the Central

Andes is probably related to the high mean e levat ion of the

cordi l lera in this region, wh ich in turn is related to the

thick crustal root that supports the cordi l lera. An

interest ing corre la t ion a lso ex is ts between the extent of

this gravi ty high and the boundar ies of a large, steeply

dipping segment of the N a z c a plate beneath South Amer ica

proposed by Jo rdan et al . ( 1983 ) . The smaller f ree-air

gravi ty high over the mid-Northern Andes does not seem to be

re la ted either to the e leva t i on of the cord i l lera or the

presence of a crustal root. The anomaly may, however , be
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caused by the zone of dense, shal low oceanic crust that l ies

between the Central Cordi l lera and the Pac i f i c coast of

Colombia .

2. The central and southern portion of the South

Amer ican platform is undist inguished by any notable

var ia t ions in crustal th ickness. The average th ickness of

the crust throughout this region is approximately 42

ki lometers, which is typical of stable plat form and shie ld

areas ; the crust may thicken slightly to the north. (The

crust beneath the Chaco bas in and surrounding areas has not

been sampled adequately, however . ) The average regional

crustal shear wave veloci ty fa l ls wi th in a range of 3 .65 to

3.70 km/s. The pattern of f i l tered free-air gravi ty

anomal ies ac ross the central and southern p lat form is

characterized by slight lows ( -20 mgals) over the basins,

and near-zero anomal ies to slight highs (20 mga ls ) over the

exposed shields. These ranges indicate that the entire

reg ion is broadly in isostat ic equil ibrium, as wou ld be

expected in a large area of uniformly thick crust. Strongly

pos i t i ve magnet ic anoma l i es occur over the Central B raz i l i an

shie ld and over the northern and southern A t lan t ic shield;

an intense negative magnet ic anomaly occurs over the central

Atlantic shield. The southern portion of the platform is

charac ter ized by an i rregular pattern of sl ighly negat ive

magnetic anomal ies . The pattern of magnet ic anomal ies over

the southern and central South A m e r i c a n p lat form does not
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seem to be a s s o c i a t e d w i th va r i a t i ons in crusta l t h i c k n e s s ,

but may ins tead be a funct ion of either the exposure of

basement rocks in sh ie lds ac ross the p la t form, or of

l i tho logica l va r i a t i ons wi th in the crust of the p la t form.

The intense magnet ic anomaly over the central A t lant ic

sh ie ld may, for i ns tance , be at t r ibutable to thermotecton ic

r e a c t i v a t i o n of the crust pr ior to or during the r i f t ing of

South Amer ica f rom A f r i ca .

3. Two major t rends in crustal t h i ckness dominate

the crusta l s t ructure of the northern South A m e r i c a n

p la t fo rm. An e a s t - w e s t t rending zone of th i ckened c rus t

(s l ight ly th icker than 50 k i l ome te rs ) ex i s t s beneath near ly

al l of nor thern Braz i l . Th is zone of crust is c h a r a c t e r i z e d

by average crusta l shear w a v e ve loc i t i es of at l eas t 3.81 to

3.95 k m / s , wh i ch imp l ies that in add i t ion to being th i ck ,

the crust here is more dense than average. The no r thwes te rn

lobe of the South A m e r i c a n p l a t f o rm is under la in by a hook-

shaped zone of th inned crus t (s l ight ly thinner than 35

k i l o m e t e r s ) that roughly pa ra l l e l s the cu rve of the Andean

cord i l le ra . The ave rage c rus ta l shear w a v e ve loc i t y in th is

reg ion is poor ly de f ined , but probably f a l l s w i th in the

range of 3 .70 to 3 .77 km/s . The pat tern of f i l tered f ree-

a i r g rav i t y anoma l i es over the nor theas te rn p la t fo rm is very

s imi lar to that of the centra l and southern p la t form.

However , unl ike the other i n t rac ra ton i c bas ins of the South

A m e r i c a n p la t form, the Amazon b a s i n is not c h a r a c t e r i z e d by
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a d ist inct g rav i t y low. The sl ight negat ive anomaly wh i ch

l ies over the eas te rn lobe of the Guyana shield 1s a lso

unusual . A d is t inc t i ve pair of interconnected magnet ic l ows

c o v e r s part of the nor theastern platform. One of these

a n o m a l i e s is centered over the eas te rn Amazon b a s i n and

extends out into the Atlantic ocean; the other is centered

ove r the in tersect ion of the trend of the Takatu au lacogen

wi th the central Amazon bas i n and cuts ac ross much of the

southern Guyana sh ie ld (par t icu lar ly the eastern lobe) . The

area c o v e r e d by these negat ive magnet ic anoma l i es

co r responds wi th the zone of th ickened crust beneath

northern Braz i l , sugges t ing that some re la t ionsh ip may ex is t

be tween the two features . Perhaps the zone of th ickened

crust (and low e l e v a t i o n ) represents a subs ided rift

cushion.

A r idge- l i ke f ree-a i r g rav i t y high (greater than 40

m g a l s ) cove rs much of the low- ly ing, sed iment -covered

t rans i t ion zone between the Andean cord i l le ra and the Amazon

bas in and Guyana shie ld, over the nor thwestern South

A m e r i c a n p la t form. The wes te rn lobe of the Guyana shie ld is

a l so cha rac te r i zed by a sl ight f ree-a i r g rav i t y high. These

a n o m a l i e s cou ld be a re f lec t ion of the zone of thinned crust

mapped beneath the area. A d is t inct ive negat ive magnet ic

anomaly l ies over the central part of the t rans i t ion zone,

at the in tersect ion of the trend of the Amazon bas in w i th

the Andean cordi l lera. The relat ionship of this anomaly to
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the zone of thinned crust is not clear. The magnetic

anomaly could be due to the extensive sedimentary cover of

the region, to a fundamental lithological difference in the

crust, or to remnant thermal activity.
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Natal-Caracas: Event NCA 1

Period (Sec)

19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

3.36
3.67
3.83
3.89
3.93
3.96
3.98
3.99
4.00
4.00
4.00
4.00
4.00
3.99
3.99
3.98
3.98
3.98
3.97
3.96
3.94
3.92
3.90
3.87
3.84
3.80
3.78
3.75
3.74
3.73
3.72
3.72
3.71
3.72
3.72
3.72
3.71

Group Vel.
Caracas

2.82
3.08
3.25
3.42
3.55
3.62
3.67
3.70
3.73
3.77
3.80
3.82
3.84
3.86
3.87
3.88
3.88
3.88
3.88
3.88
3.89
3.89
3.89
3.89
3.88
3.88
3.88
3.88
3.87
3.87
3.87
3.86
3.86
3.85
3.85
3.85
3.85

Inter. Group
Vel.

2.92
2.80
2.98
3.18
3.35
3.44
3.50
3.54
3.58
3.64
3.69
3.72
3.75
3.78
3.80
3.82
3.82
3.82
3.83
3.83
3.65
3.87
3.88
3.90
3.90
3.93
3.94
3.96
3.95
3.96
3.97
3.95
3.95
3.93
3.93
3.93
3.93

Inter. Phase
Vel.

3.82
3.86
3.88
3.92
3.94
3.96
3.96
3.98
3.98
4.00
4.00
4.02
4.02
4.04
4.04
4.04
4.06
4.06
4.08
4.08
4.08
4.08
4.10
4.10
4.10
4.10
4.12
4.12
4.12
4.12
4.14
4.14
4.14
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Natal-Caracas: Event NCA 2

Period (Sec)

19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

3.26
3.68
3.83
3.90
3.94 ...
3.97
3.98
3.99
4.00
4.01
4.00
4.98
3.97
3.95
3.94
3.93
3.92
3.92
3.92
3.92
3.92
3.92
3.90
3.91
3.91
3.91
3.91
3.91
3.91
3.91
3.91
3.92
3.92
3.92
3.92
3.92
3.92

Group Vel.
Caracas

3.25
3.39
3.49
3.57
3.63
3.68
3.71
3.74
3.76
3.78
3.80
3.83
3.84
3.86
3.87
3.87
3.88
3.89
3.90
3.90
3.91
3.91
3.90
3.90
3.90
3.90
3.89
3.89
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88

Inter. Group
Vel.

