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SUMMARY

Ideal paraboloidal dish illuminations for -30 to -40 db
sidelobe levels with 70 to 80% aperture efficiencles
can be realized using either Cassegrailn or ellipsoidal
offset subreflectors fed by conical corrugated horns.
All antennas are optimally tilted by the Japanese
criteria for symmetrlic beams, low cross polarization,
and no aperture blocking. New techniques for computing
the horn near-field patterns on the subreflectors and
for correcting the phase center errors of the horn
pattern by shaping the subreflector surface are
reported. ’

For generating or scanning multibeams by horn motion
the best focal surfaces of the offset dual reflector
systems are computed for best azimuth, best elevation
and best compromise patterns. These dual reflector
systems with high magnifications can produce multibeams
with -30 db sidelobe levels over more than + 8°
beamwidth intervals. Techniques for computing the
diffraction patterns for scanned beams are described.
Also, the effects of dish aperture diffractlion on
pattern bandwidth are presented.

A model antenna consisting of reflector, shaped
subreflector and corrugated feed horn was designed.
The reflector is a 2.44 meter circular aperture
operating in the 12 GHz satellite communications band.
A 12° conical corrugated horn and a shaped Gregorian.
subreflector about 76 cms in diameter, which it 1is to
illuminate, were designed and built.



INTRODUCTION

The stringent specifications of this contract were
written to extend the state-of-the art of antenna
design for satellite communications hy improving
sidelobe and cross polarization performance without
sacrificing aperture efficiency for multibeam,
frequency reuse applications. Based on approaches
outlined in the original proposal, the job was to
derive a solid analytical -base for such performance
usling optimized dual reflector antennas fed by conical
currugated horns and to build a prototype antenna to.
verlfy the analyslis.

The analytical task which was performed by SET, Inc.
brings to bear current world design knowledge on
reflector antenna systems and includes many original
analytic contributions for shaping subreflector
surfaces, determining the antenna focal flelds for
multibeam generation, and by complex diffraction
analysis, computing the theoretical antenna patterns
and performance expected from the design. The analytic
task also provides the necessary design and dimension
information for construction of the conlcal corrugated
horn and the reflector surfaces. The conical horn, the
shaped Gregorian subreflector and the 2.44 meter offset
paraboloid must be carefully aligned and structurally
mounted without aperture blockling providing focusing
variations for the radiation pattern measurements.

The contract's performance specifications set
requirement goals of -30 db for first and second
sidelobe, and -40 db for third and higher sidelobe
levels with an attendant 80% aperture efficiency. This
1s the most difficult specification to achieve. As 1is
shown by a comprehensive analytical study, this
sldelobe level vs. aperture efficiency specification 1s
at the edge of the theoretically possible for circular
aperture reflectors. The cross polarization isolation
specification of 30 db means that the offset refl?itgg
geometry must be selected using Japanese criteria’ ™’

to avold introducing geometrically caused cross
polarization and that the conical corrugated horn must
also be free of cross polarization. In addition, the
illuminated portion of the subreflector must be at
least 15 wavelengths in diameter to avoild 1n?§§as1ng
cross polarization levels due to diffraction .



The beam scanning requirement of 3° from boresight
means that the wide angle scanning characteristics of
the dual reflector antenna must be investligated.
Interest in maln reflector diameters in the range of 1
to 4.5 meters 1s expressed in the work statement. A
reflector dlameter of 2.4384 meters (8 feet) was
chosen. For larger dishes the cost of construction and
diffraction computations becomes expensive. For
smaller dishes the 15 A diameter subreflector is
relatively large in comparison with the diameter of the
main reflector.

A general bandwidth specification of 1% is given in the
work statement. However, each frequency band of
interest in the specification requires 500 MHz
bandwidths which is a 4.2% bandwidth for the 12 GHz
band emphasized for the project. Actually, the
baseline antenna should work quite well over both the
11.7 to 12.2 GHz reception band and the 14 to 14.5 GHz
transmission band for ground station operatlions which
is a bandwidth of approximately 21%. The optical
deslgn techniques used in the reflector configuration
and subreflector shaping are very broadband. Also, the
conical corrugated horn pattern and impedance
bandwidths are also quite wide although higher modes
can exist in circular wavegulde feeding the horn in the
14 to 14.5 GHz band. However, main reflector
diffraction effects are quite narrow band and sidelobe
levels are expected to vary somewhat outside the
specified 12 GHz frequency band. The antenna
beamwidths depend on frequency being about 81/2 pwr. =
1/28 A /D in radians where A is wavelength and D is the
diameter of the main rﬁflector. Also, antenna gain is
about G = .8 (27 R/A ) where R is radius of dish
aperture. The 2.44 meter (8 feet) diameter base line
antenna 1s designed for best performance .ln the 11.7 to
12.2 GHz band centered on 12 GHz. R

All elements of the antenna system were mechanically
designed in order to provide a high tolerance antenna
system capable of providing the vernler adjustments
necessary for a research and development effort and of
ylelding the desired theoretical performance of Section
3. The major elements of the antenna system consist of
the paraboloidal reflector, the shaped Gregorian
subreflector and the 12° corrugated feed horn. These
major subassemblies are mounted on 'a platform
specifically designed to maintalin the geometrical
relationships required for the desired antenna
performance. A feed support device permits angular and
axilal motion of the feed horn into the shaped
subreflector which is held fixed in its' desired
attitude at the further end of the platform.



As part of NASA contract NAS 3-22343, the corrugated
feed horn, subreflector, and rough mold for the
paraboloidal reflector were constructed. The
subreflector was verified dimensionally to assure that
tolerances were maintained. The feed horn was phase
and amplitude tested in order to obtaln the data
necessary for shaping the Gregorian subreflector and

mathematically designing the balance of the antenna
system.



3.0

3.2

ANALYSIS AND ANTENNA PARAMETER COMPUTATIONS

The antenna configuration chosen was na offset fed dual
reflector system. The advantages of this reflector
geometry, when Japanese optimized tilt relations are:
1) zero blocking of the dish aperture by feed or
support structures to prevent increased sidelobes due
to blockage, 2) very low reflector or subreflector
caused cross polarization levels, 3) symmetric aperture
11lumination giving symmetrical beam and sidelobe
patterns when a HE1 mode conical corrugated horn 1is
used as exciter of %he subreflector, and 4) no VSWR
increases at the horn input due to subreflector or main
reflector reflections. Based on reasons to be
explained more fully later, it was declided to construct
a dual reflector antenna of the Gregorian type fed by a
conical corrugated horn whoig)general characteristics
are reported by Clarricoats . Figure 3.1 1llustrates
in cross section, optimized offset dual reflector
antenna geometry.

Glven these choices, the analytical and design tasks
were to configure and shape as necessary, the dual
reflector surfaces, design the conical corrugated horn
and to compute the near field radlation patterns of the
conical horn on the subreflector and the far-fileld
pattern of the maln reflector for the scanning
intervals of interest.

Conflguring the Dual Reflector Antenna

References 1) and 2) report antenna pattern and
polarization results of Japanese work on optimally
tilted dual reflector antennas. References 4) and
5) provide a useful set of design equations for

dual reflector systems used in a new subreflector
synthesis technique. The actual proof of the .
optimum orientation of a conic section subreflector
confocal with an offset parabolold sectlon is
lengthy but the main design equations are gilven here
and in Reference 5). Figure 3.2 provides



a cross sectional view (y-z plane) of the demonstration model
antenna. Fig. 3.3 shows a front view of the demonstration
model antenna. )

The design procedure for configuring a dual reflector
antenna using the Japanese criteria begins by selecting the
diameter of the circular main paraboloidal section and its off-
.set relative to the paraboloid vertex. The dish diameter, D,
and wavelength, A, establish approximately the antenna gain and
beamwidth. Ideally we would like to obtain

BW:/,_PW,. = 1.2 7LA> radians
and o 2 0.8( %3)2'

which conditions for -30 4B to =40 d3 sidelobe levels are at
the border of realizability with perfect antenna design (see
see section 3.0).

We will follow Japanese analytic procedures to optimized
orientation of horn and subreflector to the main reflector and
use the coordinate system shown in Fig. 3.1, The 244 cm
diameter paraboloidal section is offset such that its (see
Fig. 3.2) center point is 157.48 cms (62") above the z-axis
and the lower rim of the dish 35.56 cms (1l4") above the z-axis.
This 1lifting of the dish is to allow the subreflector to be large
enough to scan 3° in elevation without aperture blocking and to
also provide room for the horn apex and holder for elevation
angle acanning.

For wide angle scanning the focal length, f, should be as
large as practical given that increasing the length of the
antenna structure (by increasing f) generally increases 1its cost.
A value of focal length, f = 177.8 cms (70 inches), was selected.

Either a Cassegrain (hyperboloid) or Gregorian (ellipsoid)
subreflector surface can be used., From a geometrical optics
point of view they give identical performance. However,
mechanically the Cassegrain design results in a taller antenna
with larger offset and generally a tighter turning radius for
azimuth plane scanning by antenna rotation. When diffraction
is considered the ellipsoid design offers several advantages.
The concave shaped subreflector more nearly approximates the
spherical wave radiated by the conical horn. A more symmetrical
pattern (equal E and K plane patterns) is, therefore, to te
expected because the amplitude of the near-field horn pattern
varies in a complicated manner with distance between the horn
and the subreflector surface. Of more importance, however, ls
the influence of the shifting center-of-phase of the horn
pattern toward the subreflector with increasing horn pattern



polar angle, ©. OCn the ellipsoid this effect tends to reflect
the edge rays of the horn pattern toward the center of the main
dish aperture. The Cassegrain subreflector behaves oppositely
spreading the horn edge rays off the rim of the main reflector.
Because the Gregorian geometry gives a higher dish taper, it
results in lower sidelobes and lower spillover losses.

In the following paragraphs, with the aid of Fig. 3.1, the
analytical steps for relating dish, subreflector and horn
parameters according to the optimized Japanese criteria are
presented.

Having chosen Y¢ =.-157.48 cms the center point of the
paraboloid with focal length 177.8 cms, we can determine the
eccentricity, e, of the ellipsoidal subreflector surface and
the optimum tilt angle,3 between the axis of the ellipsoid and
the z-axis of the paraboloid from equation (2.1).

yfe sn /@

(2.1) . I‘-'H :‘1 + e2- Je C"ﬁﬁ

We want to solve for e and /2 to make the horn and sub-
reflector parameters optimum for the low sidelobe, low cross-
polarization, and high aperture efficiency specifications of
this project. Equation (2.1)is quadratic in e or sin 8 and the
roots can be easily found when, for example, e is assigned and
.5in G determined. Several additional analytical relations are
needed before we can make a judgment about the "best" e orga,
however. The tilt angle between the horn axis and the ellipsoid
axis is given by the equation .

G-e)? sin B

(1+e)* Cos/é -2e.

(2.2) ton A =

It is convenient to use two coordinate origins, one at each
foci, Foy and F} of the ellipsoid. In terms of the rectangular
coordinates at the confocal focus Fy shown in Fig. 3.1 the
paraboloid surface is given by

(2.3) Xt y?- g - uf=

Referred to x,y,z coordinates at F, origin the ellipsoidal
surface is given by )

(2.34) 7(2+1j’-+.z_z» = ez(ZCos/g—?sm/@¢d)2~



Where d is given by
d - c(i-e?)
2 e*
and ¢ is the distance between foci of the ellipsoid, ¢ can be

called the expansion parameter because it can be made any length
without changing the angles ¢, 4-and 9y.

(2.4)

Two parameters, Oy the semiflare angle of the horn and M
the dual reflector magnification factor, have important effects
on the performance of the antenna. When the semiflare angle,
©4s» is greater than 30° the Fg?se center of the conical corrugated
horn remains nearly constant over the conical horn pattern
G(©0,%0) (which pattern generally has no go dependence) for
variations in @o. However, for smaller values of Oy the phase
center of the horn changes with 8., The magnification factori
should be large if the angular sector to be scanned by horn
feed motion is to be large. The factor M can be inter?ﬁ?ted
to mean that the equivalent prime focus fed paraboloid would
have a focal length f' = Mf. For large M the semiflare angle
should be small. In any case ¢, € and@ must be set so that the
illuminated area of the subreflector is 152 or greater to_gfep
the level of diffraction generated crosspolarization Low, ¢

Proceeding, then, to develop relations for 6y and M, we can

write A
” .
- | + -.2 e cos
(2.5) tan &y = RC e} )
. 2 2% (1 -e?)
where R is the circular paraboloid radius.
- o2
(2.6) M = (1 - )

l+e*~-2e 503ﬁ

Because the horn pattern is usually known in spherical
coordinates (r, 9o, Zo) with origin at F; of Fig. 3.1, it is
useful to write equations for the ellipsoid at F] in both
rectangular and spnherical coordinates as

(2.7) Xo + gol-rz;‘ = ez(Z‘OCOSG(-Z(jo sind+d)*

ed
| - @cos cos & + € Sind sIn B, Sln/d,
r~swwé%cwsgg,
CsIng, s:n, o
z, ° r (os S,
where Oy = 8., cdefining illuminated edge of subreflector.

" (2.8) r

P

m



To transform coordinates from origin at F]} to Fg write
Xo=X.
(2.9) Yo = =Y Cos¥ + E SInY ~ e sinX
Zo=-Y siny - & CosY + e cosX

where ¥ = -/g

The procedure for setting e and /4 is then to choose or value
64 and using equations (1) and (5) solve for/G and then &
from equation (2)-

The aperture coordinates (x,y) in a plane in front of the
paraboloid section can be related to the spherical angle
coordinates of the horn pattern G(60,%o) using the above equa-

tions and other Japanese criteria transforms to get

x:-B tqn %o CO&%@
(2.10) 4* e - Btan & sin g,

where 8- 2L (1-& ,
| +e*~-2& o583
In Fig. 3.4 the effect of varying e and 8 on 6 = 6y’

the semiflare angle and M the Magnification can be seen. Also,
the expansion factor ¢ is shown for two values, 88.9 cms (35"
and 177.8 cms (70"). 1In all cases the parameters, €,a ,/2 , are
optimized according to the Japanese criteria. The illuminated
portions of the ellipsoidal subreflectors shown in the y-z plane
all have diameters greater than 15) where here A = 2.54 cms.
We see that for an eccentricity of e = 0.6 the semiflare angle

is 01 = 9.9°. On the demonstration model e was selected as
0.538 making a semiflare angle for the horn of about 12° and
the diameter of the illuminated portion of the subreflector is
greater than 38 cms with ¢ = 88.9 cms. In order to attain a
larger Magnification factor M, a value of e = 0.66 was chosen.
Now M = 4,84 and 0] = 8,19, ¢ must be increased to about
177.8 cms to make the subreflector large enough for 1ldw cross-
polarization. The horn subreflectors for the demonstration
model with e = ,538 and €1 = 12 will be compared with scanning
characteristics of the e = .66, 91 = 8,10 system later in the
report when scanning by feed motion is investigated.

Considerations in Constructing the Ellipsoidal Subreflector:

The subreflector surface given by equations (2.7) and (2.8)
are ellipsoids of revolution tilted by4Q. To tuild the surface
using a lathe the equations for a "swept" surface of revolution
about the axis of the ellipsoid are desired. Using the relations:

(2.11) 'Xp = Xo
Yy, < Yo cos{ + &, sInX

Z, =—%° sind + ZUC°5°<
. R»,Z: X'2+ ?d‘z
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Equation (2.7) is now written:
2 2 2
(2.12) R%= d*e*+2e*d = - &°(1-€)

When values Xo, Yo» 2zo from (8) for @9 = O are put into
equation (2.11) then the radius, Rl, for turning the lathe can
be found for points z] along the ellipsoid axis. The values
X1 and y1 define the subreflector edges or the end points to
turn the lathe on the radius Rj.

