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SUMMARY

Results of an investigation of the behavior of a bolted, flange type marine

riser connector is reported. The method used to account for the nonlinear effect of

connector separation due to bolt preload and axial tension load is described. The

automated multilevel substructuring capability of COSMIC/NASTRAN was employed at

considerable savings in computer run time. Simplified formulas for computer

resources, i.e., computer run times for modules SDCOMP, FBS, and MPYAD, as well as

disk storage space, are presented. Actual run time data on a VAX-II/780 is com-

pared with the formulas presented.

INTRODUCTION

A marine riser is the equipment which connects an offshore drilling rig to the

subsea wellhead control system on the ocean floor. The riser provides a conduit

for various fluids and tools, as well as support for the control lines which run

from the rig to wellhead. A riser consists of a series of lengths of pipe with
connectors on each end. Axial tension load is applied to the riser by tensioners

on the rig to prevent the riser from buckling and to resist ocean current. As

offshore drilling depths have increased to over a mile, new riser connector designs
have evolved to meet this need.

The analysis reported here is of a bolted, eliptical flange type of connector

(HMF) with a rated axial load of 1.5 million pounds. The riser pipe is 18-5/8 inches

outside diameter. The connector, shown in Figure I, is characterized by 4 inch

thick flanges and an outside diameter of 38-1/4 inches. The analysis must include

the nonlinear effect which is introduced by the fact that the mating surfaces of the

connector will support only a compressive type of loading. Bolt preload can cause

the connector surface to separate at points remote from the bolt pressure area. The

axial tension load will also tend to separate the connector. The solution technique

reported here makes use of COSMIC/NASTRAN automated multistage substructuring. This

capability provides an economical solution to very large models, such as the one
described below

TECHNICAL APPROACH

The calculation of bolt preload stress and alternating stresses caused by

cyclic loading of the riser connector requires an accurate understanding of how the
pin/box/bolt interfaces behave under these load conditions. A solid (three-
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dimensional) model of a 22.5 degree section of the connector was developed. The
22.5 degree "pie" section was taken in the region of the choke and kill line, as

shown in Figure 2. The flange stiffness is lowest in this area, which provides a
conservative assumption.

A practical limit is quickly approached, in terms of computer resources, when

very detailed, three-dimensional solid models are required for an analysis. This

restriction is relieved to some extent by using a technique called substructuring.

The substructure approach reduces the number of equations to be solved by model-

ing the structure as separate pieces. Each piece is modeled independently. Using
matrix reduction techniques, an equivalent stiffness matrix is formulated with the

degrees of freedom only of the boundaries of mating pieces. These reduced matrices

are combined in the same manner as finite element stiffness matrices (hence referred

to as superelements) to form a set of equations identical in form to the non-

substructure case, but consisting of much fewer equations. After solution of the

combined structures, the stresses in each of the individual pieces are recovered

separately.

In the case of the HMF connector, the pin, box, and bolt each make up a sub-

structure. The boundary interfaces are the pin/box interface, the bolt/shoulder
interface, and the bolt thread/box interface.

Mathematical Model Description

Separate finite element models were developed of the pin, box, and bolt. Hidden

line plots of the finite element models of the pin, box, and bolt, showing the

element boundaries, are presented in Figures 3, 4, and 5, respectively. Table I

shows the substructure components along with the related number of elements, degrees
of freedom (D.O.F.), and boundary degrees of freedom.

As can be seen from Table I, the use of substructuring reduces the number of
degrees of freedom by a factor of 30 (from 23,753 to 789). It is with this reduced

structure that the analysis proceeds during Phase II.

Boundary interface behavior is determined through the use of NASTRAN substructure

multipoint constraints (MPC's), which is a method to impose constraints on the

relative motion of grid points of different substructures. Bolt preload is applied

as an equivalent thermal load. Axial load is applied as a pressure normal to
box/riser pipe boundary.

Loads, Boundary Conditions, and Constraints

The loads consist of the bolt preload and the axial load applied to the coupling.

