scanning hind-vector scatterometers with two pencil beams

T. Kirimoto and R.K. iloore Remote Sensing laboratory
University of kansas Center for Research, Inc. Lawrence, Kansas 66045-2969, 11.S.A.

Abstract

A scanning pencil-beam scatteroneter for ocean windvector determination has potential advantages over the fan-bean systems used and proposed heretofore. The pencil beam permits use of lower transmitter power, and at the same time allows concurrent use of the reflector by a radiometer to correct for atmospheric attenuation and other radiometers for other purposes. The use of dual hears based on the same scanning reflector permits four looks at, each cell on the surfaces, thereby improving accuracy and allowing alias removal.

This paper describes simulation results for a spaceborne dual-bea s scaring scatteroneter with a l-watt radiated power at an orbital altitude of 900 km . 1 wo novel algorithms for removing the aliases in the :indvector are ascribed, in addition to an adaptation of the conventional maxinum-likelihood algorithm. The new algorithins are more effective at alias removal than the conventional one. 'measurement errors for the wind speed, assuming perfect alias removal, were found to be less than 10%.

i.D INTRODUCTION

Plans for wind-vector measurement with spaceborne radar scatterometers often call for measurements with a radiometer on the same spacecraft. Although many of these measurements may be independent of the scatteroneter, at least some of them should be used to correct errors in the measured backscatter due to atinospheric attenuation. In fact, a radiometer should always be used in conjunction with a scatterometer for this purpose.

A major problem with this correction occurs when the radiometer and scatteroneter have different scan patterns and the radiometer has a larger footprint than the scatterometer [More, et al., 1983], The problem exists because stoma cells are often small compared with the size of a single radiometer footprint, so combining several radiometer measurements to correct a scatterometer measurement for a cell overlapping several radiometer cells results in significant errors in the "correction". The instrument configuration discussed here is intended to overcome this problem.

This arrangement calls for both instruments to have the same scan pattern and for the radiometer to have a footprint coincident with that of the scatterometer and, to the extent possible, a footprint of the same or smaller size. This is achieved by using the same scanning pencil-bean antenna for both scatterometer and radiometer. In addition, a second beam achieved by using an offset feed in the same antenna allows the scatterometer to have four rather than two azimuth angles (relative to the wind direction) for viewing each scatterometer cell.

The basic configuration is shown in Figure 1. Two circles at different distances from the suborbital track are shown, along with a line parallel to the track but displaced from it. The outer circle is the locus of scan positions for the radiometer and for scatterometer beam no.1, and the inner circle is the locus for scatterometer beam no. 2. The intersections of these circles with the

ORIGINAL PAGE iJ
 OF POOR QUALITY

Fig. 1: Basic Configuration of Scanning Scatterometer

Fig. 2: Flow Chart for Simulation
displaced track line show the four different angles that are used by the scatterometer to view each cell on the surface. Use of only two look diractions results in up to four "aliases" of the wind direction [Wurtele, et al., 1982] Use of additional beams can reduce this alias problem and allow determination of the correct wind direction much of the time without use of collateral data or partern recognition [Shanmugan, et al., 1982] This paper presents simulations that illustrate how well the four-beam system solves the alias problem.

Advantages of this system include:
(1) Only one antenna is needed for both radiometer and scatteroneter.
(2) Use of the relatively large aperture required for the radioneter allows the scatterometer power to be quite low (1 watt in these simulations).
(3) Since all scatterometer measurements are at only two fixed angles of incidence, errors in modeling the incidence-angle variation of the scattering coefficient do not exist, and the data processing for the scatteroneter need not have algorithins to handle incidence-angle variations.
The primary disadvantage of this system is that the look directions for the different cells are neither orthogonal (as on SEASAT) nor constant. On the other hand, the effect of the rotation of the earth on the SEASAT observations was to make the orthogonal beams on the spacecraft more difficult to handle than they would have been if they had been oriented relative to the ground track rather than relative to the orbit plane. Hence the complexity in the computations associated with non-orthogonal beams is at least partly cancelled by the complexity associated with correcting for earth-rotation effects in the orthogonal-beam system. For some angular combinations with the scanning beam the accuracy is less than with orthogonal looks, but these may he avoided at some sacrifice in swath width.

