LABORATORY DISCHARGE STUDIES OF A 6 V ALKALINE
 LANTERN-TYPE BATTERY EVEREADY ENERGIZER NO. 528, UNDER VARIOUS AMBIENT TEMPERATURES $\left(-15^{\circ} \mathrm{C}\right.$ AND $+22^{\circ} \mathrm{C}$) AND LOADS (30Ω AND 60Ω)

S. T. Ahrens
Department of Physics
N. C. A\&T State University
Greensboro, North Carolina 27411

(919) 379-7646

Abstract

Using a dual channel chart recorder, the voltages of two Eveready No. 528 batteries--one the test battery, the other the control battery--were simultaneously recorded as they were discharged across 30Ω loads. The test battery was initially put in a freezer at $-15 \pm 3^{\circ} \mathrm{C}$. After its voltage had fallen to .6 V , it was brought back out into the room at $22 \pm 3^{\circ} \mathrm{C}$. A second run was made with 60Ω loads.

Assuming a 3.0 V cut-off, the total energy output of the test battery at $-15^{\circ} \mathrm{C}$ was 26 WHr e 30Ω and 35 WHr © 60Ω, and the corresponding numbers for the control battery at $22^{\circ} \mathrm{C}$ were 91 WHr and 100 WHr . When the test battery was subsequently allowed to warm up, the voltage rose above 4 V and the total energy output rose to 80 WHr © 30Ω and $82 \mathrm{WHR} \mathrm{©} 60 \Omega$.

INTRODUCTION

During the past three years, while getting our experiments ready, we have spent a considerable amount of time looking for a battery suitable for our payload. Most recently, our attention has been focused on a 6 V alkaline lantern-type battery, the Eveready Energizer No. 528 (. $850 \mathrm{~kg}, 434 \mathrm{~cm}^{3}$).

Our interest in alkalines was motivated primarily by their generally acknowledged excellent shelf-life, high energy density and minimal hazzard potential. We picked the 6 V lantern-type battery because our power requirements called for the equivalent of many D-size alkaline cells. The 6 V lantern-type with its 4 F -size cells--each F cell being approximately 50% bigger than a D cell--and its rugged construction would thus cut down greatly on the number of electrical connections that would have to be checked out every time these primary batteries had to be replaced. The Eveready brand was chosen because Eveready D-size alkalines had already been successfully used by another GAS user.

In studying the Eveready No. 528, we attempted to answer the following questions:

1. What do the discharge curve and total energy output look like?
2. How are these two characteristics affected by different temperatures and different load levels?

We were able to secure from Eveready a handbook ${ }^{1}$ and some data sheets on alkalines. Unfortunately, only very general data was found for the F cells and the 528.

APPARATUS

The setup used is seen in Fig. 1. It consists of a dual channei chart recorder, two decade resistance boxes, two batteries--one the test battery, the other the control battery--and a freezer.

Not shown in the figure is a second chart recorder and two thermocouples used to monitor ambient temperatures of the test and control batteries.

PROCEDURE

Two batteries were chosen at random from an initial collection of a 20Ω donated by Union Carbide. Both decade resistance boxes were adjusted for 30.0Ω and checked with a digital multimeter. The control battery was ieft on the laboratory bench at $22 \pm 3^{\circ} \mathrm{C}$. The test battery was placed in the freezer at $-15 \pm 3^{\circ} \mathrm{C}$. Both batteries were simultaneously connected to their resistance boxes and their voltages were monitored by digital multimeters and recorded by a calibrated chart recorder set a $1 \mathrm{~cm} / \mathrm{hr}$.

When the test battery voltage reached .6 V , it was removed from the freezer and placed alongside the control battery, where the discharge was allowed to proceed uninterrupted. The recording of voltages continued until both were below .6 V .

A second run was then made using the same procedures with two fresh batteries and new load resistances of 60.0Ω.

RESULTS AND DISCUSSION

The raw data resulting from this study was in the form of curve traces on chart recorder paper. Even at the slowest selectable speed available ($1 \mathrm{~cm} / \mathrm{hr}$) the output for the 30Ω discharge was 11 feet long while the output for the 60Ω discharge was 19 feet long. In order to be able to easily see the major patterns in the discharge curves, the results have been replotted using a highly compressed time scale (Fig. 2). The replotted curves accurately represent the original curves with one exception. Namely, in the original curves below 3.0 V , there were occasional small bumps (up to 2 hrs in duration and .2 V high) and numerous spikes (less than 1 sec in duration and up to .5 V high). The spikes were most abundant in the control battery. Wherever the bumps and spikes were found time averages have been used to simplify the replotting. Above 3.0 V the original curves were all very smooth and thus the replotted curves are very realistic.

[^0]The first major feature that can be readily seen in the discharge curves of Fig. 2 is the significantly quicker drop-off rate for the test battery at $-15^{\circ} \mathrm{C}$. At 30Ω with a 3.0 V cut-off the control battery lasted for about 6 days, whereas the test battery lasted approximately 2 days. At 60Ω the same general pattern is seen with the number of days being approximately 13 days and 6 days respectively.

The second, and definitely most surprising, feature seen in the discharge curves of both runs is the rise in the voltage of the test battery from .6 V to over 4.0 V when it was removed from the freezer and put along side the control battery.

Some numerical analysis of the chart recorder data was also done. For each run, a convenient sampling time interval was chosen. For the 30Ω run quarter days were used; for the 60Ω run half-days. For each time interval, the average voltage was determined from the chart recorder output. If the discharge was linear over the interval, mid points were used; if the discharge was non-linear, the interval was broken down further into a subset of smaller intervals from which an overall average voltage was calculated. Using the average voltages found, further calculations were done for each interval to give average current, average power and average energy output in amp-hours and watt-hours. In addition, a running total of amp-hours and watt-hours was kept. The results are given in Tables 1, 2, 3 and 4 and summarized in Table 5.

Table 5 shows how temperature affects the 528 Energizer. Again using a 3.0Ω cut-off, the total energy output of the test battery at $-15^{\circ} \mathrm{C}$ was 26 WHr @ 30Ω and 35 WHr @ 60Ω. The corresponding numbers from the control battery at $22^{\circ} \mathrm{C}$ were 91 WHr and 100 WHr . In addition, when the test battery was subsequently allowed to warm up to $22^{\circ} \mathrm{C}$, the total energy output recovered to $80 \mathrm{WHr} @ 30 \Omega$ and 82 WHr @ 60Ω.

CONCLUSION

The performance of the Eveready No. 528:

1. Is severely hurt at the low temperatures used in this study.
2. Improves significantly if the battery is subsequently warmed back up.
3. Is, as expected, greatest with the slowest discharge rate.

ACKNOWLEDGEMENTS

We are grateful to Mr. Wayne Crigler, Visiting Professor of Electrical Engineering from Bell Labs, for helping direct this study. We would also like to thank the students, Mr. Brian Burnette, Mr. Derrick Hood and Ms. Tonya Crawford, who worked so diligently collecting and analyzing this data.
figure 1. battery testing layout

FIGURE 2. replotted discharge curves: Voltage (Volts) vs Elapsed Time (Days)

	 以 受腹

[^0]: ${ }^{1}$ Eveready Battery Engineering Data, Union Carbide, Vol. II, 1982.

