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I. NEW TRENDS IN TURBULENCE 

In the NASA Workshop on Turbulence Modeling, at NASA 
Headquarters, Dec. 13-14, 1983, the trends in turbulence has 
been heavily debated. The recommendation was the need for new 
concepts and methods to develop a statistical theory of turbulence. 
The treatment should detach from the conventional concepts and 
should incorporate new insights from the modern statistical 
physics. Among them, the "catastrophe theory" was mentioned. 

A nonlinear dynamical system can take the various forms 
of (i) algebric equations, (ii) ordinary differential equations, 
and (iii) partial differential equations. By the strong 
perturbations and the inherent nonlinearity, the system can 
become unstable, develop collective interactions, and reach a 
state o f  turbulence. The transition from the laminar motion to 
turbulence, and the characterization of those processes through 
which a nonlinear dynamical system undergoes before reaching 
turbulence are the subject matter of "chaos and universality". 
The interest on this topic is partially due to its easy availabi- 
lity to numerical computations, at least in one dimension and in 
the dynamical forms (i) and (ii). We must notice the important 
gap between the dynamical development of chaos and their statis- 
tical treatment. It is with the purpose of devising a mathematical 
tool for transforming the dynamical system into a statistical 
framework that we develop the group-kinetic method. 

11. GROUP-KINETIC METHOD FOR THE TRANSFORMATION OF THE DYNAMICAL 
SYSTEM INTO A KINETIC SYSTEM AS THE BASIS FOR A STATISTICAL 
TREATMENT OF TURBULENCE 

In our group method, the stochastic and nonlinear diffe- 
rential system, as governing the compressible turbulence and 
incompressible turbulence, undergoes three successive transforma- 
tions. As the first step, we transform the differential system 
from the configurational space into the phase space. The resulting 
master equation becomes homogeneous, has lesser nonlinearity and 
emcompasses all the equations (for density, velocity and energy) 
of the dynamical system. Secondly, we note that the master equation 
and its Fourier decomposition contain too many minute details. 
For the statistical treatment a coarse-graining procedure by 
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group-scaling is necessary in analogy with the group- 
renormalization. To this end, we use the scaling operators 
A', A ' ,  A" to decompose a fluctuating quantity into the 
macro-group, the micro-group and the submicro-group of 
decreasing coherence, representative of the three transport 
processes of spectral evolution, eddy transport property and 
relaxation. By formulating the relaxation as a functional of 
the transport coefficient, we obtain a closure, The relaxation 
is investigatedby a Path-perturbation theory. This involves the 
evolution-operator and the derivation of the equation for the 
probability of retrograde transition. The kinetic equation 
thus obtained has an eddy collision coefficient in the form 
of an integral operator of memory. Thirdly, we transform the 
kinetic equation back into the configurational space by taking 
the moments. Hence we derive the equation of spectral flow for 
determining the spectral structure. The group-scaling has the 
important advantage of enabling the determination of the spectral 
function from the one-point distribution function alone, without 

is required in the conventional methods of many-body statistical 
mechanics. 

the knowledge of the two-point distribution function as 

111. SPECTRAL STRUCTURE AS A BASIS FOR TURBULENCE MODELING 

A. Shear turbulence and geostroEh5.c turbulence 

By the group-kinetic method, we find the direct and 
reverse cascades for the transfer across the spectrum. We 
derive the spectral distributions in inertia turbulence ( k  
law), shear turbulence (k-' law) and geostrophic turbulence. 

spectrum and the geostrophic turbulence with a random driving 
force has a k - 4  spectrum, 

------------- 

-5f3 

The geostrophic turbulence without driving force has a k- 3 

F o r  the convective turbulence in the stable atmospheric 
boundary layer, we find a spectral structure for the three 
subranges. The horizontal velocity components start with a buoyancy 
subrange of k-3 law, to be followed by a spectral gap, 
a shear subrange of k-1 law and an inertia subrange of k-5/3 
law at the tail of the spectrum. The vertical component has a 
depressed spectrum at small wavenumbers before it resumes 
the inertia tail. 

