SEISMIC ANALYSIS CAPABILITY IN NASTRAN

Thomas G. Butler
BUTLER ANALYSES, Towson, Md.
Robert F. Strang
COMPUTER SCIENCES CORP., Silver Spring, Md.

INTRODUCTION

Seismic analysis is a technique which pertains to loading described in terms of boundary accelerations. Earthquake shocks to buildings is the type of excitation which usually comes to mind when one hears the word seismic, but this technique also applies to a broad class of acceleration excitations which are applied at the base of a structure such as vibration shaker testing or shocks to machinery foundations. Four different solution paths are available in NASTRAN for seismic analysis. They are: Direct Seismic Frequency Response, Direct Seismic Transient Response, Modal Seismic Frequency Response, and Modal Seismic Transient Response. This capability, at present, is invoked not as separate rigid formats, but as pre-packaged ALTER packets to existing Rigid Formats $8,9,11$, and 12. These ALTER packets are included with the delivery of the NASTRAN program and are stored on the computer as a library of callable utilities. The user calls one of these utilities and merges it into the Executive Control Section of the data deck to perform any one of the four solutions. There are a number of options available in each solution. These options are invoked by setting parameter values in the bulk data. Each of these solutions operates sufficiently differently that instructions will be discussed individually in the following paragraphs after a general introduction. The only new bulk data cards needed to perform seismic solutions are simple parameters which will be explained in the context of each solution path. The theoretical basis for these solutions is taken up in the Theory Section. Associated with each seismic ALTER packet are a number of new functional modules. Their operations are described in the solution topics.

OPERATION OF SEISMIC SOLUTIONS

Taking Newton's law as it stands Force = Mass x Acceleration, the loading in all cases is organized by putting the spatial distribution of mass on DAREA cards and by putting the description of time-varying or frequency-varying accelerations on TABLEDl cards so that the assembler cards TLOAD or RLOAD will direct the combining of the mass with the acceleration to create force inputs at the indicated massive grid points. This is the heart of the whole seismic scheme. The user can be spared the drudgery of preparing these inputs by employing processors that are supplied to do the job automatically for him. A stand-alone program called TBLGEN will take a file of seismic accelerations and will prepare a file of TABLEDl card images that can be merged into the bulk data section of the data deck. New module RBTM and succeeding ALTER statements prepare a matrix of inertia coefficients, using the rigid body transformation matrix as a transfer function between points having inertias
coupled to a base point and that base point for the direct method and acts as a transfer function between the base reference and all superstructure points for the modal method. The module, called NRTS, automatically converts the matrix from RBTM into a data block of DAREA card images of masses. The assignment of masses to DAREA coefficients are made according to the coordinate direction in which they are to be accelerated. NRTS is guided by the user as to which direction to accelerate the inertias through the use of parameters NRTID"i". There are 6 parameters NRTID" $i " l \leq i \leq 6$. $1 \leq i \leq 3$ represent the three translational directions of the basic coordinate system. $4 \leq i \leq 6$ represent the three rotational directions of the basic coordinate system. NRTS will generate a DAREA set for each parameter NRTID"i" that is included in a run. There must be at least one NRTID" i " in a run. NRTS can accomodate from one to six coordinate accelerations in a run. The user assigns set ID's on the NRTID"i" cards which NRTS transfers to the corresponding DAREA sets that it generates. These DAREA sets are never processed by the Input File Processor (IFP) module. NRTS formats the DAREA data according to the way it is usually output from IFP and incorporates these into the DYNAMICS data block in the form required later by module DPD. These automatically generated DAREA cards do not become part of the bulk data; however, the user is given the opportunity to confirm the DAREA data that was prepared by reading the listing that is automatically included in the output upon the execution of NRTS. The TLOAD and RLOAD cards are prepared by the user in the usual way by assembling ID's of DAREA, DPHASE, DELAY, and TABLEDi for the dynamic loading cases. The difference is that the set ID in field 3 refers to the DAREA set generated by NRTS instead of one contained in bulk data. The TABLEDl cards prepared by TBLGEN do become part of the bulk data so the ID in field 6 does refer to a set of accelerations that is contained in bulk data.

Beside load preparation another feature of seismic operation that is common to all solutions is the selection of options. Options are parameter controlled. They operate slightly differently in each rigid format. The three parameters URFIN, QRFIN, and ARFIN operate according to the sign of the value entered on PARAM bulk data cards. Negative values enable the operation and positive values disable their operation. URFIN controls the option to refine outputs (displacements, velocities, and accelerations) due to contributions from amitted d.o.f.'s. URFIN provides for recovery of displacements at loaded points of the structure which the analyst shunted to the omit set. The chance for loaded points being put into the omit set is much more likely in solutions by the modal method (where every massive point is loaded) than it is in solutions by the direct method. The recommendation is that if condensation is used, to always enable URFIN for modal solutions and do not do so in the direct solution unless important inertias are condensed and loaded. QRFIN controls the option to recover base forces due to the complete complement of stiffness coupling, damping coupling, mass coupling and base inertias. QRFIN augments the reporting of loads on base points, as is currently done in dynamic rigid formats, from just inertia loads to both inertia loads and reaction loads due to coupling. If QRFIN is not enabled, the Case Control request for OLOAD would limit the output on base points to only forces and moments derived from direct inertias. QRFIN does not affect the reporting of loads on points outside the base set. ARFIN controls the option to recover displacements in absolute coordinates.

Solutions differ from each other (1) in the way that loading is applied, (2) in the coordinate system that is used, (3) in the way that coupling is represented, and (4) in the way that data is recovered. Consequently, the descriptions of seismic modifications, from this point on, will be addressed on the basis of the way that the differential equation is solved-direct or modal.

INDIVIDUAL SEISMIC SOLUTIONS

Direct solutions (RF 8 \& 9) are performed in absolute coordinates as free bodies. Modal solutions (RF 11 \& 12) are performed in relative coordinates on fully clampled rigid bases.

DIRECT SEISMIC (FREQUENCY OR TRANSIENT) RESPONSE.
The features of Direct Seismic Frequency Response and Direct Seismic Transient Response are sufficiently common that they will be discussed in a combined topic.

Loading -- Loading consists of the acceleration of inertias on base points and on inertias that are coupled to base points. All degrees of freedom (d.o.f.'s) of base points being accelerated belong in the R-set. This is implemented by entering their ID's on SUPORT cards. The loading is almost completely general in that every boundary point, which is subject to acceleration, can be loaded with an individual acceleration history with individual time delays and individual phase delays. The proviso that keeps this loading from being completely general is that any point that is supplied with inertia solely via DMIG cards cannot engage in acceleration loading. All boundary accelerated points are classified as base points, but they need not physically be located at the base of a structure. Acceleration loading need not take place over a rigid surface; base points may be elastically linked. CAUTION!! since the $\mathrm{K} \& \mathrm{~B}$ matrices are singular in the R dof's, it is imperative that all dof's in the mass matrix be non-singular, i.e. 2nd moment terms must appear for rotational dof's.

Structural Matrices -- The mass and stiffness matrices are not incorporated into the system of seismic equilibrium equations in the form that they leave the EMG \& EMA modules. These matrices must be partitioned in order to honor equilibrium conditions. This is done automatically within the pre-packaged ALTER packet. When all the manipulation has transpired, the structural matrices enter the solution phase as unsymmetrical. Part of the mass matrix is moved to the right hand side to form the load. The base partitions of stiffness, mass and damping are used for base force recovery. The DMIG (direct input matrices) are partitioned according to the same pattern as the automatic matrices are. It is anticipated that DMIG masses will eventually be made part of the loading process, so the matrices that enter the solution phase are so partitioned in order to be consistent with the loading function. DMIG matrices do participate in the base force recovery process, so the DMIG matrices are almost completely general.
CAUTION: The direct seismic solutions are particularly sensitive to singularities in the R-set of mass matrices. In particular, extra effort must be made beyond the usual mass matrix genration to ensure that rotational degrees of freedom in the R -set be supplied with 2 nd moments of inertia. Accuracy of load transmittal in this method is also sensitive to the modeling of elastic and damping coupling between base and superstructure.

Damping -- Every type of damping which NAS'TRAN makes available to solutions by the direct method are similarly available to seismic direct solutions. Every type of damping coupling, if present, can contribute to the recovery of base forces.

Boundaries -- The problem is solved as a free body so there are no boundary constraints. No SPC's are allowed except those entered on GRID cards. There is a physical reason for this. Solution takes place in absolute coordinates, and single point constraints in absolute coordinates means that there is a mechanism located in the absolute frame to which points can be tied which will hold them invariably to zero during the period of application of seismic load. Physically this implies that the mechanism must be anchored outside the seismic zone. To meet such a severe requirement the constraining mechanism would be something like an infinitely rigid sky-hook or a monstrous clamp implanted beyond the fault zone. In the case of a shaker it could be satisfied by a large structure surrounding the shaker. No conceivable reason exists for any such arrangements; therefore this is the logic for disallowing SPC's in solutions by the direct method.

Data Recovery -- All displacements are recovered in absolute coordinates, so the ARFIN option for recovery in absolute coordinates would be redundant. Only options URFIN and QRFIN pertain to solutions by the direct method. Except in special cases, the only option recommended to always consider for direct solutions is QRFIN. Using QRFIN in the direct method is the only way to recover base reactions, because the more usual route of SPC force requests does not apply to the base, since the base points are assigned to R-set. Reporting of seismic base forces is controlled in Case Control by the OLOAD statement.

Because element stress and force recovery involves differencing operations on displacements, and because solution by the direct method takes place in absolute coordinates, it is necessary to intervene to prevent errors that arise from taking small differences between large numbers. Total motion of superstructure points, away from the base, consists of a rigid body component due to actions of the base plus elastic deformations of the superstructure with respect to a reference in the base. The recovery of stresses could be improved by removing the rigid body component before doing the differencing; but obtaining the rigid body component poses a difficulty. In the direct method all points in the non-rigid base are excited, so that that which is called rigid body depends on the chosen reference. The way out of this dilemma is to relax concern for determining true rigid body motion. What is important is not that stress recovery should be represented in true relative coordinates, but that stress recovery should be accomplished in a system of numbers of reduced magnitude compared to the absolute deformations. How the reduction to a lesser magnitude is accomplished is not important, except that it should be done uniformly, so that relative sizes are preserved. Therefore, the reference base point for computing rigid body motion can be chosen arbitrarily, because all absolute displacemnts will be reduced in magnitude by removing the rigid body component as defined according to a single point. The analyst then is in control of which point is to be used as a reference. He designates one of the base points assigned to the R-set by entering its GP ID number on the parameter GRDPNT card.

MODAL SEISMIC (FREQUENCY AND TRANSIENT) RESPONSE
The features of Modal Seismic Frequency Response and Modal Seismic Transient Response are sufficiently common that they will be discussed in a combined topic.

Loading -- Loading consists of the acceleration of all inertias of the super-structure while the base is held fixed. This solution, then, determines the behavior of the structure relative to the base. A reference point in the base is required for constructing the rigid body transfer function from the base to superstructure points. How the reference is selected depends on whether the analyst wishes to recover absolute responses. If no absolute responses are wanted, any point in the base can be used, but preferably one in the center. The reference point is flagged by putting it on a PARAM GRDPNT card.

If absolute responses are to be recovered, a scaffold is used. A pair of points, connected by a bar, but disjoint from the structure under analysis, is to be used as a reference system for setting up the load. One point is co-located with a selected base point and is free of any constraints. This is the reference point. The other point is located below the base and is fully constrained. The free point is endowed with unity mass in all 6 dof's, but the bar is massless. (A CONM2 card can be used for this unity mass). Elastic properties of the bar are assigned so that this reed-like reference system has natural frequencies higher than any frequency of interest in the primary structure. The free point is flagged as the reference point by putting it on a PARAM GRDPNT card.

This is the extent of special preparations for load outside of the requirements as described in the paragraph entitled OPERATION OF SEISMIC SOLUTIONS.