3.24
3.22
3.30
3.38
3.45
3.51
3.55
3.59
3.62
3.64
3.68
3.74
3.76
3.80
3.82
3.83
3.85
3.87
3.89
3.89
3.90
3.90
3.89
3.89
3.89
3.89
3.88
3.88
3.86
3.86
3.86
3.85
3.85
3.85
3.85
3.85
3.85

Inter. Phase
Vel.

3.66
3.74
3.78
3.82
3.84
3.88
3.90
3.92
3.93
3.94
3.96
3.96
3.96
3.98
3.98
3.98
3.99
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.02
4.02
4.02
4.04
4.04
4.06
4.06
4.08
4.08
4.10
4.10
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Natal-Bogota: Event NBG 1

Period (Sec)

17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

2.98
3.36
3.67
3.83
3.89 ,
3.93
3.96
3.98
3.99
4.00
4.00
4.00
4.00
4.00
3.99
3.99
3.98
3.98
3.98
3.97
3.96
3.94
3.92
3.90
3.87
3.84
3.80
3.78
3.75
3.74
3.73
3.72
3.72
3.72
3.72
3.72
3.72
3.72

Group Vel.
Bogota

2.94
3.08
3.20
3.29
3.36
3.41
3.46
3.50
3.54
3.58
3.62
3.66
3.70
3.74
3.77
3.80
3.82
3.84
3.85
3.86
3.87
3.87
3.88
3.88
3.89
3.89
3.90
3.90
3.90
3.90
3.90
3.90
3.89
3.89
3.88
3.88
3.88
3.88

Inter. Group
Vel.

2.92
2.95
2 99
3.06
3.13
3.18
3.24
3.29
3.34
3.39
3.44
3.50
3.56
3.61
3.66
3.70
3.74
3.77
3.78
3.80
3.82
3.83
3.86
3.87
3.90
3.92
3.96
3.97
3.98
3.99
4.00
4.00
3.99
3.99
3.99
3.99
3.99
3.99

Inter. Phase
Vel.

3.80
3.84
3.88
3.90
3.94
3.96
3.98
4.00
4.00
4.02
4.04
4.04
4.06
4.06
4.08
4.08
4.10
4.10
4.12
4.12
4.12
4.12
4.12
4.12
4.12
4.14
4.14
4.14
4.14
4.14
4.16
4.16
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Natal-Bogota: Event NBG 2

Period (Sec)

19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

3.36
3.68
3.80
3.85
3.89
3.92
3.94
3.96
3.96
3.97
3.96
3.96
3.96
3.95
3.94
3.93
3.92
3.91
3.90
3.90
3.89
3.89
3.89
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.89
3.89
3.89
3.89

Group Vel.
Bogota

3.12
3.28
3.35
3.41
3.46
3.50
3.53
3.57
3.60
3.64
3.68
3.71
3.75
3.78
3.81
3.82
3.84
3.85
3.86
3.87
3.88
3.89
3.89
3.90
3.90
3.90
3.90
3.89
3.88
3.88
3.87
3.86
3.85
3.84
3.84
3.84
3.84

Inter. Group
Vel.

3.00
3.10
3.15
3.21
3.26
3.31
3.34
3.39
3.43
3.48
3.54
3.59
3.64
3.69
3.74
3.76
3.80
3.82
3.84
3.85
3.87
3.89
3.89
3.91
3.91
3.91
3.91
3.90
3.88
3.88
3.86
3.85
3.83
3.81
3.81
3.81
3.81

Inter. Phase
Vel.

3.76
3.80
3.84
3.86
3.90
3.92
3.94
3.96
3.98
3.98
4.00
4.00
4.02
4.02
4.02
4.04
4.04
4.04
4.04
4.04
4.04
4.04
4.06
4.06
4.06
4.06
4.08
4.08
4.10
4.10
4.10
4.12
4.12
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Natal-Bogota: Event NBG 3

Period (Sec)

19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

3.21
3.68
3.79
3.84
3.87
3.90
3.92
3.93
3.94
3.94
3.95
3.95
3.95
3.95
3.95
3.94
3.94
3.94
3.93
3.92
3.90
3.90
3.89
3.88
3.87
3.86
3.86
3.85
3.85
3.84
3.83
3.82
3.81
3.81
3.81
3.81
3.81

Group Vel.
Bogota

3.14
3.31
3.43
3.51
3.57
3.62
3.66
3.69
3.72
3.75
3.77
3.79
3.81
3.82
3.84
3.84
3.85
3.86
3.86
3.87
3.87
3.87
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.87
3.87
3.87
3.87

Inter. Group
Vel.

3.10
3.15
3.26
3.35
3.42
3.48
3.53
3.57
3.61
3.65
3.68
3.71
3.74
3.75
3.78
3.79
3.80
3.82
3.82
3.84
3.85
3.85
3.87
3.88
3.88
3.89
3.89
3.90
3.90
3.90
3.91
3.91
3.91
3.90
3.90
3.90
3.90

Inter. Phase
Vel.

3.78
3.84
3.86
3.90
3.92
3.92
3.94
3.96
3.98
4.00
4.00
4.02
4.02
4.04
4.04
4.06
4.06
4.06
4.08
4.08
4.08
4.10
4.10
4.10
4.12
4.12
4.14
4.14
4.14
4.14
4.16
4.16
4.16
4.16
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Natal-Bogota: Event NBG 4

Period (Sec)

19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

3.30
3.62
3.77
3.85
3.93
3.97
3.99
4.01
4.02
4.04
4.04
4.04
4.04
4.03
4.01
3.98
3.96
3.93
3.90
3.87
3.84
3.82
3.80
3.78
3.75
3.73
3.71
3.69
3.67
3.66
3.64
3.63
3.62
3.61
3.61
3.61
3.61'

Group Vel.
Bogota

3.13
3.29
3.37
3.43
3.48
3.52
3.57
3.60
3.63
3.66
3.69
3.73
3.76
3.80
3.82
3.84
3.85
3.86
3.86
3.86
3.86
3.86
3.86
3.85
3.85
3.84
3.83
3.82
3.82
3.81
3.80
3.80
3.80
3.80
3.80
3.80
3.80

Inter. Group
Vel.

3.04
3.13
3.18
3.23
3.27
3.31
3.37
3.40
3.44
3.48
3.52
3.58
3.62
3.68
3.72
3.76
3.79
3.82
3.84
3.85
3.87
3.88
3.89
3.89
3.91
3.90
3.90
3.90
3.91
3.90
3.90
3.90
3.91
3.92
3.92
3.92
3.92

Inter. Phase
Vel.

3.76
3.82
3.84
3.88
3.90
3.94
3.96
3.98
4.00
4.02
4.02
4.04
4.04
4.06
4.06
4.08
4.08
4.08
4.08
4.08
4.10
4.10
4.10
4.10
4.12
4.12
4.12
4.13
4.14
4.14
4.14
4.16
4.16
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Natal-Bogota: Event NBG 5

Period (Sec)

19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

3.38
3.66
3.82
3.88
3.93
3.96
3.98
3.99
4.00
4.00
4.01
4.01
4.01
4.00
4.00
3.99
3.98
3.96
3.94
3.92
3.90
3.88
3.86
3.84
3.83
3.81
3.80
3.78
3.77
3.76
3.76
3.76
3.76
3.76
3.76
3.76
3.76

Group Vel.
Bogota

3.18
3.31
3.38
3.44
3.48
3.52
3.56
3.59
3.62
3.65
3.69
3.72
3.75
3.78
3.81
3.83
3.84
3.86
3.86
3.88
3.88
3.89
3.90
3.90
3.90
3.90
3.90
3.90
3.90
3.89
3.88
3.88
3.88
3.88
3.88
3.88
3.88

Inter. Group
Vel.