Here we treat two subjects associated with the scanning-beam system:

CRECPMAR : : id
OF PLCR Quamity
algorithm development for determining wind vectors with the scanning four-beata scatterometer and medsurement errors with such a system. The treatment. is accomp?ished using Monte Carlo simulations. All simulations assume an effactive transmitter average power of 1 watt at a spacecraft altitude of 900 km . nther parameters used are listed in Table 1 . The algorithms used include a modification of the maximum-likelihood (or SOS) algorithm used for SEASAT [Jones, et al., !9?2] and two simple pattern-recognition schemes based on comparison of results from nearby cells. The averages of norms between the true wind vectors and the simulated ones are computed to illustrate the errors.

2.0 SIMULATION METHOD

The major steps in the simulation of the scanning scatterometers are shown in Figure 2.

Step 1: Input of System Parameters: This step inputs all parameters tinat are needed in the following computation. The list of the parameters is shom in Table 1.

Step 2: Compute Noise-Free Backscattering Coefficients $\{\sigma Q\}$: This step computes a set of noise-free backscattering coefficients in equation (1).

$$
\begin{equation*}
\tilde{c}_{\ell}^{2}(\mathrm{~dB})=10\left[\Gamma_{2}\left(\phi_{0}-\psi_{\ell}-180^{0}, 0_{\ell}, \varepsilon_{\ell}\right)+1 H\left(\phi_{0}-\psi_{\ell}-130^{0}, \theta_{\ell}, \varepsilon_{\ell}\right) \log _{10}\left|\mathrm{U}_{0}\right|\right] \tag{1}
\end{equation*}
$$

where:

TABLE 1
 PARAMETERS OF SIMULATION

Transmit Power (W)	1.0
Hoise Temprature (${ }^{\circ} \mathrm{K}$)	273.0
System Loss (dB)	4.0
ioise Figure (dB)	4.0
Zeamwidth-it (deg)	1.0
Ceamwidth-y (deg)	1.0
?adiation Efficiency	0.8
Fraction of time to pass footprint kI	0.1
Signal and Noise Integration Time Ratio kN	10.0
Uavelength (MM)	22.0
Satellite Height (km)	900.0
Slant Range (km)	1127.6

Step 3: Compute Hormalizod Standard Deviation of Aeasurenent fror op(i) Due
 measurenent error Gonthan, et al.,] as

$$
\begin{equation*}
K_{D}^{2}(2)=\frac{\left(1+\operatorname{SNR}^{-1}\right)^{2}}{C_{1}}+\frac{\operatorname{SNR}^{-2}}{C_{C}^{T} I^{k} N} \tag{?}
\end{equation*}
$$

where:
SN: $=$ signal-t(1)-noise power ratio
$\sigma_{c}=$ receiver handwidth
$T_{I}^{C}=$ signal integration time
$\mathrm{k}_{\mathrm{i}}=$ noise-to-rignal integration time ratio
: = notation to distinguish looks.
Zote that only the receiver noise is taken account of in these sinulations, although the measurements might also be noisy hecause of sampling variability.

Step 4: Compute inisy Backscattering Coefficients \{o2l. This step computes the set of no backscattering coefficients log in equation (3). It is assumed that $: 2$ arr distributed log-normally.

$$
\begin{equation*}
\ln O_{\ell}^{0}=\ln \tilde{\sigma}_{\ell}^{0}+\Delta 0_{\ell}^{0} \tag{3}
\end{equation*}
$$

where:

$$
\begin{aligned}
j j_{\hat{Z}}^{0} & =\text { Gaussian randon variable with } 0 \text { mean and } k_{p}(\varepsilon) \text { deviation. } \\
p & =\text { notation to distinguish looks. }
\end{aligned}
$$