Structural Matrices -- The structural matrices are left in the form that they are automatically generated so that they retain their symmetric character during the solution phase. Solution can proceed with maximum efficiency in the symmetric domain. Partitions are made on the matrices, however, to prepare them for recovery of base forces. The DMAP ALTER automatically prepares the partitioning vectors, does the partitioning, and the reassembly of matrices without further intervention by the analyst.

Damping - In the ordinary modal solutions, only frequency dependent equivalent modal damping is provided for. No scalar dampers or structural damping is taken up in the symmetric path. If other damping is required, it can be supplied by direct input matrices (DMIG). This causes the solution to depart from the symmetric to the more time consuming non-sysmmetric route. If damping contributions to base forces are needed in the solution, then the only type of damping for which provision has been made is direct input matrices -- called B2PP.

Boundaries -- All base points for modal seismic solutions are assigned to the B-set by entering their ID's on SPC (Single Point Constraint) cards. All six dof's must be included in the base constraint set. No other SPC sets should be activated besides this base set. Having just one set enables the scheme to
distinguish the base points in the data recovery process.
Data Recovery -- Displacements are nominally recovered in relative coordinates. Stresses can be recovered directly from these relative responses without having to make further special provisions. If the user wants to recover displacements in absolute coordinates, special provisions are necessaiy. The rigid body component of displacement must be added to the relative displacements. Since the base is clamped, a base point does not report the acceleration which was applied there. The scaffold, described in the Loading section above does have a free point which does report the acceleration. Since unity mass was prescribed for the free point, the value of force is equal to the value of acceleration, so the report of acceleration in the form of NASTRAN internal data blocks is obtained from the load vector on the free reference point. Once the scaffold reed is installed, no further preparation by the analyst is needed except to include the PARAM ARFIN with a negative value. The only component of seismic transient response that can be recovered in absolute coordinates via the modal route is acceleration, but for seismic modal frequency response, absolute accelerations, velocities, and displacements can be recovered.

Condensations are logical to use with large structures. In the case of seismic solutions by the modal method where the load is distributed over all the superstructure, condensation could cause a considerable amount of inertia to be gathered into the omit-set. Normally the recovery of contributions to displacement response from the omit-set in dynamic rigid formats is limited to the GOD coefficient matrix without regard to the so-called Koo contribution. It is nomally left to the user to be judicious in avoiding the condensation of sizeable inertias. Even a judicious regard by the user is not sufficient when a large accumulation of small inertias is involved as in seismic modal analyses. As a consequence, provision has been made to recover the Koo contribution of the omit-set to displacement response. The user invokes this capability by assigning a negative value to the URFIN parameter.

Recovery of base forces is governed by parameter QRFIN. Setting its value to negative automatically invokes the DMAP ALTER for including contributions to the base force from direct inertias, coupled inertias, coupled elasticity, and coupled DMIG damping. No contribution to base forces from frequency dependent modal damping can be recovered.

THEORY
The general dynamics equation for the seismic problem will be written in subscripted form to relate it to the way that NASTRAN would handle it. The subscript P designates the full set of Physical coordinates. It contains all geometric and scalar grid points in the G-set plus the Extra points used to represent transfer functions of attached features such as hydraulic systems.

$$
\begin{equation*}
\left[[\mathrm{MPP}] \mathrm{p}^{2}+[\mathrm{BPP}] \mathrm{p}+[\mathrm{KPP}]\right]\{\mathrm{UP}\}=\{\mathrm{PP}\} \tag{1}
\end{equation*}
$$

Let lower case p designate the operator $d / d t$ for differentiation with respect to time. The M matrix represents the mass; the B matrix represents the damping; the K matrix represents the elasticity; and the P matrix represents the load. Since NASTRAN links the e-set only after
it has fully processed the G-set, the E coordinates will be partitioned off and the discussion of the method will start where NASTRAN starts it with the G-set.

$$
\left.\left[\begin{array}{c|c}
\mathrm{MGG} & \text { MGE } \tag{2}\\
\hdashline M E G & \text { MEE }
\end{array}\right] \mathrm{p}^{2}+\left[\begin{array}{l|l}
\mathrm{BGG} & \mathrm{BGE} \\
\hline \mathrm{BEG} & \mathrm{BEE}
\end{array}\right] p+\left[\begin{array}{l|l}
\mathrm{KGG} & \mathrm{KGE} \\
\hdashline \mathrm{KEG} & \mathrm{KEE}
\end{array}\right]\right]\left\{\begin{array}{l}
\mathrm{UG} \\
\hline \mathrm{UE}
\end{array}\right\}=\left\{\begin{array}{l}
\mathrm{PG} \\
\hline \mathrm{PE}
\end{array}\right\}
$$

Ignore the GE coupling for now and isolate the equation in the G-set.

$$
\begin{equation*}
\left[[M G G] p^{2}+[B G G] p+[K G G]\right]\{U G\}=\{P G\} \tag{3}
\end{equation*}
$$

Seismic load originates in the ground and therefore will produce loading in the base of the structure. If the loading were fully defined in terms of distributed forces, there would be no necessity of engaging in this present task, because NASTRAN is fully capable of analyzing structures under known time dependent forces. Since it is displacement histories that define a seismic disturbance in terms of acceleration or velocity or translations, this task is directed towards the development of an automatic method of determining the response to a seismic disturbance without requiring that the disturbance be converted to a set of forces before proceeding with the solution.

Implementation of seismic response has been carried out for four different types of solutions within NASTRAN. Two solutions use the direct method of integrating the differential equations and two solutions use the modal method of integration. In both types the set of two solutions involve excitation in the time domain for one and excitation in the frequency domain in the other. Specifically, these four solutions are:
DIRECT FREQUENCY RESPONSE - R.F. 8
DIRECT TRANSIENT RESPONSE - R.F. 9
MODAL FREQUENCY RESPONSE - R.F. 11
MODAL TRANSIENT RESPONSE - R.F. 12

The biggest difference in the theory amongst these four solutions lies between the direct approach and the modal approach. The direct solution takes place as a free body in absolute coordinates while the modal solution takes place as a structure clamped at the base and solved in terms of relative coordinates. The direct method will be taken up first.

DIRECT THEORY

That set of points which is assigned to the base where the disturbance acts is designated as the R-set. Partition the G-set into the base points and its complement say $Y=R$ comp G.

$$
\left[\left[\begin{array}{l|l}
M Y Y & M Y R \tag{4}\\
\hdashline M R Y & M R R
\end{array}\right] p^{2}+\left[\begin{array}{c|c}
\mathrm{BYY} & \mathrm{BYR} \\
\hdashline \mathrm{BRY} & \mathrm{BRR}
\end{array}\right] p+\left[\begin{array}{l|l}
\mathrm{KYY} & \mathrm{KYR} \\
\hline \mathrm{KRY} & \mathrm{KRR}
\end{array}\right]\right]\left\{\begin{array}{l}
\mathrm{UY} \\
\hdashline- \\
\mathrm{UR}
\end{array}\right\}=\left\{\begin{array}{l}
\mathrm{PY} \\
\hdashline \mathrm{PR}
\end{array}\right\}
$$

\{ $\left.\mathrm{p}^{2} \mathrm{UR}\right\}$ is the known acceleration on the base. The known forces resulting from individual base masses are [MYR]\{p ${ }^{2}$ UR $\}$ and [MRR]\{p $\left.{ }^{2} U R\right\}$.

Isolate the upper partition depicting the behavior of the portion of the structure extending beyond the base.

$$
\begin{equation*}
\left[[M Y Y: M Y R] p^{2}+[B Y Y: B Y R] p+[K Y Y: K Y R]\right]\left\{\frac{U Y}{U R}\right\}=\{P Y\} \tag{5}
\end{equation*}
$$

Transfer known terms to the right hand side (RHS) of the equation.

$$
\left[[M Y Y: 0] p^{2}+[B Y Y: B Y R] p+[K Y Y: K Y R]\right]\left\{\begin{array}{c}
U Y \tag{6}\\
-\frac{U R}{}
\end{array}\right\}=\left\{P Y-[M Y R]\left\{p^{2} U R\right\}\right\}
$$

Incorporate the remaining known forcing term [MRR]\{p $\left.{ }^{2} \mathrm{UR}\right\}$ by adding it to both sides of the equation.

$$
\left.\left[\begin{array}{c|c}
M Y Y & 0 \tag{7}\\
\hdashline 0 & M R R
\end{array}\right] p^{2}+\left[\begin{array}{c|c}
B Y Y & B Y R \\
\hdashline 0 & 0
\end{array}\right] p+\left[\begin{array}{c|c}
K Y Y & K Y R \\
\hdashline 0 & 0
\end{array}\right]\right]\left\{\begin{array}{c}
U Y \\
-U R
\end{array}\right\}=\left\{\begin{array}{c}
P Y-[M Y R]\left\{p^{2} U R\right\} \\
\hdashline[M R R]\left\{p^{2} U R\right\}
\end{array}\right\}
$$

When \{UG\} is solved for, the original $p^{2}\{U R\}$ should be recovered. PY represents known force loading distinct from the base motion forcing. No such external loading is allowed on the points of the R-set. This is the equation that is presented to NASTRAN at the G-level for solution of the \{UG\} response. Further details of the processing will be taken up later, but now turn to the lower partition which depicts the forces that develop on the base due to the inertias, damping coupling, and elastic coupling after the \{UG\} are found from the solution of the upper partition.

$$
\left[[M R Y: M R R] p^{2}+[B R Y: B R R] p+[K R Y: K R R]\right]\left\{\begin{array}{c}
\frac{U Y}{-} \tag{8}\\
U R
\end{array}\right\}=\{P R\}
$$

$\{P R\}$ is the vector of unknown forces which are found by summing up the terms on the left hand side. There is a way of allowing \{PR\} to contain both known external forces and unknown base forces that develop. The method would involve a looping through the modules DPD and TRSLG twice in order to isolate the direct load so as to subtract it during the solution of the base force. Such a scheme is not being implemented here.

Implementation can go various routes, i.e. rigid base vs. elastic
base, absolute coordinates vs. relative coordinates, exciting individual base points vs. exciting only a reference point, recover complete base force response vs. echo only input force, include direct matrix input contributions to load vs. only G-set contributions, refine displacement response with Koo portion or not, recover stresses via relative coordinates vs. stresses via absolute coordinates, external generation of loads vs. internal assembly, inertia only loading vs. inertia, damping, and elastic loading.

The primary decision was to opt for internal assembly of loads. The scheme is this. Put the masses from the coupling partition MYR and the base masses MRR in the coefficient positions on the DAREA cards and put the base accelerations on TABLEDI cards. When these DAREA and TABLEDI data are delivered to the DPD module, they are multiplied together to produce the time varying forces on the individual grid points. The module RBTM (Rigid Body Transformation Matrix) was designed to determine the orientation of the inertias at local grid points with respect to the orientation of the acceleration field operating on the base points. Acceleration field orientation is defined in terms of the basic coordinate system, consequently RBTM constructs the transformation between points of the structure in their global system and a nominal point in the basic system. This Gx6 transformation matrix [HAICH] is partitioned to Rx6 matrix [HRX6]. When the base partitions of the mass matrix [MRY] and [MRR] are multiplied into [HRX6], inertia terms coupled to the base points are picked up according to their orientations to form the spatial coefficients on DAREA loading cards.

$$
\left[\begin{array}{c}
\text { MYR } \\
\hdashline M R R
\end{array}\right][H R X 6]=[\text { MSEIS }]
$$

The module NRTS was written to take the masses, as organized in MSEIS, to deploy them in DAREA format, and finally to assemble them into the sections reserved for them in the DYNAMICS data block amongst the loads that were assembled earlier into DYNAMICS by the IFP module.