Because the surface of the subreflector actually con-
structed for the demonstration model is not a true ellipsoid .
but was shaped to correct for phase errors of the conical horn
this lathe or swept construction cannot be used but rather
templates cut in the Xg, Yo» 2o coordinates and a reflecting
surface stretched over the templates form the continuous
subreflector surface.

3.3 Antenna Sidelobe Levels vs Aperture Efficiencies

Unlike for linear antenna arrays, a rigorous proof of the
best sidelobe levels possible for a given antenna aperture
efficiency (or gain) is not available for the (continuous)
circular aperture reflector antenna. The ?goblem nowever,
has been investigated by some able workers ) and their
best estimates for circular aperture distributions have been
studied and extended by introducing new functions by authors
of this paper. .In the analysis to follow the numerical inte-
gration procedure to compute and evaluate the antenna patterns,

beamw1dths. aperture efficiencies and the first 5 sldelobe levels

is presented.

Analytical Procedure for Antenna Pattern Computations:

The far field of a(fffcular aperture in spherical
coordinates is given by
ihpsnSusigp)

(3.1) 9(6, %) / _/ F(f”? e odp
where '
a = radius of the aperture,
Flp' ®’) = aperture illumination function,
6,¢ = angular coordinates of its field point

and

h= 2T/
letting e /€>6L

M= 2TX gn &
. Y

10
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the pattern is given by o 66 )
! jurcos(B-g*
(3.2) 9(u*¢)= O”Z/ /:Ji’(r,/g')e rdr‘d/¢/
o Yo

where it is assumed that f(r”¢’) is normalized to unity. For
aperture illuminations which are functions of the radius only,
f(r,#’) = f(r), the integration with respect to @’ can be
performed exactly and we obtain

(3.3) g(u) = zwa‘folg(r)rJ;Cu.r)dr‘

The integration with respect to r can be performed numerically
for any given aperture illumination taper, f(r). In the calcu-
lations performed here to investigate its location and magnitude
of the sidelobe maximum corresponding to various illumination
tapers, the numerical integration was performed using the IBM
Scientific Software Package (SSP) subroutine QATR which integrates
a given function by the trapezoidal rule together with Romberg's
extrapolation method. The Bessel function was calculated with

the IBM SSP subroutine 3ESJ.

The aperture efficiency E is defined as the ratio of the

directive gain along the axis of the aperture, Gp, to the gain,
Gg» for a uniformly illuminated aperture:

.0y E= 94 .
£, AL FEDLEdnlT| [ una
L 16(5. 7P dsdy 4

For a radially varying illumination function f(r) and
aperture radius of unity,

G = 471 (zw)z[ ﬁlrﬁ(r)drfz' ‘ -
PN g j'rlgzcr)Jdp
G, = 4T /" °

E - 2 frgar]”
| 'r)E2Cr)] de

For most of the illumigation function investigated it was
straightforward to perform the two integrations involved in
calculating the efficiency in closed form. The efficiencies

for a circular aperture illuminated by a 76.2 cm, 12° corrugated
horn and by the Japanese transform for dual reflector antennas
were calculated using the IBM SSP subroutine QATR.

and
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The results of the pattern and efficiency calculations
are summarized in Table 3.1 which shows efficiency, half-power
beamwidth, and sidelobe levels and locations for the various
illumination functions studied and listed under "Key to Illumi-
nation Functions.” Figs. 3.5 and 3.6 show plots of representa-
tive radial amplitude distributions investigated and summarized
in Table 3.1. Note that the shape of the radial curves and
the favorable edge illuminations are very similar for all the
"ideal" aperture distributions. The first derivatives of the
radial functions are all zero to reduce Gibbs' phenomera.

3.4 Analysis and Computation of Corrugated Conical Horn Near-
Zone Patterns .

An expression for the electric field on a spherical surface
of Radius R] from the apex of a corrugated conic?i ?orn of length
Ro (see FPig.3.7)has been obtained by Clarricoats 2),

N C2) i
(4.1) E(R,®)= %: Coh, (hRJF,(E)

(Series 1)

N .
where Cp = exp(~jRRe) 20+ -,Cp'(e) £ '(6)sinede
(4.2) Rs 2n*(p+)*h, " RR,) | |
(Eqa. 2) '
Here ? ’ (e_) = R: CCQS e) + d P,) (C656)
AR "sIin B a6

(#e3)

!
Ps (cose)is the associated Lengendre function
of the first kind of degree ) and order 1, .

h (2)(x) is the spherical Hankel function of the
sBcond kind of order n,

k is the wave number, 27/,

© is the angle between the horn axis and the line
from the horn apex to the field point,

81 1is the horn semiflare angle,
Y is given by the smallest solution of the equation

(B4 £, (80=0

and N is sufficiently large so that further terms in the sum (1)
can be neglected. The purpose here is to describe in detail the
numerical evaluation of E(R1.9).

/0
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!
We begin with the evaluation of -ﬁg (éﬁ,

! { :
! Py (cose) . d Py (cose)
4, e) = -+
(x.3) £, (&) o 15
The second term on the R.H«S. of (4.3) can be written

d‘Pg'(cose) - dpy (¢ces®) d (cos @)

de o Ccosp) de
= ~sn © dP,;'Cx)J
—gx— lxzcose
so that =~ 8 P (c038)
t ! 17
(n.5)  Fy(®)= Ry (cos8) _sineF (cse)

sing
Using the relatlon(IB)

(n6) (XD B ") =YX P, (%) (9+)’P,;- (x)

with x = cos 0. we have
-sin?® P, (Cos 8) = -Ycos P,) (cos @-—(9 +1) Pp., (cos8)
or

(47) --smeP (cos8) =Y cose P9 Py (cose) CQ—r) P,;-, (cos &)

CUﬁéi stné
Substituting (4.7) in (4.5) then yields

(4.8)  §) (8):( 14) 0s8) Py (cose) - (V+1) Pﬂ-: (ces€)

%in6 T sné
Now we make use of the fgollowing recursion relataon(lu)
to reduce the evaluation of {3, (8) to the evaluation of P,) (ces e)

for -1EVEL SR (029X By () -() Pt O 0

or, equivalently,
: y Pvﬂ (e58) - (2+0) co3B P,) (cos8) O+ DAF (cos@
(4.9) N6 Ten6 L =5

Let# : D:v" In‘t CQ)

* We need only be concerned with positive 9 fince)) is given
by the zero of f,(el) = 0 and is positive(

V74
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where Int (Q) is the intezer value of \) (i.e., the largest
integer less than or equal toV ).

Then 0% V<
and -1 £ Y- L0

)
Thus, if we can calculate Py (cos 8)/sin @ for -lél)fl
we can, given any positive value of ¥, first_calculate
Pp (cos ©)/sin 6 and P} (cos @)/sin 6. If Y = YVthen -?9(0)
1s given by (4.8). Otherwise we use the recursion relation
(4.9) repeatedly until we arrive at the given value of) .

An example may be worthwhile at this point. Suppose we
wish to evaluate §, (©) for V_= 3.5. We have Int (3.5) = 3
so that V T 3s5 -3 =20.5 andd -1 = -0,5. Assuming we can
evaluate Py (cos 8)/sin @ for -1€¥» < 1, we start with
Pé,s (cos 9)/sin 6 and EJ,,;(COS 6)/sin @, Then

et atr———

I
(4.10a) P,,; (cas® . [269t]cose g.'s (cos®_ (.s+1) Pos (cose) ,
’ t sSin

Sn 8 aAnd
‘ -
(4.100) Pog (€0s® . [20.9)+[cose fg (ce58) . (15+) B!y (cos®) ’
' 3m8 SN snée
and ' ) ' ) )
' ! ~(2.5+1) Pg (co38
x = &)+ | cos® B elese)-( S
(4.20c) Py ¢ (cose). [:2_(2 94-__[ 2.5 ) =
e Sine

! . ! .
We now have values for; both Ps.s (cos 8)/sin 8 and P.g (cos @)/sine
and we can evaluate '?35 (@) using Eq. (4.8).

The associated Lege'ndre function of the first kind of
degree and order 1, Py (x), is defined in terms of the (ordinary)
Lengendre function of the first kind of degree), P (x), by

(4e11) Py (0 =(1- %) d_d__P,:Cg)

(It is important to note here that the definitive

| IRy

(4.11a) By (9= (- %%) 4—%(—5)

is also used by some authors(lé). However, we will use (4.1l1)
rather than (4.1la) so that our re§ults will beconsistent with :
tables of Py (cos ©)/sin @ and d Py (cos 8)/de prepared by Clarricoats.
The definition (lla) could just as well be used with no effect
on the evaluation of E(R;,6) since only the sign of Ty (9) is
is changed and & (€) enters into the calculation of E(R;,9)
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! [}
via the product f( () f,(6) in Eq. (L4.2).) Combining (4.11)
with the relation'S/-

(4.12) (-5 4B = D P, () -PX B (X
X

———

d

we have PlCX) . ))Pp-y CX) _ Q;( P,) (X)
(4.13) Y C1=-%x» %= (1=x2)%
.Letting X = cos © in (4.13),

P,'(cose)= Y Py-i (cos@) _ Dcos® Po (ces®)

or ’ sSNé& =B
Po_(36) | Y Pyy (cos&®) 5 cose P (cose)
(4.14) < 6 sin%s )

Now the Legendre function of the first kind of f;ﬁree )),
Po (&), has the hypergeometric series representation(

Po(®= F(-P,V+15 15 IZE )

=2 (-Dp, C*’*')h( (—Z—)‘o"
40;_:0 (-aa ./)z 2_
where (1))_%_ is defined by

(4,16) {CQ)., =

(4e15)

(D)q = DCQ‘*I)...“ (;)+n.D

Letting 2 = cos 8 and noting the trigonometric identity

. - cose - =
(4.17) !____Cz__ sin =
we have oo 5
- 2
(4.18) P (cese) = Z (D s 3n 2.
%=0 (%!1)? ' =
Combining (&4.18) and lL.lll-)c.)o
P (cos8) . > Z [-0-0T, (V) 2%
an & s e e D)= -z
@0 ‘.
_ Yase Z Gy, (V+Ds, IR
sin2© (L 1)* " z
ﬁz:o C )

s
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Writing the k = 0 term of the sums sepa*‘ately then yields

P (cos8) _ Y(I- case) . —z [-¢2-03, 6Dy, sim’
(4.19) sSin® sin? 3G Ch !)7_
o9
) QES_Q S N o

. . 2 2- mp——
SN 6 ) C_gz 1) 2.
The s:LnZO in the denominator of the RHS of (4.19) seems to

present a singularity at 6= 0 . However this "singularity" is
only apparent. Noting

—

. 2 2 2
sin'®= szczg) =(2.Sm 39__ COS%) = Y cos % sn 8

and - i
| ~coSO - 2 3N % = 2 g
SN0 4 ecos? 8 sm"% 2@s =
(4.19) becomes
. = [-0-0] o;(’))k 2
P (c0s8) _ (0. 1)* z
(4.20) )
Z ; 2 (et
— (03O ¢ )D)&CDM)& sin ‘ (=2
(ﬁz’)‘ z

Hence there is no difficulty in evaluatlng R; (cos 9)/sin @
for § = 0. In fact, letting ¢= 0 in (4.20), we have

(4.21) P”'sffsee) - 2 [I-l-— {—(Q -V - (—Q)(ﬂ'f-l)?]
= D Ll*‘ 4 (S—DZ+D+1) +9}] ))QDL)

We first cons:.der the expression for B (cos 9)/s:m e
slven by (14» 20) when ¥ is an integer. We need treat only
=0 andV = l

smce the recursion relation (4.9) can be used
to calculate Py'(cos 8)/sin @ for

any J.ntege*‘ greater than
Qne starting w1th P, (cos 8)/sin © and P,' (cos 6)/sin 8. For
=0, it follows rom (4.20) that

(COS e)/s'ne =0
l only the k =

while for 1) = 1l term of the second sum of the

2

16
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RHS of (4.20) is non-zero so that

(4.22) P'; (sg) ! __ [’" co__zs-_g (L)(Z)]
i

Sné 2¢cs* e
2

ze v 2 ’
= _s_g.C'fcose): | +Cos = -Sin 9 - I
205" 2 -

2.¢cos .e_

These values are consistent with the deflnltlon (4 1l) since
£(x) =1and B(x) = x so that B'(x) = 0 and RB'(x) = (1-x%8
or f, (cos Q) = sin 9. .

gext, we examine the convergence of the sums in (4.20)
when is not an integer.- As sho above we can restrict
attention to in the range =14 V< 1, Let us first consider
the fJ.rst sug in (4,20)

(4.23) Sy= % Z [:-(9 )A_(Q)g,_ z("‘ﬁ_e_

&= =
[:(n -»)y L ADE-DOrY_ e ), a-ﬂ)Ca-Q)DC"*')(D*’Qsm & +.
(r2)* Ci-2-3)*

If we let the successive terms of the sum be denoted by
Tis Tps ees » it 1is seen that

T . Talnti=D)(W+n) = e Nzl 2, nn
N+ (n+1)*
Since-
(n+f—9)C9+”)__. (nL""))Cnﬂ*Q‘Q
(n+1)* (n+1)?*
= (t1=Cnt) DOV s - L - DO

N+ > D
(n+1)> (n+1)

(n+1-))(V+n)
o< IO <l
Tnwr
T

Also, all the terms of S] are positive or negative according as
is positive or negative respectively. Letting

2
v ]
< —
< n

r= sz_Q_
we see that 2
(4.24) lS,l <4 l'r,'[ (1+ rerZt.)
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If we let the sum of the first N terms of S; be denoted by
Syy and the sum of the remaining terms te denoted by Ryy then

(4.25) [Sil= ]S+ ] Rinl
where '
)

Rinl< L T (¥ e

: ’3_}-77/(:-'7 -_’,‘.';")
=3 Inl £

But [17] <2

so that IR, < N

el o

It is now a simple matter to find N such that |R, ] < &’
when € is some small constant. For the requirement that

rN
(4.26) = £,
or

rv¥< gC-r),

is equivalent to N |apr < )p €+ )a G-r)

" 80 that we can choose

(4.27) N = Int In€+ In C'-dj + o,
In r
r= Slnz_é
=

The second sum in (4.20) is similarly treated., Let

(4.28) S,= & (=g, (P41, 2(-@.-')e_

) ar T
o 1[0 @)D 3 , DRI PP 4 o
2 1% - (L2 r2-3*
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Letting the successive terms of the sum again be denoted by
Tl' TZ. seey WE have

(4.29) The) = Th @) (n+1+2) = o P2, e
(n+1)* <
Since _
(n-Y)(r+1+) . L(n+9-(x)+9](n+,+9)
(n+1)?* (n+0%

o (nat ~Cne) -DE+D) = 1 = 72,-—@:3‘2 P
O<C""'9)(h+l+9).< : ®h+1)

(n+1)% ‘ :
as before, and the remaining discussion applies unchanged to S;.

The two sums converge very rapidlg. If, for example, we
set € = 10°9 then for ¢ = 1% at most 2 terms are requirgd;
for 8 = 10° at most 4 terms are required, and for @ = 20% at
most 6 terms are required.

