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ABSTRACT

In orOer to have stop-action image quality of radiographs, high

instantaneous power levels are required. When medical x-ray systems are

installed in hospitals, three-phase power lines can provide power levels

in excess of I00 kWp to meet this need. Mobile x-ray systems or systems

for field use are limited by their pc_er sources. Presently available

po_er _ources for these applications include: ninety volt nickel-cadmium

_atteries c_pable of 120 amperes, 220 vac power lines capable of pulse

currents of I00 _mperes, capacitor discharge systems using a 1.0 uF

capacitor charged up to I00 kV or the use of a large electrolytic

cepacitor of 0.3 F charged to 330 V and discharged through a regulator-

in"erter circuit. In each case, instantaneous power is usually limited

to i0 kWp or has some other energy restriction. In the case of the 1.0

_ _stem, the restriction is due to the drop of x-ray tube anode voltage
Juring the x-ray exposure. The single phase 220 vac power line generates

a non-cc, n_t_nt voltage at the anode which is about 60% effective in

pro0uci_g x-rays as the more constant voltage of a three phase rectifier
or of a filtered inverter. Electrolytic capacitors have other technical

problems of rate limitations, fall-off during the output cyclep large

si=e _n_ _nternal heating. The use of a small flywheel appears to be a

practical _Iternative to these power sources fop mobile x-ray system

appl icatior, s. A 5 kg flywheel has been constructed which runs at 10 krpm

and stores 30 kJ while requiring less than 500 W to bring the system up

to spe_d. The wheel is coupled to an aircraft alternator and can yield

_ulsed po_er levels over 50 kWp. The aircraft alternator has the

_dvant_Qe of hieh frequency output which has also permitted the design

of sm_iler high voltage transformers. A series of optical sensors

_e_ectir, g _haft position function as an electronic coe_mutato_ so that

the alternstor may operate as a motor to bring the wheel up to operating

speed. The s_stem permits the generation of extremely powerful x-rays

from a '._r iety of low power sources such as household po_er outlets,

automobile b_teries or sources of poorly regulated electrical power
such as th_._e f_un0 in third world countries.
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INTRODUCTION

One of the main problems in the design of mobile x-ray generators

is that of obtaining the very high power levels to allow high exposure

rates and short exposure times. Power lines for use by mobile systems

are often limited in output or have varying line resistance so that

constant output voltage cannot be assured. Storage battery power sources

are also resistance limited: practical constraints of size and weight

limit instantaneous power levels to about I0 kWp. The battery power is

converted to high frequency alternating voltage and fed to a step-up

transformer, rectified and fed to the x-ray tube. Newer systems are

improved over older systems by using even larger batteries and weigh

over 350 kg. They ape difficult to move to the patient site except by
means of motor-assisted drives (a further drain on the batteries). Real

improvements may come with some new developments in the design of

storage batteries. The use of a very large electrolytic capacitor

feeding a commutating regulator and high frequency inverter has promise

of providing the power needed but is presently limited by peak current

ratings of the capacitor_ internal heating of the capacitor, size and
other circuit limitations to power levels of about 10 kWp. Using

high voltage capacitors for storage of the actual tube anooe voltage and

gating the tube anode current by tube grid control have a rather
severe and subtle limitation. Such circuits operate in a way similar to

an electronic flash used for photography. In the flash, energy

Jischarged through the flash tube is converted to light for as long as

the gas remains ionized. In the x-ray tube, the x-ray photon energy
distribution is related to the instantaneous anode voltage. As the

capacitor discharges, the voltage falls and the x-ray beam energy also

falls. Lower beam energies are less penetrating, cause less film

darkening and produce undesirable radiation effects on the patient.

Operation of these types of mobile x-ray generators is still

marginal when high power levels and proper beam energy distribution are

required for stop-motion images at low exposure levels to the patient,
The 90 volt battery-powered machines at I0 kWp will draw about 140 amp,

if we assume 80% efficiency. These batteries are quite heavy. Single

phase line-powered systems operating at I00 kVp and 200 mA will draw

more than I00 amps from a 220 vac power line. Operation from the common

I15 vac line is obviously precluded by the 2 KW limit of such lines.

