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ABSTRACT

A finite element formulation is derived for the scattering and radiation of

acoustic waves from submerged elastic structures. The formulation uses as fundamen-

tal unknowns the displacement in the structure and a velocity potential in the fluid.

Symmetric coefficient matrices result. The outer boundary of the fluid region is

terminated with an approximate local wave-absorbing boundary condition which assumes

that outgoing waves are locally planar. The finite element model is capable of pre-

dicting only the near-field acoustic pressures. Far-field sound pressure levels may
be determined by integrating the surface pressures and velocities over the wet bound-

ary of the structure using the Helmholtz integral. Comparison of finite element

results with analytic results show excellent agreement. The coupled fluid-structure

problem may be solved with general purpose finite element codes by using an analogy

between the equations of elasticity and the wave equation of linear acoustics.

INTRODUCTION

There is a variety of practical engineering problems which cannot be addressed

using only the separate disciplines of structural analysis and acoustics; they must

instead be treated by formulating a coupled structural-acoustic problem. For exam-

ple, for aircraft (Ref. i), automobiles (Ref. 2), and railroad cars (Ref. 3), cou-

pled analyses are being investigated to understand better the interior noise problem
so that such noise can be reduced. In aerospace vehicles, the vibrations of fluid-

filled tanks are of interest (Ref. 4). In aircraft hydraulic systems (Ref. 5) and

shipboard piping systems (Ref. 6), the dynamic behavior of (and the transmission of

sound in) fluid-filled piping systems has been analyzed. Other important naval prob-

lems involve the vibration of underwater structures such as rudders and propellers

(Ref. 7-8), the shock response of submerged structures (Ref. 9-13), and the scatter-

ring of sound waves from underwater elastic structures (Ref. 14-17).

The commonality among all these problems is the mathematical model. The struc-

ture, if it can be assumed to remain elastic, behaves according to the classical

theory of elasticity (Ref. 18) and the various approximate engineering theories for

beams, plates, and shells. The fluid is generally treated as an acoustic medium

(Ref. 19-21), a fluid whose pressure p satisfies the scalar wave equation

V2p = p/c 2 (i)

where c is the speed of sound in the fluid. The boundary condition at a fluid-

structure interface can be obtained from momentum and continuity considerations:

_p/3n = -Ou n (2)
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where n is the normal at the interface, 0 is the mass density of the fluid, and
Un is the normal component of fluid particle acceleration.

Dynamics problems involving the interaction between an elastic structure and an

acoustic fluid have been formulated for finite element solution (Ref. 22) by using

either pressure (Ref. 19,23,24) or fluid particle displacement (Ref. 14,25-27) as

the fundamental unknown in the fluid region. In three dimensions, the pressure and

displacement formulations result in, respectively, one and three degrees of free-

dom per finite element mesh point. Thus the pressure approach has the advantage of

fewer unknowns and a smaller overall matrix profile or bandwidth. On the other hand,
the displacement approach results in symmetric coefficient matrices (in contrast to

the pressure formulation, for which the matrices are nonsymmetric) and a fluid-struc-

ture interface condition which is easier to implement with general purpose finite
element computer programs. However, the displacement approach also suffers from the

presence of spurious resonances (Ref. 27), a situation which can be bothersome in

time-harmonic problems, either forced or unforced. Recently it was shown (Ref. 28)

that the principal disadvantage of the pressure formulation, nonsymmetric coefficient

matrices, can be removed merely by reformulating the pressure solution approach so
that a velocity potential rather than pressure is used as the fundamental unknown

in the fluid region. For some situations, particularly steady-state problems involv-

ing damped systems and time-dependent problems, significant computational advantages
result.

The principal goal of this paper is to present in detail the symmetric velo-

city potential formulation for application to the specific problem of acoustic

scattering from submerged elastic structures. Previously (Ref. 28), the symmetric

potential formulation was described only in general terms for a wider class of

fluid-structure interaction problems with no details concerning specific types of

applications (such as vibrations, shock response, or acoustic scattering).