1

The programming to calculate ;9 (9) is straightforward
following the analysis described above. A check on the computer
program is provided by the table,?fsthe associated Legendre
functions prepared by Clarricoats ) As shown above, .ﬁj(@
is given by a simple combination of F) (cos O)/'sin @ and
Py., (cos ©)/sin @. The program to calculate £, (8) can print
our intermediate values of P)' (cos 9)/sin 6 and ﬁi, (cos 8)/sin 6.
Values thus obtained were found to be in perfect agreement with
those given in Clarricoats' table.

Now that the calculation of ;{>(9) has been discussed, we
turn our attention to the calculation of the integrals

(4.30) In ‘f 'ﬁg’(e)ﬁé('e)smed@ s D=2, ..
o

which appears in the expression for Cn in (4.2). Given @3, the
horn semiflare angle, the integrals can be calculated indepen-
dently of the horn length. The value of the integrals can be
stored and used to calculate the field of horns of any length
provided that they have the same semiflare angle @3. This is
fortunate since the calculation of the In is the most time
consuming and_costly part of the calculation of the horn field.
The value of Y, as stated earlier, is the lowest root of the

equation %)l (@,) <o

!
Clarricoats' graph and table(“) of the first root s of-?g (61)= 0
for the HE;, spnerical mode can be used to obtain an approxzimate

D
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value for)>. and this value can then be refined using an itera-
tive procedure for finding the zer? of a non-linear equation.
We made use of this program ZEROIN which requires as inputs
the left and right endpoints of an initial interval within
which the zero lies, a igecxfled tolerance, and function sub-
program for evaluating (8;) as a function of For

8 = 11,997°, y) we found to be 11.02500,

As far as the method of numerical integration is concerned,
it is recommended that an adaptive quadrative routine be used.
An adaptive quadrative algorlthm employs different mesh sizes
in different parts of the -integration interval. A relatively
coarse mesh can be used where the integral is smooth or slowly
Varying. and a finer mesh used in places where the integral
varies rapidly. In this way the number of function evaluations
required to yield a desired accuracy can be cons1derably smaller
than for an algorithm employing a uniform mesh size. The algo-
rithm ?se§ in evaluating the integrals Ip was the subroutine
QUANC8( 20 (The name is derived from Quadrative, Adaptive,
Newton-Cotes' 8-panel.) .No difficulty was encountered using -
QUANC8 to evaluate Ip for n from 1 to 225 (the highest value
of n for which In was calculated). The number of integral
evaluations requlred by QUANC8 to calculate I, to within a
specified accuracy (a relative error crlterlon of 109 was used)
was examined functional over a range of n for n from 1 to 225;
01 was 11.99%and  was equal to 11.02500, It appears that on .
the whole the number of integrand evaluations increases linearly
with n although the detailed behavior is quite irregular. Since
the number of terms in the series (1) required for convergence
is of the order of KR, (k= 27/», R, = horn length), it follows
that the computation time and cost to calculate the electric
field of a corrugated horn increases approximately as the square
of the length of the horn.

As a check on the integration, the values of the integrals
obtained using QUANC8 were compared for several valueg of n with
those obtained using the non-adaptive Rombterg integration method
DQATR(ZI). It was found that when DQATR was able to evaluate Ip
the result agreed with that obtained with QUANC8, but that for
some values of n DQATR was unable to evaluate I to within the
specified accuracy because of rounding errors.

The values of the integrals I, were investigated against
n for n from 0 to 225, A slowly damped oscillatory behavior
was apparent. The value of zero for n = o was obtained analyti-
cally. From (4.8)
(¢os é)

OE P (@)

(4.31) SNne <n S |
As we have seen earlier, Po' (x) =0, while P_', (x) = Po (x) =0,

20
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a special case of the general-relation(zz)

(4.32) f_’f:(x) = Tf,.’u(x)

We now turn our attention to the calculat14f(of the
spherical Hankel functions of the second kind, ) (x), which
appears in (4.l1) and (4.2). The spherical Hankel function is

given by 2) - . )
(4.33) ISR in (¥ - iy, (0
h
where CX) = (Z’;‘) J-n+_(_ (x)
and

h0) 7 (B Yo 2

are the spherical Bessel functions of the firft nd second kind
respectively. The method of calculation used{23

ing: Let M be an integer somewhat larger than the maximum of
n.and X. ﬁ?sume Fy({x) = o, Fy-1(x) = 1 and using the recursion
relation(

(4.34) | Fro9= E222 Fp,, (0= Frp (0

satisfied by all the spherical Bessel functions, calculate fo)
for I from M-2 to - (M+l), Provided that M was chosen suffi-

ciently large the value of F;(x) will be proportional to jy(x)
for I from - (n+ 1) to n. %he constant of proportionality, P,

is readily calculated since
(4.35) P- Jo /F (%)
and J (x) is simply equal to sin (x)/x. Then
Jz (%)= PF,(x) I=1,2,.---,Nn

ince(25)
and since K)

Y (¥ = )" Soz-1

we have I+l = e
Ye 09 ()RR N0y T h g e

. The proper choice of M in the above algorithm must be
clarified a little. Clearly M must be larger than n otherwise
the backward recursion relation (4.22) starting with Fy(x) = o
and Fw_l(x) = 1 will not be able to develop a. suffxcxent nunber
of 51gn1f1cant figures by the time M = n is reached. In addi-
tion, if x is considerably larger than n and M is not chosen
larger than x the algorithm will not yield correct values for
-Jn(x) and yn(x). On the other hand, choosing M unnecessarily

large adds to the computational cost and serves no useful purpose,

A little trial and error appears to be the last method for:
determining M: Start with a tentative guess and calculate

is the follow-

21



If the two sets of values agree to within the desired number

of significant figures, the first value of M was large enough.
Otherwise increase M and try again. In our calculation here it
was found that choosing M equal to the larger of n and x plus 20
gave excellent results.,

It will be noted that the backwards recursion method, when
used to calculate jn(x) and yn(x), simultaneously yields values
of j;(x) and yy(x) for all I from o to n. This fact can be put
to good use in calculating the electric field of the horn from
(4.1; and (4.2) since what is needed there are the values of
hn(2)(&R,) and hp(2)(&R) for n from 1 to N. Given N these
values can all be generated in ;ust two operations (one for the
hp(2)(%R,) and one for the hp{2)(&R,) ) and then stored for use

as needed in calculating the individual terms of the series.

The one key point in using (4.l1l) and (&.2) to calculate
the horn electric field that has not yet been treated is the
choice of the number of terms of the series, N. How large should
N be so that the sum of further terms in the series can be
neglected? Since this question is most easily answered for
the case of the far field horn pattern (i.e.,4R *=0), we will
first examine the convergence of the series (1) in the far
field case and then consider convergence for the near field
pattern.

Since

a2 % ()
(4.36) 41:)(-9;12,>= (2%5,> 'Hn-l-% (.ﬁ,,I'E')

and H N (3) has the asymptotic form for;) fixed and | &[] > o0

¢ 2\% _i[=-(Lo2+1i\1].
D@~ (7)) et e
the magnitude of hn(z)(ﬂRl) is asymptotically equal to
' !

- y —
(iﬁgﬁ,);,<ififizl) i kR,

and is independent of n. Likewise the constant exp (-jKRJ/Ro in C

has no influence on convergence. The integrals

& !
:rf £, (9)f (unode

have been discussed earlier and found to display a slowly-

~damped oscillatory behavior which cannot contribute to the

rapld convergence of the series. Tnis means that, in the

j?(x) and y,(x). Then increase M and recalculate j,(x) and yp(x).

22
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far field case it is sufficient to examine the benavior of the
combination {

(2n+) L, (&)
2n*(n+1)* 4] U[ﬂ:_&)

(We have written {n (o) rather than { (@) because the horn
pattern is maximum on or close to the “horn axis, 9 = o.)

(4.37) h =

It is easy to show that

(4.38) 7tn (0) = n (ot

since, from (4,.8)

/
(4.39) g (0) = (""’)P (C°5‘9 - (nt) - (C°59)/
=0

Sme 90 sin&
so that, with (4.21),

(4.40) b @ = (ne)n(r) (2+D - (pt) (a2 n
= D_f'ﬁ!) E(n+o)-(n-,)_] =n(nt)

Thus (lh+0 ﬁ . 2n+l

'zn"(n-n)" 2n (n+1)
which decreases only as 1/n and so cannot account for the
convergence of the series for the horn electrlc field. The

real force for convergence comes from the hp (2 )(hR ) in the
denominator of P « To show this, we write

wan  BPmR)- 1,,(4295)-45,,(02&)

and make %Fe of the following asymptotic relations valid for
larg ey

\ 4
(4.42) % sec/?)v (Tl‘)) ta'\ﬁ cos
); (”33‘73>‘V <1%FI§%E;:;Zé;)g;suh'2E

o) <ﬁ< _'IET:
P =D (tan 88) -




S
(Qsecho{)fv e\)(&ahho( o)
C?_rr))tanho()

Yy (Dsehol) ~ _ oY (- €anhe))
CTI—g{‘anh 0()}5-

and

A>0

Using standard trigonometric and hyperbolic function identities

1

and letting Y = n + % these asymptotic relations can be written as-

|4
2 2
(d.03) et ('L("+";—))N{W(n+t)(u=-l)'i} cos P

2 4
(4.43b) Yn+'(,_ (u (nf%)) ~ {Tr(n-hg)(uz”)%' sin Yy
U>!

Cres) CCum) s —tan (W=D 5]
and
~(me )k ™ (U R (- u?) AT

Tnay ((n+t)) ~ e
[am(n+ k) (-w2) % 1%

(4.442)

(n+ i) [ Eanh™ C1-ub) % - (1-ur) %]

[ﬂ(nz-l-l',)(l_u;)’/;_:] Y4

(444 Y, (uln+b)) ~ e

y<

Relatlng (423 a,b) and &.24 a,b) to the asymptotic behavior
of j.(HR,) and y,(HR,), it is apparent that (4.23 a,b) apply
for n+ 3 > HRq. nence, as n + 3 increases past MRy, the
dominant behavior of jn(¥Ro) and yn(HRo) viewed as functions
of n changes from osc1llatory to exponential. Thus the numter

of terms of the series (1) required for convergence, N, must
be at least as large as #R, and we can resirict our attention
to the behavior of the terms of the series for n>.KR°.

24
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¥e plotted the function ' , L
b kN
(4.45) %[u)“_i‘anh C-ub)®-C-u®)™

as a function of W as W decreases from l. Sincey(nts) = Axg»
u decreasing from 1 corresponds to n+3 increasing from HRge

The fact that g(u) is positive foru< 1l implies that as n
increases Jn+l-(u.(n+2)) decreases as exp (ma)g(u)§ while
Yn+i(w(nrs)) 1ncreases as exp {(ng(u)f Note that (mrz)s(uw)
incfeases as n increases not only because of the factor nrs

but also b? ?.use w = KRy/(n+3) decreases and g(W) increases.
Thus in hn (KRo) = .]n?l’(Ro) - 1 yn(HdReo)» as n+t3 increases from
HRos Jn(HRg) becomes negligibly small compared to yn(KRg).

Hence, to within a constant

(4.46) P » an+l 2n+/ ]
. n zn(n-rDJ\i?(ﬁzQD— 2n(n+1) exp{(nﬁ-é)%(u-);
or - Cen+k)-u®)s] >
(4.47) p . (>4 (n+ L) %
R 2n (n+1) - )’ exp{ (n+/)g(u)§
‘where
2£='»1R9/%4'AL
and % GYs tamn™ (1-ud) o Cr-ut) R

Thus the rapid convergence of the series (1) as the number of
terms of the series included increases past MRy is attributable
to the factor exp (n+2)gu»)f derived from the hp(2) (HRg) in
the denominator of (2).

To give an idea of how P, decreases as n increases from
HRo we have calculated Pp for 'several values of n from {&.25)
for KR, = 1.00 and 200,

For HRO = 100;

. vk
n w (l-uz): exPi—(n#;_)}(u)} % =
100 «995 . 316 .966 .100 .030
105 .948 " .565 300 .097 .016
110 .905 652 045 .095 . 0028
115 .866 .707 0034 .093 .00022
120 .830 747 .00017 .091 .000012



Y

For MR, = 200:
Gr+ Xn+s %

n u (i -u‘)"" elp l(-(m»é)%(u)} YD A
200 - .998 . 266 966 071 .018
205 «973 479 492 « 070 .016
210 950 558 .103 069 - . 0040
215 .928 .610 .021 . 068 . 00086
220 907 . 649 .0021 .« 067 000093
225 .887 . 680 .00030 067 000013

Note that the decreases of P, is almost_entirely due to
the exponential; the C(2n+l)(n+%)5/(2n(n+l))]factor decreases
extremely slowly, and the (1-u2): factor increases slowly as
n increases.

So far in our examination of the convergence of the series
(le ye have made use of the far field assumption to replace
npl? (HR1) by its large argument asymptotic form with magnitude
17HR1 independent of n. What happens in the near field of the
horn aperture? It is clear that in this limit as Rl -» Ro
the series (1) becomes a highly inef{iiient method of computing
th? ?orn aperture field since the hp 2 (HR;) in (1) cancels the
hnl? (HRo) in (2) which as we have seen accounts for the rapid
convergence of the series in the far field case. 1If, however,
HRy is somewhat larger than HRo, say AR] > HRo + 15, then the
above analysis of convergence .in the f?r field case continues
to apply. This is so because the 1/hp(2)(HRo) in (2) starts
to decrease rapidly as soon as nts >HRo whereas the switch from
oscillatory to exponential behavior for the hp(2)(HR;) in (1)
does not occur until m% > HRj. Thus, as long as HRj is
suff?g}ently larger than HRgy for the exponent%a} decrease of
1/hn (KRo) to get a "good head start" on hn.2 (HR1) there
will be no problem with obtaining convergence. Only as the
horn aperture is closely approached are convergence problems
likely to be encountered; here caution in using (1) and (2)
to calculate the horn field is clearly indicated.

As an example of how the coefficients Cp in (2) behave
as n increases past MR, the following table presents the real
and imaginary parts of Cp for n from 150 to 225. .These values
are for a horn with semi-flare angle of 11.997° and Ry = 76.2 cm,

The wavelength A is 2,50 cm Aéo that HR, =(2¢7ﬁ)Ro‘= 191.5.
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n Real L[cpl Inag CCDJ

150 0.3985 E-05 . -0,2651 Z-0L
155 -0.1808 E-05 0.2826 E-04
160 0.8861 E-06 0.4324 E-05
165 0.9486 E-05 -0.1450 E-OL4
170 -0.1699 E-0L 0.6299 E-05
175 0.2340 E-05 0.1489 £-05
180 -0.2484 £-05 0,1015 E-04
- 185 - 0.9723 E-05 0.2910 E-05
190 0.9444 E-06 -0.9171 E-06
195 -0.8590 E=-06 0.3131 E-05
200 -0.1757 E-06 0.1270 E-05
205 -0.5559 E-08 . 0.4386 E-07
210 0.3207 £-08 -0.2538 E-07
215 . 043693 E-09 -0.,2923 E-08
220 0.4862 E-11 -0.3849 E-10
225 -0.,1247 £-11 0.9872 E-11

Note the sharp decreases of both the real and imaginary parts
of Cp as. n increases beyond 200,

The above analysis of the convergence of the series (1)
completes this discussion of the calculation of the electric
field of a corrugated horn. The principal steps of the calcu-
lation procedure are as follows:

1) Estimate the number of terms of the series
required, N, using (4.25) to approximate the behavior of the
coefficients Cn for n > MRo (a reasonable working estimate is
N = Int (HRo) + 25.