3.08
3.14
3.18
3.34
3.27
3.31
3.36
3.40
3.44
3.48
3.53
3.58
3.62
3.67
3.71
3.75
3.77
3.81
3.82
3.86
3.87
3.90
3.92
3.93
3.94
3.95
3.96
3.97
3.98
3.97
3.95
3.95
3.95
3.95
3.95
3.95
3.95

Inter. Phase
Vel.

3.72
3.76
3.80
3.84
3.88
3.90
3.92
3.94
3.96
3.98
3.98
4.00
4.00
4.02
4.02
4.02
4.04
4.04
4.04
4.04
4.04
4.04
4.04
4.04
4.04
4.04
4.04
4.04
4.05
4.06
4.06
4.06
4.06
4.06
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Natal-Quito: Event SNQ 1

Period (Sec)

27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

3.71
3.76
3.79
3.82
3.83
3.84
3.85
3.85
3.86
3.86
3.86
3.87
3.87
3.87
3.87
3.87
3.87
3.87
3.86
3.86
3.86
3.85
3.85
3.85
3.84
3.84
3.83
3.82
3.82
3.82
3.83
3.83
3.83

Group Vel.
Quito

3.26
3.41
3.51
3.58
3.64
3.69
3.73
3.76
3.80
3.82
3.85
3.86
3.87
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.88
3.87
3.88
3.88
3.88

Inter. Group
Vel.

2.76
2.99
3.16
3.27
3.39
3.48
3.56
3.63
3.71
3.76
3.83
3.84
3.87
3.89
3.90
3.90
3.90
3.90
3.91
3.91
3.91
3.93
3.93
3.93
3.94
3.94
3.96
3.97
3.97
3.95
3.96
3.96
3.96

Inter. Phase
Vel.

3.88
3.90
3.92
3.92
3.94
3.98
4.02
4.04
4.04
4.04
4.06
4.06
4.06
4.08
4.08
4.08
4.10
4.10
4.10
4.11
4.12
4.12
4.12
4.12
4.14
4.14
4.14
4.14
4.16
4.16
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Natal-Quito: Event SNQ 2

Period (Sec)

21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

3.68
3.79
3.85
3.89
3.91
3.93 '
3.94
3.95
3.95
3.95
3.95
3.95
3.94
3.94
3.93
3.92
3.91
3.90
3.89
3.88
3.86
3.84
3.82
3.80
3.78
3.75
3.73
3.72
3.71
3.70
3.70
3.69
3.69
3.69
3.69
3.69

Group Vel.
Quito

3.08
3.28
3.38
3.45
3.52
3.58
3.63
3.67
3.70
3.72
3.75
3.77
3.78
3.80
3.81
3.82
3.83
3.84
3.85
3.85
3.86
3.87
3.87
3.88
3.88
3.89
3.89
3.90
3.89
3.89
3.89
3.88
3.88
3.88
3.88
3.88

Inter. Group
Vel.

2.83
3.06
3.17
3.25
3.34
3.42
3.48
3.53
3.58
3.61
3.65
3.68
3.70
3.73
3.75
3.77
3.79
3.81
3.83
3.83
3.86
3.89
3.90
3.92
3.94
3.97
3.98
4.00
3.99
4.00
4.00
3.99
3.99
3.99
3.99
3.99

Inter. Phase
Vel.

3.84
3.88
3.90
3.92
3.96
3.98
4.00
4.00
4.02
4.04
4.04
4.06
4.06
4.08
4.08
4.08
4.10
4.10
4.10
4.10
4.10
4.10
4.11
4.10
4.10
4.10
4.10
4.10
4.10
4.11
4.12
4.14
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Natal-La Paz: Event NLB 1

Period (Sec)

17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

3.02
3.38
3.53
3.61
3.66
3.70
3.74
3.76
3.78
3.78
3.79
3.79
3.79
3.78
3.78
3.77
3.76
3.74
3.74
3.73
3.72
3.72
3.71
3.71
3.70
3.70
3.70
3.70
3.69
3.69
3.69
3.68
3.68
3.68
3.68
3.68
3.68
3.68

Group Vel.
La Paz

2.90
3.04
3.12
3.18
3.24
3.30
3.36
3.41
3.46
3.50
3.55
3.58
3.62
3.66
3.68
3.72
3.74
3.76
3.78
3.79
3.80
3.82
3.84
3.84
3.85
3.86
3.86
3.86
3.86
3.86
3.86
3.86
3.86
3.85
3.84
3.84
3.84
3.84

Inter. Group
Vel.

2.93
2.94
3.01
3.06
3.12
3.19
3.25
3.31
3.37
3.42
3.48
3.52
3.57
3.62
3.65
3.70
3.73
3.77
3.79
3.81
3.83
3.85
3.88
3.88
3.90
3.92
3.92
3.92
3.92
3.92
3.92
3.92
3.92
3.91
3.90
3.90
3.90
3.90

Inter. Phase
Vel.

3.76
3.81
3.84
3.88
3.92
3.94
3.98
4.00
4.02
4.02
4.04
4.06
4.06
4.08
4.08
4.10
4.10
4.10
4.12
4.12
4.12
4.14
4.14
4.14
4.16
4.16
4.16
4.16
4.18
4.18
4.20
4.20
4.20
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Natal-La Paz: Event NBG 4

Period (Sec)

17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

3.10
3.37
3.49
3.56
3.62
3.65 -
3.67
3.68
3.68
3.68
3.68
3.68
3.68
3.67
3.67
3.66
3.65
3.64
3.64
3.63
3.62
3.60
3.58
3.57
3.55
3.53
3.52
3.50
3.48
3.46
3.44
3.42
3.40
3.39
3.38
3.38
3.38
3.38

Group Vel.
La Paz

3.04
3.12
3.16
3.20
3.24
3.29
3.34
3.40
3.45
3.50
3.55
3.59
3.63
3.66
3.69
3.72
3.74
3.76
3.77
3.78
3.79
3.80
3.80
3.81
3.81
3.81
3.81
3.81
3.80
3.80
3.80
3.79
3.78
3.78
3.77
3.77
3.77
3.77

Inter. Group
Vel.

3.02
3.04
3.06
3.10
3.13
3.19
3.24
3.32
3.38
3.44
3.51
3.56
3.61
3.66
3.70
3.74
3.77
3.80
3.81
3.83
3.85
3.87
3.88
3.90
3.90
3.91
3.92
3.92
3.92
3.93
3.94
3.93
3.92
3.93
3.92
3.92
3.92
3.92

Inter. Phase
Vel.

3.78
3.82
3.86
3.90
3.94
3.96
3.98
4.00
4.02
4.04
4.04
4.06
4.07
4.08
4.08
4.10
4.10
4.11
4.12
4.12
4.12
4.14
4.14
4.14
4.15
4.16
4.16
4.18
4.18
4.19
4.20
4.20
4.21
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Natal-La Paz: Event NLB 5

Period (Sec)

17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

3.14
3.40
3.52
3.58
3.62
3.64 '"
3.66
3.67
3.68
3.68
3.68
3.68
3.68
3.68
3.68
3.68
3.68
3.67
3.66
3.66
3.65
3.64
3.63
3.62
3.61
3.60
3.58
3.57
3.56
3.55
3.54
3.54
3.53
3.52
3.52
3.52
3.52
3.52

Group Vel.
La Paz

3.12
3.15
3.18
3.22
3.26
3.31
3.36
3.41
3.46
3.51
3.57
3.61
3.64
3.67
3.69
3.71
3.72
3.74
3.74
3.75
3.76
3.77
3.78
3.78
3.78
3.79
3.79
3.79
3.79
3.79
3.79
3.79
3.79
3.79
3.79
3.79
3.79
3.79

Inter. Group
Vel.