Step 5: Compute wind Alias from $\left\{0_{i}^{0}\right\}$. The maximum-likelihond method is applied as the aljorithin for computation of the wind alias from $\left\{o_{2}^{0}\right\}$. Thas, the wind vectors $!(\}=(||||\cos \varphi,|0| \sin \phi))$ at which the probability density function (POF) of equation (f) have local maxima are computed [Jones, et al., 1982]

$$
\begin{equation*}
\operatorname{PDF}\left(\vec{U} \left\lvert\,\left\{\sigma^{a i}!\right)=\frac{\exp \left\{-\sum_{\ell=1}^{1}\left(\ln \sigma_{\ell}^{0}-f(\vec{U}, \ell)\right)^{2} / 2 K_{p}^{2}(\ell)\right\}}{\int d!\exp \left\{-\sum_{\ell=1}^{4}\left(\ln \sigma_{\ell}^{0}-f(1 \|, \ell)\right)^{2} / 2 K_{p}^{2}(\ell)\right\}}\right.\right. \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
f(\vec{U}, 2)=(\ln 10)\left[r_{2}\left(p-\psi_{\ell}-180^{0}, \theta_{\ell}, \varepsilon_{\ell}\right)+H\left(\phi-\psi_{\ell}-180^{0}, 0_{\ell}, \varepsilon_{\ell}\right)\right] \cdot \ln g_{10}|U| \tag{5}
\end{equation*}
$$

The procedures from Step 1 to Step 5 are iterated for several true wind vectors m_{n}, ground points, incinerice angles and two polarizations, hecause these parameters seribusly influence wind alias and wind measurenent error. nther parameters are fixed at suitable values for spaceborne systems. Hind-alias renoval and neas:argment error are estimated in Steps 6 and 7.

3.0 NI:D-ALIAS IIEMOVAL

The PDF of equation (4) usually results in two or four local naxima of the wind direstion, resulting in wind aliases. The local probability maximum for a wrong wind vector often has a larger value than the local maximuri of the correct wind vector. Hence, it is important to remove wind aliases by other means.

Examples of the simulation results are shown in figures 4-13. Paraneters of the simulation are shown in these figures and in Table l. In these figures
"3rount-tracir" shows he diriection of rpacecraft untion and " N. Ano." shows forward acimuth lory anglos of rith beam. (The reforeroe axis is the grounttrack). Aft azimuth look angles of sach beam are given by subiracting forward loo. anyles from l:0". The angle between the vertor and "ground-track" shows the wind direction and the magnitude of the vector shows the wind speed.
"inte that the type of "hox" used for simulating the pattern recognition techniques i; not completely realistic because it is based on the andles used for the situlations. The horizontal (j) dimension on the "chicken tracks" corresponds with along-track spacings for the satellite. The vertical (i) dimension on the "chicken tracks" corresponds to dcross-track spacings for the beam, but these dimensions are based on the angles selected for simulation rather than on uniform spacings. Fi igure 3 illustrates the dimensions of these boxes for different central angles chosen. A more realistic simulation would involve siuare boxes, but would mean roneating tine rimultions for thos? dnyles.

Fig. 3: Ground Spacings of Cells vs Azimuth Angle. (a) Outer Cells for Window 1; (b) Outer Cells for Window 2

The 1 -vector plots ("sea chickens") shown in Figure 4a were prepared for each case studied, hut only one example is presented here. These show the wind alias vectors, and ----X shows any wind alias whose normalized probability $P(k)$, is over O.i, where

$$
\begin{equation*}
P(K)=\frac{P D F(K)}{\underset{K}{K} \operatorname{PDF}(K)} \tag{6}
\end{equation*}
$$

where:
PDF = probability sensity function in equation (4).
r = notation to distinguish alias.
$k_{n}=$ number of aliases.
The "Alias Removal" code shows the wind vectors which are selected by one of the following alias removal algorithms.
(1) Algorithin 1-(Maximum Probability)

$$
\begin{equation*}
\dot{U}\left(1, J, K_{c}\right) \underset{K=K_{c}}{\operatorname{Max}_{K}\{?(1,1, K)]} \tag{7}
\end{equation*}
$$