The scattering approach described here has advantages over the displacement
formulations for the reasons already given. Finite element modeling of exterior

fluid regions also has advantages over the use of approximate theories such as the

doubly asymptotic approximation (DAA) (Ref. 15). In this case, the primary trade-

off is between the large, banded matrices which finite element models generate and
the smaller, densely-populated matrices which the DAA generates. This trade-off

often favors the finite element approach for long structures like ships which are

"naturally banded." Similar trade-offs arise if the finite element approaches are

compared with T-matrix methods (Ref. 16). T-matrix approaches, however, are not

yet available in general purpose codes capable of handling arbitrary three-dimen-
sional geometries.

From an engineering point of view, it is convenient to be able to make use of

existing general purpose finite element codes (such as NASTRAN, among others), be-

cause of their wide availability, versatility, reliability, consultative support,
and abundance of pre- and postprocessors. Thus the next section summarizes an ana-

logy between the equations of elasticity and the common field equations of classi-

cal mathematical physics (including the wave equation). This analogy allows the
coupled structural-acoustic problem to be solved with standard finite element codes.

Subsequent sections of the paper will develop the formulation of the scatter-

ing problem for elastic obstacles with and without fluid inside. Examples will be
shown for both cases.
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STRUCTURAL ANALOGIES FOR SCALAR FIELD PROBLEMS

Since we wish to solve the coupled structural-acoustic problem using standard

finite element codes (which were developed principally for structural analysis), we

summarize here the application of such codes to various nonstructural field problems

(Ref. 24,29).

Many linear problems in mathematical physics involve the solution of an equa-

tion obtained by specializing the general form

V2_ + g = a _ + b _ (3)

where V2 is the Laplacian operator; dots denote partial time differentiation; the

functions g, a, and b are, in general, position-dependent; and the unknown scalar

function _ depends on both position and time.

Special cases of Eq. (3) arise in such diverse applications as heat conduction,

acoustics, electrical and magnetic potential problems, torsion of prismatic bars,

potential fluid flow, and seepage through porous media. Several common special
cases are listed here:

Laplace's equation: V2_ = 0 (4)

Poisson's equation: V2_ + g = 0 (5)

wave equation: V2_ = _/c 2 (6)

heat equation: kV2_ + q = @c_ (7)

telegraph equation: _2_/_x2 = LC_ + RC_ (8)

Helmholtz equation: V2_ + k2_ = 0 (9)

Most boundary conditions likely to be encountered in connection with Eq. (3)

will probably be special cases of the general form

aI _¢l_n + a2 _ + a3 _ + a4 _ + a5 = 0 (i0)

where n is the outward normal at the boundary. For example, in heat conduction

problems, a boundary with a prescribed temperature function satisfies the Dirichlet
condition

= _o (ll)
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and a perfectly insulated boundary has the Neumann condition

_/3n = 0 (12)

In free surface flow problems, the linearized free surface condition on the velocity

potential is (Ref. 30)

+ go _,z = 0 (13)

where go is the acceleration due to gravity, the free surface is the plane z = cons-
tant, and commas denote partial differentiation. In one-dimensional radiation prob-

lems, the plane wave radiation condition that the velocity potential must satisfy

at a non-reflecting boundary is

d_,n + _/c = 0 (14)

where c is the wave speed.

An example of a boundary condition not of the general form of Eq. (10) is the

condition (2) which must be satisfied at an accelerating boundary of a fluid.

According to the analogy (Ref. 29) between Eq. (3) and the Navier equations of

classical elasticity, Eqs. (3) and (i0) can be solved with elastic finite elements

using the following procedure:

I. Select one of the three Cartesian components of displacement (or the

z-component in cylindrical coordinates) to represent the scalar field variable _.
Constrain all other displacement components everywhere in the field.

2. Model the domain of interest (either 2-D or 3-D) with finite elements

having material constants satisfying

Ee = _ Ge, Pe = a Ge (15)

where "a" is the variable appearing in Eq. (3), and Ee, Ge, and Oe denote the Young's
modulus, shear modulus, and mass density assigned on the material card to the finite

elements. The subscript "e" has been added to emphasize that these constants are

merely numbers assigned to the elements and may bear no resemblance to any actual

material properties associated with a perticular application. The dimensionless

constant _ in Eq. (15) should, for 3-D problems, be chosen large enough to make a+l

numerically indistinguishable from _. For 2-D problems, _ should be small, but not
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so small that l+e is numerically indistinguishable from unity. Thus, on most compu-

ters,

10-5 (2-D)
= (16)

1020 (3-D)

The shear modulus Ge can be selected arbitarily. The finite elements eligible for
use in the model are those derived from classical elasticity theory rather than from

the engineering theories involving beams, plates, or shells. Thus, for 2-D problems,

the plane stress membrane elements are appropriate. For 3-D problems, the solid

elements (e.g., the isoparametric or the axisymmetric solids) should be used.