Refer to equation (7) and note that the full matrices for M, B, and K cannot be delivered to the NASTRAN chain of matrix condensation without first removing those partitions which are no longer part of the L.H.S. in the equations of equilibrium. The solution will be essentially that of a free body with loads on base points responding in absolute coordinates. Base points will be allowed to be excited in all 6 dof's. Single point constraints imply that points are to be held fixed with respect to coordinates fixed in space, but this is almost physically impossible to do since the ground on which the structure is mounted is also suffering a seismic disturbance. A mechanical connection would be needed to tie the constrained points to the reference frame to maintain zero absolute displacement. But this frame would need to be outside the seismic zone in order to be free of seismic disturbance. Such a mechanical tie is physically unrealistic. The technique, developed here, for the direct method will allow a flexible base with each of its points
to be independently excited. All contributions to base forces will be recovered by implementating equation (8) completely. No contribution to loading from masses defined with DMIG input has been implemented. Every permitted form of damping in R.F. 9 is operational in this seismic analysis.

The modules of rigid format 9 are allowed to process the matrices, prepared as shown above for the L.H.S., down through the DPD module without intervention. When module GKAD goes into operation, it processes the DMIG matrices and assembles the E-points with the G-set to create the P -set. Here the full set of partitions indicated in equation (2) are restored to the system before condensing the P-set to D-size for solution.

The complete expression for the first step in the recovery of displacements from the condensed dynamic solution is:

$$
\{U O\}=[\mathrm{GOD}]\{\mathrm{UD}\}+\{\mathrm{UOO}\}, \text { where }\{\mathrm{UOO}\}=[\mathrm{KOO}]^{-1}\{\mathrm{POT}\} .
$$

Currently in the four dynamics rigid formats the $\{000\}$ term is omitted from the data recovery sequence. An option is provided to include the $\{U O O\}$ term under the control of the parameter URFIN. Provision for this option was implemented by modifying the TRLG module to include the POT partition of the load vector PPT in its output complement. The strategy used was to allow the recovery of the uncorrected UPV response to proceed in module SDRl from D-size back up to P-size, but then provide a correction following this step and add it to the UPV vector after it leaves module SDRI.

Several intermediate steps are necessary to recover this incremental correction to P-size to make it cormensurable for adding to UPV. DMAP module SOLVE is called upon to find UOO from POT and KOO. UOO is first inflated to FE size by adding zeroes in the positions of the D-set, and then inflating to NE size.

$$
\left\{\begin{array}{c}
0 \\
-\mathrm{UOO}
\end{array}\right\} \Rightarrow\{\mathrm{UOOFE}\} \quad\left\{\begin{array}{c}
0 \\
-- \\
\mathrm{UOOFE}
\end{array}\right\} \Rightarrow\{\mathrm{UOONE}\}
$$

The correction for multi-point contraints is applied next.

$$
\text { [GMD] \{UOONE\} }=\text { \{UOOM }\}
$$

The final P-sized correction is obtained by merging the M partition with the NE partition.

$$
\left\{\begin{array}{l}
\text { UOONE } \\
\hdashline \text { UOOM }
\end{array}\right\} \Rightarrow\{\text { UOOP }\}
$$

UOOP is a vector of time varying translations only. Before the correction can be applied to UPV, it has to be converted to the same format as UPV; i.e., a column of translations followed by a column of velocities followed by a column of accelerations for every output time step. The module KREKU was written to differentiate UOOP twice, and reformat it, then add it to UPV.

Stress recovery becomes critical when a problem deals with large displacements, because the first step is the calculation of strain, which involves finding small differences between large numbers. In order to alleviate this hazard, it was decided to transform the response to relative coordinates before computing strains. To implement this idea, one point of the base is arbitrarily selected as a reference point. The absolute response of this one point is partitioned from the total solution. A rigid body transformation from this reference point gives the rigid body motion of the entire structure due to base forcing of this one point. This is not necessarily the true rigid body motion of the whole structure, because the selection of the single reference point was arbitrary and in the actual case many points could have been independently excited. This is of no consequence, because the purpose is not necessarily to determine the true rigid body motion, but to establish numbers on the order of rigid body motion to subtract uniformly from the absolute motion of every point so as to reduce the resulting quantities when differenced for strain computations. This is a correct procedure for all points except E-points. Because they are not geometric points, there is no such thing as a rigid body transformation of E-points. Therefore, E-points are excluded from the transformation to relative coordinates by partitioning from UPV before applying the transformation. The E-partition is merged back with the relative solution to restore it to P-size to satisfy the needs of the recovery module SDR2. The steps are:

$$
\begin{aligned}
& \{U P V\} \Rightarrow\left\{\begin{array}{l}
\text { UEV } \\
\text { UGV }
\end{array}\right\} \\
& \{U D V T\} \Rightarrow\left\{\begin{array}{c}
0 \\
\text { UVWJVT }
\end{array}\right\} \\
& \text { [HGTOJ] \{UVWJVT\} }=\{U G R I G D\} \\
& \{U G V\}-\{U G R I G D\}=\{R E L U G V\} \\
& \left\{\begin{array}{l}
\text { UEV }\} \\
\text { RELUGV }\}
\end{array} \Rightarrow\{R E L U P V\} . \quad\{R E L U P V\}\right. \text { goes to SDR2 for stress recovery. }
\end{aligned}
$$

Even though \{UR\} and $p\{U R\}$ are known and even though force develops from known damping when multiplied into known velocity and force develops from known elasticity when multiplied into known translations, one cannot declare a known forcing function in this case. Damping and elastic forces arise from differences in motion between pairs of points and the history of only one of the two paired points is known. The history of the other of the two points has to be solved for before damping and elastic boundary forces can be determined. With an elastic base, however, differences in motion between pairs of points can be foretold and consequently damping and elastic boundary forces amongst pairs in the R-set can be gathered on the RHS as boundary forces. The lower partition of equation (7) would be augmented to this degree of adding these forces to both sides of the equation.

$$
\left.\left[\begin{array}{c|c}
\mathrm{MYY} & 0 \tag{7A}\\
\hdashline 0 & \underset{\mathrm{MRR}}{ }
\end{array}\right] \mathrm{p}^{2}+\left[\begin{array}{c|c}
\mathrm{BYY} & \mathrm{BYR} \\
\hdashline 0 & \underset{\mathrm{BRR}}{ }
\end{array}\right] \mathrm{p}+\left[\begin{array}{c|c}
\mathrm{KYY} & \mathrm{KYR} \\
\hdashline 0 & \mathrm{KRR}
\end{array}\right]\right]\left\{\begin{array}{c}
\mathrm{UY} \\
\hdashline \\
\mathrm{UR}
\end{array}\right\}=\left\{\begin{array}{l}
\mathrm{PY}-[\mathrm{MYR}] \mathrm{p} 2\{\mathrm{UR}\} \\
\hline[\mathrm{MRRp} 2+\mathrm{BRRp}+\mathrm{KRR}]\{\mathrm{UR}\}
\end{array}\right\}
$$

Equation (8) would remain for the recovery of base forces. No provision has been made in TBLGEN for preparing velocity and translation tables so an entirely elastic formulation has not been implemented in this task as equation (7A) was not followed; however, the groundwork has been laid for eventual implementation. What we have at this point is an elastic base subject to independent time distribution of accelerations over the base. This work in effect has provided an extension beyond that contracted for in that it goes beyond a purely rigid base for inertia forcing. In a rigid base, all points would move synchronously. That restriction has been lifted for inertia loading so that individual time histories with individual time delays at points can be assembled. This is well beyond the rigid body restriction.

The effect on solution times should be addressed. Notice the character of the coefficient matrices M, B, \& K in equation (7). M is symmetric but B and K are unsymmetric. As a result, unsymmetric decomposition will be called for during the integration of this equation. Running times can be as much as 4 times longer than the time for similar problems formulated with symmetric matrices, depending on the extent of the coupling terms.

MODAL THEORY

The set of base points for the modal approach are constrained to zero displacement in all 6 d.o.f.'s and loading takes place as a consequence of the inertia reaction of all points extending beyond the base due to the rigid synchronous motion of the base. If recovery of absolute acceleration is required, a reference point is needed at the base which is not clamped (as all other base points are) so as to supply the input base motion in a NASTRAN data block organized in the same time intervals that the response results are in. This can be obtained by choosing a location that is to be used for reference; then duplicating this point and excluding it from the set of constrained base points. Associate unity inertia with each of the 6 d.o.f.'s for this reference point with a CONM2 bulk data card. Make an elastic connection to a
grounded point with a BAR element. This reed is completely disjoint from the primary structure. Put the point of the tip of this reed--that lies in the plane of the base-in the R-set by using the SUPORT bulk data card. Partition equation (3) into these components. First partition with respect to the base points; call these the B-set and call the complement of B -set with respect to G -set the X -set.

$$
\left.\left[\begin{array}{c|c|c|c}
M X X & M X B \tag{9}\\
\hdashline M B X & M B B
\end{array}\right] p^{2}+\left[\begin{array}{c|c}
\mathrm{BXX} & \mathrm{BXB} \\
\hdashline \mathrm{BBX} & \mathrm{BBB}
\end{array}\right] p+\left[\begin{array}{c|c}
\mathrm{KXX} & \mathrm{KXB} \\
\hdashline \mathrm{KBX} & \mathrm{KBB}
\end{array}\right]\right]\left\{\begin{array}{c}
\mathrm{UX} \\
- \\
\mathrm{UB}
\end{array}\right\}=\left\{\begin{array}{c}
\mathrm{PX} \\
\hdashline \mathrm{~PB}
\end{array}\right\}
$$

Next, partition the R-set from the X-set. Name the set that is the complement of the R -set with respect to the G -set the Y -set. And name the set that is the complement of the R -set with respect to the X -set the C -set.

Introduce a relative set of coordinates between the reference point in the R-set and other parts of the structure with the capability of expressing total motion as being composed of that due to the motion of the base plus that due to the deformation with respect to the base; i.e., rigid body motion plus relative motion. Make three separate definitions for the three sets C, R, and B. First the C-set.

$$
\begin{equation*}
\{U C\}=[H C R]\{U R\}+\{U v\} \tag{11}
\end{equation*}
$$

In words this equation says: the displacement of points in the C-set extending away from the reference point in the base consists of the rigid body motion of the C-set due to the enforced motion of the reference point [HCR] \{UR\} plus the deformation of the C-set away from the base reference \{Uv\}, where [HCR] is the rigid body transformation matrix between the R -set and the C -set. Next the R-set.

$$
\begin{equation*}
\{\mathrm{UR}\}=[\text { IRR }]\{\mathrm{UR}\} \tag{12}
\end{equation*}
$$

Base reference motion is equal to itself, where [IRR] is the identity matrix for the R-set. Third the B-set.

$$
\begin{equation*}
\{U B\}=[H B R]\{U R\}+\{U e\} \tag{13}
\end{equation*}
$$

The displacement of points in the B-set, lying entirely in the base, consists of the rigid body motion of the B -set due to the enforced motion of the reference point [HBR] \{UR\} plus the deformation of the B-set away from the reference point \{Ue\}, where [HBR] is the rigid body transformation matrix between the R -set and the B -set. Impose the rigid body condition that there is no elastic deformation of the base; i.e., $\{U e\}=0$, which says that the base position is always known in terms of
the motion of the reference point. Combine these 3 statements into a single matrix.

$$
\{U G\}=\left\{\begin{array}{c}
\mathrm{UC} \tag{14}\\
\hline \mathrm{UR} \\
-\mathrm{UB}
\end{array}\right\}=\left[\begin{array}{c|c|c}
\mathrm{IVv} & \mathrm{HCR} & 0 \\
\hline 0 & \mathrm{IRR} & 0 \\
\hdashline 0 & \mathrm{HBR} & \mathrm{Iee}
\end{array}\right]\left\{\begin{array}{c}
\mathrm{UV} \\
\hline- \\
\hline \mathrm{UR} \\
\hline \mathrm{Ue}
\end{array}\right\}
$$

The product [Iee] \{Ue\} $=0$; set the deformation \{Ue\} null. Retention of [Iee] preserves the integrity of the coefficient matrices for proper handling internally within NASTRAN. Apply this transformation matrix to the dynamic equation.