Boundary conditions define the fixed end of the assembly to react the applied
axial load, as well as cyclic symmetry boundary conditions. Constraints refer to

the interface boundaries of the pin, box, and bolt. An axial tension load of

1.5 million pounds is applied to the connector. Results are presented for three

bolt preloads; equivalent to 1.7, 2.5, and 3.3 million pounds.

Boundary conditions are applied to react the primary axial load and to provide
symmetry constraints to the model. The pin/riser pipe interface (i.e., the

analogues surface on the pin that the axial load is applied to on the box), is
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constrained from moving in the axial direction only. Radial motion is allowed.

The symmetry boundary condition, for an axisymmetric load, is achieved by forcing

the displacement of grid points lying on the two planes (i.e., 0 degrees and 22.5

degrees) to be zero in the direction normal to the surface. The local coordinate

system used on the 22.5 degree boundary is rotated 22.5 degrees from the global
coordinate system. This rotation is necessary since NASTRAN can only constrain

grids along the local coordinate axes.

The interfaces between the pin, box, and bolt are controlled by substructure

multipoint constraints. These constraints are defined in NASTRAN by the following

equation:

ZA.U. = 0 (i)
ii

where,

A. = coefficient of ith degree of freedom

U. = displacement of ith degree of freedoml

For the case where two grids, numbers i and 2, are constrained to move together in

the Z direction, equation (i) would be:

WI - W2 = 0 (2)

where,

A I = i

A2 = -i
th

W° = displacement in the Z direction of i grid1

The finite element mesh for pin, box, and bolt are compatible in that the node

points of the models along the mating surfaces are coincident in space. Each pair

of nodes are coupled according to equation (2).

Solution Procedure

The substructure solution process is divided into three "phases" by NASTRAN;
Phase I - Generation of each substructure, Phase II - Combining and reducing any

number of times and then solving for the final substructure, and Phase III- Stress

recovery of the individual substructures.

Two separate procedures are needed for the Phase II solution:

i. Determine equivalent thermal loads to achieve the desired bolt preload

consistent with proper equilibrium forces, and

2. Determine the pin/box interface with both bolt preload and axial load

applied consistent with proper equilibrium forces.

Both load conditions, when applied to the pin/bix/bolt assembly, cause certain

portions of the surfaces to lose contact. This characteristic creates a nonlinear
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influence in the solution. An iterative technique is adopted to solve this
problem.

For each substructure, at the solution phase (i.e., Phase II of the substructure

procedure), equilibrium forces (i.e., substructure single point constraint forces),
are calculated by NASTRAN as

[Fei} = [Ki][xi} - [Fi} (3)

where,

i} th[F = Equilibrium forces for the _ substructuree

[Ki] = Stiffness matrix for the ith substructure

[Xi} = Solution vector for the ith substructure

[Fi} = Load vector for the ith substructure

The solution for both load cases is started assuming that the mating surfaces
are in complete contact and the solution for the combined substructures is obtained.

The equilibrium forces are calculated according to equation (3). The equilibrium
forces necessary are either tension or compression on the interface surface. Those

forces that are tensile in nature are not allowed, so the constraint condition,

equation (2), is removed for all degrees of freedom (D.O.F.) associated with the
tensile load.

Removal of the constraints changes the stiffness matrix in equation (3). With
the constraints removed from the selected D.O.F., a new Phase II solution is ob-

tained. The process is repeated until equilibrium is obtained, i.e., all interface

forces are compressive. With equilibrium established in the Phase II solution,

stress recovery in Phase III can then be accomplished.

Results of Analysis

The results of the Phase II solution illustrate the nonlinear characteristics

of the solution. The stress recovery in Phase III is straight forward and not
included in this paper.

The equilibrium condition for bolt preload of 1.7, 2.5, and 3.3 million pounds
resulted in the same contact surface of the bolt. The contact surface is shown as

the shaded area in Figure 6. The effective diameter, as calculated in accordance

with equations presented in Reference I, are shown for comparison. Figure 6

graphically illustrates the effect of the proximity of the choke and kill lines.