3.11
3.08
3.08
3.12
3.16
3.21
3.27
3.34
3.40
3.46
3.54
3.59
3.63
3.67
3.69
3.72
3.73
3.76
3.77
3.78
3.80
3.81
3,83
3.84
3.84
3.86
3.86
3.87
3.87
3.88
3.88
3.88
3.88
3.89
3.89
3.89
3.89
3.89

Inter. Phase
Vel.

3.80
3.84
3.89
3.94
3.96
3.98
4.00
4.04
4.06
4.06
4.08
4.10
4.12
4.14
4.14
4.16
4.16
4.18
4.20
4.20
4.22
4.22
4.24
4.26
4.26
4.28
4.29
4.30
4.32
4.32
4.34
4.34
4.36
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Brazilia-La Paz: Event BZB 1

Period (Sec)

17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Brasilia

2.90
3.44
3.56
3.63
3.68
3.72 "•
3.75
3.78
3.80
3.82
3.84
3.86
3.88
3.90
3.91
3.92
3.93
3.93
3.94
3.94
3.93
3.93
3.93
3.93
3.92
3.92
3.92
3.92
3.92
3.92
3.92
3.92
3.91
3.90
3.90
3.90
3.89
3.89

Group Vel.
La Paz

2.72
2.84
3.14
3.29
3.38
3.47
3.53
3.57
3.60
3.63
3.66
3.69
3.72
3.74
3.77
3.79
3.81
3.82
3.84
3.85
3.85
3.86
3.86
3.87
3.87
3.87
3.86
3.86
3.86
3.86
3.85
3.85
3.84
3.84
3.84
3.84
3.84
3.84

Inter. Group
Vel.

2.46
2.20
2.62
2.84
2.97
3.12
3.21
3.27
3.31
3.35
3.39
3.44
3.48
3.50
3.56
3.59
3.62
3.65
3.68
3.71
3.72
3.75
3.75
3.77
3.79
3.82
3.83
3.81
3.83
3.83
3.84
3.84
3.84
3.85
3.85
3.85
3.86
3.86

Inter. Phase
Vel.

3.58
3.64
3.68
3.72
3.76
3.80
3.84
3.86
3.88
3.90
3.92
3.94
3.96
3.98
3.98
3.99
4.00
4.02
4.02
4.04
4.06
4.06
4.06
4.07
4.08
4.08
4.08
4.10
4.10
4.10
4.11
4.11
4.12
4.12
4.12
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La Plata-Natal: Event LAN 1

Period (Sec)

9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
La Plata

2.80
2.80
2.81
2.84
2.90
2.96
3.04
3.15
3.24
3.30
3.33
3.35
3.36
3.37
3.37
3.38
3.37
3.37
3.36
3.36
3.36
3.34
3.34
3.33
3.33
3.32
3.32
3.32
3.31
3.31
3.31
3.30
3.30
3.30
3.30
3.29
3.29
3.29
3.28
3.28
3.28
3.28

Group Vel.
Natal

2.80
2.80
2.81
2.93
2.98
3.12
3.28
3.36
3.42
3.44
3.46
3.48
3.49
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.59
3.60
3.60
3.61
3.61
3.61
3.62
3.62
3.62
3.62
3.62
3.62
3.62
3.62
3.62
3.62
3.62
3.62
3.62
3.62

Inter. Group
Vel.

2.80
2.80
2.81
2.82
3.02
3.21
3.42
3.48
3.52
3.52
3.53
3.55
3.56
3.59
3.60
3.61
3.64
3.65
3.68
3.69
3.71
3.74
3.74
3.76
3.76
3.78
3.78
3.78
3.81
3.81
3.81
3.82
3.82
3.82
3.82
3.82
3.82
3.82
3.83
3.83
3.83
3.83

Inter. Phase
Vel.

3.70
3.74
3.76
3.78
3.78
3.80
3.82
3.84
3.85
3.88
3.88
3.90
3.90
3.90
3.92
3.92
3.92
3.94
3.94
3.94
3.96
3.96
3.96
3.96
3.96
3.96
3.96
3.96
3.96
3.96
3.96
3.96
3.96
3.97
3.98
3.98
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La Plata-Natal: Event LAN 2

Period (Sec)

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67

Group Vel.
La Plata

2.89
2.89
2.90
2.92
2.94
2.97 "•
3.01
3.05
3.10
3.17
3.32
3.42
3.49
3.54
3.59
3.64
3.69
3.73
3.77
3.80
3.83
3.86
3.88
3.91
3.92
3.94
3.96
3.98
4.00

Group Vel.
Natal

2.80
2.80
2.81
2.86
2.99
3.09
3.19
3.29
3.36
3.43
3.47
3.51
3.55
3.59
3.62
3.65
3.67
3.70
3.73
3.75
3.77
3.78
3.80
3.82
3.83
3.84
3.85
3.86
3.86

Inter. Group
Vel.

2.76.
2.76
2.77
2.83
3.01
3.15
3.28
3.42
3.50
3.57
3.54
3.55
3.58
3.61
3.63
3.65
3.66
3.69
3.71
3.73
3.74
3.74
3.76
3.78
3.79
3.79
3.80
3.80
3.80

Inter. Phase
Vel.

3.70
3.72
3.74
3.78
3.80
3.82
3.84
3.86
3.88
3.90
3.90
3.92
3.92
3.92
3.92
3.92
3.92
3.92
3.92
3.92
3.92
3.92
3.92
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Natal-La Plata: Event NLA 3

Period (Sec)

17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Natal

3.12
3.27
3.45
3.52
3.56
3.59 -
3.61
3.63
3.63
3.62
3.61
3.60
3.58
3.56
3.55
3.53
3.51
3.49
3.47
3.46
3.44
3.42
3.40
3.38
3.37
3.35
3.33
3.32
3.30
3.28
3.27
3.25
3.24
3.22
3.21
3.21
3.21
3.21

Group Vel.
La Plata

3.17 „
3.20
3.23
3.27
3.31
3.35
3.40
3.44
3.39
3.54
3.59
3.64
3.67
3.68
3.69
3.69
3.70
3.70
3.70
3.70
3.70
3.70
3.70
3.70
3.70
3.70
3.71
3.71
3.71
3.72
3.72
3.72
3.73
3.74
3.74
3.74
3.75
3.75

Inter. Group
Vel.

3.18
3.18
3.18
3.21
3.25
3.29
3.35
3.39
3.46
3.52
3.58
3.65
3.69
3.71
3.73
3.73
3.75
3.76
3.76
3.77
3.77
3.78
3.79
3.79
3.80
3.80
3.82
3.83
3.83
3.85
3.86
3.86
3.88
3.90
3.91
3.91
3.92
3.92

Inter. Phase
Vel.

3.70
3.74
3.76
3.80
3.82
3.86
3.86
3.88
3.90
3.91
3.92
3.92
3.94
3.94
3.94
3.96
3.96
3.98
3.98
4.00
4.00
4.02
4.02
4.04
4.04
4.04
4.05
4.06
4.06
4.06
4.08
4.08
4.08
4.08
4.08
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Caracas-La Plata: Event SCL 1

Period (Sec)

15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83

. 85
87
89
91

Group Vel.
Caracas

3.31
3.32
3.32
3.33
3.34
3.36
3.40
3.47
3.56
3.63
3.68
3.72
3.75
3.77
3.79
3.81
3.83
3.85
3.86
3.88
3.89
3.90
3.90
3.91
3.92
3.92
3.92
3.93
3.93
3.93
3.93
3.93
3.93
3.92
3.92
3.92
3.92
3.92
3.92

Group Vel.
La Plata

3.23
3.24
3.24
3.24
3.24
3.25
3.28
3.36
3.47
3.55
3.61
3.65
3.69
3.72
3.76
3.80
3.83
3.86
3.88
3.89
3.90
3.91
3.91
3.91
3.92
3.92
3.92
3.92
3.91
3.91
3.91
3.91
3.91
3.90
3.90
3.90
3.90
3.90
3.90

Inter. Group
Vel.