3. Apply to the unconstrained degree of freedom (DOF) at each grid point in

the region a "force" given by

F : Ge g V (17)

where V is the volume assigned to the point and g is the function appearing in Eq.

(3). For problems for which the function g in Eq. (3) is independent of position

(as, for example, in the classical St. Venant torsion problem), this load may be

specified conveniently by applying to the "structure" a gravitational field for which

the acceleration due to gravity go satisfies

Pe go = Ge g (18)

4. Connect between ground and the unconstrained DOF at each grid point in

the region a scalar dashpot whose damping constant (the ratio of damping force to

velocity) is GebV , where b is the function appearing in Eq. (3) and V is the volume
assigned to the point.

5. Enforce the boundary condition (I0) by applying to the unconstrained DOF

at each grid point on the boundary of the region a "force" given by

F = -GeA (a2 _ + a3 _ + a4 _ + a5)/a I, aI * 0 (19)

where A is the area assigned to the point. (In general, the outward normal deriva-

tive B_/_n is enforced at a boundary point by applying a "force" to the unconstrained

DOF at that point equal to GeA_/_n. A positive force corresponds to a positive out-
ward normal derivative.) In Eq. (19), the a2 term is analogous to a scalar spring of

constant GeAa2/a I connected between the point and ground. The a3 term is analogous
to a scalar dashpot of constant GeAa3/a I connected between the point and ground. The

a4 term is analogous to an added mass of value GeAa4/a I attached to the point.
(Here, one should probably use a consistent, rather than lumped, formulation since
Zarda and Marcus (Ref. 30) showed that the differences between the two are not
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insignificant for free surface flow problems.) The a5 term is a time-independent

force given by -GeAa5/al. As expected, the special case of the Neumann boundary

condition (_,n = 0) corresponds to the traction-free boundary in elasticity and
hence is a natural boundary condition. The Dirichlet condition (_=_o) is implement-
ed merely by enforcing the desired value as a "displacement" boundary condition.

SCATTERING FROM ELASTIC BODIES

In the scattering problem (as shown in Fig. i), a submerged elastic body is

subjected to a plane wave time-harmonic acoustic incident loading of circular fre-
quency _. Without loss in generality, we can assume that the waves propagate in

the -x direction. The speed of such propagation is c, the speed of sound in the

fluid (usually water).

n

ATER PLANE
WAVE

Figure I - The Scattering Problem

Within the fluid region, the total fluid pressure p satisfies the wave equa-

tion, Eq. (i). Since the free-field incident pressure Pi is known and is given by

Pi (x't) = Po ei(kx + mt) (20)

(where k=m/c) it is frequently convenient to decompose the total pressure p into

the sum of incident and scattered pressures

P = Pi + Ps (21)

each of which satisfies the wave equation.

The solution of this scattering problem has been approached in various ways,

including the T-matrix method (Ref. 16), numerical approaches using approximate

fluid loading schemes (Ref. 15), and finite element schemes (Ref. 14). The latter

approach models with finite elements both the structure and a portion of the infi-

nite fluid, which is terminated with a simple radiation boundary condition to ab-

sorb the outgoing waves as much as possible. Kalinowski's finite element approach

(Ref. 14) uses the total fluid particle displacement as the fundamental fluid
unknown.
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The approach presented here is most similar to Kalinowski's approach (of those

mentioned above), except that we use as the fundamental fluid unknown the scattered

component of a fluid velocity potential rather than the total fluid displacement.

Both approaches yield symmetric matrix equations, but the use of velocity potential

rather than displacement as fluid unknown results, in 3-D, in fluid matrices of
one-third the order and one-third the matrix bandwidth.

We now formulate the problem for finite element solution. The finite element

modeling of the elastic structure results in the matrix equation

°,

M u + B _ + K u = -A p = -A (Pi + Ps ) (22)

where u is the vector of displacement components in the structure; M, K, and B are

the structural mass, stiffness, and damping matrices, respectively; p is the vector

of fluid pressures at the nodes of the fluid region; and A is the area matrix which

converts fluid pressures at interface points to structural loads.