Expand and recombine:

$$
=\left\{\begin{array}{l}
\mathrm{PC} \tag{16}\\
\mathrm{PR} \\
\mathrm{~PB}
\end{array}\right\}
$$

Observe that [Ijj] [MTX] = [MIX]. Delete zero products. Rewrite.

Interpret the term [BCC] [HCR]p\{UR\}. Move the operator ahead of the constant matrix and look first at just the product [HCR]\{UR\}. This says that the position of the coordinates \{UC\} are precisely known according to the movement of coordinate \{UR\} by obeying the proscription of matrix [HCR]. This implies that as time goes by (p\{UC\} - p\{UR\}) remains invariant. The development of force within a damper depends on change in the relative positions of connecting points. Consequently, the complete term [BCC] [HCR]p\{UR\} says that since BCC sees no change in (p\{UC\} - p\{UR\}), no force develops. The reasoning applies to all damping and elastic terms that are post multiplied by [HiR] \{UR\}. All of these null contributions can be removed from the dynamic equation.

Apply these observations and the dynamic equation becomes

$$
\begin{align*}
& \left.+\left[\begin{array}{lll}
\mathrm{KCC} & \mathrm{KCR} & \mathrm{KCB} \\
\mathrm{KRC} & \mathrm{KRR} & \mathrm{KRB} \\
\mathrm{KBC} & \mathrm{KBR} & \mathrm{KBB}
\end{array}\right]\right]\left\{\begin{array}{l}
\mathrm{UV} \\
\mathrm{UR} \\
\mathrm{Ue}=0
\end{array}\right\}=\left\{\begin{array}{l}
\mathrm{PC} \\
\mathrm{PR} \\
\mathrm{~PB}
\end{array}\right\} \tag{18}
\end{align*}
$$

Now interpret the inertia terms. The first term in parentheses
[MCC] [HCR] ${ }^{2}\{U R\}$ says that all inertias on the C-coordinates provide a force contribution to the dynamic equilibrium in the C-coordinates proportional to the amount of rigid body acceleration produced in the c-coordinates by enforced motion of the reference point. Skip the next
quantity in parentheses and look at the term [MCB] [HBR]p ${ }^{2}$ \{UR\}. It says that all inertias on the C-coordinates due to coupling with the B coordinates provide a force contribution to the dynamic equilibrium in the C -coordinates proportional to the amount of rigid body acceleration acting in the B coordinates defined by the enforced motion of the reference point. Note that each part of these two products are known-the inertias, the transformation and the acceleration. These constitute the inertia loading of the structure. These two terms can be transformed to the R.H.S. of the equation as part of the known loading on the C-coordinates.

Before interpreting other inertia terms, reflect on the purpose of the reed scaffold that was synthetically introduced into the problem. The tip of the reed was to respond in exactly the same way that it was excited. The tip was given a mass and only that mass was to be accelerated with the loading specification.

Looking at the diagram, one sees that the tip of the reed is the only thing in the R-set. If the user chooses to put intermediate points on the reed, those points would be grouped with the C -set. If the mass on the tip of the reed were supplied as a CONM2, and if the reed from tip to ground were massless, then the mass matrix for the reed would consist of the partition MRR only and would be devoid of MCR and MBR and so would their transposes; i.e., no mass coupling between the R-set and either the C or B sets. Apply these observations to the dynamic equation. The reed could also be modeled with no damping coupling between the C and R sets, but this is not mandatory. There would be no conceivable utility to have either damping or elastic coupling between the B-set and the R-set, however.

$$
\begin{align*}
& \left.\left[\begin{array}{lll}
\mathrm{KCC} & \mathrm{KCR} & \mathrm{KCB} \\
\mathrm{KRC} & \mathrm{KRR} & \mathrm{KRB} \\
\mathrm{KBC} & \mathrm{KBR} & \mathrm{KBB}
\end{array}\right]\right]\left\{\begin{array}{l}
\mathrm{Uv} \\
\mathrm{UR} \\
\mathrm{Ue}=0
\end{array}\right\}=\left\{\begin{array}{l}
\mathrm{PC}-\left[\mathrm{MCC}{ }^{\bullet} \mathrm{HCR}+0+\mathrm{MCB}{ }^{\bullet} \mathrm{HBR}\right] \mathrm{p}^{2}\{\mathrm{UR}\} \\
\mathrm{PR} \\
\mathrm{~PB}
\end{array}\right\} \tag{19}
\end{align*}
$$

There are two things to notice at this point. First, all coefficient matrices are symmetric except the 3-2 term in the mass matrix. Second, the \{PR\} load on the reed mass is not defined. As to the first, the assymmetry comes about in the recovery of base loading. The unsymmetric [MBC'HCR + MBB $\left.{ }^{\circ} \mathrm{HBR}\right]$ quantities need not be introduced during the solution phase of the execution. They can be introduced during data recovery. This is not a case of illegal tampering, because when the base constraints are imposed during the solution phase, the B-partition in relative coordinates is dormant (that is fully constrained by an SPC condition). Symmetry in the coefficient matrices can be preserved during the solution phase and all the solution efficiencies associated with symmetric matrices can be enjoyed.

Inflate MSIZB with zeroes in the Y positions to bring it to G-size

$$
[0: M S I Z B] \Rightarrow[M B R G]
$$

If MBCG and MBRG are added, it will leave the resulting matrix null in the B positions. Since the $\{U e\}$ vector of relative displacements in the B-set is zero, it does not matter in equation (27) if the elements in the coefficient matrix to these terms is null.

$$
[M B C G]+[M B R G]=[M F B G]
$$

The technique that NASTRAN uses in the solution by the transient method is to handle the responses in displacements, velocities, and accelerations by combining them into a triplet at every time step. Notice in equation (23) that the accelerations, velocities, and displacements operate independently to recover base response.forces. Consequently, the UPV matrix of solution responses will have to be split from their triplet format. The module KREKU
was written to do this job. It puts out 3 G -sized time varying components. Now comes an explanation for setting up the auxiliary reed structure. Since all base points were fully constrained to zero, they are not available as a reference for the \{UR\} vector in equation (11). The mass at the tip of the reed is co-located with one point chosen from the set of base points, and it is accelerated with the specified time history-as the unconstrained mass points in the principal structure are. A unit diagonal mass matrix is assigned to the reed tip in the bulk data with a CONM2 card. When the load on the tip of the reed is formed, it is numerically equal to the seismic acceleration. Thus the R partition of the load vector PRT contains the acceleration converted to a NASTRAN data block.

Partition the load vector on the reference point PRT from the vector of loads on all physical points PPT.

$$
\{\mathrm{PPT}\}=\Rightarrow\left\{\begin{array}{l}
\mathrm{PZT} \\
\left.\frac{\mathrm{PRT}}{}\right\}
\end{array}\right\}
$$

In order to get the effect of absolute motion in the recovery of base forces, the exciting acceleration needs to be restored to the R-set. Partition ACGVT as it is output from KREKU and retain only the Y-set (ACYVT). Then merge in the base acceleration PRT to restore the acceleration to G-size.

$$
\{\text { ACGV }\} \stackrel{\text { GYVEC }}{\Rightarrow \Rightarrow}\left\{\begin{array}{l}
\text { ACYVT } \\
\hdashline
\end{array}\right\} \quad\left\{\quad\left\{\begin{array}{l}
\text { ACYVT } \\
\hdashline \text { PRT }
\end{array}\right\} \stackrel{\text { GYVEC }}{\Rightarrow}\{\text { ACCG }\}\right.
$$

Form the base forcs from inertias per equation 27 with PRT substituted for UR.
[MFBG] [ACCG] = Base Inertia Forces,
and next the elastic component,
[KBG] [DIGV] = Base Elastic Forces.
Note, damping defined in terms of grid point partitions are available only through DMIG input. Modal damping B (omega) is not available for base force recovery, because it is not defined in terms of geometric coordinates. The B2PP matrix can be partitioned and can be used for recovery of base forces from
[B2BG] [VEGV] = Base Damping Forces.
All 3 forces sum to BASEF and are attached to the PPT vector for output processing. Therefore, to get a listing of base force response, the user inserts a command for OLOAD to include base points.

$$
\{U G V\}==>\left\{\frac{U Y V}{\frac{U R V}{}}\right\} . \quad U Y V \text { is the relative response on the } Y \text {-coordinates. }
$$

Merge zeroes into UYV in the R-set locations to get a G-sized relative response vector.

$$
\left\{\begin{array}{c}
\text { UYV } \\
\hdashline 0
\end{array}\right\} \Rightarrow\{\text { UGREL }\}
$$

Now use the rigid body transformation matrix with respect to the reference point HAICH and reconstruct absolute response in accordance with equation (11).

$$
\{\mathrm{UABSG}\}=[\mathrm{HAICH}]\{\mathrm{URV}\}+\{\text { UGREL }\} .
$$

Merge the E-partition back onto the G-set to get a P-sized absolute response vector ready to complete processing in modules SDR2, OFP, and PLOT. This method works only if the reed has a frequency content to match that of the load. Lacking sufficient spectral content in the reed gives values for URV far less than those of the input specification. This puts too much burden on the analyst to model the reed well for each different loading. Consequently, a substitute method has been implemented that is repeatable and dependable and is independent of the skill of the analyst. The method, however, is less general. Only absolute accelerations can be recovered instead of absolute displacements, absolute velocities and absolute accelerations. Tests were successful in producing the tabulations of load at the required solution time intervals. Since unity mass is to be used, these loads are numerically identical to the forcing accelerations and are therefore quite suitable as a set of reference values for recovery of absolute acceleration in the required organization to suit NASTRAN's bookkeeping.

Begin the process of recovering absolute accelerations by inflating the Y partittion of response with zeroes in the R-positions back to G-size.

$$
\left.\left\{\begin{array}{c}
\text { ACYVT } \\
\hdashline 0
\end{array}\right\} \stackrel{\text { GYVEC }}{\Rightarrow} \text { \{RELACG }\right\}
$$

Use rigid body transformation between the reference R -set and all other points in the structure to reconstruct the rigid body accelerations throughout the structure, then add the relative accelerations to this result to obtain the absolute accelerations.

$$
\text { [HAICH] \{PRT] }+\{\text { RELACG }\}=\{\text { ABSACG }\} .
$$

Inflate ABSACG back to P-size and back to triplet format so as to be able to make the resulting ABSACPT data block acceptable to data recovery modules SDR2 and SDR3 and OFP for final output processing.

The resulting absolute accelerations can be passed to the XYPLOT module for answering plot requests in Case Control. DMAP alters have been incorporated into the seismic packet to accomplish this.

For the first time as a result of implementing this theory there is an acceleration loading capability in the public domain. In the following pages are packets of the DMAP ALTER's that were written to splice this capability into the four dynamic rigid formats.