The self-consistent forces (pressure and buoyancy) act 
differently among the different components o f  the velocity 
spectral distribution. In the past their effects were 
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assumed. Our group-kinetic method develops a homogeneous master 
equation that lumps these forces into the advection in the phase 
space, so that the path perturbations can be readily analyzed. 

For the prediction of profiles (mean wind velocity, 
temperature and humidity), a macroscopic version of our transport 
theory is needed. The closure of the transport hierarchy is 
obtained by a non-stationary theory of transport for the eddy 
srress and the pressure-strain correlation. The transport 
coefficients are integral operators of memory and are 
functionals of the spectral distributions, the mean flow parame- 
ters, and other dimensionless parameters, such as the Richardson 
number and the Rossby number. We summarize the following 
transport equations in the modeling: (i) the equation of spectral 
flow, (ii) the equations for the evolution of the transport 
coefficients, (iii) the transport equations of mean profiles, 
and (iv) the transport equations for the eddy stress and the 
pressure-strain correlation. The group-modeling is superior, 
because the conventional modelings have unknown scales and 
unknown length parametrization. 

I V . AC C OMPL I S HM E NT S 

Eight manuscripts have been completed by C .  M. Tchen, 
and were compiled under two NASA Contractor Reports, entitled 
"Theory and Modeling of Atmospheric Turbulence". 

Volume One contains the following manuscripts: 

1. Kinetic basis of cascade transfer in turbulence 
4 3  pages 

memory-loss, 36 pages 

in two dimensions, 31 pages 

collision, 4 4  pages. 

2 .  Kinetic theory of turbulent transport with double 

3. Group-scaling theory f o r  the enstrophy turbulence 

4 .  Group-kinetic theory o f  turbulent collective 

Volume Two contains the following manuscripts: 

1. Group-kinetic theory of two-dimensional geostrophic 

2. Equivalent methods for describing the quasilinear 

turbulence, 32 pages 

turbulent trajectory, 2 9  pages 
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3 .  A new kinetic description for turbulent collisions, 

4 .  Spectral structure of turbulence in the stable 

including mode-coupling, 2 9  pages 

atmospheric boundary layer, 14 pages. 

V .  PLANS FOR CONTINUING RESEARCH 

Our group-kinetic method will be extended to the atmosphe- 
ric processes with shear, stratification and Coriolis force. 
In particular, we investigate the following: 

1. Eddy transport theory for the derivation of 

2 .  Kinetic theory o f  pressure-strain correlation 

3. Spectral structure of anisotropic turbulence 

4 .  Upper atmospheric boundary layer and inversion layer 

5 .  Modeling of turbulence as based on the new concept 
of group-modeling, as outlined in Subsection IIID. 

anisotropic transport properties 

VI. RECOMMENDATIONS FOR NEW RESEARCH: MODULATIONAL INSTABILITY 
AND SOLITON TURBULENCE IN THE BAROCLINIC ATMOSPHERE 

In 1926 Madelung observed a formal equivalence between 
a fluid system and the Schr8dinger wave equation. He recommended 
this transformation for non-barotropic fluids preferably. The 
nonlinear SchrFdinger equation is now of intense physical interest 
and has received a great attention for applications t o  plasma 
physics, astrophysics and ocean dynamics. Unfortunately the 
advantage o f  the correspondence between the concepts of fluid 
dynamics and those of wave mechanics has not been fully exploited 
in researches on the atmospheric wave processes. 

The nonlinearity can be local, as in the cubic nonlinear 
Schr-6dinger equation. It is made non-local in the Zakharov 
equations. Zakharov added to the Schrodinger equation an acoustic 
equation F o r  the non-local modulation. We recommend a modification 
of the Zakharov system by adding new scattering functions and 
new parameters representative of the baroclinic and rotational 
properties of the atmosphere. Not much progress has been reported 
on such modulational instabilities and soliton turbulence. The 
slow progress is due to the lack of a suitable mathematical tool. 
We are convinced that the group-kinetic method will help in 
overcoming this difficulty. 
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