2) Given 01, the horn semi-flare angle, calculate
Epe value of Y given by the lowest root of the equation
8) = o,
p ¢

3) Calculate and store the wvalues of the integrals

In-= f _Fp (e).ﬁ (&sin&d6 ; n=),2,...,N

L) leen Ros the horn length, calculate and store
the v%%?es -0f the coeff1c1ents Chr n=1, 2, +0s; W. The values
of hp\4/(HRg), n=1, 2, sees N are calculated in one operation
prior to the calculation of the Cp ané stored and used as needed,
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5) If N is not sufficiently large as evidenced by
the Cn not falling off enough as m approaches N, increase N and
calculate additional integrals and coefficients.

) 6) Given Ry, the radius of the spherical surface over
which the horn f%e}d 1s to be calculated, calculate and store
the values of hp'2)(HR1), n = 1, 2, vees N %Q one operation and
then calculate and store the values of Cnhn )(HRl). n=1, 2,esesNe

7) For each value of @ for which the field is desired.
calculate E(R,,9) using (1). The stored values of Cphp (2)(HRy)
remain the same for the different values of @. Only the %Q)
need be calculated again as 6 changes.

Following the above analytical procedure near-zone horn
patterns at 120.65 cms from the horn apex (F; of Fig. 1l.1)
are shown in Figs. 3.8 and 3.9. Fig. 3.8 ;shows the conical

corrugated horn amplitude functlon when the horn is 68.50 cms

long. The edge taper at © = 12° (seml-flare angle of the horn)
for different horn lengths is shown in the insert. The horn
phase function (departure from a spherical wavefront) is shown
in Fig. 3.9 when the horn is 76.21 cms long and data is taken a
120.65 cms from the horn apex or focal point. The horn phase
function changes very little over the range of horn lengths
considered in this antenna cdesign problem.

3.5 Design of the Ccrrugated-Conical Horh

Under Section 3. 2. Conflguratlon, of this report the choices
of tllt.angle & = 179 (horn axis referred to the paraboloid axis)
and @1 = 12° (horn semiflare angle) were discussed. Based on
Section 4,0, horn analysis, the maximum length of the horn along
its axis was chosen to be about 76.2 cms to give about a -20 4B
taper at the edges of the illuminated portion of the subreflector.
This antenna with this horn and subreflector design should produce
-35 d8 first sidelobes and -40 d3 sidelobes beyond the main beam
region with about 70-75% aperture eff1c1ency. The same horn
shortened to 61 cms length by removing 7.6 cms from mouth end
should give the -30 dB3 first lobes with 75-80% aperture efficiency.

To construct the conical corrugated horn with flare angle
of 129 we need to know the slot dimensions and to provide for a
circular waveguide input port with good impedance match over the
11.7 to 12.2 giz band. The horn will operate also over the
14 to 14.5 gHz band also; however, higher modes can exist in the
circular waveguide at these higher frequencies. Slot details
for the horn corrugations were dimensioned according to Clarricoats(28)
and by comparing data on a 12 gHz antenna successfully built and
tested by Antenna Santa Rita, S3%0 Paulo, Brazil, through informa-
tion kindly provided by Prof. Marco Rabello and Marco Marchesi.
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To insure that only the dominant TE;; mode can exist in
the circular wave guide at 12.2 gHz a circular guide diameter
of 1.892 cms was selected although the WR 75 zuide of 2.02L cnm
diameter can also be used.

Some work(29) has been reported on the best corrugated
slot depths to cover wide bandwidths. -rFor excitation of the
HE1l mode the slots should be about N4 deep although slightly
deeper slots provide the proper impedance voundary conditions
approximately. To avoid impedance mismatch at the throat of
the horn (circular waveguide part) the corrugation next to the
waveguide input can be cut 2 deep. By tapering the next ten
slotted corrugations from M2 to M4 in equal increments the
waveguide mode transition from TE1] mode to the conical horn
HE11 mode can be done without significant reflection tack into
the waveguide.,

Referring to Fig. 3.10slot dimensions are obtained from
the iterative equations: e

An :defCN-n)ZCS'FWJ\ +un &,
(5.1) Aan = Ain t 2s tun 6,

Asn = Azn + 24dn

Ayn = Ain +2dn

n is the Fin number starting from the mouth of the horn. The
diameters Aln, A2n, A3n and Abn, as shown in Fig. 3.10give the
dimensions needed for turning the lathe and cutting the slots
- from the aluminum stock.

Sn =%és+w')(n~l):is the axial length from the front surface
of the n" fin to the horn aperture. For the demonstration model
conical corrugated horn the dimensions are:

N = 108 total number of fins (numbered from mouth by n)
dg = 2,062 cms (0.812") (A; for fin # 108) .
s = 0,152 cms (.060") fin width, all slots
w 0.508 cms (0.200") slot width, all slots
dn = 0.635 cms (0.250") slot depth; except that d1o8 is
1.067 ems (0.420") and each slot from slot 103 to
- slot 98 is linearly reduced in depth by a decrement
of 0,043 cms (0.017") such that slot 98 is 0.635 cms
(0.250") deep. All other slots for n < 98 are
d = 0,635 cms (0.250") deep.

Table 5.1 gives principal corrugation dimensions near the
horn aperture and near the horn throat. Detailed drawings and
computer printouts were provided Chu Associates for the horn
construction.



3.6 Theoretical Diffraction Patterns of Antenna Fed by the
Corrugated Conical Horn.

In this section we descrive the calculation of the diffrac-
tion pattern and efficiency of a paraboloidal antenna with a
121.91 cm radius circular projection illuminated by a 76.2 cm,
129 corrugated horn using an offset ellipsoidal subreflector.
The calculation is a four-step procedure;

1) calculate the near field pattern of the 76.2 cm, 12°
corrugated horn;

2) perform a least squares polynomial fit of the
amplitude and phase of the near field horn pattern;

3) use a geometrical transformation to relate points
on the circular aperture projection of the paraboloidal antenna-
to the near field of the 76.2 cm, 12° corrugated horn and calcu-
late the illumination function of the circular aperture projection;

L4) calculate the diffraction pattern and eff1c19ncy of
the circular aperture.

The first step, the calculation of the near field horn
pattern, has been described in detail in Section 3.4.The second
step, the least square polynomial fit, was performed by assuming
a representation of the amplitude (in dB), A, and phase, P, (in
radians) of the near field horn pattern in terms of even powers
of the angle, 9, from the horn axis (in radians). A close fit
was obtained with the following representations: _

. (6.1) A= c,ez-r c,e"-r C38°+ Cy &
(6.2) P=p6%+D 0%+ D8+ D,0% po"°
where '

C, = -0.3523467522 X 107
C, = 0.1927249512 X 102
C5 = -0.2212143832 X 10
Ch = 0.3749071740 X 107
and
Dy = -0.1452520134 X 10%
D, = 0.3247243413 X 10%
D, = -0.2021168420 X 105
D, = 0.4393230126 X 107
D = -0. 3484023671 X 108

30
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The geometrical transformation relating points on the 121,92 cm

(48")radius circular aperture projection of the paraboloidal

refle

(6.3)
(6.4)

where

from

and

so th

ctor to the angular coordinates of the horn is
X, = - B +an %% Qs &
Ya = -Btan & sing
2
XA'YA = coordinates of a point on the circular aperture
' in inches referred to the center of the circular
aperture
6 = angle from the horn axis
¢ = azimuthal horn -angle
B = 4979,107415
(643) and (6.4), it follows that

X + Yy = B Hn’g
2 hA
fun & = (X + V)™
& -8

- 2\ %
&= 2 tan ‘ {(xhz'+ XA—)'zf
B
at the illumination at a point on. the circular aperture

depends only on the distance r of the point from the center of

the a

perture. Given this distance we calculate

&= 2tn’(g)

and then find the amplitude and phase of the illumination at
the point using (6.1) and (6.2). The amplitude pattern across
the dish is shown in Fig. 3.11. This radial distribution is seen

to be

and e

very similar to ideal functions of section 3.3.

The last step, that of calculating the diffraction pattern
fficiency, has already been described above in Section 3

when we discussed the calculation of diffraction patterns and
efficiencies of circular apertures with radial illumination
functions.,

The theoretical far field diffraction patterns of the

antenna as calculated by the above procedure are shown in

Figs.

3.12 and 3.13. Fig.3.12 gives the pattern when the phaée

error is neglected, and Fig. 3.13shows the pattern when the phase
error is included in the illumination function. The corresponding

effic

iencies are included in Table 3.1.

[N
0
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3.7 Correcting for Center-of-Phase Change on the Corrugated
Conlcal Horn

Ideally the phase vs angle curve shown in Fiz. 3.9 would
be flat, that is, horn phasea ¢ = 0 (horn phase is relative phase
shift on a spherical surface, R} = 120.65 cms (47.5"), centered
at the apex of the horn) for @ = 0° to 0 = 12° (@ is the spherical
polar angle). We want a true spherical phase front from. the
horn to be incident on the ellipsoidal subreflector surface such
that in a geometrical optics sense all rays reflected by the sub-
reflector will pass through Fo and spread over the aperture of
the main reflector to yield the ideal (phase error free) diffrac-
tion pattern of FPig. 3.12.

But the results shown in Fig. 3.9 as obtained from the near
zone analysis of Section 3.4 indicate a phase error (a departure
from a flat HORN PHASE curve) which can be considered as a shift
of the horn phase center from the horn apex toward the sub-
reflector as the polar pattern angle 6 is increased from 6 = 0°,
The phase errors in the conical horn pattern are, in general,
small and only for @ > 9° are the phase errors significant. At
the edge of the horn pattern, & = 120 , the total scalar phase
error is only about 48° orp /7.5. This scalar phase error causes
a pattern deterioration shown in Fig. 3,13, The deterioration in
the pattern will be somewhat more than that shown, however,
because the change in phase shift at the edge of the horn pattern
occurs in a 'small angular region. The rapid change in phase means
that the edge rays which are 'vectors change directions signifi-
cantly effecting both the aperture amplitude distribution and
the aperture phase errors. The main effect of these vector
changes is to ‘increase the amplitude taper on the main reflector
decreasing the aperture efficiency somewhat and lowering side-
lobes slightly. :

The first step in correcting for .the horn phase errors is to
transform the near zone phase pattern (Fig. 3.9) obtzined numeri-
cally by the involved diffraction computations of Section 3.4
into a spatial distribution of rays referred to spherical surface.
We are interested primarily in this ray field near the edges of
the illuminated portion of the subreflector. For the demonstra-
tion model a radial distance of 120.65 cms from the horn apex was
chosen which is on the subreflector rim at 2 regions for & = 12°
the horn semiflare angle.

To compute a set of discrete rays representing thea @ error
data on the 120.65 cm radius the numerically tabulated phase
error vs @ angle values need to be approximated by a continuous
function. Using data plotted in Fig. 3.9 a continuous curve in
the form of a polynomial (useful for ray studies) was selected

(7.1) AP =B, + B,o*+ B,&% + B &°
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and a regressional fit using standard analytical techniques(za)
used for a "best" least squares fit to 15 numerically computed
points, When the phase shiftséké and polar angles 6 are
expressed in radians we obtained the polynomial coefficients.

(7.2) Bo = -0.0055349, B2 = 1.646679, By = 92.796739
Bg = 1.3301.82652

This continuous curve approximation is plotted in Fig. 4.3
with dots labelled regressional fit.

To obtain a spatial distribution of ray directions expressed

in spherical coordinates, r, @, #, crossing the spherical cap
R1(= 47.5")we assume a congruence of rays propagating over all
space as TEM waves and that

(7.3) A8(0) = ;7\1 ar(g)= &ar(e)

where Y '='_Z\_ = 0.397891 <l2_GHz.>
27 )
TheAr displacement then from the spherical cap R} = 120.65
cms (47.5") (always assuming no variations with the spherical
angle #) is

(7.4) Had =ar@= r(e)-K

Defining a function Y=0 =r(e) - Ry 71<4£f(9). we can write
normals to this surface of ray “directions as

A - - 1L ¥ A ! o 7
(7.5) n=op=BElr 55578 i 5,%"2-5
(7.6) A-R-L R 5

" - ~ae :
(7.7 . A =a,F40.8+0a,3

. /-0, 288 - 3r
(7.8) r’ =& 55 =
-’/

(7.9)  Then O = — Cpe T, 0,%0

To express A the ray directions in rectangular coordinates
X, ¥o 2 with origin at Fl s We write
(7.10) r sin 9 cos &
r sin 9 sin g
r cos 6

B

p 4
y
z

33



M

34

Then the direction cosines of the ray are
/=a_,s:nea:s/rz5 + Q,CosB cos g
(7.11) m s Q,SInS s:np’ + Gy Cos@® sing
n =086 -~ Q, sinbB

This family of rays can be expressed at stréight lines

Xt = + €4

. x
(7.12) y ‘A%z_ €y
where Sy = L /N
(7.13) € x —-_fT (-2 +C2) + X
%, = M/n
(7.14) %
€y = _mﬁ(-z +G)ty

When.ég and €'y.are zero the lines (rays) pass through the
focus, F;, and the phase center is at the apex of the horn

C2 is the distance along the z-axis which makes & and éy

zero and Cy is therefore the shift of the phase center toward
the subreflector for a discrete ray passing through a point
Xy¥:z on the spherical surface R;. 5

For the analysis and shaping synthesis to follow Cp was
set to zero and the values &x and €y represent the z-plane
intercepts of the lines. The lines carry the information on
magnitude and direction of the phase errors in the horn phase
pattern. Each ri¥ as a line is stored in the computer by four
numbers, Ky» ¥ 0 €0 €,¢  This 4-element array of numbers for
each discrete line provides a 3-coordinate vectorial represen-
tation of the equiphase surface r(6) near Rj(= 47.5")which
surface nearly touches the ellipsoidal subreflector hear the
edges of the illuminated sector at maximum values of |x|.

Methods for Correcting Horn Phase Errors

Three methods for correcting the horn phase errors were
investigated: (1) refocusing the horn by moving it forward
to redistribute the phase errors; (2) changing the eccentricity
of the subreflector to bring the horn edge rays to the edge of
the main reflector (after reflection by the subreflector); and
(3) reshaping the subreflector to bring all rays to focus at Fg.

The first means for correcting phase errors, by refocusing,
is illustrated in Fig. 3.14wherein the horn was moved forward
76 2 cms so R1 = R2 = 11 3 cms. It is seen that the aperture
phase error distribution has shifted to give larger phase errors
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at lower values of © and smaller phase errors at 6 = 12°.
Secause the horn amplitude pattern is greater at small values
of @, the new phase error distribution will cause more pattern
deterioration than the original phase errors when the horn
apex is located near the focus Fj.

In order to refocus analytically the phase eror or path
length error distribution, we again use the equiphase surface
function

(7.15) r(9)=?r+Ar(e)= R+ ab(e
where Ry= 120,65 -and k=0{3978874

To find the phase error distribution at z = Cp = 7.62 cm
we write -

e 08 = Ry + 2 E(S)

wnere R,=113 Cm  and the primes indicate the transformation of
coordinates to z=7.62 . Using polar coordinates in the x-2
plane to locate a point on the equiphase surface, we write

;:;Z’;g For origin at Fl
;‘rlf :::;:g: For origin at }z{ = 3,62 cm
21* ;’7: i | +an e’: X’/-z -Cy
so  ri(e’)(E-cHeos &
ton 8’ X/z-Ca |
r- R = & ’(9’_) . radians phase error at o',

A -

Based on these results only a minor amount of refocusing
appears to be desirable for improving the main dish radiation
ratterns.