SOLNE

```
$URFIN WHEN SET < OR = - ENABLES THE OPTION TO REFINE DUTPUT DISPLACE-
$
*GRFIN WHEN SET & OR =-1 ENABLES THE OPTION TO RECOUER BASE FORCES FROM
乎 STIFFNESS, DAMPING, & MASS CDUPLING AND FROM BASE INERTIAS.
* BASE FORCE. DEFAULT = + 1.
SGRDPNT IS DECLARED AS THE REFERENCE GP DN THE PARAM GRDPNT CARD．
```


MENTS WITH CONTRIBUTIONS FROM OMITTED GETS．

```



ALTER 63 虫 UST BEFORE MCE
PARAM／／＊NOT＊／V，N，SEISLD／V，N，REACT \(\$\)
COND SYMX，SEISLD \(\$\)
UUMP FINIS 办
LABEL SYMX 串
牛 CALL IN RETM AT THIS POINT TO ACT AS A VEHICLE FOR ROUTING LOADS TD क \(\$\) ALL POINTS WHICH ARE COUPLED TO THE BASE THROUGH INERTIA．
事事
RETM BGPDT，CSTM，EQEXIN，USET／HAICH，HIRYG，／C，Y，GRDPNT／＋1／ADIRECT＊\(\$\)串 \(\$\)
虫生 NOTICE GRDPNT IS USED HERE AS A REFERENCE FOR TRANSFORMING FRDM牛 G GLDBALTD BASIC CODRDINATES AND AS A REFERENCE TO RECDVER STRESSES韦 \(\$\) IN A QUASIRELATIVE CDORDINATE SYSTEM．IT IS NDT DECLARED OUTRIGHT
事中
虫生
中串
VEC USET／GYVEC／＊G＊／＊CDMP＊／＊R＊\(\$ 1\)＇S DN R．Y＝R（CDMP）G
COPY GYVEC／GYIVEC \(\$\)
PARTN HAICH，GYVEC／，HRXG，／5／0 \＆FRACTION DFF THE R ROWS OF HAICH．

क \(\$\) THE HRR TRANSFORMATION MATRIX WILL BE USED BELOW IN THE DAREA
出中 PREPARATION SECTION

虫事
\＄\(\ddagger\) REIMOVE THE INERTIA COUPLING TERMS FROM THE LEFT HAND SIDE WHICH ARE \＄क \(\ddagger\) EING USED DN THE RHS．THE ZR INERTIA COUPLING TERMS MUST NOT BE \＄覀CONDENSED INTD THE DD SET，SD THE YR INERTIA CDUPLING TERMS MUST BE生生ARTITIDNED DUT BEFORE MCE．WHILE SO DOING THE WHOLE MATTER OF覀SETTING UP THE EQUATION IN Y－ROWS AND R－RDWS GAN ALL BE DONE AT DNE事生SITTING。

PARTN KGG，GYVEC，／KYY，KRY，KYR，KRR／－1／2／6／2／2／6 中
MERGE KYY，KYR，GYVEC，GYVEC／TKGG／＋1／2／1 FOR CONDENSATION
MERGE KRY，KRR，GYVEC，／KRG／5／2／2＊FOR BASE FORCES

PARTN MGG，GYVEC，／MYY，MRY，MYR，MRR／－1／2／6／2／2／6 \＄
MERGE MYY，，，MRR，GYVEC，／TMGG／－1／2／6 © FOR CONDENGATION
MERGE MRY，MRR，GYVEC，／MIRG／5／2／2 \＄FOR GASE FORCES
 PARTN BGG，GYVEC，／BYY，BRY，BYR，BRR／－1／2／6／2／2／6 串
MERGE BYY，BYR，GYVEC，GYIVEC／TBGG／＋1／2／1 क FOR CONDENSATION
MERGE BRY，，BRR，GYVEC，／BIRG／5／2／2 \(\$\) FOR GASE FORCES

PARTN K4GG，GYVEC，／K4YY，K4RY，K4YR，K4RR／－1／2／G／2／2／6 क
MERGE K4YY，K4YR，GYVEC，GYIVEC／TK4GG／＋1／2／1＊FOR CONDENSATION
MERGE K4RY，K4RR，，GYVEC，／K4RG／5／2／2 \(\$\) FOR BASE FORCES


EQUIV TKGG，KGG／SEISLD／TMGG，MGG／SEISLD／TBGG，BGG／SEISLD／
TK4GG，K4GG／SEISLD \(\$\) FOR CDNDENSATION OF GTRUCTURAL MATRICES

\＄両CONDEMSATION DDWN TD A－SIZE FDR GKAD CAN NOW BEGIN．
\＄
PARAMR／／＊COMPLEX＊／／O．O／1．O／EYE／／／\(/\) \＄
PARAIMR／／＊COMPLEX＊／／1．O／C，Y，G／STRUD／／／／\(/\)
ADD KRG，KARG／KBRG／V，N，STRUD／V，N，EYE \＆FDR BASE FORCES

MPYAD MYR，HRXG，／MYYG／O／－1 \(\ddagger\) NEGATIVE PRODUCT
MPYAD MRR，HRXG，／MRRG／0／＋1 क POSITIVE PRODUCT
MERGE MYYG，MRRG，，GYVEC／MSEIS／5／2／2 \＄FOR LOAD

ALTER E7 \(\$\) UST BEFORE DPD
NRTS MSEIS，DYNAMICS，EQEXIN／NRTSEIS／DEPOP／C，Y，NRTIDI／C，Y，NRTIDE／ \(C, Y\), NRTID3／C，Y，NRTID4／C，Y，NRTID5／C，Y，NRTIDG \(\ddagger\)
EQUIV NRTSEIS，DYNAMICS／SEISLD \＆
事事 DATA ELDCK＇DYNAMICS＇NDW HAS ALL DAREA ENTRIES FDR LDADING．
加办
ALTER 100 \＄UUST AFTER MTRXIN．PARTITION THE DMIG MATRICES．
VEC USETD／PZVEC／＊P＊／＊COMP＊／＊R＊\(⿻\)（1＇S ON R．\(Z=R, ~ C O M P, ~ P . ~\)
COPY PZVEC／PZIVEC 虫
COND AUTOM，NOMZPP \(\$\)
PARTN
MERGE
MERGE M2DPP，PZVEC，MEDZZ，M2DRZ，M2DZR，M2DRR／－1／0／6／2／2／6 \(\$\) MLDZZ，，M2DRR，PZVEC，／TMLDPP／－1／0／6 \＆FOR CONDENSATIDN M2DRZ，M2DRR，，PZVEC，／M2DRF／5／O／2 \(\ddagger\) FOR BASE FORCES TM2DPP，M2DPP／SEISLD \＆FOR CONDENSATION
EQUIV AUTIM \＄
\begin{tabular}{|c|c|}
\hline COND & AUTOE，NOB2PP \(\$\) \\
\hline PARTN & B2PP，PZVEC，PZ1VEC／B2ZZ，B2RZ，B2ZR，\({ }^{\text {PRPR } /+1 / 0 / 0 / 0 / 0 / 0 ~ \$ ~}\) \\
\hline MERGE & B2ZZ， \(\mathrm{B} 2 \mathrm{ZR}, \mathrm{PZVEC,PZ1VEC/TB2PP/+1/O/1} \mathrm{\$} \mathrm{FOR} \mathrm{CONDENSATION}\) \\
\hline MERGE & E2RZ，E2RR，，PZVEC，\(/\) B2RP／5／O／2 \＄FOR BASE FORCES \\
\hline EQUIV & TBIPP，BPPP／SEISLD \＄FDR CONDENSATIDN \\
\hline LABEL & AUTOE \({ }^{\text {¢ }}\) \\
\hline COND & AUTDK，NDK2DPP \(\$\) \\
\hline PARTN & K2DPP，PZVEC，PZIVEC／K2DZZ，K2DRZ，K2DZR，K2DRR／＋1／0／0／0／0／0 中 \\
\hline MERGE & K2DZZ，K2DZR，，PZVEC，PZIVEC／TK2DPP／＋1／O／1 \＄FOR CONDENSATION \\
\hline MERGE & K2DRZ，K2DRR，P \({ }^{\text {PVEC，／K2DRP／5／O／2 \＄FDR EASE FORCES }}\) \\
\hline EQUIV & TK2DPP，K2DPP／SEISLD \＆FOR CONDENSATION \\
\hline LABEL & AUTOK \(\$\) \\
\hline  & GKAD TAKES CARE OF COMBINING THE REVISED MTRXIN DATA WITH \\
\hline 中串中叓中叓中 & THE AUTO－STRUCTURAL MATRICES． \\
\hline
\end{tabular}

韦丰 GET MATRICES READY FDR BASE FORCE RECOVERY
ALTER 113
EQUIV MIRG，M1RP／NDUE／BIRG，B1RP／NOUE／K3RG，KBRP／NOUE \(\$\)
COND BASEG，NOUE 虫
VEC USETD／PGVEC／＊P＊／＊G＊／＊E＊\＄1 S DN E
乎乎 INFLATE RG MATRICES TD P－SIZE SO AS TD OPERATE WITH UPVC
MERGE MIRG，，，PGVEC，／MIRP／5／2／2 禹
MERGE B1RG，，，PGVEC，／BIRP／5／0／2 半
MERGE K3RG，，，PGVEC，／K3RP／5／4／2 要
PURGE MIRG，BIRG，K3RG／SEISLD \(\$\)
LABEL BASEG \(\$\)
EQUIV M1RP，MRP／NOMEDPP／BLRP，BRP／NOBZPP／KJRP，KRP／NOKEDPP \(\$\)
COND BASO，NDM2DPP \＄
ADD MIRP，M2DRP／MRP／串
LABEL BASO＊
COND BASI，NDBPPP \(\$\)
ADD BIRP，B2RP／BRP／\({ }^{\circ}\)
LABEL BASI \＄
COND BAS2，NOK2DPP \(\$\)
ADD K3RP，K2DRP／KRP／丰
LABEL BAS2 \(\$\)
中
ALTER 121，121 \＄REPLACE FRRD
生
FRSLG CASEXX，USETD，DLT，FRL，GMD，GOD，DIT，／PPF，PSF，PDF，PDF，FOL，／ ＊DIRECT＊／FREQY＝－1／APP＝FREQ／S，N，FRQSET／S，N，NFREQ／ S，N，NLDAD \＄
FRRD3 KDD，BDD，MDD，PDF，FRL／UDVF／C，N，DISP／C，N，DIRECT／ \(U, N, N O N C U P / F R Q S E T=2 / V, N, N F R E Q / V, N, N L D A D \$\)
\＄
ALTER 123， 123 （ 3 UE FOL INSTEAD OF PPF FOR A FREQUENCY TEMPLATE．
VDR CASEXX，EQDYN，USETD，UDVF，FDL，XYCDB，／QUDUC 1，／＊FREQRESP＊／ ＊DIRECT＊／S，N，SDRT2／S，N，NOD／S，N，NOP／O \＄\(\$^{\circ}\)
\＄COMPUTE KDI REFINEMENT TD RESPONSE AND RECOVER BASE FORCES BEFORE
＊PRDCESSING DUTPUT．
ALTER 137，139 \＄
串舟 DEFAULT VALUES DF PARAMETERS ARE SET HERE．串
PARAM \(/ / * N O P * / V, Y, G R F I N=+1 \$\)
PARAM \(/ / * N O P * / V, Y\), URFIN \(=+1\) \＄


\$THIS IS THE END DF THE ALTER PACKET FOR SEISMIC ANALYSIS FOR R.F. 8
```

\$
\$SOLUTION TAKES PLACE IN ABSOLUTE CDDRDS IN THE TRANSIENT DIRECT RIGID
\$
\$FDRMAT. ALL COMPONENTS DF GASE POINTS TD EE ACCELERATED ARE ASSIGNED
\$
\$TD THE R-SET THRU THE USE DF THE SUPORT CARD.
\$
\$ASSIGN DAREA ID'S DN BULK PARAM NRTID\# CARDS AND RLDAD CARDS. ASSIGN
\$
\&TABLED1 ID'S TD TLDAD CARDS AND TO TABLEED1 CARDS DIRECTLY OR TO TBLGEN
\$
\$FOR THE FOR THE DISPLACEMENT HISTDRIES. NRTID\#'S WILL BE PICKED UP BY
\$
\$MDDULE NRTS FOR INTERNAL GENERATION OF DAREA CARDS GIVING THE DISTRIBU-
\$
\$TIDN DF MASS MAGNITUDES. THESE INTERNALLY GENERATED DAREA CARDS WILL
\$
\&EE PICKED UP BY THE TLDAD CARD FOR MULTIPLICATIDN AND ASSEMELY WITH THE
\$
\$DISPLACEMENT HISTORIES THAT RLDAD PICKS UP FROM TABLED1 CARDS.
\$
\$SPC'S (ON OTHER THAN THE GRID CARDS) ARE PHYSICALLY UNREALISTIC, BECAUSE
\$ THEY RELATE TO ABSQLUTE COORDINATES WHICH IMPLIES BEING FIXED QUTSIDE
\$ THE SEISMIC ZONE.
\$TWD DPTIONS ARE AVAILABLE: REFINENENT DF THE DISPLACEMENT RESPONSE BY
\$
\$ INCLUDING THE RECOVERY OF THE KOG PDRTIDN DF THE O-SET, AND THE RE-
कFOR THE RECOVERY OF STRESSES, DNE DF THE PDINTS IN THE R-SET MUST BE
\$
\$ NAMED DN A PARAM GRDPNT CARD TO EE USED AS A RIGID BODY REFERENCE FOR
\$NRTID1, 2,3= SET ID'S TD BE ASSIGNED TD DAREA CARDS REPRESENTING THE