3.13
3.14
3.14
3.13
3.12
3.11
3.13
3.22
3.36
3.45
3.52
3.56
3.61
3.66
3.72
3.79
3.83
3.87
3.91
3.90
3.91
3.92
3.92
3.91
3.92
3.92
3.92
3.91
3.88
3.88
3.88
3.88
3.88
3.87
3.87
3.87
3.87
3.87
3.87

Inter. Phase
Vel.

3.85
3.88
3.90
3.92
3.94
3.96
3.96
3.98
3.98
4.00
4.00
4.00
4.00
4.00
4.02
4.02
4.02
4.02
4.02
4.04
4.04
4.04
4.04
4.04
4.04
4.06
4.06
4.06
4.08
4.08
4.08
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Caracas-Quito: Event CQI 1

Period (Sec)

19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
Caracas

3.16
3.42
3.65
3.70
3.74
3.77 "
3.80
3.92
3.84
3.86
3.88
3.89
3.89
3.89
3.89
3.88
3.86
3.85
3.84
3.83
3.82
3.81
3.80
3.80
3.79
3.79
3.79
3.79
3.79
3.79
3.78
3.78
3.78
3.78
3.78
3.78
3.78

Group Vel .
Quito

2.88
3.08
3.26
3.35
3.42
3.46
3.50
3.53
3.56
3.60
3.64
3.67
3.70
3.71
3.72
3.73
3.74
3.75
3.75
3.76
3.76
3.76
3.76
3.77
3.77
3.76
3.76
3.76
3.76
3.76
3.76
3.76
3.76
3.76
3.76
3.76
3.76

Inter. Group
Vel.

2.45
2.57
2.69
2.82
2.92
2.97
3.02
3.07
3.11
3.17
3.24
3.30
3.36
3.40
3.42
3.46
3.52
3.56
3.58
3.63
3.64
3.66
3.68
3.71
3.73
3.70
3.70
3.70
3.70
3.70
3.72
3.72
3.72
3.72
3.72
3.72
3.72

Inter. Phase
Vel.

3.42
3.48
3.54
3.58
3.64
3.68
3.71
3.76
3.78
3.80
3.83
3.85
3.88
3.88
3.90
3.90
3.92
3.92
3.92
3.93
3.95
3.96
3.97
3.98
3.98
4.00
4.00
4.02
4.02
4.03
4.04
4.04
4.06
4.06
4.06
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La Paz-Caracas: Event LPC 2

Period (Sec)

15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
La Paz

2.90
2.90
2.95
3.01
3.09
3.14 -
3.19
3.22
3.25
3.27
3.30
3.33
3.36
3.38
3.40
3.42
3.44
3.46
3.48
3.50
3.52
3.54
3.55
3.55
3.56
3.56
3.56
3.57
3.57
3.57
3.58
3.58
3.58
3.58
3.59
3.59
3.59
3.59
3.59

Group Vel.
Caracas

2.73
2.73
2.72
2.72
2.75
2.80
2.87
2.96
3.09
3.22
3.33
3.43
3.51
3.56
3.60
3.63
3.66
3.68
3.69
3.70
3.71
3.71
3.72
3.72
3.73
3.73
3.73
3.73
3.73
3.73
3.73
3.73
3.73
3.72
3.72
3.72
3.72
3.72
3.72

Inter. Group
Vel.

2.65
2.65
2.61
2.59
2.60
2.65
2.72
2.84
3.01
3.19
3.35
3.48
3.59
3.66
3.72
3.75
3.79
3.81
3.81
3.82
3.82
3.81
3.82
3.82
3.83
3.83
3.83
3.82
3.82
3.82
3.81
3.81
3.80
3.80
3.79
3.79
3.79
3.79
3.79

Inter. Phase
Vel.

3.90
3.90
3.92
3.94
3.96
3.97
3.98
3.98
4.00
4.00
4.00
4.01
4.02
4.02
4.02
4.03
4.04
4.04
4.05
4.06
4.06
4.08
4.08
4.08
4.09
4.08
4.10
4.11
4.11
4.11
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La Paz-Caracas: Event LPC 4

Period (Sec)

13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
La Paz

2.89
2.90
2.90
2.92
2.97
3.04 ' .
3.10
3.15
3.20
3.25
3.29
3.33
3.36
3.39
3.42
3.45
3.46
3.50
3.52
3.53
3.55
3.56
3.57
3.58
3.58
3.58
3.60
3.60
3.60
3.60
3.60
3.60
3.60
3.60
3.60
3.60
3.60
3.60
3.60
3.60

Group Vel.
Caracas

2.68
2.69
2.69
2.70
2.71
2.73
2.77
2.94
3.14
3.28
3.40
3.47
3.50
3.52
3.54
3.56
3.57
3.59
3.62
3.65
3.68
3.72
3.74
3.77
3.79
3.81
3.82
3.83
3.84
3.84
3.84
3.84
3.84
3.84
3.84
3.83
3.83
3.83
3.83
3.83

Inter. Group
Vel.

2.57
2.58
2.58
2.58
2.57
2.57
2.60
2.83
3.10
3.30
3.47
3.56
3.59
3.60
3.62
3.63
3.63
3.65
3.68
3.72
3.76
3.82
3.85
3.89
3.92
3.96
3.96
3.98
4.00
4.00
4.00
4.00
4.00
4.00
4.00
3.98
3.98
3.98
3.98
3.98

Inter. Phase
Vel.

3.82
3.86
3.90
3.92
3.93
3.94
3.96
3.98
4.00
4.00
4.02
4.03
4.04
4.06
4.06
4.06
4.08
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La Paz-Caracas: Event LPC 6

Period (Sec)

15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75

Group Vel.
La Paz

2.66
2.71
2.82
2.93
3.00
3.06 -
3.11
3.15
3.20
4.24
4.28
4.32
4.35
4.39
4.42
4.45
4.48
3.51
3.54
3.57
3.60
3.62
3.65
3.67
3.70
3.72
3.74
3.76
3.78
3.80
3.83

Group Vel.
Caracas

2.66
2.66
2.67
2.68
2.70
2.72
2.77
2.90
3.16
3.29
3.39
3.45
3.49
3.52
3.56
3.58
3.60
3.63
3.65
3.67
3.69
3.71
3.73
3.75
3.77
3.78
3.80
3.81
3.82
3.84
3.85

Inter. Group
Vel.

2.66
2.63
2.60
3.56
3.56
3.57
3.62
3.78
3.14
3.32
3.45
3.52
3.57
3.59
3.64
3.65
3.67
3.70
3.71
3.72
3.74
3.76
3.77
3.79
3.81
3.81
3.83
3.84
3.84
3.86
3.86

Inter. Phase
Vel.