Increasing the Eccentricity of Ellipsoidal Subreflector
as Means for Correcting Horn Phase Errors:

The “creep” of horn phase center forward with large
values of 9 and especially at the edge of the horn pattern
(67 = 12°) results in a redistribution of the aperture amplitude
distribution because the horn's edge rays are directed toward
the center of the dish as shown in Fig. 3.15. This effect is
due to the change of ray directions near the edge of the horn
pattern.

We can in theory always reflect the horn edge rays to the
edge of the circular dish aperture with radius R = 121.92 cms



by increasing the value of e for the ellipsoidal subreflector.
We can do this and still design a feed system (with horn semi-
flare angle 12°9) according to the Japanese tilt angle criteria
for low cross polarization and true beam symmetry. However,
such an approach does not reduce the aperture phase errors

and results in a new and less than ideal aperture amplitude
distribution on the dish.

To understand why change in e changes the main dish aper-
ture amplitude distribution when illuminated by a given horn
consider Fig.3.3. For the 12° horn and a subreflector witn

e = 0.538 the feed just illuminates to the dish edges R=x=121.92

cms on the x-z diagram when horn has no phase errors. The edge
ray shown striking the e = .538 subreflector has phase errors
causing ray to strike dish at about x = 93.98 cms point, not

x = 121.92 cms. Assuming now that all subreflectors are made
"oversize"” to allow for scanning by feed motion and to reduce
spillover around the subreflector edges. -

When the subreflector eccentricity is increased to e = 0.6
a 9.93° semiflare angle horn (no phase errors) with point of
phase at Fy is all that would be needed to illuminate the
R = 121.92 cms radius dish., If a 12° horn (no phase errors)
is used to feed the e = 0.6 subreflector then a larger sub-
reflector surface and larger main reflector surface (R ) 121.92
cms) are illuminated. However, if the 12° horn has phase errors
(center of phase moving in + % direction) then the large value
of e = .6 results in the edge ray striking near the edge of the
main reflector as shown in Fig. 3.15.

To quantify these effects rays from the demonstration model

horn must be traced onto Japanese optimized subreflectors of
different e. This can be done using an interpolation function,
Gi, to find where the horn rays intersect the subreflector

surfaces.
(7.17) Gi = Jaxi En * €xt = Xo
G'aj = -Dz-i, Zn +€-3J’ - 3n
From the (ray) line values Gyi» €xi» kyj,'egj. the points

of surface intersection xp, ypns 2, can be located which maks
Gxi and Gyj g0 to zero.

.-

After considerable effort this correction procedure was
abandoned because (1) aperture phase errors are not corrected
and (2) the dish amplitude distribution is even more tapered
with e = .60 than for e = 0.538.

It should be observed that although refocusing the horn and
increasing the subreflector eccentricity do not adequately

36
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correct for horn phase errors, an ellipsoidal subreilector
with slightly larger e than for a true point source horn and
a slight forward focusing motion of the horn should improve
the antenna pattern performance somewhat.

3.8 Subreflector Shaping Technique to Correct for Horn Phase
Errors

In order to correct the phase errors for both scalar and

vector effects and maintain near to ideal aperture distribu-

tions on the main reflector, it was decided to shape the sub-
reflector such that the field of rays representing the near-
field radiation pattern of the horn are focused to Fgy. This
shaping synthesis of the subreflector results in a surface
that is not truely ellipsoidal except for a small reference
region (a Japanese optimized reference ellipsoid) near to the
mid-point of the subreflector, © = 0°. Because the horn phase
errors are very small out to 6 = 8° the shaped central region
of the subreflector is nearly elllp501dal over a large central
region of the subreflector. Also a rim section was added
around the edge of the demonstration model for scanning a 3
cone by horn motion. This rim section is also part of the
reference ellipsoid,

(0]

To achieve the desired phase-error-free dish aperture dis-
tribution, hopeful to realize the ideal amplitude needed to get
pattern shown in Fig.3.12, a technique is now described that
will focus the near zone pattern of the horn to F, by shaping
the subreflector surface. This surface. synthesis method uses
the discrete set of ray-lines with parameters Gy, €y, Ky,
to represent the near zone pattern of the horn. Wlth tne hgrn
apex at F; a reference ellipsoid is defined with e = 0.538 and
c = 88.9 CsSe.

To compute the set of discrete rays carrylng the phase
errors of the horn, lines passing througn a sphere with x,y,z
points on the R = 120.65 cms surface spaced about 2.54 cms
apart are used and the corresponding ky, €x, ky, €y values
stored in computer memory are obtained from equatidons 7.13
and 7 14,

To start the numerical shaping synthesis of the sub-
reflector surface a grid of subreflector surface points x,y,z
spaced 0.25 cms apart in x and y are computed for the reference
ellipsoid in a small region abatt the central zone (& = 0°) of .
the subreflector. These surface points are correct because
the horn pattern has almost zero phase errors for © = 09, These
surface points in this central region of the subreflector are
used as start-up data in a computer synthesis procedure.
Generally Adam's projector is used for synthesis which requires
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3 back slopes to project to new points, that is for x cuts:

(8.1) 2y =Z, + AX(559E] —sqa_-f/ +37 2% —fz,az-t(
24 9xXin AX (n-1 X |p2 3% In-3

With a similar equation for y cuts by replacing Ax withAy
and & : Q&
== wit g,
X IL ith aq-lJ )
The reference ellipsoid has the surface and slopes based on
the Japanese optimized tilts and :

(8.2) x®+ Id"-rz-".e e"(zc::so(-zdsmd'-*d)'"
d = 109,120293% ~
- X = 17,046130631°

,B 5.142399
for the reference .surface.

- X

oz ez
(8.3 9% - E - coso (' cosel - Y simet+d)

9z (& +2snd cosof - ysinA+d)

—521—. . %" - sine( (EcesA -y Sm"(‘l"d)

for the reference surface slopes.

Numerical shaping of the subreflector is first done along
L x-cuts (x-z plane) spaced 0.254 cms (0.1") apart in y at
0.254 cms (0.1") intervals in &x. BRBeginning at the edge of the
small central section the back partial derivatives and surface
values from the central section (reference ellipsoid) are sub-
stituted into Adam's projector at the start of each x=-cut.
Because of the left-right symmetry of the offset antenna only
+ x cuts need to be computed out to about x = 25.4 cms (10").
Equation 8.1 projects us to a new point xn=1, ¥yn=1» 2n=1,
where we use Snell's law to calculate surface slopes, using the
discrete rays from the conical horn, such that the incremental
surface at Pp and Pp-) has a normal # that satisfies

CA A ) A AVWA :

(8.4) g, =35 ~2(s+n)n -

g is a ray from the horn (phase error) pattern incident
on the point Pp(xpe Ypo z2n)e But we have stored in computer
memory only a discrete set of lires representing the horn phase
pattern. To obtain the ray passing through Pp we must inter-
polate from the discrete family of lines ysing Eq. 7.17. We
substitute the ray values Gyxi, €xi» Kyjs yi into (7.17) until
.the Gxj and Gyj values change signs in&icaulng that a known

j’ AXY



discrete line passed near the surface point Pn. We store both
the + and - values of Gyj (and Gy-) and using these we inter-
polate to find the "true" values df kxt and kyt for the ray
intersecting Pp using expressions:

gy RSy Rt Gyew
G-X(ﬂ - GX{") G(j(-f) - Gf’(‘)
Rae = 'sz(;) - R (‘0"7(4») “Oa-x(-))
(8.6) _-Pa,jt s .,Qz‘j‘cr) - Fa.C'hHH) —'az"!('))
A A z
§;=f§z::x + Jk9t 9 tE :r<1,§ + b,g_+u6f£
VESE Loye"t!

Having found § toAhigh accuracy by this interpolation
procedure we solve }‘or i at the surface value.at P, by using
equation (8,4). We want to reflect all rays off tﬁe shaped
subreflector to F. which for the coordinates ‘'system with origin
at F1 1is the poin%x ' '
' X, = O
gc Ll 3:’70(
Z, ® £ ¢osH

We can write the reflected ray §2 as
A

Sz= 'Xng T (30'90)9""(&*’-‘?");

(8.7) [%a% + (Yom Yn) >+ (Zo-Zn)"] &
| é;‘&z'??*‘bzg-f-czg

We can invert (8.4) given S; and S, to find

.6: O.Nﬁ + bhlq +.CN£~ from

(8:9) Ay = (@ = 03) s Ay = (8,~8,) 5 Lyt (<, ~<€)
RE; Ts Ts
Ta=z2[1-(a,0, +5,b2 % C:-Ca.)_]-%‘ and
(8.10)
92| = - ay Oz | . _ &,
X In €N > 9y [, Ly

are the new partial derivatives for the extrapolation to the
next point on 3p41 in Eq. (8.1).

39



.40

Using this procedure the 4 x-cuts are calculated for
every 0,254 cms .in x and values at 1.27 cms intervals in x
are computer stored for use in computing y-cuts for both +y
and -y directions to complete the templet curves needed to
construct the surface of the shaped subreflector.

The stored values along the 4 x plane cuts separated by
0.254 cms (0.1") y and 1.27 cms x intervals serve to provide
the start-up (back partial derivatives) and surface coordinate
values for the same interpolation-extrapolation procedure
already described for the y-cuts. A slightly different pro-
gram is needed to go along the +y cuts than the -y cuts.. -
Again surface coordinate points along the y direction are made
at 0.254 cms intervals and points stored every 1l.27 cms.
Actually, the every 0.254 cms data is printed out along with
computer graphics to aid in construction of the subreflector.

In Fig.3.16 a cross section through the subreflector on
a center cut dlsplaced 0.254 cms from the y axis. The sub-
reflector contour is very nearly that of an ellipsoid -tilted
5.14° from the paraboloid axis. Only the subreflector portion
near the small steps is shaped, with the surfaces near y = 0
and the outer edge portion or skirt being true ellipsoids. In
Fig.3.17-a front view of the Gregorian subreflector is shown
indicating where several y-cut templates are located. These
templates are located every 1l.27 cms apart in x direction and
provide means for constructing the shaped reflector which is
not exactly an ellipsoid of revolution.

3.9 Finding the Best Focal Curves

The method reported here can find three focal surfaces of
interest for: best azimuth plane patterns, best elevation plane
patterns, and compromise patterns lying at focal points between
the tangential and sagittal foci. Techniques in references (&)
and (28) have been extended here to include general Scanning
data on offset dual reflectors and a diffraction method to
compute antenna far field patterns on scanned beams 1s developed
in the next sectlcn.

The analytic steps needed to find the focal loci begin by

. tracing a congruence of received rays representing a plane wave
tilted with respect to the paraboloid axis. These rays are
incident upon the main reflector surface, an offset paraboloidal
section with circular aperture, and reflected on to an ellip-
tical (or hyperboloidal) subreflector surface which is confocal
with the paraboloid. Tracing the circular edge of the main
dish onto the subreflector gives a "footprint" which establishes
the subreflector's borders for scanning angular sectors of
interest and locates the point on the subreflector for pointing
the axis of the horn. The central received ray incident on the
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mid-point, Y., (see Fig.3.18) of the main paraboloidal section
also intersects the point M on the subreflector for the given
scan angle. This central ray also defines the horn or feed axis
on which the best focal points are approximately located. The
ray tracing technique for finding the best focal surfaces sets
up a flat "screen" normal to the horn axis on which is displayed
by computer graphics traces of the dish edge rays. The screen
is analytically moved back and forth along the horn axis and
traces or curves formed by the intersection of the dish edge
rays as they converge on the screen are observed. These curves
become approximately lines for best azimuth or elevation focus-
ing and approximately circles for the compromise or circle of
least confusion focal locus. ~ Although the incident rays re-
flected from the circular edge contour of the main dish are
generally traced, smaller circles on the dish should also be
traced to get a more complete picture of the optical focusing
characteristics.,

3.9.1 Mathematical Development

The following equations can be used for symmetric or offset
antennas fed by either hyperboloidal or ellipsoidal subreflec-
tors. Consider the rectangular coordinate system shown in
Fig., 3.18. In it the paraboloidal section reflecting surface
-is given by '

(9.1) X2 4 y% = U (f-z)

Where for numerical data and charts presented, f = 177.8 cms.
The rim of the circular paraboloidal section was offset
35.56 cms above the z- ax1s such that the center point of this
dish is at x¢ = 0, yc = 157.48 cms, zc = 142.92834 cms. The
circular edge of the 8 ft. diameter main reflector is given by

%.%c+Rsme

(9.2) Xa R cos &

where’R'IZHZcmand O°< e< 180

The elllp501dal subreflector surface is given by the
expression

(9.3) X+ (Y- (g% e (=, - 4e) cos/3 - (5,-A)smﬁ+cf)

Where h and k are small displacements of the ellipsoid from
the confocal point F due to mechanical misalignment of the sub-
reflector, for example, and are usuzally set at zero., For the
numerical case and eccentricity: studled dg = 109.1202923 cas,
axis of ellipsoidal tilt& = 5. 14239 ’ ang eccentricity
e = 0,538, (When dy is negative in (9.3) and the eccentricity,
e, is greater than i 0, then the surface is a hyperboloid.)

To find the edges of the ellipsoidal subreflector the largest

*)

4
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elevation angle,d , and azimuth angle, g, required to scan
the main beam over sectors of interest are introduced in (9.4)
below and the edges of the subreflector found°by ray tracing
the "footprints" of the rim of the circular paraboloidal
section onto the ellipsoidal surface.

A S .

The rays S, in the parallel bundle of incident (received)
rays representing a plane wave tilted by g and # with respect
to the z-axis can be written as

é\o =z o5 sm¢)?— sinc é\ + Cosof Cosp’z'r-\
(90L") ‘Q:xo;* m°§+noz

Unit vectors normal to the paraboloid surface are given by:
A A A
A XX +ul + 2¢%
(9¢5) (xz.t_ ljz‘f'q"?z)}é'

A . .
The rays S, reflected from the paraboloild surface in the
general direction of F are given by Snell's Law

A A A ALA : A
(9.6) S =5, -2(5 n)n=0 k+m{+n?