The flange stiffness, which is proportional to contact area, is less than predicted
by the classical method. However, the actual alternating stresses in any of the
bolts will be less than that calculated by the finite element model. This is due
to the modeling assumptions. The four bolts that are next to the choke and kill

lines have a stiffer flange than the model, because the model symmetry implies a

choke and kill line on both sides of the bolt. The remaining four bolts have

flange stiffnesses even higher since these lie between hydraulic lines which are
smaller in diameter than the choke and kill lines.
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The applied axial load of 1.5 million pounds is applied to the box while the
pin was restrained. Due to the eccentric nature of the load, the head of the bolt

bends and some contact is lost between the pin and the box. The solution procedure,

as in the bolt-up load condition, is iterative due to this nonlinearity.

The contact areas for bolt preloads of 1.7, 2.5, and 3.3 million pounds are

shown in Figures 7, 8, and 9, respectively. Note that as the bolt preload increases,
the contact area increases and moves inward. This causes an increase in the effec-

tive flange stiffness and reduces the amount of bending in the bolt. Both of these

effects reduce the alternating peak stress in the bolt caused by the axial load as

bolt preload is increased.

RESOURCE ESTIMATES

In order to determine the most cost effective substructure method, it is

necessary to calculate computer resource requirements; computer run time and disk

storage. The documentation available, References 2 and 3, provide some guidance

in this area. However, the timing equations presented in these documents are

complex, and is some cases, are apparently in error. Simplified timing equations

are presented for the operations which, in the analysis presented, Static Analysis

(Solution I), Phase I, II and III substructuring comprise the overwhelming majority

of computer run time.

Computer run time, using a VAX-II/780 with a floating point accelerator (FPA),
was used for the analysis. The timing equations should prove to be quite general

since the TIMETEST module in NASTRAN was used to provide the timing constants. The

operations discussed below are symmetric decomposition (SDCOMP module), forward-
backward substitution (FBS module), and matrix multiply and add (MPYAD module).

Symmetric Decomposition

Symmetric decomposition time can be significant in both Phase I and Phase II.

In Phase I, the calculation of the substructure stiffness matrix, Kaa, requires the

decomposition of Koo,

Kaa = K--aa+ KoJ Goa (4)

where the Guyan transformation matrix, Goa ;

Goa = Koo -I Koa (5)

is formed by forward-backward substitution. This process is also performed if

multipoint constraints are called for in case control.

Similar reductions are available in Phase II. The matrices are smaller, but

very dense. For these calculations the average bandwidth, C, is essentially equal
to N/2. The BANDIT program, Reference 4, can be used as an effective means to find

C in Phase I. A more costly method is to use a small value on the TIME card that

will cause NASTRAN to abort the decomposition process after SDCOMP time is calcu-

lated. A time estimate will be printed out and the solution terminated.

Time estimates for symmetric decomposition, assuming that no spill occurs, is

(Reference 3, Section 14):
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Tsd c = .5Tm NC 2 + Tb NC (sec) (6)

where,

Tb = Time/word to pack and write elements of a matrix (sec/word)

Tm = Medium loop multiply, an average of loose loop and tight loop
multiply (sec/ele)

N = Order of the matrix (degrees of freedom) Koo

C = Average bandwidth of matrix Koo

The first item is multiplication time, usually double precision; the second item
is I/O time.

Forward-Backward Substitution

Immediately after decomposition of Koo, the forward-backward substitution pro-

cess, (FBS), is initiated to form the Goa transformation matrix. No timing checks

are made by NASTRAN on this operation, however, the time involved can be substantial.

The time for symmetric FBS is estimated as (Reference 3, Section 14):

Tfb s = 2Tm PNC + TbN(2C + P/2) sec. (7)

where,

P = degrees of freedom in the "A" set, i.e., the order of Kaa

The first item is multiply time (two operations forward and backward) and the

second item is I/0 (P is read only once, but N*C is written twice).

Matrix _Itiply

Time estimates for matrix multiply and add (MPYAD) is most troublesome for a
number of reasons:

I. NASTRAN will automatically pick one of three very different methods
depending on the characteristics of the matrices.

2. I/O time is strongly dependent on matrix characteristics but is con-

sidered completely described by the matrix trailers. In particular,

the matrix density is used to calculate how many columns must be
processed; a very rough approximation. I/O time can be the dominant
factor in MPYAD.