3.86
3.90
3.92
3.94
3.96
3.96
3.98
3.98
4.00
4.02
4.02
4.04
4.06
4.06
4.08
4.08
4.08
4.09
4.10
4.10
4.10
4.12
4.12
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La Paz-Caracas: Event LPC 7

Period (Sec)

15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

Group Vel.
La Paz

2.92
2.93
2.94
2.98
3.02
3.06 '"
3.09
3.12
3.15
3.18
3.21
3.24
3.27
3.30
3.34
3.37
3.41
3.44
3.48
3.50
3.52
3.54
3.55
3.56
3.57
3.58
3.58
3.59
3.59
3.60
3.60
3.60
3.60
3.60
3.60
3.61
3.61
3.61
3.61

Group Vel.
Caracas

2.70
2.70
2.70
2.70
2.71
2.73
2.78
2.83
2.89
2.96
3.04
3.13
3.22
3.33
3.42
3.50
3.58
3.65
3.68
3.71
3.73
3.74
3.75
3.76
3.76
3.76
3.76
3.76
3.75
3.75
3.74
3.74
3.73
3.72
3.70
3.69
3.69
3.69
3.69

Inter. Group
Vel.

2.59
2.58
2.58
2.56
2.56
2.57
2.63
2.69
2.76
2.85
2.95
3.07
3.19
3.35
3.47
3.58
3.68
3.78
3.80
3.84
3.86
3.86
3.87
3.88
3.88
3.87
3.87
3.86
3.85
3.84
3.82
3.82
3.81
3.79
3.76
3.74
3.74
3.74
3.74

Inter. Phase
Vel.

3.96
3.98
4.00
4.00
4.01
4.02
4.02
4.02
4.02
4.02
4.02
4.02
4.02
4.02
4.02
4.02
4.04
4.04
4.06
4.06
4.08
4.08
4.09
4.10
4.10



APPENDIX B

PHASE VELOCITY DISPERSION DATA FROM

SHERBURNE (1974)
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Natal-Quito: Event 803

Inter. Phase
Period (Sec) Vel.

19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89

3.73
3.73
3.76
3.80
3.84
3.87
3.91
3.94
3.97
3.99
4.02
4.04
4.05
4.06
4.07
4.08
4.09
4.09
4.10
4.10
4.11
4.12
4.12
4.13
4.13
4.14
4.17
4.15
4.15
4.15
4.16
4.16
4.17
4.17
4.18
4.18
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Natal-Quito: Event 821

Inter. Phase
Period (Sec) Vel.

17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59

3.54
3.58
3.66
3.73
3.79
3.84
3.89
3.94
3.97
4.00
4.02
4.04
4.05
4.06
4.07
4.08
4.08
4.09
4.10
4.10
4.12
4.13
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Trinidad-La Plata: Event 801

Inter. Phase
Period (Sec) Vel.

31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91

3.73
3.74
3.77
3.83
3.87
3.90
3.93
3.94
3.96
3.97
3.98
3.98
3.99
4.00
4.00
4.00
4.01
4.01
4.02
4.02
4.02
4.02
4.03
4.03
4.03
4.03
4.03
4.03
4.04
4.04
4.04
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Trinidad-La Plata: Event 802

Period (Sec)
Inter. Phase

Vel.

19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87

3.58
3.61
3.67
3.73
3.78
3.83
3.86
3.89
3.92
3.94
3.96
3.97
3.99
4.01
4.01
4.02
4.03
4.04
4.04
4.04
4.05
4.05
4.06
4.06
4.06
4.06
4.07
4.07
4.07
4.07
4.07
4.08
4.08
4.08
4.08
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Tr i n i dad -R io de Jana i ro Event 831

Inter. Phase
Per iod (Sec ) Ve l .

31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89

3.89
3.90
3.91
3.94
3.97
3.99
4.01
4 .03
4.04
4.05
4.06
4 . 0 7
4 .07
4 . 0 7
4.08
4.08
4.09
4.09
4.09
4 .09
4.09
4.09
4.10
4.10
4.10
4 .09
4 .09
4 .09
4.09
4.09
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Caracas-Arequipa: Event 827

Inter. Phase
Period (Sec) Vel.

19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73

3.62
3.69
3.74
3.80
3.84
3.88
3.92
3.95
3.98
4.01
4.02
4.03
4.04
4.05
4.05
4.05
4.06
4.06
4.06
4.06
4.06
4.06
4.06
4.05
4.05
4.04
4.04
4.04
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Caracas-La Paz: Event 801 I

Inter. Phase
Period (Sec) Vel.

17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57

3.36
3.46
3.56
3.62
3.68
3.73
3.78
3.82
3.85
3.88
3.92
3.94
3.97
3.99
4.01
4.02
4.03
4.05
4.05
4.06
4.07
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Caracas-La Paz: Event 802

Inter. Phase
Period (Sec) Vel.

27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89

3.79
3.80
3.84
3.86
3.89
3.92
3.94
3.96
3.98
3.99
4.01
4.02
4.03
4.04
4.04
4.05
4.06
4.06
4.06
4.07
4.07
4.07
4.08
4.08
4.09
4.09
4.09
4.09
4.09
4.09
4.09
4.10
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Trinidad-La Paz: Event 827

Inter. Phase
Period (Sec) Vel.

19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71

3.51
3.56
3.63
3.70
3.74
3.79
3.83
3.85
3.88
3.91
3.93
3.95
3.96
3.97
3.98
4.00
4.01
4.02
4.02
4.03
4.04
4.04
4.04
4.05
4.05
4.05
4.06



APPENDIX C

EARTH MODELS OBTAINED IN THIS STUDY
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N a t a l - C a r a c a s Optimum Model Group and Phase
Veloc i ty Dispers ion Inversion

Thi ckness

2.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S-Ve loc i t y

2.10

3 .50

3 .55

3 .64

3 . 7 4

3.84

3 .94

4.03

4.12

4 .22

4 .32

4 .42

4 .51

4 .58

4.61

4.60

4 . 5 5

4 .46

4 .37

4 .34

4 .53

P-Ve loc i t y

3 .64

6.07

6.16

6.31

6.48

6 .66

6.82

6.98

7.14

7.30

7.48

7.65

7.81

7 .93

7 .98

7 ,97

7.88

7 .73

7 . 5 7

7.51

7.84

Densi ty

2 . 2 5

2 . 7 2

2 .75

2 .79

2 .84

2.89

2 .93

2 .98

3 .02

3.08

3.13

3.19

3 .25

3 .29

3.30

3.30

3 .27

3 .22

3.16

3.14

3 .26



N a t a l - B o g o t a O p t i m u m Mode l G r o u p a n d P h a s e
V e l o c i t y D i s p e r s i o n I n v e r s i o n

229

T h i c k n e s s

2.0

4.0

4.6

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S-Ve l oci ty

1.72

2.83

3 .04

3.47

3.86

4.14

4.30

4 . 3 2

4.26

4.14

4.08

4.10

4.26

4.46

4 . 7 0

4.86

4 .96

4.88

4 . 6 3

4.31

4.60

P- Ve loc i t y

2 .97

4.91

5,27

6.01

6 .69

7.18

7 .44

7 .49

7 .38

7.18

7 .07

7.11

7 .38

7 .73

8.14

8.43

8.59

8.44

8.02

7.46

7 .97

Densi ty

2.14

2.48

2 . 5 5

2.70

2.90

3.04

3.12

3.14

3.10

3 .04

3.00

3 .02

3.10

3 . 2 2

3 .36

3.46

3 . 5 2

3 .47

3 .32

3.13

3.30
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Nata l -Qui to Opt imum Model Group and Phase
Ve loc i ty D ispers ion Invers ion

Th i ckness

2.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S-Ve loc i t y

1.71

2.86

2 .95

3.17

3 .47

3.78

4.04

4.23

4 .33

4.38

4.37

4 .36

4.38

4.42

4 .50

4 .59

4 . 6 7

4.73

4 . 7 6

4 .67

4 .62

P-Ve loc i t y

2 . 9 6

4 .95

5.11

5 .49

6.01

6 .55

7.00

7 .32

7 .51

7.58

7 .57

7 .55

7.58

7.66

7.80

7 .95

8.09

8.20

8 .24

8.10

8.01

Densi ty

2.14

2 .49

2 . 5 2

2.60

2 .70

2.86

2.98

3.08

3.14

3.17

3.16

3.16

3.17

3.19

3 .24

3.29

3 .34

3.38

3.40

3 .34

3.31
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N a t a l - Q u i t o 3 O p t i m u m M o d e l P h a s e V e l o c i t y
D i s p e r s i o n I n v e r s i o n