Substituting (9.4) and (9.5) into (9.6)
' ,Q,: cos of Sm%-?',x
(9.7) M=‘Sm¢—ﬁq
- my T cosofcosf ~R, 28

R = 2(xcossing -y sine + 2§ coscos )

} (Xz+tjg+4£z)
and X,.y, z are coordinates of points on the paraboloid surface
where go is incident. The ray S; can be writien as a line

(9.8) extending from the paraboloid point x,y,z to an inter-
section point on the ellipsoid

(9.8) x'-x = ld_l_.j = Z’-z
L, m, n

Equations (9.7), (9.8), and (9.3) are solved simultaneously to
find the in@grcept points Pj(x3,y1s2)) on the ellipsoid. The
unit normal T; on the ellipsoid can %e calculated analytically
at any point on its surface. Therefore we can write, again
using Snell's Law of Reflection, the vector 5, reflected from

where

pus
PR



. (9.10) ton s ;B" and  tan :%2 ='Z,:_
-]

~the subreflector toward the focal surfaces we wish to find

A A A
(9.9) €z=g"ZC%\"”')""’ez?*”’té\*”iz

i,,_:R X +j-
Ry = M, f2 (2,_.0:, e."'CgCoSD() ' ’
where

- (&, - %) cos o - ("j— A)Slno(-)-d

Q., zu,mm,<9.--0\+e‘Cssm°ﬂ))+n,Cz - el cas)

Re « 'X" + (lé‘, -h+e CZ_-, S'rw()z-f- (2, -.A e C‘s co.sa()
Re © R‘l/rzs

Having started with a parallel bundle of received rays Qo
incident 9n the main reflector aperture, our ray tracing has
given us representing a converging congruence of rays
reflected %rOm the subreflector that focus more or less on a
focal surface., The initial ray traced then for an incident
plane wave tilted 4 and # is, therefore,. the central ray in
order to set up a "screen" perpendicular to the convergent ray
bundle axis. It is on this screen then that all the rays of
interest (especially the rays from the rim of the dish) are
traced. The plane screen is analytically moved in and out and
the sharpness of focus observed by computer graphics. Denoting
this in and out focusing parameter as 2y the corresponding
focal coordinates, x, and yy, are computed to lie on the
central or axis ray. The initiating procedure is to input a
trial value Z, and compute the direction cosines of the central
ray 12,m o We give these central ray parameters the symbols
13.m3,n3 ana ‘write

ns c-

where ¥'; and ¥» are the orientation angles of the flat screen
on whlch all rays are subsequently traced. Also for 2y,

2
(9.11) Xy * —3 (Zq- 2D+ X

‘%q mB (;_. -:E) l'Jl
s < -(«Q;X# +mgy, ns‘j#)
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In order to plot all the other rays in the converging
bundle on the screen these intercept points are calculated from

(9.12) £, =< 'E'j_'Q_’-_z.' -+ ’:’,msh‘h_,(ga-f_ﬁs?(,'*ma%,))
Na s
( Ny + -1522._* *"s?”z‘)
Na MNa
X,= &(2°-z'>+xo ) Ido =12:(2,-Z'>+1é'
N, . n.

Finally, to plot the perpendicular displacements of the rays
focused on the screen relative to the focal point of the cen-
tral ray, we write:

Xs = (Xo = %y) e,
Us = (Yo -Y,)secy

(9.13)

For the 2.44 meter dlsh fed by the Gregorian subreflector,
the best focal curve for + 3° elevation plane (2) scanning is
shown in Fig.3.18.This focal curve is for sharpest pattern nulls
in the azimuth (x-z plane) cuts. Examples of computer‘graphlcs
of the type used to determine focal surfaces is shown in Figs.3.19a
B, and C. In Fig. 3.19A the direction of the beam from the z axis
direction is inclined about £ = y» (9 = 09) in azimuth angle.,

The focal poinis Xp.Yp,27 as glven on the graphics for best
azimuth focus, bes% evatlon angle focus and best compromise
focus. The graphic traces are for rim rays, that is, R= 121,92 cm.
Note that the curves are shifted from the center ray axis at

Xo=0, y,=0 which 1nd1cates a slight shift of the beam direction
from g = 30 (3= 0°), The edge ray traces are shown in Fig. 3.19B
for a beam direction of approximately 4 = 3° in elevation angle.
Fig. 3.19C shows dlagonal traces corresponding to beam direction at
9= 29 and g = 29, The size of the rim traces indicate qualita-
tively the maximum phase errors or optical aberrations. These
Xg1Y, plots are given in inches. When all focal points Xpr¥pilp
are plotted in an X,Y plane, focal surfaces for elevatlon

angle, azimuth angle and 45° scanning are shown in Fig. 3.20.

’

Using rim tracing curves as shown in Figs. 3.19aA, B, and C,
focal surface and "optical beamwidth" data, as shown in Table

9.1, was compiled., Optical beamwidth was defined as the half

width of the compromise or circle of least confusion rim trace
divided by the focal plane distance d needed to steer a beam
one degree. When this optical beamwidth is less than the dif-
fraction beamwidth (~A/D), pattern deterioration due to aberra-
tions is not likely to be excessive. This kind of estimation
"OPT 3W" is given in the last column of Table 9.1, The astig-
matic characteristics of dual reflector focusing are evident
from Fig. 3.19and Table 9.1. The feesd (horn) center of phase
should be located on the focal surface at the focal point for



best azimuth, elevation or compromise focus as required for

the application. Also, the feed axis should be pointed to the
middle of the foot print which is shown as point il in Fig. 3.21
This is a frontal view of the subreflector (x; - y1 plane) for

an azimuth scan angle § = 4.5°2 (3 = 0°), <The edge angles

shown are simply polar angles locating the rim points on the dish.

Wider scan angles or multibeam coverage can be achieved
by maklng the eccentr1c1ty. e, of the ellipsoid larger and,
hence, 1ncrea51ng the dual reflector magnification. 1In rig.
3.22a comparison is shown of the best focal curves in the y-2
plane for a higher magnification system with e = 0.66 (also a
longer focal length to make subreflector sizes comparable and
greater than 15 in diameter). At the bottom of Tablegl a
comparison of optical beamwidths are given for the two sub-
reflectors both feeding the same 2.44 meter offset paraboloid.

3.9.2 Computing Diffraction Patterns

3.9.2.1 General Description of Technique

The geometrical optics analysis presented thus far
provides design information for locating and scanning feeds on
offset dual reflector antennas. In order to quantify sidelobe
levels and beamwidths, diffraction patterns (at some wavelength
are needed to verify the optics and to establish scanning limits.
Such diffraction diagrams can be computed from the ray path
length differences measured from the "bvest" focal points out
to points on a grid on the dish aperture plane. These path
length differences, AL, relative to the central ray path length
can be converted to aperture phase errors for the frequency
of interest by = 21rL/7\. It is assumed that the aperture
. ‘amplitude dlstrlbutlon is the same as for the z-axis antenna
pattern.

To obtain the AL data for the aperture phase error
distribution, the ray tracing procedure described earlier for
finding best focal surfaces must be essentially reversed. A
regular grid of aperture points is desired for carrying out
a Fourier transform of aperture field in computing the far-
field patterns. We begin, therefore, by tracing rays incident
on a regular grid of aperture points x,y,z on the paraboloid
surface in a receive-mode sense down to the ellipsoid surface
and store the points x;,y;,2; corresponding to these paraboloid
p01nts. Then, using a transmit-mode analysis, we connect the
-points x3,y1.,2] to the "best" focal point »Yrr2p chosen for

the pattern desired. We calculate the totaE path length from
the focal point, to the subreflector surface, to the paraboloid
surface, and out to the aperture plane. (We make the aperture
plane the tilted "plane wave" plane used in the receive-mode
analysis.) The central ray is again traced first from the focal
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point out to the aperture plane and its length recorded as
the reference length, L,. _Then the entire grid of aperture

‘points are traced and the S_values found arnd stored with the

amplitude values at each aperture point. This procedure for
finding AL is approximate in that the transmitted rays from
XPrYFs2F do not strike exactly on the paraboloid points chosen
as grid points. These errors are usually very small. There is
some amplitude distortion also that is negligible for small scan
angles.

3.9.2.2 Mathematical Steps

The same analytical steps used for finding the ray
intercept points x31,y1,21 on the ellipsoidal subreflector for
tilt values and of an incident plane wave can be used again
in the diffraction calculations. Equations 9.1, 9.3, 9.7 and
9.8 are needed to find the x3,y1,2] points. Equation 9.2
is modified to obtain an aperture grid distribution x,y,z uni-
formly spaced along radial lines which are rotated by small
inerements in a polar angle ©. To find the path length errors,

" AL, we start from the selected focal point Xp,yp,zr and find

the length, Lj, to the subreflector surface 2
(10.1) L,z (X =%x)*+ (Y- Yed ¥+ (2 - 2p)
where ' A 2
. L = (=X R + (Y=Y )Y +@E -2 =
Ly L b
A A ~

L, = _,Q';(\-fm,lé +7, B

To find the ray ﬁz (and its length L,) reflected from
the subreflector up to the main reflector write :

(10.2) - La: 2, -r'x
o el + €D @)

‘N M ~rC2, —e‘Dcosﬁ) | )
where D= 2 cOs/-J - 71, 5'”ﬁ‘* do
Fle 2 (X2, +m, (4, +e*Dsing)+n (&, -Dcoyz))
X5 *‘fzj,+-ezt>an/9)z4.(zv..eztpcaye)&

A

L, = £,% +m,y tn, E

: . . . A
To find the intercept points of the rays 1, on the
paraboloidal surface, we solve simultaneously the equations

(10.3) X=X = y-4 = E ~-Z

2 M2 - Pa

X*+ y* = wf (f-2)
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This simultaneous solution gives us the points on
the paraboloid x,y,z which are not quite the same grid points
selected in the receive mode for the tilted incident plane wave.

(10.4) La=(7<-x,)z+ (g-y.)z+(z-z,)z

To complete the path length calculation one must
reflect L, from the paraboloid surface and find the path length,
L4, back To the original plane tilted by and £ with respect
t0 the z = 0 plane.,

(10.5) Ly z-2r, X+ L.
ma = mz-?.r‘a_'%
na s Ny -4’39
ry = lzx +M"% -eY),_Z{-’
Xt +yr+ #ET

The original plane wave is normal to the ray as given

~by (9.“)0

The coordinates. (xj3+¥11+231) Of the reflected rays
on the aperture plane are

E (Lo +moms) =X ~mo g
Lo05 /ng + MeMa/My + M
X, ® :r%, (&, ~-2)+ X
Y, _'233 (2, ~2)"Y
. n3 :
Ly« (Xu~%)% + (y - F (2,-2)° .

L= Ly+ Lo +L3
AL‘. L-Lo .
where L% is length of central ray which intersects the mid

1]

(10.6) 2,

point of the paraboloidal surface. The aperture phase dis-
tribution is then

. 2mAL
(10.7) S(Xn:%uain - 7\

3.9.2.3 Aperture Diffraction Calculations

We now discuss the provlem of calculating the far-
field diffraction pattern of a circular aperture illuminated
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with a specified amplitude and phase distribution. For all
out a relatively few such distributions (es&+sy uniforn,

(1- 2)P) for which clcsed form soluticns are available, the
aperture radiation pattern must be evaluated numerically.

We start with the expreSSLOn( 11) for the radiation
pattern of a c1rcular aperture (see Fig. 3.23)o0f radius a,

4’?. sInd ¢
(11.1) g.(@,p’)://f(/o gy PP -2 dodp”

Letting
r- fVa
Uz 2Ta sind
PN
we obtain

Y
. [ ures(g -
a2y G(wg)- a/ /{;(r,P’) jures(d ﬁ)rdrd,af

We express the aperture illumination. in the form
0 ' J#Cr &)
(11.3) fCrng')e Alrgie 4

thus obtalnlng

01.0090e)-f [atepseafptn pfesfnostpp Jrirsp”
/ [ A(ng) Sn[¢(f‘ #Jsin[is e (g -p)rded
+J [// /A(r /)CoS_V(f‘gf)]Sm[lLCos(/ /@'j errJﬁ
+/ /’A(F¢)Stnj_;l(r /)mSE(ucos(ﬁ,ﬁ)]rclrcM‘(?

There ‘are thus four double integrals to be evaluated of the form
n ‘
l - COs[v[ﬁ)rJ : ,
I- ff“(" ' "J'J‘w
a1.s) T /,, L AP sl

The procedure used for evaluating these integrals was
to perform the inner integration, i.e., the integrat%gg with
respect to the radial variable r, by Filon's formula , and to
perform the outer integration, i.e., the integration with
respect to the angular variable #, by the extended Simpson's

D)
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rule(3o). 2oth methods require evaluation of the integrals at
an odd number of points. For the calculations performed here,

it was found sufficient to use a grid of 25 points for the radial
integrations and a2 grid of 151 points for the angular integra-
tion.

In Fig. 3.24 diffraction patterns calculated for the
best azimuth focus are shown in the left side trace of Fig, 3.19A
For the cuts at # = 0° and # = 180° corresponding to azimuth
plane patterns the pattern nulls and sidelobes are sharpest.

The Eatterns in Fig, 3.25i1are calculated for xXz,yp,zp as shown in
the left trace of Fig. 3.19B. 'Now the elevatidn 5lane patterns
corresponding to g = + 90° cuts have the sharpest nulls and
lowest sidelobes., :

-3.10 Effect of Near-Zone Diffraction of the 2.44 Meter Aperture

In this section we discuss the near field diffraction
pattern of a paraboloidal reflector with a 2.4i4 meter diameter
circular projection illuminated by a plane wave propagating in
the direction parallel to the paraboloid axis. The calculations
are described with reference to Fig. 3.26. | The incident plane
wave is assumed polarized with the magnetic field in the posi-
tive y direction and propagating in the positive 3 direction.,
(The positive X direction is taken to be -pointing out of the
plane of the paper.) The origin of the x,y,z coordinate
system, 0, is the focus of the paraboloid.

The diffracted field is described with reference to
spherical polar coordinates R,9,® based on the x,y',a'coordi-
nates system centered at 0. The positive 2' direction points
in the direction of the ray from the center of the paraboloidal
section passing through the focus. The y',3' axes can be
obtained by rotating the y,2 axes counterclockwise around the
X axis by an angle7- % where

- H‘ :
L’F z‘qu)
HF

The procedure used for calculating the electromagnetic field
components at a given point is as follows:

(12.1) . 7 * tan

. (1) let the coordinates of the given point, P,, referred
to spherical polar coordinates based on the x y' 3'-system be

Ro+9gs o !

(2) obtain the coordinates of P, referred to the xy2-
system by the transformation



(12.2) X, = R 50 8, cosf,
o= ~R, (sn8, Sm¢,c°57?‘*c°seo 5”’7)
Zr-R, (céé, cos 77 = 3in 6, s»qﬂa sin 7) ’

(3) calculate the x y 3 components of the diffracted
electromagnetic field at x,,¥5:3, using the physical optics
approximation to obtain the currents on the paraboloidal sec-
tion and numerically integrating over the paratoloidal section;

(4) transform the field components in the x y 3-

coordinate system to components in spherical polar coordinates
based on the x y' 2'-system using the transformations

(12.3) Eq = Exsn 8, cos £, -E3 (snB, s:n/dé(‘osy-rwse, 5;57)
- Ez (s e, Cos7 -sin 8, s:np’, Sin 7)

(12.4) Eea cose CaS/f ‘.H(Cose Sm% (’os?"Sme sm)z)
'f‘Ez.(Slne COS7Z-}-(‘¢,3@ Sln/d SI"\?)

(12.5) Eg« =Ly sin g, =~ Ey Cos g cosy -+ Ezcosg siny

for the electric field components and 51m11arlJ for the magnetic
field components.

The physical optics approximation of the diffracted field
is (Silver, =q. 8, p. 132)

(12.6) H (P = _/(Kx\/)e_

with the surface current denslty ¢ given by

Jﬁtr .