in this algorithm, the alias that has maximm normalized probability is selected as the correct wind vector. where:
$\theta(1,1, K)=$ wind alias,
$1,1:$: notation to distinguish ground point (see ligures 3(a) an: (b)),
$B=$ motation to distinguish alias,
$?(l, l, k)=$ normalized probability of wind alias.
Figure 4 b shows an example of the wind vectors ohtained hy selecting the alias in figure 4 a using Algorithm 1 for $4 \mathrm{~m} / \mathrm{sec}$ winds with vertical polarization for the forward bean pointed in the upwind direction. Since the results with A gorithe 1 are generally inferior to those with the other alopithos, the results ohtained with this algorithon are not repoated for the other example; show.
(2) Agorithm 2-(Pattern Recognition-1)
in this algoritho, the wind alias which is satisfied with equation (?) is selected as the correct wind vector. There $r[\cdot]$ is the average over \mathfrak{i} ant j ant the ranges of i and j are as follows:
$\begin{array}{llll}\text { (i) } 1-1<i \leqslant 1+1, & j=J-1, & J=J+1 & \text {-Window } 1 \\ \text { (ii) } 1-1 \leqslant i \leqslant 1+1, & j=J-2, & j=J+2 & \text {-Window 2 }\end{array}$ (See Figure 3)
window $:$ uses adjacent cells in the pattern-recogntion scheme, whereas window 2 uses both adjacent cells and the next cell away in the cross-track direction. Thus, dindow 1 uses 9 cells for alias removal, whereas Window 2 uses 15 cells. This is particularly important for the large azimuth angles, where the geometry of the simulation indicated in Figure 2 causes adjacent cross-track cells to be very close together. Df course, the assumption of uniform wind fields is nore important in using Window 2.

Nindow 1 is ised in Figures $4 c$ and 5 a to illustrate the use 6 : Algorithm 2 (Pattern Recognition - 1). The other examples shown are for Algorithm 3 (Pattern Recoynition - 2), since it gives better results.
(3) Algorithm 3- (Pattern Recognition - 2)

$$
\begin{gather*}
\vec{U}\left(I, J, K_{c}\right) \underset{K=K_{c}}{\operatorname{Min}_{K}\left\{E_{i j}[\operatorname{Min}\{-\ln \{P(I, J, k) \cdot P(i, j, k)\} \cdot\}\right.} \tag{11}\\
\cdot|\vec{\prime}(i, j, k)-\vec{U}(I, J, k)| /|\vec{U}(1, J, k)|\}]]
\end{gather*}
$$

In this algorithm, the wind alias which is selected by equation (11) is presulned to be the correct wind vector. The range of i, j is given by equation (9 ! or (10). This weighted algorithm gives generally better results than Algoritna 2. Therefore it is used in all of the examples following the initial ones that are shown in figures 4 and 5 to illustrate the improvement of Algorithin 3 over ilgorithm 2. Window? is used in Figures 6b, 7h, in and 13, since it gives significant improveraent when the forward bean is in the crosswind $\left(30^{\circ}\right)$ direction.

The simulating resalts show the following:
(1) Every algorithin is apt to select wrong wind vectors in the case of low wind speed. The error pattern of algorithm 1 seems to lie rawint, but, the error μ dtterns of algorithm 2 and of algorithm 3 ;emn t i, it: consistent. Thus, algorithm 2 and algoritrm 3 are apt to select wind vectors 180° from the correct direction. His error can easily in removed by examining the wind patterns.
(2) Algorithm 2 is apt to select opposite wind vectors even in the case of high wind speed.
(3) Window 2 improves the perforinance of Algorithm 2 and of Algorithin 3.
(4) Algorithm 3 with window 2 will select correct wind vectors almosi perfectly.
Note that the low-wind-speed errors might be reduced ry use of higher power than the 1 watt assumed. Tiiej would also be smaller if the satellite were at d lower altitude than 900 km .

4.0 MEASUREMENT ERROR OF WIND VECTOR

In this section, the measurement error of the wind vector (after alias removal) is investigated. It is presumed that the alias-removal algorithn works perfectly. Scanning scatteroneters with one beam (two look angles) are also investigated here.