A finite element model of the fluid region results in a matrix equation of the

form

O Ps + H Ps = 0 (23)

where Ps is the vector of scattered fluid pressures at the nodes of the fluid re-

gion, and Q and H are the fluid "inertia" and "stiffness" matrices, respectively.
According to the analogies described in the preceding section, the same finite ele-

ment code may be used to model both the structural and fluid regions. From Eq.

(15), material constants assigned to the elastic elements used to model the fluid

satisfy

Ee = _ Ge, Oe = Ge/C 2 (24)

where _ is given by Eq. (16).

As is, Eq. (23) does not account for either the fluid-structure interface con-
dition (2) or a wave-absorbing boundary condition. As in Kalinowski's work (Ref.

14), we will use the simple plane wave absorbing condition (Ref. 31)

Bp/Bn = -p/c (25)

Other possibilities are discussed by, for example, Engquist and Majda (Ref. 32),

Bayliss, Gunzburger, and Turkel (Ref. 33), and Israeli and Orszag (Ref. 34). How-

ever, these are not of the general form of Eq. (I0). Kalinowski showed (Ref. 14,

26,35,36), and our Example I verifies, that the plane wave absorbing condition is

satisfactory if the outer boundary is far enough away from the structure.
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Both boundary conditions (2) and (25) can be handled using Eq. (19). At the
fluid-structure interface, from Eqs. (2) and (21),

_Ps/_n = -3Pi/_n - PUn = P (Uni - un) (26)

where n is the outward unit normal from the structure (into the fluid), and Hn and
_ni are, respectively, the total and incident outward components of fluid particle

acceleration at the interface. Thus, using Eq. (19), we impose the condition (26)

by applying a load to each interface fluid point given by

F(P) = -GeAP (Uni - Un ) (27)

Similarly, the radiation condition (25) is enforced by applying a load to each
fluid point on the outer boundary given by

F(P) = -(GeA/c) Ps (28)

That is, a dashpot of constant GeA/c is connected between each boundary point and
ground.

The overall matrix system describing the coupled problem is obtained by combin-
ing Eqs. (22), (23), (27), and (28):

[ If II IllM 0 u B 0 _ K A u -APi
+ + = .. (29)

GePAT 0 Ps 0 C Ps 0 H Ps -GePAUni

This system, which is nonsymmetric, can be symmetrized (Ref. 28) by reformulating
the problem to use a new fluid unknown q such that

Ps = _ (30)

If the second partition of Eq. (29) is integrated in time, if Ps is replaced by

_, and if the fluid element "shear modulus" Ge is chosen as

Ge = -I/p (31)

the system (29) is transformed into

[Ill[Ill[ III1M 0 u B A _ K 0 u -APi
+ + = (32)

0 Q q AT C _ 0 H q AVni
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where Vni = _ni" This is the form of the equations which we will use to solve the
scattering problem.

The new variable q is, except for a multiplicative constant, the velocity po-
tential _ long used by fluid dynamicists, since

P = -PO (33)

Eq. (32) could also be recast in terms of _ rather than q as the fundamental fluid

unknown, but no particular advantage would result. In fact, the use of q rather
than _ has the slight practical advantage that the fluid pressure can be recovered

directly from the finite element program as the time derivative (velocity) of the
unknown q.

To summarize, both structural and fluid regions are modeled with finite ele-

ments. For the fluid region, the material constants assigned to the finite elements
are

Ge = -I/p, Ee = _ Ge' Pe = -1/0c2 (34)

where a is given by Eq. (16). The dashpots making up matrix C in Eq. (32) are ap-

plied at the outer fluid boundary with damping constant -A/pc at each grid point to
which the area A has been assigned. At the fluid-structure interface, matrix A is

entered using the areas (or areal direction cosines) assigned to each wet degree of
freedom.

The right-hand side of Eq. (32) can be simplified further since, for plane
waves propagating in the negative x-direction at speed c, the free-field incident

pressure and incident fluid particle velocity in the x-direction are related by
(Ref. 37)

Pi = -pc Vxi (35)

Then, as in Fig. i, if we define e as the angle between the normal n and the posi-
tive x-axis,

Vni = Vxi cos 8 (36)

The x-component of the free-field fluid particle velocity Vxi is the same at all
points in space except for a phase angle, which may be introduced into the analysis

by means of the time delay between two points having different x-coordinates.