* SPATIAL ARRANGEMENT DF INERTIAS ASSOCIATED WITH TRANSLATIONAL
\$ ACCELERATIDNS IN THE FIRST, SECOND, \& THIRD CODRD DIRECTIONS.
\$NRTID4,5,6= SET ID'S TD BE ASSIGNED TO DAREA CARDS REPRESENTING THE

ALTER 63 \＄JUST BEFORE COND JUMP AROUND MCE
PARAM／／＊NOT＊／V，N，SEISLD／V，N，REACT $\$$
COND SYMX，SEISLD \＆
JUMP FINIS $\$$
LABEL SYMX $\$$
生 CALL IN RBTM AT THIS POINT TO ACT AS A VEHICLE FOR ROUTING LOADS TO丰 ${ }^{-}$ALL POINTS WHICH ARE COUPLED TO THE BASE THROUGH INERTIA．
中
RBTM BGPDT，CSTM，EQEXIN，，USET／HAICH，HIRYG，／C，Y，GRDPNT／＋1／\＃DIRECT＊\＄串生
VEC USET／GYVEC／＊G＊／＊COMP＊／＊R＊\＆I＇S ON R．Y＝R（COMP）G COPY GYVEC／GYIVEC $\$$
PARTN HAICH，GYVEC／，HRXG，，／5／0 \＆FRACTION OFF THE R ROWS OF HAICH．
\＄${ }^{\text {\＄}}$
\＄$\$$ THE HRXG TRANSFORMATION MATRIX WILL bE USED BELOW IN THE DAREA
\＄\＄PREPARATION SECTION
\＄
\＄कREMDVE THE INERTIA COUPLING TERMS FROM THE LEFT HAND SIDE WHICH ARE \＄\＄BEING USED ON THE RHS．THE ZR INERTIA COUPLING TERMS MUST NOT BE \＄\＄CONDENSED INTO THE DD SET，SO THE YR INERTIA COUPLING TERMS MUST BE \＄\＆PARTITIONED OUT BEFORE MCE．WHILE SO DOING THE WHOLE MATTER DF \＄\＄SETTING UP THE EQUATION IN Y－ROWS AND R－ROWS CAN ALL BE DÓNE AT ONE

PARTN KGG，GYVEC，／KYY，KRY，KYR，KRR／－1／2／6／2／2／6 \＄
MERGE KYY，KYR，，GYVEC，GYIVEC／TKGG／＋1／2／1 \＆FOR CONDENSATION
MERGE KRY，KRR，，GYVEC，／KIRG／5／2／2 \＆FOR BASE FORCES

PARTN MGG，GYVEC，／MYY，MRY，MYR，MFR／－1／2／6／2／2／6 क
MERGE MYY，，MRR，GYVEC，／TMGG／－1／2／6 \＄FOR CONDENSATIDN
MERGE MRY，MRR，GYVEC，／MIRG／5／2／2 \＄FOR BASE FORCES

PARTN BGG，GYVEC，／BYY，BRY，BYR，BRR／－1／2／6／2／2／6 中
MERGE BYY，BYR，GYVEC，GYIVEC／TBGG／＋1／2／1 \＆FOR CONDENSATIDN

PARTN K4GG，GYVEC，K4YY，K4RY，K4YR，K4RR／－1／2／6／2／2／6 中
MERGE K4YY，，K4YR，GYVEC，GYIVEC／TK4GG／＋1／2／1 क FOR CONDENSATION

PARAMR $/ / * D I V * / V, N, H H H / 1.0 / C, Y, W 4 / / / /$ 中
PARAMR $/ / *$ COMPLEX $* / / \mathrm{HH} / / 0.0 / J \omega / / / / \$$
PARAMR $/ /$ DIV $* / V, N, Y Y Y / C, Y, Q / C, Y, W 3 / / / / \$$
PARAMR／／＊CDMPLEX＊／／YYY／O．0／ZZZ／／／
EQUIV TKGG，KGG／SEISLD／TMGG，MGG／SEISLD／TBGG，BGG／SEISLD／
TK4GG，K4GG／SEISLD \＆FOR CONDENSATION DF STRUCTURAL MATRICES \＄कNDW THAT THE INERTIA MATRIX HAS HAD THE YR COUPLING TERMS REMDVED， \＄$\$$ CONDENSATIDN DOWN TD A－SIZE FOR GKAD CAN NDW EEGIN．
\＄
ADDS BRY，KRY，K4RY，，／TBRY／（1．O．O．OY／V，N，ZZZ／V，N，JJ SFOR BASE FORCE
ADD5 BRR，KRR，K4RR，，／TBRR／（1．0．0．0）／V，N，ZZZ／V，N，J J \＄FOR BASE FORCE
MERGE TBRY，，TBRR，GYVEC，／BIRG／5／0／2中 FOR BASE FORCE
事＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊PREPARE DAREA VALUES FOR DYNAMICS DATA BLOCK＊＊＊＊＊＊＊＊＊＊
MPYAD MYR，HRXG．／MYYR／O／－1 \＆NEGATIVE PRODUCT
MPYAD MRR，HRXG，／MRRR／O／+1 \＆POSITIVE PRODUCT
MERGE MYYR，MRRR，，，GYVEC／MSEIS／5／2／2 末 FOR LDAD

ALTER 87 \＆UST BEFORE DPD
NRTS MSEIS，DYNAMICS，EQEXIN／NRTSEIS／DEPOP／C，Y，NRTIDI／C，Y，NRTIDE／
C，Y，NRTID3／C，Y，NRTID4／C，Y，NRTIDS／C，Y，NRTIDG \＆
EQUIV NRTSEIS，DYNAMICS／SEISLD $\$$
生 DATA BLOCK＇DYNAMICS＇NOW HAS ALL DAREA ENTRIES FOR LOADING．
中 ${ }^{\text {\＄}}$
ALTER 98 \＆UUST AFTER MTRXIN．PARTITION THE DMIG MATRICES．
VEC USETD／PZVEC／＊P＊／＊COMP＊／＊R＊\＆1＇S ONR．$Z=R(C O M P) P$
COPY PZVEC／PZIVEC $\$$
COND AUTOM，NOM2DPP $\$$
PARTN M2DPP，PZVEC，MEDZZ，M2DRZ，M2DZR，M2DRR／－1／2／6／2／2／6 \＄
MERGE MZDZZ．，M2DRR，PZVEC，／TMEDPP／－1／2／6 \＆FOR CONDENSATION
MERGE
equiv
M2DRZ，MEDRR，P PZVEC，／M2DRP／5／2／2 \＆FOR BASE FORCES
LABEL
COND
PARTN
TM2DPP，M2DPP／SEISLD＊
AUTOM $\$$
AUTOB，NOBEPP 事
B2PP，PZVEC，／B2ZZ，B2RZ，B2ZR，B2RR／－1／0／6／2／2／6\＄
MERGE B2ZZ，B2ZR，，PZVEC，PZIVEC／TBZPP／＋1／0／1 \＆FOR CONDENSATION
MERGE
Equiv
LABEL
COND
PARTN
B2RZ， B2RR，P PZVEC，／B2RP／5／O／2 \＆FOR BASE FORCES
TBIPP，BEPP／SEISLD \＄
AUTOA $\$$
AUTOK，NOK2DPP $\$$
K2DPP，PZVEC，／K2DZZ，K2DRZ，K2DZR，K2DRR／－1／2／6／2／2／6 \＄
MERGE KZDZZ，K2DZR，，PZVEC，PZIVEC／TK2DPP／＋1／2／1 \＆FDR CONDENSATION
MERGE KZDRZ，K2DRR，，PZVEC，／K2DRP／5／2／2 \＆FOR BASE FORCES
EQUIV TKZDPP，K2DPP／SEISLD \ddagger
LABEL
AUTOK $\$$

中种中 $\$$ 中
gKAD TAKES CARE OF COMBINING THE REVISED MTRXIN DATA WITH
 THE AUTO－STRUCTURAL MATRICES．
\＆COMPUTE KOO REFINEMENT TO RESPONSE AND RECOVER BASE FORCES BEFORE －PROCESSING DUTPUT．
ALTER 123， 123 ＊REPLACE TRLG WITH TRSLG TO GET LOAD PARTITIONS \＄
TRSLG CASEXX，USETD，DLT，SLT，BGPDT，SIL，CSTM，TRL，DIT，GMD，GOD，，EST， MGG／PPT，PST，PDT，PDT，PD，，TOL／S，N，NOSET／NCOL \＄

\＄

\＄THE RESPONSE DF THE STRUCTURE INCLUDING THE base IS SOLVED AS A ＊FREE BODY．
\＄$\$$ DEFAULT VALUES DF PARAMETERS ARE SET HERE．$\$$
PARAM $/ / *$ NOP＊／V，Y，QRFIN $=+1$ \＄
PARAM $/ / * N D P * / V, Y$, URFIN $=+1$ \＆
PARAM／／＊NOT＊／XISTOMIT／OMIT $\$$
PARAM／／＊AND＊／UORFIN／V，N，XISTOMIT／C，Y，URFIN \＆
COND
JUMP
LABEL
SOLVE
\＄${ }^{\text {中 }}$ 中
中事串
\＄中 $\$$ 串
中蛒中
中牛中

中耻中

中䖵
虫中种
VEC
MERGE，
VEC
MERGE
MPYAD
VEC
MERGE
LABEL
ALTER EqUIV
COND
VEC
ADD
LABEL
PARAM
COND
JUMP
LABEL KREKU

EQUIV

UMPRUV，UORFIN \＄
NDCHNG \＄
UMPRUV $\$$
KOO，POT／RUOO／O／＋1／2／0 \＄
RUOO IS A TIME VARYING COMPONENT OF RELATIVE DISPLACEMENT（ONLY DISP－WITHOUT ACCELERATION OR VELOCITY）DUE TO THE EFFECTS OF OMITTED DOF＇S．IT NEEDS TO BE CONVERTED TO THE STANDARD TRIPLET FORM OF TRANSIENT DIRECT ANALYSIS．NASTRAN TAKES CARE OF THE OTHER PARTITIONS AT THE P－LEVEL．IN PREPARING IT FOR ADDING AT THE P－LEVEL，IT HAS TO BE INFLATED WITH ZERDES TO P－SIZE AND UNDERGO MULTIPLICATION BY RECOVERY COEFFICIENTS AS IT EXPANDS． INFLATE RUOO UP TO NE－SIZE IN TWO STEPS，1ST TO FE－SIIE AND THEN UP TO NE－SIZE．