3. Each of the three matrix processing routines are quite complex. Some
require multiple passes if a matrix does not fit in core. It is

common for a matrix not to fit even in the very large virtual core
than the VAX can provide.

In spite of these difficulties a simplified approximation is offered here.

Assume that the matrix multiply and add is described by
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[A][B] + [C] = [D] (8)

Use the Method I time estimated provided in Reference 2, Section 3.5.12.4:

Tmpy = PaRaCaC b Tm (multiply time) (9)

Np(PaRa + 5)Ca Ti (interpretive unpack A)

.5(I + Pb)RbCb Tu (unpack B)

.5(i + Pd)RaC b Tp (pack D)

.5(1 + Pc)RaC b Tu (unpack C - if present)

where,

Ri, Ci = number of rows or columns in matrix "i"

Ti = interpretive unpack sec/word

Tu = unpack sec/word

Tp = pack sec/word

Tm = multiply time sec/operation

Np = number of passes to interpretive unpack B

and:

(Ra + Ca)* Cb (i0)
Np _

OPEN CORE/WORDS PER ELEMENT

where open core is the number of words in open core (set diagnostic no. 13 in the

executive control deck to find this number) and words per element are I and 2 for

single precision and double precision, respectively.

Repeat the calculation for the transpose of equation (9) by interchanging Ra

and Cb , Ca , and Rb , Pa and Pb pick the smallest of the two times.

The reader is cautioned that equation (9) will only provide an order of

magnitude due to the complexities of the operation.

Disk Storage Space

Disk storage space, including the substructure operating file (SOF) is domi-

nated by the Goa matrix since the matrix density is 100% and the boundary D.O.F.

are usually numerous. It is worthwhile to calculate ahead of time this space for

planning purposes. For example, up to ten physical files may be used for the single

SOF logical file. One may wish to limit each physical file such that a single tape

or mountable disk pack would be adequate for back-up storage.

The Goa size is simply

WGoa = 2*N*P words

where double precision has been assumed.
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COMPUTER TIME COMPARISONS

Computer time estimates are based on data obtained from the TIMETEST module

with the outer loop, N, equal to i00 and the inner loop, M, equal to 1,000. The

timing parameters, shown in Table II, are those which NASTRAN uses and is found in

NTMXBD data block. A VAX-II/780 with a floating point accelerator (FPA) was used.

SDCOMP Module

Table III gives a comparison of actual time expended in the SDCOMP module vs.

that calculated by equation (4) for various size matrices. Note that as the time

increases so does the error in the estimate. This may indicate a stronger depen-,
dence on C than was assumed. To be conservative one should add 50% to the estimated

time.

FBS Module

Table IV gives a comparison of actual time in the FBS module vs. that calculated

by equation (7) for various size matrices. Again, to be conservative, one should

add 20% to the estimated time. If NASTRAN finds that all the time has been expended

in FBS and SDCOMP, she terminates without checkpointing first; the time is lost.

MPYAD Module

Table V compares both estimated times (remember to pick the smallest) for the

MPYAD module vs. actual times. The examples given are characteristic of Phase I,

If, and III operations and include all five possible NASTRAN MPYAD options. An

educated guess must be made at the densities of the matrices involved. The follow-

ing densities are suggested:

Phase I: Goa = 1.0

Kaa _ 0.I - 0.25

Koa _ 0.005 - 0.05

Phase II: Kaa = 1.0

H z Rb / Number of rows in H = order of K

where,

Rb = Substructure DOF / Combined DOF

Phase III: Goa = 1.0

Ua = 1.0

Po = 0 - 1.0

It is assumed that a program like BANDIT, Reference 4, has been used. NASTRAN

internal BANDIT was not used in this analysis.