(12.7) I.Z: Z(A\X;T‘_>

50
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>
where H; 1s the incident magnetic field. The electric field
is obtalned from the magnetic field by

( . 2 e— ’
T jee, VXH
" Based on (10.1), (10.2), and (10.3), and with

~ ez,
(12.9) H, = H,(xye

(allowing the incident plane wave to have a tapered comples
amplitude), the expressions for the field components in the
X y 3-coordinate system are as follows:

(12.10)H, = ?:l?rf dxdvd’H, (x,y 2_>1F (3,-13)&(,_(,.,3)
s
a2.aHy" -g;,/sdvdu Ho O (= X+ 1 e -e) aCxy)
(12.12)Hz * 2-,—""/ dxdy HQ(X,IJ)(VO-I#)a.[x,-%)
s
(12.13) Ex° T)"GJG fdxda;l—-l (%, g)a(x y)
Tamjwe, de‘J’dH (x.3) b0x ‘i)[’jo y )z - F+_>L:3)c[x3

- dm,u () b0x 4 Xy, q)[(x X)- X 20 4 2 (F- X__ﬂ.)J

E
0 o ) 5

(12.15)Ez = T.Jwefdxdsz (x.y)a(x, 1&)

+z_1[3—'1>eu/dXAj H. (x y ) blx, 3)[{;& (Ldo'lot)ﬁ(xo‘x)c (Mf)]

s
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In the above equations for the field components

(12.16) @ (x,y) (Jﬂ:. )“P b (reF - x J
P2 E(x,,-Y)”+ (yo-vj)"r (2.‘2)2_] z
b()“j) 2 +§J_ jl)e)fp[‘\)«%_(m-F )_(__\i )-]

elvy: Z~X 4yt + X% - §

‘-IF Y 2§
The domain of integration, S, is

(12.17) x>+ (y- 15‘).2 = (%)z

A computer program was written to calculate the components
of the diffracted electromagnetic field based on the above
expressions for the field components. The integrations were
performed using the compound Simpson's rule. Two independent
checks were made to verify the validity of the computer program.
The first check was a comparison of the calcu%if?d field compo-
nents with those obtained by Fante and Taylor for the case
of a symmetrical paraboloidal section; i.e., y, = 0. . The
second chefgzyas a camparison with results obtained by Minnett
and Thomas for the fields near the axis of a symmetrical
paraboloidal reflector using an axial-wave representation of
the scattered field., Excellent agreement was obtained in both
checks.

Using the computer program, calculations were then per-
formed to study the diffracted field of a 2.44 meter _diameter
paraboloidal section. The focal length, £, of the paraboloid
was equal to 177.8 cms and the center of the paraboloidal
section was located 157.48 cms above the 3-axis (y. = 157.438
cms). The frequency was 12.2 gHz. An example of %he results
obtained is shown in Fig. 10.2A, B in which are plotted res-
pectlvely the phase (in degrees)and magnitude of 9/30(30- )
in the .plane # = 0 for R = 43.18 cms.

A taper of the incident magnetic field of the form
: QQ”Co 2
(12.18) (eesy.) s %

was u§ed where k: th_-l E‘t'* (%_%C)ZJ &j
B = 1309.7164  ©

and
n= 132036
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This taper gives an amplitude of -20 db at the edge of the
paraboloidal section. The vhase is seen to be quite flat until
® begins to approach 31° corresponding to the ray through the
focus from the upper edge of the paraboloidal section. Since
the phase is plotted for constant R (i.e., on a spherical sur-
face around the focal point) the small variation of the phase

E8 indicates that the diffracted field is closely approximated
by a spherical wave.
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DESIGN AND FABRICATION

The Low Sidelobe SATCOM Antenna conslists of a Feed
Assembly, a Subreflector, and a Primary Reflector. The
geometric relationship between the three main antenna
components 1s shown in Figure 4-1. 1In the research
model of the SATCOM Antenna, this geometric
relationship is provided by arranging these principal
components on a rigid platform so that the requisite
exact positioning of these components 1s achieved. In
this arrangement, the position of the feed assembly
relative to the subreflector can be adjusted in a
precise manner and within the bounds required for the
research and development effort.

Adjustments durlng the configuration of the research
model of the antenna is shown in Figure 4-2.

Geometric Configuration

The three princilpal components comprising the SATCOM
Antenna are located in a Carteslan coordlnate system
having 1ts origin at the focal poilnt of the primary
reflector, with the Z axls coincident with the focal
axls, and the Y axis oriented vertically, as shown in
Pigure 4-1.

The primary reflector i1s a section of a paraboloid
having an aperture of 99" dlameter. The reflector is
offset from the Z axis (its focal axis) so that it's
center, labeled Yec, is at y = 62.000. The subreflector
is a concave surface of an especially computed contour
(not definable as one of the conic sections) located to
the right and below the focal poilnt so that the center
labeled "M" of 1it's roughly 27" diameter aperture is
located at Y = -12.922", Z = -11.728". Finally, the
feed horn is located below and to the left of the
origin with its axis inclined 11.86° from the Z axis,
aimed at point M on the subreflector. The focal point
F, of the feed horn is at Y = -3.137", Z = 34,859",

Provision 1s made in supporting the feed horn for
changing its position 1in the coordinate system so that
it can be accurately scanned in the Y-Z plane and
concurrently in ‘the X-Z plane through an angle of

+ 13°, with its axis always aimed at point M on the
subreflector.



Mechanical Design

The mechanical design of the complete antenna system
including the primary reflector, subreflector, feed
horn, feed horn support, and of the platform were
completed in sufficient detail to permit their
fabrication. Thilis design is discussed below. The
actual fabrication of the feed horn and of the
subreflector was accomplished by Chu Associates, Inc.
as part of Contract NAS 3-22343.

Primary Reflector

The primary reflector 1is constructed of fiberglas-epoxy
laminate shown in Figure 4-3, Drawing B-10753. This
type of construction was selected because of the
relative simplicity in the tooling required to make a
single unit, because of the ease with which glass cloth
can be cut and formed into complex shapes, because of
it's low shrinkage, and because of it's low density.
The reflecting surface is rendered conductive by flame
spraying aluminum onto the concave surface after
lay-up. Other details of construction are as shown on
the drawing. The reflector 1s -mounted onto the
platform by means of four 1/2" diameter bolts passing
through the flat mounting Interface provided on the
rear of the reflector, parallel with the focal axls.
The entire welght of the reflector 1s estimated to be
220 1bs.

Subreflector

The subreflector consists of a reflecting panel made of
fiberglas epoxy laminate, reinforced by a rear,
box-like attachment made of aluminum sheet, as shown in
Figure U-U, The purpose of the sheet metal
relnforcement 1s to impart torslonal rigidity and to
provide the means of attachment to the platform. This
means of attachment consists of two holes in each of
two aluminum angle legs affixed to the sheet metal
reinforcement. Threaded studs passing through these
holes, together with hexagonal nuts on the studs, not
only secure the subreflector to the platform but also
allow dimensional adjustments between the subreflector
and the platform. Reference marks and physical
reference points, of known position relative to the
point M have been iIncluded in the reinforcing structure
enabling the exact positioning of the subreflector 1in
the coordilnate reference system.
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4h.2.4

4.3

The feed horn external configuration is shown in Figure
4-5. Detall of design and physical parameters are
discussed 1n Section 5.0 of Phase I.

In order to acquire experimantal data, the Feed Horn is
required to be scanned + 13° in the horizontal plane.
This 1i1s accomplished by means of the device shown in
Figure U4-6, Drawing A-10754. It consists of a cradle,
A-10762, to which the feed horn 1s affixed. The cradle
is attached to a gulde plate, A-10761, by means of
screws passing through slotted holes and a straight
key. This permlits the linear adjustment of the feed
horn along 1ts own axis through a dlstance of + 2" from
nominal setting. The gulde plate is attached to two
vertical support arms (left hand and right hand),
A-10758, using the intermedlary follower bracket,
A-10760 (also left hand and right hand). This provides
the angular adjustment of the feed horn through a range
of + 13° from nominal position, in a vertical plane.

In every angular posltion, the axls of the feed horn
passes through point M on the subreflector. Side
braces, A-10759, are strictly structural items for the
purpose of bracing the vertical support arms 1n the
lateral direction. Next, the vertical support arms and
side braces are attached to a swivel base A-10756,
which, in turn, is mounted on platform B-10752. The
swivel base 1s mounted on the platform by means of a
pivot pin and four clamps so that releasing the clamps
allows the plvot base to swing, or "pivot", about the
pin, carrying with it the feed horn and associated

support hardware. In this manner, angular positioning

of the feed horn in the horizontal plane 1is provided
through a range of + 13° from nominal setting. Here
too, the axis of the feed horn, in every position,
passes through point M on the subreflector. -

Platform

‘'The platform 1s a trussed frame structure having

provisions on one face for supporting the reflector,
the subreflector, and the feed horn 1in proper
geometrical relationship, having provisions on its
opposite face for mounting onto a pattern range

- positioner, and having sufficlent rigidity to maintain

the requisite geometrical relationships in any position
relative to gravity. The design for the platform 1is
shown in Figure U-7. This is an all aluminum weldment
not requiring any machining after welding except for
the location and drilling of holes. The weight of the
entire structure is estimated to be 200 1bs.

Tooling and Fabrication
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Fabrication of the primary reflector and of the
subreflector, each having a precision, concave
reflecting surface, requires special tooling in the
form of a mold for each reflector on which the
fiberglas laminated layups can be made,

Primary Reflector

A mold for fabrication of the primary reflector was in
the process of construction when, in consideration of
budgetary allocations, further work was abandoned.
Accordingly, in order to fabricate a reflector, this
work would have to be picked up where 1t was left off
and carried to completion.

The mold for the primary reflector consists of a
completely enclosed box, Inclined relative to the
floor, the top surface of which is the desired
paraboloial contour, as shown in Figure 4-8, Drawing
810309. The sides, the bottom, and the internal
partitions are made of plywood. The top surface 1is a
fiberglas epoxy laminate. A vertically standing
"kingpost", located 6" off the side of the mold defines
the focal axis of the paraboloidal surface. A sweep
arm, Figure U4-9, Drawing 810408, 1is positioned over the
mold, one end of which 1is support by the kingpost, and
the other end of which rests on a precisely leveled
circular track, shown in Figure 4-10. The center of
this track is roughly coincident with the center line
of the kingpost. Supported in this manner, the sweep
arm can be manually moved, of "swept" over the top
surface of the mold with the vertical, kilngpost axis
the axis of rotation. A template, one edge of which 1is
the exact parabolic contour required, is attached to
the swing arm., It 1s essentlial that reference holes
and/or surfaces be incorporated in the template
enabling preclse positioning of the template relative
to the kingpost axis, thus placing the focal axis of
the parabolic template exactly on the axlis of rotation.
The rough mold surface, as thus far developed, 1s
probably within 0.10" of the required contour. The
object now is to coat the mold surface with resin and
to scrape away or "screed" the excess resin by
sweeping the template over the mold surface leaving
behind a radial contour which is the contour of the
template, and thus a surface contour which is a
paraboloid. The swing arm, the kingpost, and the track
are now removed as they serve no further use in
fabrlcation of the end item, the reflector panel.
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- The status of completion for the reflector mold is the

basic mold as depicted in Figure 4-8, having a rough
fiberglas top surface ready for screeding, a swing arm
as depicted in Figure 4-9, and a kingpost as depicted
in FPigure 4-11. A circular track remalns to be
completed as well as a parabolic template.

Subreflector

The mold used in fabricating the subreflector is shown
in Figure U4-12. It consists of 59 templates spaced at
1/2" intervals, the contour of each template having
been cut on a CNC milling machine to match the contour
of the subreflector through the particular cut
represented by that template. The templates are then
set 'on a surface plate, squared-up, and drawn together,
the space between them belng filled with a foam
material. Afterwards, the filler material is skived to
blend smoothly with the sharp edges of the templates.
All through these procedures, the tolerances held in
positioning and aligning was + .005" as a goal with

+ 0.010" maximum acceptable. Filling the space between
templates with foam material imparts sufficient
rigidity to the mold for it to be considered a rigid
body, enabling it to be moved about without distortion
(more preclsely, negligible distortion).

Feed Horn

The corrugated feed horn was manufactured to print
without the use of any speclal tool or fixture.
Accordingly, no tooling exists for this item.

Assembly and Alignment

The primary reflector, the subreflector, and the feed
horn are assembled onto the platform as shown in

Figure 4-2. The position of these three components
relative to each other 1s defined by their location in
a three axis Cartesian coordinate system as depicted in
Figure 4-1. Successful performance requires that the
positioning of these components be preclse, within
.020" of true location. Accordingly, features have
been included in the reflectors and 1n the platform to
facilitate positioning these components by optical
means. -
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ANTENNA ASSEMBLY PROCEDURES

Platform

Because of the impracticality of machining reference
surfaces on the platform, reference points are provided
by the use of 1/2-20 UNC-2A threaded studs labeled "B"
and "C" in Pigure 4-7. Adjusting the height by which
these protrude from the surfaces on which they are
mounted is equivalent to removing (or adding) metal by
machining. The platform should be set on the shop
floor in a nominally level position, securely propped
so that the weight of additional components, as they
are ‘installed, does not disturb the position-of the
platform relative to the floor. Next, an engineers
transit or a theodolite 1s set up and leveled so that
two orthogonal, horizontal lines of sight are nominally
aligned with the short and long sides of the platform.
The three studs on the top surface labeled "B" are now
adjusted in height until all three are the same
distance + .005" from the transit's level line of sight
(L.0.S.) and locked in place using the hexagonal lock
nuts. These three buttons now defline a plane parallel
with the X-Y plane of the coordinate system. Next, the
two studs labeled "C" are adjusted so that they are the
same distance + .005" from the transit's L.0.S. which
is aligned with the long slide of the platform. These
two buttons define a line which is parallel with the
Y-Z plane of the. coordinate system. Filnally, the
transit 1is traversed 90° in order to position stud

-labeled "D". The vertical, Y axis of the coordlnate

system falls 11.728" to the left of pivot pin labeled
"E", Accordingly, i1f the face of the "D" stud is set
to be 6.272" + .005 from the center of pin "E", this
stud will be 18.000" from the Y axis, a "round" number
for convenlence in arithmetic later on. Golng back to
studs labeled "C", convenience in arithmetic would be
obtained if in addition to being parallel to -the Y-Z
plane, they are also set to be 19.000" from the center
of the pivot pin. We have thus far established the X,
Y, and Z directions of the coordinate system and the X
and Z locatlon of the origin. We have yet to establish
the Y location of the origin.
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Feed Support Device

Place the pivot plate, Figure 4-6b in place on the
platform so that it 1is positioned by the pivot pin, and
install the four clamps. Now place shims under the
pivot plate under each of the four clamp areas and trim
the thickness of each shim as required to make the
plvot plate level, 1.e. parallel with the X-Z plane,
using the transit. Tack weld, pin, or otherwise secure
the shims to keep them in place. 1Install the vertical
support arms, shown in Figure 4-6a onto the pilvot plate
and affix the horn positioning fixture, shown in Figure
4-13, to one of the vertical support arms. For
convenience, level the fixture using the lines
inscribed on it for that purpose. A non-level
condition will not affect the position of point "M" in
Figures ‘4-6a, and 4-13. Using the transit, adjust the
position of the vertical support arm so that the
location of point M on the fixture 1is 6.272" in the Z
directlion from reference button D on the platform.
Measure and record the position of poilnt M on the
fixture from reference buttons "B" on the platform, in
the Y direction. Repeat this procedure with the
fixture affixed to the other vertical support arm. We
have now fixed the position of point M on the
subreflector surface. Since this point is 12.922"
below X-Z plane we know the vertlical, Y distance from
the origin to the "B" buttons on the platform.

Reflector

Mount the primary reflector, Figure 4-3 onto the
platform using four 1/2" 20UNF2A studs as stand-offs.
A pair of hexagonal nuts secure each stud onto the
flange of the reflector and likewise, a pair of
hexagonal nuts secure these same studs onto the flange
of platform. The nominal space between the reflector
mounting flange and the platform is 1.4". Adjust the
lengths of the inboard pair of studs relative to the
outboard pair of studs until the scribed lines labeled
"B" on the reflector lie in a level plane, i.e.,
parallel with the Z direction. Likewlse, adjust the

" lengths of the palir of studs on the left side relative

to the pair of studs on the right side until the scribe

" lines labeled "C" on the reflector lie in a level plane

parallel with the X direction. Having accomplished
this, the lengths of all four studs are adjusted 1in
unison to set the height of the reflector above the X-Y
plane. Height measurements are to be made from the "B"
buttons on the platform to the target placed in the
face of the reflector at the center of the aperture.
This target is at Y = 62.000". Finally, the four nuts
on the 1inside of the platform can be loosened and the
reflector repositioned in the X direction and/or the Z
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direction until the center target on the reflector 1is
at X = 0 and at Z = 56.271". There are four other
targets built into the reflector surface near its rim.
Two of these are aligned with the horizontal, X
direction and two are aligned with the vertical, Y
direction. These are to be used to verify alignments
in these directions.