USETD／FEDVEC／＊FE＊／＊D＊／＊D＊ONE＇S ON THE O＇S $\$$
，RUOD．．．．FEDVEC／RUOOFE／5／2／2 \＄
USETD／NEFEVEC／＊NE＊／＊FE＊／＊S＊\＆ONE＇S ON THE S＇S．
RUDOFE，，，，NEFEVEC／RUOONE／5／2／2 \＄
GMD，RUOONE，／RUOOM／O／＋1／0 $\$$
USETD／PNEVEC／＊P＊／＊NE＊／＊M＊\＆1＇S ON M
RUODNE，RUDOM，，，PNEVEC／RUOOP／5／2／2＊TYPE＝REAL SINGLE PREC NOCHNG $\$$＝
139．139 \＆REPLACE SDR2
PZVEC，PYVEC／NDUE $\$$
P2G，NOUE $\$$
USETD／PGUEC／＊P＊／＊G＊／＊E＊\＄1＇S ONE
PGVEC，PZVEC／PYVEC／$\$ 1$＇S ON E AND R．
P2G $\$$
$/ / *$ OR＊／V，N, SOMFIN／C，Y，URFIN／C，Y，QRFIN $\$$
TOKRK，SOMFIN \＆
REGLR ${ }^{\text {中 }} \mathbf{\$}$
TOKRK ${ }^{\text {S }}$
RUOGP，TOL，USETD，UPV／UMPRUV，，ACPVT，VEPVT，DIPUT／ V，N，OMIT／C，Y，QRFIN／＊TRANSRESF＊／＊DIRECT＊${ }^{(1)}$ UMPRUV，UPVIURFIN \＆

事事中 $\$$生事生事事安 $\$$ COND UNMP LABEL EQUIV COND MERGE MERGE MERGE LABEL EQUIV COND ADD
LABEL COND ADD LABEL COND ADD
LABEL
PARTN
MPYAD
PARAM
PARAMR
PARAMR
PARAMR
COND
MPYAD
中串办 $\$$
EQUIV
LABEL
MPYAD
串串事丰
MATPRN
MERGE
EQUIV
事串事丰
加中生中
LABEL

IF THE USER WANTS TO RECDVER BASE FORCES HE SETS QRFIN＝－1．IF HE SETS QRFIN＝＋1，ANY CASECC REQUEST FOR OLDAD WILL CONTAIN ONLY THE EXCITATIDN INERTIA FORCES AND NDT THE TOTAL SET DF BASE REACTIONS． BASEF，QRFIN $\$$
REGLR ${ }^{\text {O }}$
BASEF \＄
MIRG，MLRP／NDUE／EIRG，BIRP／NDUE／KIRG，KIRP／NDUE $\$$ NUSG，NDUE $\$$
MIRG，，，PGVEC，／MIRP／5／2／2 \＆FDR BASE FORCE
BIRG，，，PGVEC，／BIRP／5／0／2 \＄FOR BASE FORCE
KLRG，，，PGVEC，／KIRP／5／2／2 $⿻$（ FOR BASE FORCE JUSG \＄

BASEO．NOMEDPP $\$$
M1RP，MEDRP／MRP／\＄
BASEO \＄
BASE1，NOBEPP \＆
BLRP，BLRP／BRP／$\$$
BASEi $\$$
BASE2，NDK2DPP \＄
K1RP，K2DRP／KRP／\＄
BASE2 中
PPT，，PZVEC／PSIZT，，／5／2／2 कREPLACE THE R－SET WITH BASE FORCES
MRP，ACPVT，／NRTCPL／O／＋1／क BASE INERTIA FORCES
／／＊ADD＊／V，N，DMP2／V，N，NOBGG／V，N，NOK4GG $\$$
／／＊FLDAT＊／RDMP2／／／／／／／DMP2 $\$$
／／＊MPY＊／V，N，DMP3／V，N，RDMP2／C，Y，G $\$$
／／＊LT＊／／O．O／V，N，DMP3／／／N，N，NODMP＊ BASO，NODMP \＄
BRP，VEPUT，NRTCPL／TWDCPL $/ 0 /+1 /+1 / 0$ \＆BASE FORCES OF COUPLED DAMPING ADDED TD BASE INERTIA FORCES．

TWOCPL，NRTCPL／QRFIN $\$$
BASO \＄
KRP，DIPVT，NRTCPL／EASP／O／＋1／＋1／0 \＄BASE FORCES OF COUPLED
ELASTICITY ADDED TO DTHERS TD GET TOTAL BASE FORCE．
BASP，，，／／\＄
PSIZT，BASP ，，，PZVEC／PRESPNS／5／0 \＄
PRESPNS，PPT／QRFIN \＆THE EASE RESPONSE FGRCES ARE NOW IMBEDDEDIN THE DATA BLDCK PPT IN THE R－PARTITIDN SD THAT OFP WILL RECOVER THEM WHEN REQUESTED BY OLDAD． REGLR $\$$
क DELETE DESC 1 AND DEFC1 FROM $15 T$ EXECUTION OF SDR2 AND USE ABSOLUTE क MOTION ON WHICH TD BASE THE RECOVERY OF DISPLACEMENTS AND GP FORCES． SDR2

EQUIV COND
事串丰事
中办中 $\$$

事事加中
PARTN
LABEL

CASEXX，CSTM，MPT，DIT，EGDYN，SILD，，BGPDP，TOL，QP，UPV，EST，
XYCDE，PPT／DPP1，DQPI，QUPV1，，PUGV／＊TRANSRESP＊$\$$
UPV，UGV／NDUE $\$$
NDRELP，NDUE $\$$
RECOVERY DF STRESSES WILL BE AASED ON RELATIVE DISPLACEMENTS AND CAN DPERATE WITH REFINED DISPLACEMENTS DR NOT AS CONTROLLED BY THE USER IN THE QUALITY OF THE UPV VECTOR THAT IS SUPPLIED． FIRST CONVERT UPV TO RELATIVE COORDINATES．

UPV，，PGVEC／UGV，UEV ，$/ 5 / 0 / 2 / 2$
NORELP $\$$


```
EQUIV NRTSEIS,DYNAMICS/SEISLD $
$$ THE 'DYNAMICS' DATA BLDCK NDW HAS DAREA CARDS IN IT FOR THE IN-
$& ERTIA LOAD AND IS READY TO BE PASSED TO DPD FOR SETTING UP THE
$& LDAD ON THE RELATIVE X COORDS. IT CONTAINS DAREA NOT JUST FOR
$生 THE BASE MOTION BUT FOR DIRECTLY APPLIED LDAD AS WELL. RFII
$& CAN NOW PROCEED WITH CONDENSATION FROM X-SIZE TO A-SIZE AND
$$ DEVELDP MODAL VECTORS FOR SOL'N IN FRRDS.
$
ALTER 99.99 $REPLACE FRRD
FRSLG CASEXX, USETD,DLT,FRL,GMD,GOD,DIT, PHIDH/PPF,PSF,PDF,POF,
    FOL, PHF/*MODAL*/FREQY=-1/APP=FREQ/S,N,FRQSET/S,N,NFREQ/
    S,N,NLOAD &
FRRD3 KHH, BHH,MHH,PHF,FRL/UHVF/*DISP*/*MODAL*/
    V,N,NONCUP/V,N, FRQSET/V,N, NFREG/V,N, NLOAD &
$
ALTER 101,101 & USE FOL INSTEAD OF PPF FOR A FREQUENCY TEMPLATE.
VDR CASEXX,EQDYN, USETD,UHVF,FOL,XYCDB, /DUHVC1;/*FREQRESP*/
    *MODAL*/S,N,SORTE/S,N,NOH/S,N,NOP/FMODE & $
ALTER 114,114 $ THIS CAUSES OSCAR TO IGNORE A JUMP AROUND SDR1.
ALTER 116,117 & THIS ELIMINATES ANY IMPROVEMENTS FROM MODACC.
$
* COMPUTE KOO REFINEMENT TO RESPONSE AND RECOVER BASE FORCES bEFORE
* PROCESSING DUTPUT.
ALTER 122,122 $
SETPT EQEXIN,USET/GXREF/*G*/C,Y,GRDPNT $ I'S ON GRDPNT. NEEDED
$ LATER IN QRFIN AND ARFIN.
$勆 PARANETER DEFAULTS ARE SET HERE. &
PARAM //*NOP*/V,Y,ARFIN = +1 $
PARAM //*NOP*/V,Y,QRFIN = +1 $
PARAM //*NOF*/V,Y,URFIN = +1 $
COND P2G,NDUE &
VEC USETD/PGVEC/*P*/*G*/*E* & 1'S ON E
LABEL PEG $
PARAM //*NOT*/XISTOMIT/OMIT $
PARAM //*AND*/UORFIN/XISTOMIT/C,Y,URFIN &
PARAM //*NOT*/NDARFIN/C,Y,ARFIN &
COND UMPRUV, UORFIN &
JUMP UNRFIN $
LABEL UMPRUN $
SOLVE KOD, POF/RUODF/+1/+1/2/0 $
$RUOOF IS A VECTOR DF RELATIVE DISPLACEMENTS. ND CONUERSION TO
$ AESOLUTE COORDINATES IS NECESARY BECAUSE NASTRAN HAS ALREADY
&PROCESSED ONE CORRECTION FOR THE O-SET IN ABSOLUTE COORDINATES.
$INFLATE RUOOF TO P-SIZE TO BE COMMENSURATE WITH UPVC.
VEC USETD/FEDVEC/*FE*/*D*/*O* & 1'S ON O
MERGE, ,RUODF,.,.,FEDVEC/UDDFFE/5/0 $
EQUIV UOOFFE, UODFNE/SINGLE $
* THESE PROBLEMS.
COND POSN1,SINGLE $
VEC USETD/NEFEVEC/*NE*/*FE*/*S* & 1'S ON S
MERGE UOOFFE,,,,,NEFEVEC/UDOFNE/5/0 $
LABEL POSN1 $
EQUIV UOOFNE,VOOFP/MPCFI &
COND POSN2,MPCF1 &
```

VEC USETD/PNEVEC/*P*/*NE*/*M* \ddagger 1'S ON M LABEL UNRFIN \&

MPYAD
MERGE LABEL ADD
Equiv \$

GND, UOOFNE, /UODFM $/ 0 /+1$ \& UOOFNE, VOOFM, , , , PNEVEC/UDOFP /5/0 \& POSN2 $\$$
UPVC, UOOFP/UMPRUVF/ \$
\$IF THE USER WANTS TO RECOVER BASE RESPONSE FORCES HE SETS QRFIN \$ $=-1$, HOWEVER IF HE SETS GRFIN $=+1$, ANY CASECC REQUEST FOR OLDAD \$ WILL CONTAIN ONLY THE EXCITATION INERTIA FORCES AND NOT THE TOTAL \& SET OF BASE REACTIONS.
COND SPCFALL, QRFIN $\$$
JUMP REGLR $\$$
LABEL SPCFALL $\$$
EQUIV PPF,PGF/NOUE $\$$
COND GSIZ, NDUE $\$$
PARTN PPF,, PGVEC/PGF, PEF, , /5/0 \$
LABEL GSIZ $\$$
PARTN PGF, GXVEC/PXF,,, $/+1$ \$

* THE RECOVERY OF BASE FORCES IS UNDER THE CONTROL OF CASECC GLIAD
\$ REQUESTS.
* DIAGONAL MATRIX I*OMEGA COMING FROM MDDULE KREKU WILL
* BE USED TO DIFFERENTIATE RESPONSE DISPLACEMENTS INTO VELDCITIES AND \& ACCELERATIONS BY MULTIPLYING UDVF BY I*OMEGA.
生
KREKU, ,FOL, , / IW, . , N, N, OMIT/C, Y, GRFIN/*FREQRESP*/*MODAL* \$ \$
\$ ARRANGE THE STRUCTURAL MATRICES FOR RECOVERY OF BASE RESPONSE
\$ FORCES. ONLY COUPLED DAMPING AND COUPLED ELASTIC TERMS ARE NON ZERG \& BECAUSE [BRR]*[BASEACC] \& [KRR]*[BASEACC] ACT ON RIGID MOTIONS WHICH \& LEAVES ZERO DIFFERENTIAL AMONGST THE R SET, SO THE PRODUCTS ARE NULL. * THIS IS NOT THE CASE FOR INERTIA BECAUSE THEY ACT ON \{ISOLATED\} GP中 MOTION AS OPPOSED TO \{DIFFERENTIAL\} GP MOTION \$
COPY IW/IFREQ/-1 \$ CLONE OF COMPLEX IW