The matrix multiply times generally are within a factor of two; indicating

that one would want to double the time estimate to be safe. The sole exception is
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Case No. 3, which is off by nearly an order of magnitude. Comparing this time to

Case No. 4, it is possible that if Method 2 had been used the time would match more

closely. All five possible methods are included for comparison; Method 3 is only
available for the transpose case. Table VI provides a breakdown of the preferred

time estimate into the five components. Note that I/O time is often significant.

Table VII provides the matrix characteristics and typical operations for the three

phases.

CONCLUDING REMARKS

Use of substructure multipoint constraints provides an effective means to model

contacting surfaces of separate substructures. The single point constraint forces

let the analyst check for proper equilibrium conditions. Nonlinear effects can be

accounted for by repeated analysis until equilibrium is satisfied. The method used

converged reasonably quickly, requiring about 8 iterations for each of the 4 solu-

tions; the bolt preload condition, 3 bolt preloads plus axial load.

The number of iterations required for each solution was 8, a total of 32 for

the entire analysis. Without substructuring, approximately 30 hours per iteration

or 900 hours of computing time would have been required. By using substructuring,

the computer time was reduced to less than 90 hours, a factor of ten in cost
reduction. This calculation assumes that SDCOMP will not use spill logic for

decomposition of the combined model. Numerical error is also a concern; with a
64 bit word length, matrices over about I0,000 D.O.F. are risky (Reference 5).

It is imperative that a small model be analyzed, start _o finish, and checked
for correctness, not just completion. Subcase structures in particular must be

compatible. With thermal loads, it was found that in Phase II, additional sub-
cases could be added that are linear combinations of Phase I loads. In Phase III,

new loads and temperature subcases, corresponding exactly to those in Phase II, must
be used. This will cause NASTRAN to re-generate the proper thermal loads but not

decompose the stiffness matrix. Do not change the loads in subcases defined in

Phase I, NASTRAN will not re-calculate the thermal loads. The solution will com-

plete normally but the answers will be incorrect!

The FBS module is the dominant factor in computer run time for substructuring,

assuming that there is no core spill in the SDCOMP module. It is recommended that
the substructures be small enough to avoid spill logic in SDCOMP since, if not -

according to Reference 3, quantum increases in computer time will result.

It appears that a large number of small substructures is most cost efficient

from a computer run time standpoint. This must be traded off against the loss in
labor and clock time efficiency caused by additional bulk data generation and book-

keeping. For example, each substructure must have a specified boundary and, it
multiple stages are used, boundary sets for each stage may be specified.
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TABLE I

CHARACTERISTICS OF THE THREE BASIC SUBSTRUCTURES

NAME D.O.F_* ELEMENTS BOUNDARY D.O.F.

Pin 10,92.3 4,474 235

Box 6,407 1,824 359

o Bolt 6,423 1,920 159

Total 23,753 " 8,218 789

*After removal of symmetry boundary D.O.F.



TABLE II

VAX-II/780 TIMING CONSTANTS

I

ITEM* TIME DESCRIPTION

(micro-sec)
mR n

1 15.6 Average of Read, Write, and Backward Read/Word

2 (Tb) 1200 Pack and Write elements of a column

3 (Ti) 1277 Read and Unpack elements of a column

4 (Tp) 49.5 Pack and Write entire column

5 (Tu) 112 Read and Unpack entire column

6 31 Read a string from buffer

7 31 Write a string to buffer

8 8 Real Single Precision (RSP) i
r

9 13.5 Real Double Precision (RDP) I
Tight Loop Multiply (Tt)

10 23 Complex Single Precision (CSP)

Ii 42 Complex Double Precision (CDP)

12 10 RSP

13 16.5 RDP
Loose Loop Multiply (T£)d

14 26.s Ib
r

15 44 CDP

I n , , n ,, wnm H

1

* Position in NTMXBD data block; Tm = _(T t + T£)



TABLE III

COMPARISON OF SDCOMP TIMES

(VAX-II/780 with FPA)

N C % TIME (MINUTES)