EXAMPLE 1: SCATTERING FROM INFINITE CYLINDRICAL SHELL

The formulation derived in the preceding section will be illustrated first on

the two-dimensional (plane strain) problem of scattering from an infinitely long
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cylindrical steel shell (Fig. 2) of radius 0.5 m and thickness 0.01 m. The material

properties of steel are E = 19.5xi0 I0 N/m 2, _ = 0.28, and Ps = 7700 kg/m 3. The
surrounding medium is seawater, for which c = 1500 m/see and p = 1026 kg/m 3.

STEEL

SHEL_

VACUUM __tm E SEAWATER

PLANE
WAVE

Figure 2 - Scattering from Infinite Cylindrical Shell

The shell is modeled with beam finite elements and the water with 2-D quadri-

lateral four-node plane stress membrane elements having properties assigned accord-

ing to Eq. (34). The thickness in the z-directlon for all elements is arbitrarily

chosen as 1 m. By symmetry, only half of the problem (the half-plane y > 0) needs
to be modeled.

For a frequency of excitation of 4100 Hz. (ka = 8.6), we modeled the region

with 128 elements spanning the 180 degrees of circumference. The outer fluid bound-

ary (a circle of radius 1.026 m) was 1.44 acoustic wavelengths away from the shell.

According to Kalinowski (Ref. 14), this amount of fluid should provide excellent

absorption of outgoing waves.

A typical result for this problem is shown in Fig. 3, which shows a comparison

of the surface scattered pressures calculated both by finite elements and by using

an analytic expression presented by Junger and Feit (Ref. 38). The agreement is

clearly excellent. Although the Junger-Feit solution used for comparison is a

series solution (and hence another numerical approach), it makes no approximation

concerning the radiation boundary condition. The agreement in Fig. 3 thus confirms

that spurious boundary reflections are not contaminating the finite element solution

for this problem.

Additional results for this problem (at frequencies both above and below that

shown here) have been presented by Henderson (Ref. 17).

SCATTERING FROM FREE-FLOODED ELASTIC SHELL WITHRIGID INNER CORE

Here we derive the finite element formulation for scattering from a submerged

elastic thin shell which contains water on the inside (as well as on the outside) of

the shell and also contains a rigid inner core (Fig. 4).

The formulation of this problem proceeds along lines similar to that of the pre-

vious problem except that the fundamental fluid unknown in the inner fluid region is

the total velocity potential rather than the scattered component of velocity poten-

tial as in the outer fluid region.
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90 deg

------- ANALYTIC
.... FINITE ELEMENT

270 deg

Figure 3 - Scattered Pressures on the Surface of an Infinite

Cylinder (ka = 8.6)

ELASTIC _'n

WATER (PlS)
,,,II,---

PLANE
WAVE

Figure 4 - Scattering from Free-Flooded Elastic Thin Shell

with Rigid Inner Core

Therefore, let Pls denote the scattered pressure in the outer fluid region and

P2 denote the total pressure in the inner fluid region. Since the elastic shell is

thin, the same shell variables interact with both inner and outer fluid regions.
The main difference between the treatment of the two interfaces is that the normal n

in Fig. 4 is an inward normal for the outer fluid and an outward normal for the inner
fluid.
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The generalization of Eq. (29) can then be written immediately as

I°°IfIoou I°°°IfI0oo AT QI Pls 0 0 c Pls

°°lip21I°}+ -A K A u = -APi (37)

.°

0 0 H 1 Pls AUni

where Ge has been specified as in Eq. (31), and we have assumed that the same area
matrix A is used on both interfaces to convert pressures to forces.

This nonsymmetric system can also be symmetrized by reformulating the equations

in terms of two new fluid variables ql and q2 such that

ql = Pls' q2 = P2 (38)

As before, the nonsymmetric terms can be moved to the damping matrix by integrating

the first and third partitions of Eq. (37) in time:

[Q2OoM°]12}ou [oAABA°]i!21o o QI ql o AT c ql

[2oo{q21io1+ 0 K 0 u -- -APi (39 )

0 0 H 1 qI Avni

where, for both fluid regions, the material constants assigned to the finite ele-

ments are given by Eq. (34).
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EXAMPLE 2: SCATTERING FROM INFINITE CYLINDRICAL SHELL ENCLOSING A FLUID

BOUNDED BY A CONCENTRIC RIGID CYLINDER

The formulation derived in the preceding section will be illustrated on the

two-dimensional (plane strain) problem of scattering from an infinitely long cylin-

drical steel shell which contains on the inside both fluid and a concentric rigid
cylinder (Fig. 5). The rigid inner core has a radius of 0.254 m. The shell is

identical to that used in Example 1. Seawater floods the region between the shell
and the rigid inner core.