T h i c k n e s s

2.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S-Ve l oci ty

2.13

3.56

3 .60

3.71

3.83

3.94

4 .03

4.09

4.13

4.16

4.19

4.24

4.31

4.40

4.50

4.60

4 . 6 7

4.71

4.72

4 .64

4.60

P - V e l o c i t y

3.70

6.16

6 , 2 4

6 . 4 2

6 . 6 3

6 .83

6 . 9 9

7.09

7.16

7 .21

7 .26

7 .35

7 .47

7.63

7.80

7 .97

8.10

8.16

8.17

8.04

7.97

Densi ty

2 .26

2 .75

2 .77

2.82

2.88

2 .94

2 .98

3.01

3.03

3 .05

3.06

3.09

3.13

3.18

3 .24

3.30

3.34

3 .37

3 . 3 7

3 . 3 2

3.30

' D a t a f r o m S h e r b u r n e ( 1 9 7 4 ) .
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N a t a l - L a P a z O p t i m u m Mode l G r o u p a n d P h a s e
V e l o c i t y D i s p e r s i o n I n v e r s i o n

T h i c k n e s s

2.0

4.0

4 .0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S - V e l o c i t y

1.94

3.22

3.37

3.66

3.92

4.03

4 .02

3.93

3.85

3.85

3.98

4 .22

4 .55

4.87

5.12

5.18

5.03

4.68

4 . 2 5

4.06

4.71

P - V e l o c i t y

3.37

5.58

5.84

6.34

6 .78

6.98

6 .96

6.80

6 .67

6 . 6 7

6.89

7.31

7.88

8.44

8.87

8.98

8.70

8.11

7 .36

7 . 0 4

8.16

D e n s i t y

2.21

2 .62

2 . 6 7

2.80

2 . 9 2

2 .98

2 . 9 7

2.93

2.89

2.89

2 . 9 5

3.08

3 .27

3.47

3.62

3.65

3.56

3.35

3.10

2 . 9 9

3.37



233

Brasi l ia-La Paz Optimum Model Group and Phase
Ve loc i t y D ispers ion Invers ion

Th ickness

2.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S-Ve loc i t y

1.67

2.79

2.90

3.11

3.38

3 .66

3.90

4.07

4.18

4.25

4.30

4 .36

4 .44

4 .53

4.61

4 .65

4 .62

4.52

4.39

4 .32

4.64

P-Veloc i ty

2.90

4.84

5.03

5.39

5.86

6.34

6 .76

7.05

7.25

7.36

7 . 4 4

7 .55

7.70

7.85

7.98

8.05

8.00

7.83

7.60

7.48

8.04

Density

2.13

2.46

2 .50

2.58

2 .67

2.80

2.92

3.00

3.06

3.09

3.12

3.16

3.21

3 .26

3.30

3 . 3 3

3.31

3 .25

3.17

3.13

3 .32
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Nata l -La P la ta Optimum Model Group and Phase
Ve loc i t y D i s p e r s i o n Invers ion

T h i c k n e s s

2 .0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4 .0

4.0

4 .0

4.0

4 .0

4.0

4 .0

4.0

4 .0

4.0

10.0

10.0

10.0

S - V e l o c i ty

2.33

3.87

3.95

3.99

3.93

3.79

3.66

3.61

3.68

3.88

4 .19

4 . 4 7

4 . 7 4

4 .93

4 .98

4.89

4 .65

4 .33

4 .00

3.94

4.53

P - V e l oci ty

4.04

6.70

6.84

6 .92

6.82

6.57

6.34

6 .25

6.38

6 .72

7 . 2 6

7 . 7 4

8.20

8.54

8 .64

8.47

. 8.06

7.50

6 . 9 4

6.83

7.85

D e n s i ty

2 . 3 2

2 .90

2 .94

2 .96

2 .93

2 .87

2 .80

2 .787

2.81

2 . 9 1

3 .06

3 . 2 2

3.38

3.50

3.54

3.48

3.33

3.14

2 . 9 6

2 . 9 4

3 .26
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La P la ta -Nata l Opt imum Model Group and P h a s e
Ve loc i t y D i s p e r s i o n Invers ion

T h i c k n e s s

2.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S-Ve l oci ty

1.97

3.28

3.39

3.63

3.87

4.03

4.08

4.07

4 .04

4.04

4.12

4 .27

4 .46

4 .65

4 .76

4.77

4.. 6 5

4.42

4.14

4.01

4 .42

P-Ve loc i t y

3.41

5.68

5,87

6 .29

6.71

6.98

7.07

7.05

7.00

7.00

7.13

7.40

7 . 7 3

8.05

8 .25

8.27

8.06

7.66

7.16

6 . 9 5

7.66

Densi ty

2 .22

2 .64

2 . 6 7

2 .79

2.90

2 .97

3.00

3.00

2.98

2.98

3.02

3.11

3 . 2 2

3 .33

3.40

3 .41

3 .33

3.19

3 .03

2 .97

3 .20
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N a t a l - L a P la ta 9 Opt imum Model Group and Phase
Ve loc i t y D i s p e r s i o n Invers ion

T h i c k n e s s

2.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S - V e l o c i ty

2.00

3.32

3.41

3 .62

3.86

4.03

4.10

4.08

4 . 0 5

4 .04

4.12

4.26

4.46

4 .65

4 . 7 7

4 .78

4 . 6 5

4 .42

4.14

4 .03

4 .47

P - V e l o c i t y

3.47

5.75

5,90

6 .27

6.68

6.99

7.10

7 .07

7.01

7.01

7.14

7.39

7 .73

8.06

8.27

8.28

8.06

7 .65

7.18

6 .98

7 . 7 4

Densi ty

2.22

2 . 6 5

2 .68

2 .78

2.90

2 .98

3.01

3.00

2 .98

2 .98

3 .02

3.10

3 . 2 2

3 .33

3.41

3.41

3 .33

3.19

3.04

2.97

3 . 2 2

a Represen ta t i ve model ( 3 e v e n t s ) .
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C a r a c a s - L a P la ta Optimum Model Group and Phase
Ve loc i t y D i spe rs ion Invers ion

Th i ckness

2.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S-Ve loc i t y

2 .15

3.57

3 .74

3 .99

4.08

4.05

3.83

3.61

3.48

3 .52

3 .76

4.17

4.69

5.25

5.68

5.81

5.58

5.02

4 .33

3.89

4.51

P-Veloc i ty

3 .73

6.18

6.48

6.91

7.08

7.02

6.63

6.26

6.03

6.10

6.51

7 .23

8.12

9.10

9.83

10.07

9.68

8.70

7 . 5 0

6.73

7.81

Densi ty

2 .27

2 .76

2.84

2 .96

3.00

2.98

2.88

2 .78

2.71

2 .73

2 .85

3.05

3 .35

3.70

3.99

4.10

3.93

3 .56

3 .14

2.91

3 .24
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Tr in idad-La P la ta 3 Optimum Model Phase
V e l o c i t y D i spe rs i on Invers ion