DIAGONAL WSQR/INVASQR/*SQUARE*/-1.0 \&INVERSES OF REAL. POS. DIAGONALS
ADD INVASQR/INVWSQR/(-1.0.0.0) IINVERSES OF REAL NEG. DIAGONALS
EqUIV UPVC, UGVC/NDUE $\$$
COND BASO, NDUE $\$$
PARTN UPVC, PGVEC/UQVC, VEVC, , $/+1 / 3 / 2 / 2 \$$
LABEL BASO ${ }^{\circ}$
PARTN UGVC, GYVEC/UYVC,., $/ 5 / 3 / 2$ \& SPLIT OFF THE REF DISP \& KEEP COMP
VEC
PARTN
MPYAD
MERGE
MERGE USETD/PZVEC/*P*/*COMP*/*R* \& 1'S ON R'S.
PPF, , PZVEC/, PRF, / $5 / 4 / 0 / 2$ \& ISOLATE THE EXCITING ACCELERATION PRF, INVWSQR, /URVC $/ 0 /+1$ \$ UYVC, URVC.... GVVEC/UGBAS/5/0/2 \& RECONSTRUCT UG FOR BASE FORCES MBC. . . . GCVEC. $/ \mathrm{MBCG} / 5 / 2 / 2$ \$
MERGE, , MSIZB, , GXREF, /MBRG/5/0/2
ADD MBCG, MBRG/MFBG/ \$
MPYAD UGEAS, IW, NEGVC/O/+1 \$
SMPYAD MFBG, VEGUC, IW, , , /MCPLGF $/ 3 /+1$ क

PARAM／／＊MPY＊／V，N，NOB2／C，N，$-1 / V, Y, B 2 P A R M=+1 \$$
中三 THIS SETS THE DEFAULT VALUE OF NOBE TO NEGATIVE ONE．IF THE USER \＄$\$$ WANTS TO PUT IN DIRECT MATRIX DAMPING AS A GRID POINT EQUIVALENT中乎 SURROGATE FOR MDDAL DAMPING，HE DVERRIDES THE DEFAULT BY ENTERING \＄क A BULK PARAM CARD FOR B2PARM SET TO－ 1 AND HE THEN ENTERS BULK DMIG生 CARDS FOR THE DAMPING VALUES USING A MATRIX NAME OF BEDMIG OF ORDER生 E EUAL TO P－SIZE．
PARAM／／＊AND＊／V，N，NDDMP／V，N，NDB2／V，N，NOBEPP \＆
COND BAS1，NODMP
\＄\＆IF BOTH B2PP AND BEDMIG ARE ABSENT，JUMP AROUND THE COMPUTATION OF \＄\ddagger DAMPING CONTRIBUTION TO BASE FORCES．
COND BASB，NOBE \＄
MTRXIN，，MATPODL，EQDYN，／BEDMIG，／LUSETD／V，N，NOB2 \＄
EQUIV B2PP，B2DMIG／NOB2PP
COND BASB，NDBEPP $\$$
丰 \ddagger IF BEDMIG IS ABSENT，JUMP AROUND INPUT OF THIS MATRIX，OTHERWISE生 INPUT THE MATRIX．RETAIN THE NAME OF B2DMIG IF BEPP IS PRESENT， \＆ © D HERWISE EQUIVALENCE B2PP TO IT．
ADD BEPP，B2DMIG／BEBOTH／\＄
EQUIV BEBOTH，BEPP／SEISLD \＄
LABEL BASB $\$$
\＄$\$$ IF B2PF IS ABSENT，UUMP AROUND THE COMBINING OF B2DMIG WITH B2PP． \＄$\$$ AT THIS POINT，THE RESULT OF ANY OF THE OPTIONS IS NAMED BEPP．
\＄\＄PROCEED WITH THE PROCESSING DF THE DAMPING FORCE CONTRIBUTION TO艂 THE BASE FIRCE RECOVERY．
PARTN B2PP，PGVEC，／B2GG，，，／－1／0／6 \＄
PARTN BZGG，，GXVEC／，B2BG，，／5／0／0／2 中
MPYAD B2BG，VEGVC，MCPLGF／BCPLGF／O／＋1／＋1 \＄
EQUIV BCPLGF，MCPFLGF／SEISLD \＆
LABEL BASI $\$$
MPYAD KBG，UGVC，MCPLGF／BASEGF／0／＋1／＋1 中
MERGE PXF，BASEGF，，，GXVEC／PXBF／5／4／2
EQUIV PXBF，PPBF／NDUE $\$$
COND JUSG，NOUE $\$$
MERGE PXBF，PEF，．．，PGVEC／PPBF／5／4／2 \＄
LABEL JUSG $\$$
EQUIV PPBF，PPF／SEISLD $\$$
LABEL REGLR \＆
蛒 PPF IS NDW COMPLETE AND IS READY TO BE PASSED TO SDR2 FOR RECOVERY \＄\＄OF BASE FORCES AS REQUESTED BY THE USER WITH OLOAD IN CASECC． \＆NOW THE LOAD VECTOR PPF IS READY TO RESPOND TO CASECC OLOAD REQUESTS \＄FOR BASE FORCE RESPONSE HISTORY．

生 USE FOL INSTEAD DF PPF FDR A FREQUENCY TEMPLATE．
SDR2 CASEXX，CSTM，MPT，DIT，EGDYN，SILD，，BGPDP，FOL，QPC，UPVC，EST， XYCDB，PPF／OPPC1，DQPC1，DUPVC1，DESC 1，DEFC 1，PUGU／＊FREQ＊／ S．N，NOSORT2 \＄
\＄\＄ALL OUTPUT RECOVERED UP TD THIS POINT HAS BEEN BASED ON RELATIVE COORDS．IF DISP，VELD，AND ACCEL ARE NEEDED IN ABSOLUTE COORDS， SET PARAM ARFIN $=-1$ ．THE SCAFFOLD POINT IN THE R SET IS EXCITED TO SPECIFIED VALUES AND IT WILL BE USED FOR THE TRANSFORMATIDN TO AESOLUTE COORDS．

 \＄
\＄

儯
\＄PARAMETER DEFINITIDNS：
\＄
韦NRTIDI，2，3＝SET ID＇S TD BE ASSIGNED TD DAREA CARDS REPRESENTING THE ＊SPATIAL ARRANGEMENT DF TRANSLATIONAL ACCELERATIUNS IN THE FIRST，要 SECOND，\％THIRD COORDINATE DIRECTIONS．

＊SPATEAL ARRANGEMENT OF ROTATIDNAL ACCELERATIDNS ABQUT THE FIRST，
＊SECOND，\＆THIRD CODRDINATE DIRECTIONS．
\＄URFIN WHEN SET＜OR＝－ 1 ENABLES THE OPTION TQ REFINE DUTPUT DISPLACE－ ＊NENTS WITH CONTRIBUTIDNS FRDM DMITTED SETS．
虫 WHEN SET 3 DR $=0$ DISABLES THE OPTION TO REFINE DUTPUT DISPLACE－ \＄MENTS WITH CONTRIBUTIDNS FROM OMITTED SETS．DEFAULT $=+1$ ．
GQRFIM WHEN SET $<$ OR $=-1$ ENABLES THE OPTION TO RECOVER BASE FORCES FROM
\＄STIFFNESS，DAMPING，AND MASS COUPLING AND FROM BASE INERTIAS．
＊WHEN SET 3 OR $=0$ DISABLES THE DPTIDN TO RECOVER THIS COMPDNENT
\＄DF BASE FDRCE．DEFAULT $=+1$ ．
生ARFIN WHEN SET＜DR $=-1$ ENABLES THE DPTION TO RECDVER ACCELERATIONS IN
＊ABSOLUTE COORDINATES．
要 WHEN SET \Rightarrow OR $=0$ DISABLES THE OPTION TO RECOVER ACCELERATIUNS
中

THESE ARE DMAP ALTERS FOR SEIRES PERTAINING TO RIGID FGRMAT DMAP SERIES APR B2

SOLN12I．TXT
＊

THIS IS SEISTM FOR RF 12 ＊＊＊＊＊ SOLUTION TAKES PLACE IN RELATIVE CODRDS IN THE MODAL＊＊＊＊＊ TRANSIENT RESPONSE R．F．ALL BASE POINTS ARE PUT INTO AN＊＊＊＊＊ SPC SET．NO DTHER SPC SETS ARE ALLDWED EXCEPT THOSE $* * * * *$ CONSTRAINTS ON GRID CARDS．IF ARFIN $=+1$ ，ONE OF THE＊＊＊＊＊ BASE POINTS CAN BE DESIGNATED AS PRIMARY REFERENCE IF A＊＊＊＊＊ SCAFFOLD POINT IS NOT ALREADY SET UP．IF RECOVERY IN＊＊＊＊＊ ABSOLUTE COORD IS DESIRED，（I．E．IF ARFIN $=-1$ ）THEN＊＊＊＊＊ ADDITIONAL STEPS ARE NECESSARY．ONE OF THE BASE POINTS＊＊＊＊＊ SHOULD BE DUPLICATED AND GIVEN A SEPARATE ID AND SHOULD $* * * * *$ BE ASSIGNED TO THE R－SET ON A SUPORT CARD．IT IS SIMUL－＊＊＊＊＊ TANEDUSLY ENTERED ON THE PARAM GRDPNT CARD TO INDICATE $* * * *$ IT IS THE PRIMARY REFERENCE POINT FOR LOAD GENERATION＊＊＊＊＊ AND FOR RECOVERY OF ABSOLUTE CODRDS．MAKE A HIGH FREQ－$* * * * * *$ QUENCY SEPARATE CANTILEVER BY APPLYING A 6×6 UNIT MASS＊＊＊＊＊ TO THE REFERENCE POINT WITH CONME AND CDNNECTING IT＊＊＊＊＊ WITH A BAR TO A GROUNDED POINT．
IT IS POSSIBLE TO GET IMPROVED DISPLACEMENTS，BASE＊＊＊＊ FORCES，AND ABSOLUTE DISPLACEMENTS BY OPTION．EXCITATION＊＊＊＊＊ IS PERMITTED TO STEM FROM INERTIA EFFECTS．DAMPING BY＊＊＊＊＊ G（OMEGA）EFFECT WILL PROVIDE DAMPING IN THE PROBLEM AT $* * * * *$ THE LEVEL OF MODAL MATRICES，bUT is NOT AVAILABLE FOR $* * * * *$ RECOVERY OF DAMPING CONTRIBUTIONS TO THE BASE FORCE． DAMPING CONTRIBUTIONS TO BASE FDRCE CAN BE OBTAINED BY＊＊＊＊＊ USING DISTRIBUTED STRUCTURAL DAMPING FROM DMIG INPUT OF $* * * * *$ B2DMIG．SOLUTION IN THIS R．F．IS BY RELATIVE COORDS，＊＊＊＊＊ THEREFORE ANY SPC RELATIONS ARE NOT FIXED IN SPACE BUT＊＊＊＊＊ ARE RELATED TO THE UNDEFORMED POSITIONS OF THE COORDS．$* * * * *$

\$\& ALL PLOTS UP TO THIS POINT HAVE bEEN BASED ON RELATIVE COORDS.
\$冓 IF PLOTS OF ACCEL IN ABS COORDS ARE NEEDED SET ARFIN=-1
\$
ALTER 141 \& AFTER XYPLOT
COND ABSPLT, ARFIN $\$$
JUMP
LABEL XYTRAN XYPLOT FINIS 中 ABSPLT 4
XYCDB, , OACABSP2, , /XYPLABS/*TRAN*/*PSET*/S, N, PFILE \$ XYPLABS// \$
\$THIS IS THE END OF THE INTERNAL MODIFICATION TO R.F. 12.