ARITH* I/O* TOTAL* ACTUAL

,i, i ii

250 125 0.4g 0.62 1.10 0.92

291 131 0.62 0.76 1.38 1.85

3139 299 35.1 18.8 53.9 54.5

3268 274 30 7 17.9 48 6 51 8

4159 372 71.9 31.0 102.9 133.1

4202 422 93.5 35.5 129.0 192.4

6270 289 65.5 36.2 101.7 100.4

9662 494 294.7 95.5 390.2 589.1

* Calculated with Tm = 15E-6, Tb = 1200 E-6;

% C is average bandwidth from NASTRAN message 3023



TABLE IV

COMPARISON OF FBS TIMES

(VAX-II/780 with FPA)

i,

N C % P TIME (MINUTES)

ARITH* I/O* TOTAL* ACTUAL

250 125 4 0.06 1.26 1.32 0.12

291 131 248 4.72 2.24 6.96 6.08

3139 299 294 138.0 46.8 184.8 154.7

3268 274 323 144.6 46.4 191.0 160 8

4159 372 841 650.6 96.9 747.5 769.5

4202 422 814 721.7 105.1 826.8 868.8

6270 289 153 138.6 82.1 220.7 154.6

9662 494 235 560.8 213.6 774.4 617.5

I

* Calculated with Tm = 15E-6, Tb = 1200 E-6;

% C is average bandwidth from NASTRAN message 3023



TABLE V

COMPARISON OF MPYAD TIMES (Seconds)

(VAX-II/780 with FPA)

CASE TIME EST. METHOD* ACTUAL
USED TIME

AB + C BTA T + C T

1 1305 154 3-T 143

2 1267 149 I-NT 289

3 20 465 I-T 135

4 699 26 2-NT 22

5 167 3303 2-T 262

6 1292 151 3-T 145

* See References 2 and 3 for a description of the
methods; T means that the A matrix is to transposed;
times are in seconds.



TABLE VI

TIME ESTIMATE COMPONENTS FOR BEST CASE (Seconds)

TERM CASE

1 2 3 4 5 6

1-Multiply time 4.3 38.8 @.67 1.89 9.71 2.12

2-1nterpritive Unpack 42.7 1.6 2.24 2.24 46.04 41.35
Matrix A (B T )

3-Unpack B (A T ) 107.4 1@7.4 9.68 12.87 107.4 107.4

4-Pack D 8.02 0.93 7.1 9.44 1.16 0.02

5-Unpack C 0.00 Z 0.0 0.0 2.62 0

i, |

TOTAL 154 149 19.7 26.45 167 151



TABLE VII

MATRIX OPERATIONS AND MATRIX CHARACTERISTICS

MPYAD MODULE

PHA SE CASE OPERATI ON* R a Ca Pa R 5 C b P 5 Pc

i GoaT Po + Pa 153 6270 1.000 6270 3 0.11 1.000
Ill

2 Goa Ua + Uo 6270 153 1.000 153 3 1.000 1.000

_o 3 HT Kaa 488 294 0. 002 294 294 1 000 0
o_ I I

4 (HTKaa) H 488 294 _.602 294 488 0.002 0

5 KoaT Goa + Kaa 153 6270 0.005 6270 153 1.000 0.100
I

6 GoaTPo + Pa 153 6270 1.000 6270 2 0.082 1.000

* See Reference 6 for a description of the matrix operation.



FIGURE i - HMF RISER CONNECTOR
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FIGURE 2 - CROSS SECTION OF HMF RISER CONNECTOR





FIGUR54 - HIDDSN LIN5 YiSW OF HMF BOX, 22'5° PI5 SScTION230



FIGURE5 - HIDDENLINEVIEWOF HMF BOLT,22,5° PIE SECTION
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FIGURE 6 - PIN/Box CONTACT WITH BOLT PRELOAD ONLY
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FIGURE 7 - CONTACT AREA FOR 1.7 M LBS. BOLT PRELOAD

AND 1,5 M LBS, AXIAL LOAD
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FIGURE 8 - CONTACT AREA FOR 2,5 M LBS, BOLT PRELOAD

AND 1,5 M LBS, AXIAL LOAD
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FIGURE 9 - CONTACT AREA FOR 3,3 M LBS, BOLT PRELOAD

AND 1,5 M LBS, AXIAL LOAD
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