T h i c k n e s s

2.0

4.0

4.0

4.0

4 .0

4.0

4 .0

4.0

4 .0

4.0

4 .0

4.0

4 .0

4.0

4 .0

4 .0

4.0

4.0

10.0

10.0

10.0

S - V e l o c i ty

2.36

3.93

3.92

3.91

3,89

3.88

3.87

3.87

3.89

3.92

3.96

4 .02

4.10

4 .19

4.30

4.41

4.53

4 .66

4.66

4.60

4 . 4 5

P - V e l o c i t y

4.08

6.81

6.79

6 . 7 7

6 . 7 4

6 . 7 2

6 . 7 0

6 .71

6 . 7 3

6 .78

6.86

6.96

7.10

7 . 2 6

7 . 4 4

7 . 6 4

7.85

8.07

8.06

7 .97

7 .71

D e n s i ty

2.33

2.93

2 .93

2 . 9 2

2 .91

2.90

2 . 9 0

2 . 9 0

2 .91

2 . 9 2

2 . 9 4

2 . 9 7

3.01

3.06

3.12

3 .19

3.26

3.33

3.33

3.30

3.21

aData from Sherburne ( 1 9 7 4 ) .
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T r i n i d a d - R i o d e J a n e i r o 3 O p t i m u m M o d e l P h a s e
V e l o c i t y D i s p e r s i o n I n v e r s i o n

T h i c k n e s s

2.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4 .0

4.0

10.0

10.0

10.0

S - V e l o c i t y

2 .47

4 .11

4 .09

4.06

4.01

3.96

3.92

3.90

3.90

3.93

3.98

4.06

4.15

4 .25

4.36

4 .47

4.58

4.66

4 . 7 2

4.68

4.48

P - V e l o c i t y

4 . 2 7

7 . 1 2

7.09

7.03

6.94

6.85

6 . 7 9

6 . 7 5

6 . 7 6

6.81

6 .90

7 .03

7.18

7.36

7 .56

7 . 7 5

7 .93

8.07

8.18

8.10

7 . 7 6

D e n s i t y

2.36

3 .02

3.01

2.99

2.96

2 . 9 4

2 .92

2 .92

2 . 9 2

2 .93

2 .95

2.99

3.04

3.10

3.16

3.22

3.28

3.34

3.37

3.34

3 .23

a D a t a f r o m S h e r b u r n e ( 1 9 7 4 ) .
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Caracas -Qu i t o Opt imum Model Group and Phase
Ve loc i t y D ispers ion Invers ion

T h i c k n e s s

2 .0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S - V e l o c i ty

1 .50

2.50

2.66

3.01

3.46

3.87

4.09

4.09

3.94

3.78

3.73

3.85

4.15

4.57

4.96

5.19

5.14

4.81

4.32

3.97

4.58

P - V e l o c i t y

2.60

4.33

4,61

5.21

6.00

6.70

7.08

7.08

6.82

6.56

6.46

6.68

7.18

7.91

8.60

8.99

8.90

8.33

7.48

6.87

7.94

D e n s i ty

2 .07

2 .37

2.41

2 .54

2.70

2 .90

3.01

3.00

2.93

2.86

2.84

2.90

3.04

3.28

3.52

3.66

3.63

3.43

3.14

2.95

3.29
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C a r a c a s - A r e q u i p a a Optimum Model Phase
Ve loc i ty D ispers io in Invers ion

T h i c k n e s s

2 .0

4.0

4 .0

4.0

4.0

4.0

4.0

4.0

4 .0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S-Veloc1ty

2.35

3.92

3.91

3.88

3.85

3.84

3.84

3.87

3.93

4 .02

4.12

4 . 2 4

4.36

4.49

4.61

4 .72

4.80

4.85

4.85

4.71

4.41

P - V e l o c i t y

4.07

6 .79

6 , 7 7

6 . 7 2

6.68

6.65

6.66

6.71

6.81

6.96

7.14

7.34

7.56

7.78

7 .78

8.17

8.32

8.40

8.40

8.15

7.63

D e n s i t y

2.33

2.92

2 .92

2.91

2 .90

2.89

2.89

2 .90

2.93

2 .97

3.02

3.09

3.16

3.23

3.23

3.37

3.42

3.45

3.46

3.36

3.18

aData from Sherburne ( 1 9 7 4 ) .
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Tr in idad-La Paz a Optimum Model Phase
Veloc i ty D ispers ion Data

T h i c k n e s s

2.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4 .0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S - V e l o c i t y

2 .20

3.67

3.68

3.67

3.66

3.67

3.72

3.80

3.92

4.05

4.19

4.31

4.41

4.48

v 4.51

4 .52

4 .52

4.51

4.49

4.50

4 .52

P - V e l o c i t y

3.82

6.36

6,37

6.36

6.34

6.36

6.44

6.59

6 . 7 9

7 .02

7 .25

7.46

7 .64

7 .75

7.82

7.84

7.83

7.81

7.78

7.79

7.82

D e n s i t y

2 . 2 9

2.81

2.81

2.81

2.80

2.81

2.83

2.87

2 .92

2.98

3.06

3.13

3.18

3.22

3.25

3.25

3.25

3.24

3.24

3 .24

3.25

aData f rom Sherburne (1974 ) .
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L a P a z - C a r a c a s O p t i m u m M o d e l G r o u p a n d P h a s e
V e l o c i t y D i s p e r s i o n I n v e r s t i o n

Th ickness

2.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S-Ve loc i t y

1.78

3.05

3.13

3.55

3 .78

3.64

3 . 3 7

3 .25

3.40

3.88

4 .53

"; \ 5.16

5.58

5.67

5.48

5.12

4.71

4.38

. 4.18

4.36

' 4.60

P-Ve loc i t y

3.09

5.28

5.43

6.15

6 . 5 4

6.30

5.83

5.63

5.89

6 .72

7.85

8.94

9.66

9.83

9.49

8.87

. 8.16

7.58

7 . 2 5

7.56

7 .96

Density

2.16

2 .56

2 .58

2.74

2.86

2 . 7 9

2 .67

2 .62

2.68

2.91

3.26

3.64

3 .92

3.98

3.86

3.62

3.37

3 .17

3.06

3.16

3.30
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La Paz-Caracas a Optimum Model Phase Veloci ty
Dispers ion Inversion

T h i c k n e s s

2.0

4.0

4.0

4.0

4 .0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

10.0

10.0

10.0

S - V e l o c i t y

2 .12

3.54

3.54

3.57

3.62

3.70

3.80

3.89

3.96

4.03

4.09

4.15

4 .22

4.30

4.40

4.51

4.62

4.73

4.81

4 .76

4.53

P - V e l o c i t y

3.67

6.13

6.14

6.18

6 .27

6.41

6.58

6 .73

6.87

6.98

7.08

7.19

7.30

7.44

7 .62

7.81

8.01

8.19

8.33

8.24

7.85

D e n s i t y

2 .26

2 . 7 4

2 . 7 9

2 .75

2 .78

2.82

2.87

2 .91

2 .94

2.98

3.01

3.04

3.08

3.12

3.18

3 .24

3.31

3.38

3.43

3.40

3.26

aData from Sherburne (1974 ) .
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La P a z - C a r a c a s Optimum Model Phase Ve loc i ty 3

Dispers ion Inversion

Th ickness

2.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0 '

10.0

10.0

10.0

S-Ve loc1 ty

2.20

3.67

3.70

3.75

3.82

3.90

3.99

4.07

4.14

4.20

4 .26

4.30

4 .34

4.38

4.40

4.43

4 .44

4.45

4.46

4 .47

4 . 5 2

P-Ve loc i t y

3.81

6.36

6.40

6.50

6.62

6.76

6.90

7.04

7.17

7.28

7.37

7.45

7 .52

7.58

7.63

7.67

7.69

7.71

7 .72

7 .75

7.83

Densi ty

2.29

2.81

2.82

2.85

2.88

2 . 9 2

2.96

2.99

3.04

3.07

3.10

3.12

3.15

3.17

3.18

3 .20

3.20

3 .21

3 . 2 2

3 .22

3.25

'Group velocity d ispers ion data omitted.
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