Even though the input power to the x-ray tube is about 20 kWp, the

waveform of the anode voltage reduces the actual x-ray output to almost

the same level as that produced by constant potential power of I0 kWp.

P_er lines rated at peak current levels of I00 amps and 220 vac can be

wired in hospitals and factories but are not usually found in the field.

Small and portable 60 Hz power generators are usually rated at peak

power levels of 5 kW or less. The capacitor discharge machine using a

1.0 uF capacitor (actually 2@ 2.0 uF capacitors in series, one at the
anode and one at the cathode o_ the x-ray tube) will drop I kV for each

I mAs discharged at the capacitor. The capacitor can be charged at a low

rate, well within the capability of the small power generator. Film

darkening as a result of passage of x-ray photons through the patient is

proportional to the 5th power of anode voltage. To compare the effective

m_s of the capacitor discharge circuit to that of a constant potential

generator, the voltage waveform of the linear discharge to the 5th power

:an be integrated from I00 kVp to 0 kVp:
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f: 5Eff. mA/s = I00 (!-v) clv

: I 7 mA/s

This can be interpreted as meaning that the total effective x-ray
energy of a 1.0 wF system discharged to 0 kVp is ]ess than 17 mAs of the

energy produced by a constant potential machine. This lo_J total energy

is not sufficient for many diagnQstic procedures. The capacitor

dischar, ge machfne is limited to the radiography of the chest or the
extremities and cannot take high-quality pictures of the abdomen or the

head. Batter>'-pc_,ered or line-powered machines can take pictures of any

body part but the power rating may require that the exposure time be
increased and some image motion blur may occur. The use of very large

electrolytic capacitors coupled to switching regulators and high-

frequency inver, ters is a recent development. The switching regulators

compensate for the falling voltage of the capacitor as charge is
withdrawn to feeO the inverter. Internal series resistance and effective

inductance of the storage capacitor as well as size are limitations to

this _pproach.

The study at the University of Wisconsin has shown that po_er

levels in the 30 VWp r_nge and above are achievable using a flywheel
alternator system. While the use of a common shaft with the motor-

alternator has not been successful, a simple spline (quill) coupling and

separate suspension _nd bearings for the wheel assembly have resulted in

a simple low-loss destgn o_ very high peak power capability.

i
FLYWHEEL ENE_G'( GTORAGE

In the flywheel energy storage system the alternator is operated as

a motor to bring the flywheel up to speed. The circuits are then
_itched back to the alternator mode and power is taken from the

flywheel to drive the alternator with the field current of the

alternator controlled to produce a particular constant potential at the

anode of the x-Pay tube despite changes of wheel angular velocity, tube

current or other factors. The power ratio between alternator and motor

modes can exceed I00, Figure I is a block diagram and shc_JS the

relationships between the major components of the system,

A standard 115 vac pc_er source rated at about i kW provides power

to the motor drive, to the various control circuits and to the rotor and
filament circuits of the x-ray tube. The motor dr_ue circuit is shown in

Figure 2. The 115 vac is fed to a transformer and an SCR bridge to

provide a voltage controlled to between 15 and 55 vdc which is then fed

to a six step driver circuit. The _witching control for the six step
driver is obtained from three optical sensors (retro-reflective LEO-

transistors, sensing shaft positio_- a special form of a shaft position

encoder.) The output of the three sensors :s _ed to a 32x8 R0M _here the

other two inputs are determined by a _,mole t_chometer circuit.
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Thus, the output of the ROM consists of the six step drive signals
with four modes of phase shift as a function of shaft speed. Final speed
control is done by controlling the power supply voltage by means of the
SCR's.

Relays disconnect the motor-alternator from the drive circuit and

connect it to the high tension transformer. The field excitation is used

to control the output of the alternator during the exposure to set the

voltage at the x-ray tube. Feed-forward control maintains this voltage

at the pre-set value over the changes of rotor speed and the effects of

the changes of excitation due to field reactance and other factors.