STEEL

SHEL_° j "-0.01m SEAWATER _--

PLANE
WAVE

Figure 5 - Scattering from Infinite Cylindrical Shell Enclosing

a Fluid Bounded by a Concentric Rigid Cylinder

A finite element model was prepared for this problem for excitation at 2100 Hz.

(ka = 4.4). Since this frequency is lower than that used in Example i, a coarser

mesh (having 96 elements spanning the 180 degrees of circumference) was used. Here,

the outer fluid boundary was a circle located 1.32 m away from the shell, a distance

equal to 1.85 wavelengths of the incident free-field acoustic wave.

For this problem, no analytic results were readily available for comparison, so
instead a comparison was made to the corresponding problem with the inside of the

shell evacuated (as in Example I, but at a different frequency). See Fig. 6.

Clearly, the presence of the contained fluid and the inner core affect the solution

significantly.

Although the two cylinders in this problem were chosen to be concentric, the

formulation derived in the preceding section is clearly general enough to handle

arbitrary geometry. In addition, the formulation applies to both 2-D and 3-D prob-
lems.

RADIATED PRESSURES

A finite element model of an exterior fluid-structure interaction problem is

capable of predicting only near-field acoustic pressures because of the approximate

nature of the radiation boundary condition on the fluid. However, given fluid pres-
sures and normal velocities on the fluid-structure interface, the fluid pressure at

any point in the exterior field can be calculated by a numerical quadrature.
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ELASTIC CYLINDER EMPTY

------ ELASTIC CYLJt'JDER ENCLOSING
CONCENTRIC RIGID CYLINDER
WITH FLUID BE'rVvEEN

90 deg

i// , \II

180 deg_ ....... " ' 0 dog

271 deg

Figure 6 - Comparison of Surface Pressures Scattered by an Evacuated

Cylinder with Pressures Scattered by a Cylinder Containing a

Fluid and a Concentric Rigid Cylinder (ka = 4.4)

In Fig. 7, let z be the position vector to an exterior field point P, and z =

l_I. Let x be the po--sition vector to a point on the fluid-structure interface

(with x = T_I), let r = z - x (with r = l_I), and let n be the unit outward
normal at the location x. The pressure at z is (Ref. 39)

P(_) = - fS q(_ )(e-ikrl4_r)dS + fS P(_) _l_n(e-ikrl4_r)dS (40)

where

q = _p/3n = -i_pv n (41)

k = m/c (42)

and it is assumed that the harmonic time-dependence of the variables is exp(imt)
rather than exp(-imt).

Since

_/_n(e-ikr/4_r) = (e-ikr/4wr)(ik + r-l) cos 8 (43)
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P

_--__LUID z__r n

Figure 7 - Notation for Far-Field Radiated Pressure Calculations

it follows that

P(_) = fS [i_PVn(_) + (ik + r-1) p(_) cos B] (e-ikr/4_r)dS (44)

This expression is valid for any point in the exterior field.

Eq. (44) can be simplified if only far-field locations are of interest. As

I_I + _, ik + r-I + ik, and, from the law of cosines, r + z - x cos e. Thus, at
far-field locations,

p(z) _ (ik e-ikz/4_z) fS [pCVn(X) + p(x) cos B]e ikx cos e dS (45)

where

cos _ _ (z_/I_I) • _ (46)

The numerical integrations in Eqs. (44) and (45) require, for each wet struc-

tural point, the knowledge of the location (coordinates), normal, area, pressure,

and outward normal velocity. All these quantities can be obtained directly from

NASTRAN using the OUTPUT2 utility module. The grid point coordinates and areas
(or areal direction cosines) can be obtained from an abbreviated static analysis

in which a unit outward pressure load is applied to the structure. The unit

normal at a point is then the unit vector parallel to the area vector. The

pressures and velocities are obtained from the frequency response analysis.
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