The simulation results are shown in figures 14-16. Paramgters of the simulation are shown in Table land in these figures. In these figu" the horizontal axes show the forward look angle of the inner beam. The vertical axes show measurement error MC.

where:
$0_{0}=$ true wind vector.
= simulated wind vector.
Twenty-five noisy samples of wind vectors were simulated in look directions relative to the wind of $0^{\circ}, 30^{\circ}, 60^{\circ}$ and 90°. Hence, one hundred samples are used in the average of equation (12). These figures show that vertical polarization, small incidence angle, and high wind speed ieduce medsurement error of scatterometers because they increase received power. Higher power at larger incidence angles might improve performance, but no such simulations were performes.

The averages of 2400 simultion samples as to three wind speeds $(4.0 \mathrm{~m} / \mathrm{s}, 12.0$ $\mathrm{m} / \mathrm{s}, 2^{4} \mathrm{~m} / \mathrm{s}$), four wind directions $\left(0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}\right.$) and eight azimuth look angles ($10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}, 60^{\circ}, 70^{\circ}, 80^{\circ}$) are shown in Table 2. The rows of Table 2 show parameters (incidence angle and polarizaifon) of the inner beam and the columns show parameters of the outer beam. Although a smaller incidence angle is better for scatterometers, scatterometers whose incidence angle is 50° for the outer beams were investigated because 50° is often used in radiometers, and because 50° gives a wider measurement swath. These figures and Table 2 obviously show the following:
(1) Two beam (four-look) scatteroneters are better than one-beam (two-look.) scatterometers.
(2) Two-beam scatterometers give quite low :easurement errcr over look angles from 20° to 80° off the surface track.

ORIGINAL PAGE IS
OF POOR QUALITY
(3) The simulation results in the case of low wind speed are not good, but an increase (i.e., to two watts) in transin: : power would resolve this problem easily.
table 2
AUERAGE MERSUREMENT ERROR

DIAGONAL - SIMGLE-BERM SCATTERDMETER

5.0 CONCLUSIONS

Wind alias removal and measurement error of wind vector in scanning two-beam scatteroneters were estimated using computer simulation. In the estimation of wind alias renoval, two novel algorithms using pattern recosnition technique re introduced and simulation results showed these algorithms are more powerful than the conventional maxi:num-likelihood algorithm. Note that these algorithms would not be powerful in scatterometers with fixed fan beams like SEASAT SASS. In the estimation of measurement error of wind vector, simulation results showed the scanning scatterometers give low enough measurement error over an arc from 20° to the side of the spacecraft track to 80° to the side to be practical. The average of measurement error was under 10.0%.

Only receiver noise was taken account of as the primary factor of noise in this simulation. Other noise sources should be taken account of in future studies. Additional noise would increase K_{p}. However, it is possible to reduce K_{p} by increasing transmit power. Only l-watt transmit power was used in this simulation. More detailed studies would make certain that the scanning scatterometers are very powerful spaceborne wind-vector-measurement systems.

RE FERENCES

Granthan, W.L., pt al., "An Operational Satellite Scatterometer for Wind Vector Measurement Over the Ocean," NASA Tech Hemo TMX-72672.

Jones, W.L., et al., "The SLASAT-A Satellite Scatterometer: The Geophysical Evaluation of Remotely Sensed Wind Vector Over the Ocean," J. Geophys. Pes., vol. 87, April 1982, pp. 3297-3317.

Moore, R.K., A.H. Chaudhry and I.J. Birrer, "Errors in Scatterometer-Radiometer Wind ideasurement Due to Rain," IFEE J. Ocean Engr., vol. OE-8, no. l, January 1983, pp. 37-49.

Schroeder, L.C., et a!., "The Relationship Between Wind Vector and Nomalized Radar Cross-Section Used to Derive SEASAT-A Satellite Scatteroméer Hinds," J. Geophys. Res., vol. 87, April 1982, pp. 3318-3336.