The flywheel is a 5 kg heat treated steel alloy 25 cm diameter disc

spline coupled to a Bendix 2_B262-35-B aircraft alternator. A second
model is also under test using a Bendix 28BI35-126-A aircraft

alternator. These lightweight alternators are each rated at 20 kW with

ram air cooling_and are capable of short pulse loads in excess of 50

kWp. The run-up time is three minutes with a maximum line power

requirement of 750 W. This will bring the wheel to I0 krpm which

corresponds to about 30 kJ of stored energy. Controlled output of over

25 kWp has been achieved.

T

IECHANICAL CONSIDERATIONS

The design of the system requires that the total energy be limited
to that obtainable from the power line for a short period of time - less
than three minutes• It must yield short bursts of power of less than one

second duration. The mechanical coupling must be reasonably efficient
for both motor and alternator modes. The power ratio between alternator

and motor modes is quite high. Reasonable efficiency in the alternator

mode results in unacceptable losses in the motor mode. For that reason,

various gear and belt drives could not be used. The use of a
differential gear arrangement to drive counter-rotating wheels was also
discarded for that same reason. Mounting of the wheel directly on the

alternator shaft resulted in a configuration fh=t had resonant

frequencies below the maximum operating frequencies (Hz vs Pps) so that

a separate wheel mounting with a spline coupling to the alternator shaft
was used. The complete assembly can be considered as a series of coupled

cylinders: the flywheel, the rotor, the shaft and the Dearings. For such
systems, the rotational energy E at angular velocity w is:

E = 1/2 _ Ii _2
i

where li is the moment of the ith component. For a cylinder, Ii is given
by :

Ii = I/2 M iR i-

where M i is the mass and Ri is the radius of the ith component.
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When power P is taker, from the system, the re)calve torque T(t) can
be found from:

P(t) = dE/dt = -Z law dw/dt = -T(t)w(t)
i

Increase0 will result in reduced reactive torque. The rate of

change of torque during the x-ray exposure will be reduced with an

increase of the initial stored energy. There are several practical

limitations to increasing . These include rises in the material

stresses, bearing stresses, the effects of imbalances and losses due to
series reactance and other effects in the

alternator.

The flywheel can be considered as a homogeneous disc of outer

radius a and inner radius b. The maximum tangential stress,otmax and the

maximum radial stress Ormax are estimated:

atmax _ I/4p_2((3 + _)a 2 • (I - v)b 2)

Ormax : ((3 +v )/8)(pw2(a b) 2)

where p is the material density, w is the angular velocity and v the

Poisson ratio. For the 4340 steel plate used,

0 = 7.8 x 10 kg/m and _ = 0.25 to 0.30

These estimates ignore localized effects due to machining and

mounting. A safety factor of five times these estimates is reasonable

and pru0ent. For the heat _reated 4340 or similar steels_ yiel_
strengths of over 860 MN/m Z ape attainable with elongation sufficient

for braking action of the wheel against a close-tolerance housing in the
event of a material fail'Jre.

The use of conventional, high quality, grease lubricated bearings

limits operation to about 18 m/s for steel caged bearings and to 24 m/s

for phenolic caged bearings. Because of the nee0 for a shaft diameter of

sufficient stiffness and strength, a practical angular velocity is

limited by the bearings to about 15 krpm.

The requirements for stored energy, the limit of angular velocity
and the safety factors chosen for steel ape sufficient to define the

dimensions of an annular disc flywheel (Fig. 3). HovJever, a dynamic system

must consider vibrational modes as well. These include those due to rotor

imbalance, obliquity of the disc, bearing mounting and shaft deflection.