Subreflector

The subreflector is mounted onto the platform in the
same way as the primary reflector, via four mounting
studs. It straddles the pivot pin at the right hand
end of the platform. Positioning the subreflector into
its correct location in the coordinate system 1s
accomplished by manipulating the studs 1in the same

. manner as used in positioning the primary reflector.

h.4.5

Reference buttons have been incorporated into the
subreflector for the purpose of levellng, or aligning
with the X, Y, and Z directions. In addition, scribe
lines have been placed on the structure at known
distances from point M on the subreflector surface.
These lines are used for distance measurements.

Referring to Figure 4-U4, the three buttons marked "B"
define a plane parallel with the X-Z plane. The two
buttons marked "C" defline a line parallel with the X-Y
plane. The button marked "D" is 11.500" from the Y-Z
plane. In other words, X = 11.500". The scribe lines
Just under the two B buttons in the right hand view,
parallel with the base, are placed 8.000" below point
M. Therefore, these two lines are at Y = 8.000 +
12.992 = 20.922"(~). Another scribe 1line, aligned
vertcally, also under (one of) the B buttons 1is placed
5.000 from point M on the subreflector surface.
Therefore, this line 1s at Z = 11.728 - 5.000 =
6.728"(-).

A completed subreflector as shown in Figure 4-4
(Dwg. A-10763) has been manufactured and is furnished
as a deliverable item under contract NAS 3-22343.

Feed Horn

No special features have been provided on the feed horn
for mounting. However, the existing feed horn must be
modified by drilling and tapping several holes into one
of 1its steps to facilitate holding it in the feed
support device, Figure U4-6. These are six #10-32UNF2B
holes equally spaced on a 9.125" dia. B.C., as shown in
Figure 4-5,
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RESULTS AND CONCLUSIONS

The results reported in Analysis Sections 3.1 and 3.2, on
the best offset dual reflector antenna configuration show
that for the 2.44 meter diameter aperture scanned over a

3° cone by horn motion, the paraboloid focus to aperture
diameter ratio (£/D) and subreflector eccentricity should be
selected to provide a dual reflector magnification factor of
about 3.25. This choice leads to a paraboloid focal length
of 177.8 cms, a conical horn with semiflare angle of 12°, and
a subreflector diameter of about 76 cms. A Gregorian (near
ellipsoidal) rather than a Cassegrain (hyperboloidal)
subreflector shape was selected because it produces higher

aperture edge tapers when fed by a corrugated conical horn and,

hence, lower pattern sidelobes. The horn near-zone pattern
is .also more uniformly distributed over the ellipsoidal
subreflector and the horn mouth can be brought nearer to the
subreflector.

A significant result in Section 3.3 is that the several
different theories for calculating ideal sidelobe level vs.
aperture efficiency relations all lead to about the same
radial distribution curves over the aperture with edge
tapers ranging from 15 db to 20 db when -30 db to -40 db
sidelobe levels are required with 70% to 80% efficiencies.
Of considerable practical conseguence is the finding that
actual corrugated conical horn near-zone patterns, when
reflected by the optimally tilted subreflector, produce
nearly ideal radial aperture distributions for the sidelobe

Jlevels desired.

In Section 3.4 the largest analytical task was to extend
Clarricoats work on corrugated conical horns to the longer
horns needed to produce lower edge tapers on the subreflector.
The important design result is the dependence relation of horn
length on subreflector edge illumination. For the model
antenna configuration a 12° horn, 76cms long, should produce
tapers needed for -35 db first sidelove levels and 40 db for
all others and a 63 cm horn is appropriate for -30 db first
sidelobes with higher aperture efficiencies. In the range of
horn length studies, horn phase errors in the near zone
patterns were computed. These horn phase errors lend to
produce a rise in sidelobe levels of approximately 2 to 3 db.
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In Section 3.5 the iterative calculations for dimensioning
long corrugated conical horns are given, and in Section 3.6
diffraction pattern calculations are described which take
numerical data from the phase and amplitude horn patterns
to generate the antenna patterns of the 2.44 meter dish.
This analytical procedure 1s thought to be new.

The principal result of the research reported in Sections
3.7 and 3.8 1is that because the antenna aperture
distribution is nearly optimum when fed by the 76 cms long
12° conical horn, only the aperture phase errors due to the
horn phase pattern need to be corrected. These horn phase
errors can be corrected somewhat by slightly refocusing the
horn or by increasing the eccentricity of the subreflector.
However, these adjustments are inadequate when stringent
sidelobe requlrements are to be met. A method for shaping
the subreflector surface to eliminate, in an optical sense,
the horn phase errors 1s therefore presented. Shaping the
subreflector even a minor amount as required here leads to
surfaces which cannot be constructed by revolving or
sweeping 1n a lathe. The subreflector contours were
described by a set of templates. A Jjudgement must be made
on economic grounds concerning the rather small increase

(2 - 3 db) in sidelobe levels on an antenna with an
.ellipsoidal or revolved subreflector compared to the more
expensive shaped subreflector construction.

The work of section 3.9 1s significant in that it provides
a method for finding the focal surfaces on dual reflector
antennas. This means that when beam steering by horn
positioning is required, the loci for locating the horn or
feed phase center and the angular orlentation of the horn
can be calculated. '

Finally, in Section 3.10, the difficult problems of
near-zone effects produced by the 2.44 meter aperture in
the region of the subreflector are formulated and flelds
computed. The fields from the aperture should match those
of the conical horn in the region of the subreflector over
the 12 GHz and 14 GHz bands. Results indicate that the
frequency dependence of antenna pattern sidelobe levels
appear to be small. The numerical analysis 1involving
tapered aperture filelds is a useful theoretical
achievement.
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The complete antenna system, including parabolic reflector,
shaped subreflector, primary feed horn, and mounting frame
has been mechanically and structurally designed as part of
the contract. The corrugated feed horn was built and
tested, and its' phase and amplitude characteristic
obtained for use in design of the balance of the antenna.
The speclally shaped, high precision, subreflector was also
built and furnished as part of contract NAS 3-22343. The
remainder of the antenna system was not manufactured as
part of this contract.

In order to verify the theoretical design contained in this
report, it 1is necessary to complete manufacture of the
balance of the antenna system and to conduct comprehensilve
performance tests.
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KEY TO
ILLUMINATION FUNCTIONS OF TA3LE 3.1

UNIFORM
76.2 cms, 12° CORRUGATED HORN

A. NO PHASE ERROR
B PHASE EZRRCR INCLUDED

KOUZNETSOV LOW SIDELOBE FUNCTIONS
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TABLE 3.1

APERTURE EFFICIENCY, HALF-POWER POINT, AND SIDELOBES
FOR DIFFERENT CIRCULAR APERTURE ILLUMINATION FUNCTIONS

75

Case

Apt
Eff

Bw
1/2
Pwr

W

5

‘u,

2 U3

S

i

5 |

1,00
0.71
0.69
0.74
0.68
0. 81
0.71
0. 88
0. 84
0. 80
0.81
0.7
0. 80
0. 80

0. 80

1,62
2,04
2,06
2,00
2,08
1,88
2,06
1,82
1,86
1.90
1.91
2,03
1.92
1.92

1.91

5.12
6.66
6.97

6.51

-17.57
-33,22
-30.96

-34,02

6.955-41.31

5.97
6.72
5.71

5.85

—————

-

-26,71
-34,68
-30.77

-35,57

6.031-45,48

6.10
6.63
6.18
6.14

6.11

-30,01
-40,93
-30,28
-31,83

-33,21

8. 42

9.33

9.06
9.13
8.91
9.35
8,35
8. 34
8.31
8. 89
8.96
8.79
8.70

8.62

- e

-23,81(11,62

-41,35{12.08

- hi.es
-39,78111. 86
-44,9911, 8!
-32.45{11.97
-39.79112, 26
-28.38111,58
-29.35011,57
-30.50111,55
-33,18 {11, 93
-36.94112, 03
-38.42(11. 65
-35.95011, 65

-34,06}11, 66

-27.96
-43,67
-37.59
-41,02
-43,46
-36.42
-43, 01
-31,75
-32.51
-33,39
-36.92
-40.52
-35,72
-35,49

-35,35

|
14, 80-

15,07

15,12

14, 89
14.871-44.67.18.00
e - :
15.07:-39.48!18,19
1 H

15,32 :-45,83:18, 38

14,77

14.77-35.43'17, 94-37. 87

14,76

15.03

15,11

14,84

14,83

14,82

i

-43.36118, 22|

-31.08!17. 96!

-44,.88/18.17!

-43,71:18, 21
{

-42,72:18.02

-34,71:18.00

-36.26117,94

1-39,88:18,15-42, 31 |

H i

; |

!

-39,58i17.97-40.96

-39,03{17,97-40,55

1

-38. 40 17.97}40.29

-48.25 |

I
-38.68

-33,60

-46,791

1
H
!
]
1
H
i
)
t

-46,48 ]

!
;
t
-44,52]
[}
i
-46,35 |
|

-41.96 |

-37.18

S = Sidelobe dB from Beam Peak



t')



AMPLITUDE SC% FATTERD PCWIZ TAFIzS

77

(dB) |
ZdZe Towar
-15¢22
-15039
-17.2%

-2 -14,77

-4

-6

-8

-10

-2

-14

-16

-8

1 1 1 1 1 1 1 1 1 1 1 L

0 2 4 6 8 10 2 e(°)

FIG. 5.3 AMPLITUDE FUNCTION OF 68.58¢m, 12° CORRUGATED HORN
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TAZLE. 5.1
DIMENSIONS~~CCRRUGATED CONICAL HORN

Fin No,

\Deovoceooes ) N

n sn A1n Aon A3n Ayn 2dn
1(§85Qh) 0.0 32,103 32,167 33.437 33.373 1.270
0.660 31.821 31,887 33.157 33,091 1,270
1,321 31.542 31,605 32.875 32,812 1,270
Calculate diménsions from Equation 5,1
8 64,059 4,869 4,935 6.205 6.139 1,270
99 64,719 4,590 4,653 6,101 5.946 1,356
100 65,380 4,308 L.374 5,817 54,751 1,443
101 66,040 4,028 b,092 5.621 5.558 1.529 -
102 66,700 3.747  3.813 5,428  5.362 1,615
103 67.361 3.467 " 34531 5.232° 54169 1,702
104 68,021 3.185 3.251 5.039 4.973 1.788
105 68.682 2,906 2.569 4,844 4,780 1,875
106 69,342 2,624 2.690 L,651 4,585 1,961
107 - 70,002 2,344 2.408 4,455 4,392 2,047
108 70,663 2,062 2.129 L,262 Lk,196 2.134
(At wave- 71.323 1,892  L026 2,134
guide port)

Horn semi-flare angle 12 degrees .
Symbols defined in text and FIG., 5.1
All dimensions in centimeters
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F1G,3.11ILLUMINATION OF CIRCULAR APERTURE
BY 76.2cm LONG CORRUGATED HORN
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F1G.3,12 DIFFRACTION OF CIRCULAR APERTURE ILLUMINATED BY
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FIG. 3.18BEST ELEVATION PLANE FOCAL CURVE
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Y
ecm O

45721
40.64 F
35.56
3048 [
25.40 |
- ~
™ ol=3°
20.32 | ~_ %
: e= 0,66, ¢=1778cm 7
[ pp— e= 0.538,¢c=88.9cm /
15.24 L= /
‘\\/ =20
10.16 L . /
508 | ' / -
‘ tof e
203.2 Q/ I
Or-——r—————r—=pr——+=-—A-—-r-—-g~-———--afl-tr—71-—-tr-—+
20 - 198.12 19304 . 187.96 182.88 I77.8 | 17272 16764
FORc=177.8cm /
-5.08 : i
FORc¢c=889cm J d=0°
111.76  106.68 101.6 96.52 91.44 86.36 81.28
—|0|6 i 4 i} Ll H 1 L ] 1 1 1 1 1 J
2o

FIG, 3,22FOCAL REGION COMPARISONS ELEVATION SCAN
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FI6, 3,24 DIFFRACTION PATTERN SCANNED 3°IN AZIMUTH
FOCUSED AT BEST AZIMUTH FOCUS .
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ELEVATION,FOCUSED AT BESTELEVATION FOCUS
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TABLE 9,1
FOCAL PLANE DATA
Antenna parameters: f=177.8 cm, yc=15?.48 cm
c=88.9 cm, e=0.,538
ELEVATION SCAN

2T 210 ; o -
ELEV. AZIM. Xg,, Toag 222, Zpel  ZFeir d/1% OFT BW ;.
0° 0° 0 cm -7.568 88,54 88,54 88,54 - 0°
1 0 0 2,012 87,63 87.38 87.63 9,98 ,02°
2 0 0 12,766 89,41 85,09 87,88 10,74 ,07
3 0 0 26,954 95,50 83.06 86,36 14,18 ,143
-1  o° 0 -18,293 91,95 91.44 91,44 10,32 ,01°
-2 0 0 -30,531 100,08 98,04 99,06 12,49 ,04
-3 0 . 0 -47,907 115,57 113.28 114,30 17,37 .07
AZIMUTH SCAN '
0° 0° 0 -7,968 88,54 88,54 88,54 - 0°
0 1 -10,26 -8.255 89,41 90,17 89,66 ‘11.18 .02°
0 2 . =20.93 -9,550 - 90,17 96.52 92.71 10,67 ,06
0 Z -32,64 -11,754 91,95 107.95 102,62 11,71 ,19
0 -46,38 -15,113 95,25 137,16 11,76 13,74 .3
0 5 -62,61 -20.,244 99,06 16
45° cuts

o o chir YFcir o
1 1 -10,44 1,762 87.12 89,41 88,39 - ,01° .
2 2 -22,59 11,89 .85.85 97.79 90.93 - 14
3 3 -32,94 16.79 83.82 121,92 92,71 - .36
-1° 1% 10.35 ~18.82  93.47 91.95 92,56 - ,03°
-2 -2 22,94 -33.,31 113,03 101,60 107,95 - .

COMPARISON: OPTICAL BEAM WIDTHS
e=0,538 ¢=88.9 cm ' e=0.66 ¢=177.8 cm

= 0 ! o) = .
ELEV. d4/1 BW,, BW, ;. BWg \ a/1 Bwa% BW, ;. 3B¥,

2° 10.16 .12° ,06° ,1° 15.24 ,06° ,04° ,05°

3 10,16 .27 o2 .33 15.24 .14 .08 .18
X y Y y & are focal point coordinates for best azimuth plane

Faz Faz Faz pattern.
Z4,q etc. are focal point for best elevation plane patterns and
ZFcir etc. are focal points for circle of least confusion.

<)
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PHASE (DEGREES)
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29
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. 3.27 (A,B) AMPLITUDE (TOP)AND PHASE (BOTTOM) FOCAL REGION

TANGENTIAL ELECTRIC FIELD FOR A TAPERED PLANE WAVE
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