Shanmugan, K.S., V. Narayanan and J. Stiles, "NOSS-SCAT Wind Direction Alias Removal," Remote 'ensing Laboratory Technical Report 515-1, University of Kansas Center for Research, Inc., Lawrence, Kansas, January 1982.

Wurtele, M.G., et al., "Wind Direction Alias Removal Studies of SEASAT Scatterometer-Driven Wind," J. Geophys. Res., vol. 87, April 1982, pp. 33653377.

c
Figure 4: Examples for Different Stages in Alias Removal. Wind Speed $4 \mathrm{~m} / \mathrm{sec}$. Look Angle 0° (Upwind for Forward Beam). Vertical polarization. (a) Result of basic algorithn, showing aliases; (b) Aliases with maximum probability on basic algorithm; (c) Aliases selected by algorith 2; (d) Aliases selected by algorithm 3.

aldas hemoval (pattern recog.-1)

ORIGINAL PAGE IG OF POOR QUALITY.

Growita Tiasicn

Figure 5: Examples for Algorithms 2 and 3. Wind Speed 4 wsec . Look Angle 30°. Vertical Polarization. (a) Algorithm 2; (b) Algorithm 3.

alias removal (PATTERN RECOG.-2)

A2. anc. betst

Figure 6: Examples for Algorithm 3, Windows 1 and 2. Wind Speed $4 \mathrm{~m} / \mathrm{sec}$. Look Angle 60°. Vertical Polarization. (a) Window 1; (b) Window 2.

Figure 7: Examples for Algorithm 3, Windows 1 and 2. Wind Speed $4 \mathrm{~m} / \mathrm{sec}$. Look Angle $9 \mathbf{0}^{\circ}$. Vertical Polarization. This look angle is always the worst case. (a) Window 1; (b) Window 2.

alias memoval (patterin pecoc.-2)

	42. Ang. (taEs)	-
	: 2	
	00.0 46.0!	$\rightarrow \rightarrow \rightarrow \rightarrow \cdots \rightarrow \cdots$
!	70.0 43.4	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \cdots$
	82039.3	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \cdots$
\because	30.034 .8	$\rightarrow \rightarrow \rightarrow \cdots \cdots$
\cdots	40.020 .0	$\rightarrow \rightarrow \rightarrow \cdots \rightarrow \cdots$
-	30.028 .4	$\rightarrow \rightarrow \cdots \rightarrow \cdots \rightarrow \cdots$
	20.2:4.8	$\cdots \rightarrow \rightarrow \rightarrow \cdots \rightarrow \cdots$
3	:2.0 $\quad .3$	-.. -- - - - - - - - -
\cdots		

Figure 8: Evample for Algorithon 3, Window 1. Wind speed 12 m/s. Look Angle 0°. Horizontal Polarization.

Figure 9: Example for Algorithm 3 Window 1. Wind Speed 12 w/s. Look Arole 60° Horizontal Polarization

Figure 10: Example for Algorithm 3, Window 2. Wind Speed 12 m / s. Look Angle 90°. Horizontal Polarization.

alias removal (pattern recog.-2)

Figure 12: Example for Algorithm 3, Window 1. Wind Speed 24 m / s. Look Angle 60°. Horizontal Polarization.

Figure 11: Example for Algorithm 3, Window 1. Wind Speed 24 m / s. Look Angle 0°. Horizontal Polarization.

alias removal (pattern recog.-2)

Figure 13: Example for Algorithm 3, Mindow 2. Mind Speed 24 m/s. Look Angle 90°. Horizontal Polarization.
\pm

AZIMUTH LOOK ANGLE (DEG)

Figure 15: Errors for Mind Speed of $12 \mathrm{~m} / \mathrm{sec}$ vs Azimuth Angle with Beam Incidence Angles and Polarizations as Parmeters.

AZIMUTH LOOK ANGLE (DEG)
Figure 16: Errors for Wind Speed of $24 \mathrm{~m} / \mathrm{sec}$ vs Azimuth Angle with Beam Incidence Angles and Dolarizations as Parameters.
10.