Vibrational modes include whirling and torsion_l and frame dispacements of

the system support. In this design, a separately supported flywheel was

chosen over a single long shaft design because the short and stiff shaft
would have a higher resonant frequency and better vibrational

characteristics. The wheel was designed to store 30 KJ at 10 krpm with a
maximum stress of of 140 HN/m 2. When dynamically balance_ to _ithin

2.8 x 10 N-m, no resonant states (eigenvalues) _re observed dur._ng
operation.
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ALTERNATOR CHARACTER lST I CS

The n,echanical characteristics of the wheel are within the range of

operition of aircraft alternators. Such alternators are operated at

between 8 and 12 krpm and certain models produce pc_er at a continuous

output rating of 20 kW with short time ratings of 50 k!_. The power
°_

_ output frequency in the 400 Hz range permits the design of high vol rage

_ transformers smaller than are used in conventional 60 Hz x-ray systems.

L To desion the control necessary to produce constant power during the hioh

_ power transient operation, the alternator has been modelleO as a salient
pole rr,achin__ of one pole pair. Transient operation requires that some

form of anticipation or feed-forward control b_ used to over,--c_r,e the

.. . . " . . . °: ir,her__r,t del _s r,f the cor, trol windings (field r_far, ce) iF, order _r0

rr,aintair, cor, o.tar, t output during the x-ray pulse.

MC,TOR 0PER_TION

The alternator is operated as a motor by sensing ,vheel position and

developing a six step drive. A tachometer circuit shifts the electrical

lead angle a_ a function of speeO and a start-up circuit limits starting

current. The derivation of the six step drive (Fig. q) and the phase shift

is done by means of _ 32 x S ROM fed by the position sensors and the 2

bit output of the tachometer circuit. The same circuit that limits the

t_rting current also limits the operating current when a signal from
ne tachometer ir_dic_tes that maximum operating speed has been reached.

_LTERNA]'0R CONTROL

The control of the alternator f_eld is. a feed-forward system of

open Iooc, control based on shaft speed and x-ray tube kVp and _. It was
• ound that the inductance of the rotor fiel_ was the maln cause of the

_,er/ _low r e_pon÷e time (close to the short circuit response time of the

alternator.). For the short pulses of power required of the system, the

exponential res0onse characteristic can be compensated for by means of a

step increase in the exciter current just prior to the actual

application of the loaO. The system exposure timer and control circuits
must accomplish several tasks: transfer operation of the alternator frocr,

the motor mode to generator mode_ apply power to the rotating anode of
the x-ray tube in anticipation of the x-ray exposure, boost the filament

pot_er of the x-ray tube tO that required to produce the selected anode

current_ set the exciter current and wait until the operator signals the
start of the exposure. When the actual exposure is require_ in this

"ready" condition, the circuit applies the required step input to the

exciter current, waits 50 ms and closes the power contactor to make the

exposure for the _elected pulse duration. The appiication of the step

_nput assures that the output pulse will be constant during the x-ray

exposure (Fig. 5).
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CONCLUS,I ON

The flywheel powered x-ray system has been constructed as described
t

above. The total weight of the flywheel power source and control
circuits is under 40 kg, far less than for comparable battery sources of
lower power capability. The system has provided over 20 KWp of

controlled power with levels of over 40 kWp expected as work continues.
The simple approach of using the high speed, low torque wheel, the six
step drive and the feed forward control appears to yield a practical
solution to the problem of providing high power x-ray pulses of short

_uration for excellent stop-motion radiography.
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Figure I. Block Diagram of the Flywheel-Pc._ered X-Ray Oenerator.
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CIRCUIT be

Figure 2. Diagram of Optical C_utator. In actual use, one
black-_hite pair is used for each pole pair of the alternator-motor.

Only three reflective sensors are used.
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Figure 3. The Flywheel Assembly. To keep the resonance

frequencies above the operating frequency, the wheel is mounted

independently of the motor-alternator ano is quill-coupled.

SIX STEP DRIVE
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Figure 4. Six Step Drive. Because the alternator is Y-Connected,

each drive signal adds within the motor. The three-phase orive is
obtained by this summation.
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Figure 5. X-Ray Tube Anode Waveforms. Scale: 20 KVp/cm and 10
ms/cm. Tube current is ]OO mA. The transient recovery time o@ the
&lternator is _lmost 0.25 see., too long _or x-ray applications. The
use of feed-forward control corrects the output sag due to the short
output pulse.
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